4,503 research outputs found

    Implementation of User-Independent Hand Gesture Recognition Classification Models Using IMU and EMG-based Sensor Fusion Techniques

    Get PDF
    According to the World Health Organization, stroke is the third leading cause of disability. A common consequence of stroke is hemiparesis, which leads to the impairment of one side of the body and affects the performance of activities of daily living. It has been proven that targeting the motor impairments as early as possible while using wearable mechatronic devices as a robot assisted therapy, and letting the patient be in control of the robotic system can improve the rehabilitation outcomes. However, despite the increased progress on control methods for wearable mechatronic devices, the need for a more natural interface that allows for better control remains. This work presents, a user-independent gesture classification method based on a sensor fusion technique that combines surface electromyography (EMG) and an inertial measurement unit (IMU). The Myo Armband was used to measure muscle activity and motion data from healthy subjects. Participants were asked to perform 10 types of gestures in 4 different arm positions while using the Myo on their dominant limb. Data obtained from 22 participants were used to classify the gestures using 4 different classification methods. Finally, for each classification method, a 5-fold cross-validation method was used to test the efficacy of the classification algorithms. Overall classification accuracies in the range of 33.11%-72.1% were obtained. However, following the optimization of the gesture datasets, the overall classification accuracies increased to the range of 45.5%-84.5%. These results suggest that by using the proposed sensor fusion approach, it is possible to achieve a more natural human machine interface that allows better control of wearable mechatronic devices during robot assisted therapies

    Mechatronics & the cloud

    Get PDF
    Conventionally, the engineering design process has assumed that the design team is able to exercise control over all elements of the design, either directly or indirectly in the case of sub-systems through their specifications. The introduction of Cyber-Physical Systems (CPS) and the Internet of Things (IoT) means that a design team’s ability to have control over all elements of a system is no longer the case, particularly as the actual system configuration may well be being dynamically reconfigured in real-time according to user (and vendor) context and need. Additionally, the integration of the Internet of Things with elements of Big Data means that information becomes a commodity to be autonomously traded by and between systems, again according to context and need, all of which has implications for the privacy of system users. The paper therefore considers the relationship between mechatronics and cloud-basedtechnologies in relation to issues such as the distribution of functionality and user privacy

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Realising the open virtual commissioning of modular automation systems

    Get PDF
    To address the challenges in the automotive industry posed by the need to rapidly manufacture more product variants, and the resultant need for more adaptable production systems, radical changes are now required in the way in which such systems are developed and implemented. In this context, two enabling approaches for achieving more agile manufacturing, namely modular automation systems and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at Loughborough University which aims to provide a modular approach to automation systems design coupled with a virtual engineering toolset for the (re)configuration of such manufacturing automation systems is reported. The problems faced in the virtual commissioning of modular automation systems are outlined. AutomationML - an emerging neutral data format which has potential to address integration problems is discussed. The paper proposes and illustrates a collaborative framework in which AutomationML is adopted for the data exchange and data representation of related models to enable efficient open virtual prototype construction and virtual commissioning of modular automation systems. A case study is provided to show how to create the data model based on AutomationML for describing a modular automation system

    Five-Axis Machine Tool Condition Monitoring Using dSPACE Real-Time System

    Get PDF
    This paper presents the design, development and SIMULINK implementation of the lumped parameter model of C-axis drive from GEISS five-axis CNC machine tool. The simulated results compare well with the experimental data measured from the actual machine. Also the paper describes the steps for data acquisition using ControlDesk and hardware-in-the-loop implementation of the drive models in dSPACE real-time system. The main components of the HIL system are: the drive model simulation and input – output (I/O) modules for receiving the real controller outputs. The paper explains how the experimental data obtained from the data acquisition process using dSPACE real-time system can be used for the development of machine tool diagnosis and prognosis systems that facilitate the improvement of maintenance activities

    Multimodal Man-machine Interface and Virtual Reality for Assistive Medical Systems

    Get PDF
    The results of research the intelligence multimodal man-machine interface and virtual reality means for assistive medical systems including computers and mechatronic systems (robots) are discussed. The gesture translation for disability peoples, the learning-by-showing technology and virtual operating room with 3D visualization are presented in this report and were announced at International exhibition "Intelligent and Adaptive Robots–2005"

    Towards a New Framework for Product Development

    Get PDF
    In the mid-1980s, Andreasen and Hein first described their model of Integrated Product Development. Many Danish companies quickly embraced the principles of integrated product development and adapted the model to their specific business and product context. However, there is concern amongst many Danish companies that Integrated Product Development no longer provides a sufficient way of describing industry’s product development activity. More specifically, five of these companies have supported a programme of research activities at the Technical University of Denmark, which seeks to develop a new framework for product development. This paper will describe the research approach being taken, present some initial findings, and outline a vision of a new working approach to product development
    • …
    corecore