269,976 research outputs found

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    To Play, or not to Play: Building a Learning Environment Through Computer Simulations

    Get PDF
    This article analyzes the impact of a computer simulation (business game) on the users’ perceived learning. The theoretical model developed in this paper is derived from the collaborative learning and the Human-Computer Interaction assumptions. The hypotheses relating groups’ dynamics and the user-computer interface design with the users’ perceived learning are tested using the business game “FirmReality”, on an 89 respondents sample. Multiple regression and qualitative results show that, in a computer based simulation context, perceived learning is more influenced by human-computer interaction factors rather than groups dynamics

    HR scenario game: Learning human resource management in a virtual environment

    Full text link
    [EN] This paper introduces a computer-based online scenario game that was developed to enhance the learning of human resource management (HRM) in an undergraduate course at a business school in Finland. What makes this game unique is that students played an important and active role in developing the game in collaboration with lecturers. Our findings show that the game enhances learning, interaction, and collaboration among students. We discuss how computer-based games and their development in collaboration with students can be used as a means for learning and improving working-life skills in higher education.Riivari, E.; Auvinen, T.; Merilehto, J. (2021). HR scenario game: Learning human resource management in a virtual environment. En 7th International Conference on Higher Education Advances (HEAd'21). Editorial Universitat PolitĂšcnica de ValĂšncia. 199-206. https://doi.org/10.4995/HEAd21.2021.13064OCS19920

    Flexible learning intinerary vs. linear learning itinerary

    Full text link
    The latest video game and entertainment technology and other technologies are facilitating the development of new and powerful e-Learning systems. In this paper, we present a computer-based game for learning about five historical ages. The objective of the game is to reinforce the events that mark the transition from one historical age to another and the order of the historical ages. Our game incorporates natural human-computer interaction based on video game technology, Frontal Projection, and personalized learning. For personalized learning, a Flexible Learning Itinerary has been included, where the children can decide how to direct the flow of their own learning process. For comparison, a Linear Learning Itinerary has also been included, where the children follow a determined learning flow. A study to compare the two different learning itineraries was carried out. Twenty nine children from 8 to 9 years old participated in the study. The analysis of the pre-tests and the post-tests determined that children learned the contents of a game about historical ages. The results show that there were no statistically significant differences between the two learning itineraries. Therefore, our study reveals the potential of computer-based learning games as a tool in the learning process for both flexible and linear itinerariesThis work was funded by the Spanish APRENDRA project (TIN2009-14319-C02-01).Martín San José, JF.; Juan Lizandra, MC.; Gil Gómez, JA.; Rando, N. (2014). Flexible learning intinerary vs. linear learning itinerary. Science of Computer Programming. 88:3-21. https://doi.org/10.1016/j.scico.2013.12.009S3218

    "Sticky Hands": learning and generalization for cooperative physical interactions with a humanoid robot

    Get PDF
    "Sticky Hands" is a physical game for two people involving gentle contact with the hands. The aim is to develop relaxed and elegant motion together, achieve physical sensitivity-improving reactions, and experience an interaction at an intimate yet comfortable level for spiritual development and physical relaxation. We developed a control system for a humanoid robot allowing it to play Sticky Hands with a human partner. We present a real implementation including a physical system, robot control, and a motion learning algorithm based on a generalizable intelligent system capable itself of generalizing observed trajectories' translation, orientation, scale and velocity to new data, operating with scalable speed and storage efficiency bounds, and coping with contact trajectories that evolve over time. Our robot control is capable of physical cooperation in a force domain, using minimal sensor input. We analyze robot-human interaction and relate characteristics of our motion learning algorithm with recorded motion profiles. We discuss our results in the context of realistic motion generation and present a theoretical discussion of stylistic and affective motion generation based on, and motivating cross-disciplinary research in computer graphics, human motion production and motion perception

    Flexible virtual environments: Gamifying immersive learning

    Get PDF
    © Springer International Publishing AG 2017. The availability of Virtual Reality (VR) and Virtual Environment (VE) equipment - with the launch of domestic technologies such as the Oculus Rift, Microsoft Hololens and Sony Playstation VR) - offer new ways to enable interactive immersive experiences [16]. The opportunities these create in learning and training applications are immense: but create new challenges . Meanwhile, current virtual learning environments are typically web or app based technologies, sometimes perceived as having little value added from a user perspective beyond improved User Interfaces to access some content [6]. The challenge is how the human computer interaction features of such VE platforms may be used in education in a way that adds value, especially for computer mediated instruction. This paper will outline some of the issues, and opportunities, as well as some of the open questions about how such technologies can be used effectively in a higher education context, along with a proposed framework for embedding a learning engine within a virtual reality or environment system. Three-dimensional technologies: from work-walls, through CAVES to the latest headsets offer new ways to immerse users in computer generated environments. Immersive learning [1] is increasingly common in training applications, and is beginning to make inroads into formal education. The recent rise in such off-the-shelf technologies means that Augmented Learning becomes a realistic mainstream tool [13]. Much of this use is built in game environments using game engines, where these serious games provide learning effects as an intended consequence of playing

    Gesture Recognition System Application to early childhood education

    Get PDF
    One of the most socially and culturally advantageous uses of human-computer interaction is enhancing playing and learning for children. In this study, gesture interactive game-based learning (GIGL) is tested to see if these kinds of applications are suitable to stimulate working memory (WM) and basic mathematical skills (BMS) in early childhood (5-6 years old) using a hand gesture recognition system. Hand gesture is being performed by the user and to control a computer system by that incoming information. We can conclude that the children who used GIGL technology showed a significant increase in their learning performance in WM and BMS, surpassing those who did normal school activities

    Generic system for human-computer gesture interaction: applications on sign language recognition and robotic soccer refereeing

    Get PDF
    Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time
    • 

    corecore