240 research outputs found

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Locally Adaptive Resolution (LAR) codec

    Get PDF
    The JPEG committee has initiated a study of potential technologies dedicated to future generation image compression systems. The idea is to design a new norm of image compression, named JPEG AIC (Advanced Image Coding), together with advanced evaluation methodologies, closely matching to human vision system characteristics. JPEG AIC thus aimed at defining a complete coding system able to address advanced functionalities such as lossy to lossless compression, scalability (spatial, temporal, depth, quality, complexity, component, granularity...), robustness, embed-ability, content description for image handling at object level... The chosen compression method would have to fit perceptual metrics defined by the JPEG community within the JPEG AIC project. In this context, we propose the Locally Adaptive Resolution (LAR) codec as a contribution to the relative call for technologies, tending to fit all of previous functionalities. This method is a coding solution that simultaneously proposes a relevant representation of the image. This property is exploited through various complementary coding schemes in order to design a highly scalable encoder. The LAR method has been initially introduced for lossy image coding. This efficient image compression solution relies on a content-based system driven by a specific quadtree representation, based on the assumption that an image can be represented as layers of basic information and local texture. Multiresolution versions of this codec have shown their efficiency, from low bit rates up to lossless compressed images. An original hierarchical self-extracting region representation has also been elaborated: a segmentation process is realized at both coder and decoder, leading to a free segmentation map. This later can be further exploited for color region encoding, image handling at region level. Moreover, the inherent structure of the LAR codec can be used for advanced functionalities such as content securization purposes. In particular, dedicated Unequal Error Protection systems have been produced and tested for transmission over the Internet or wireless channels. Hierarchical selective encryption techniques have been adapted to our coding scheme. Data hiding system based on the LAR multiresolution description allows efficient content protection. Thanks to the modularity of our coding scheme, complexity can be adjusted to address various embedded systems. For example, basic version of the LAR coder has been implemented onto FPGA platform while respecting real-time constraints. Pyramidal LAR solution and hierarchical segmentation process have also been prototyped on DSPs heterogeneous architectures. This chapter first introduces JPEG AIC scope and details associated requirements. Then we develop the technical features, of the LAR system, and show the originality of the proposed scheme, both in terms of functionalities and services. In particular, we show that the LAR coder remains efficient for natural images, medical images, and art images

    Hierarchical colour image segmentation by leveraging RGB channels independently

    Get PDF
    In this paper, we introduce a hierarchical colour image segmentation based on cuboid partitioning using simple statistical features of the pixel intensities in the RGB channels. Estimating the difference between any two colours is a challenging task. As most of the colour models are not perceptually uniform, investigation of an alternative strategy is highly demanding. To address this issue, for our proposed technique, we present a new concept for colour distance measure based on the inconsistency of pixel intensities of an image which is more compliant to human perception. Constructing a reliable set of superpixels from an image is fundamental for further merging. As cuboid partitioning is a superior candidate to produce superpixels, we use the agglomerative merging to yield the final segmentation results exploiting the outcome of our proposed cuboid partitioning. The proposed cuboid segmentation based algorithm significantly outperforms not only the quadtree-based segmentation but also existing state-of-the-art segmentation algorithms in terms of quality of segmentation for the benchmark datasets used in image segmentation. © 2019, Springer Nature Switzerland AG

    WG1N5315 - Response to Call for AIC evaluation methodologies and compression technologies for medical images: LAR Codec

    Get PDF
    This document presents the LAR image codec as a response to Call for AIC evaluation methodologies and compression technologies for medical images.This document describes the IETR response to the specific call for contributions of medical imaging technologies to be considered for AIC. The philosophy behind our coder is not to outperform JPEG2000 in compression; our goal is to propose an open source, royalty free, alternative image coder with integrated services. While keeping the compression performances in the same range as JPEG2000 but with lower complexity, our coder also provides services such as scalability, cryptography, data hiding, lossy to lossless compression, region of interest, free region representation and coding

    Identifying High Accuracy Regions in Traffic Camera Images to Enhance the Estimation of Road Traffic Metrics: A Quadtree Based Method

    Full text link
    The growing number of real-time camera feeds in urban areas has made it possible to provide high-quality traffic data for effective transportation planning, operations, and management. However, deriving reliable traffic metrics from these camera feeds has been a challenge due to the limitations of current vehicle detection techniques, as well as the various camera conditions such as height and resolution. In this work, a quadtree based algorithm is developed to continuously partition the image extent until only regions with high detection accuracy are remained. These regions are referred to as the high-accuracy identification regions (HAIR) in this paper. We demonstrate how the use of the HAIR can improve the accuracy of traffic density estimates using images from traffic cameras at different heights and resolutions in Central Ohio. Our experiments show that the proposed algorithm can be used to derive robust HAIR where vehicle detection accuracy is 41 percent higher than that in the original image extent. The use of the HAIR also significantly improves the traffic density estimation with an overall decrease of 49 percent in root mean squared error

    Joint Lossless Coding and Reversible Data Embedding in a Multiresolution Still Image Coder

    Get PDF
    International audienceModern still image codecs furnish more than just good distortion-rate performances. They must also provide some services. Scalability in resolution and quality, error resilience and embedded bitstreams were among the first one to be available. There is still room for enhancement, especially when it comes to security-oriented features. Data embedding is necessary, as for inserting metadata, or to copyright a picture. We present the use of a very simple reversible data embedding method in a multiresolution still image codec framework. Experimental results show the usefulness of such an adequation of techniques from different domain. Moreover, the embedding overhead is evaluated and shows to be very acceptable

    Joint Lossless Coding and Reversible Data Embedding in a Multiresolution Still Image Coder

    Get PDF
    International audienceModern still image codecs furnish more than just good distortion-rate performances. They must also provide some services. Scalability in resolution and quality, error resilience and embedded bitstreams were among the first one to be available. There is still room for enhancement, especially when it comes to security-oriented features. Data embedding is necessary, as for inserting metadata, or to copyright a picture. We present the use of a very simple reversible data embedding method in a multiresolution still image codec framework. Experimental results show the usefulness of such an adequation of techniques from different domain. Moreover, the embedding overhead is evaluated and shows to be very acceptable

    TSAR: Secure Transfer OF High Resolution Art Images

    Get PDF
    International audienceThe EROS (European Research Open System) database hosted at the Centre de Recherche et de Restauration des Musées de France (C2RMF) is one of the largest database in the world of Cultural Heritage that is widely recognized for its high resolution images. The French research project TSAR (Transfert Sécurisé d'images d'Art haute Resolution) aims to give the possibility to open this huge amount of art images in a secure and efficient way. For this purpose, we use a mixture of techniques to assure the security of the data involving cryptography and watermarking techniques as well as multi-resolution compression scheme together with a region-level representation. These algorithms are especially optimized for high resolution art images. In particular, this means that the quality of the transmitted images have to be not reduced, implying the use of lossless coding techniques. In this paper we present an overall scheme that provides an efficient, consistent solution for secure data browsing, viewing and transmitting, adoptable by any Cultural Heritage institution

    A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs

    Get PDF
    The aim of automatic graph drawing is to compute a well-readable layout of a given graph G=(V,E). One very popular class of algorithms for drawing general graphs are force-directed methods. These methods generate drawings of G in the plane so that each edge is represented by a straight line connecting its two adjacent nodes. The computation of the drawings is based on associating G with a physical model. Then, the algorithms iteratively try to find a placement of the nodes so that the total energy of the physical system is minimal. Several force-directed methods can visualize large graphs containing many thousands of vertices in reasonable time. However, only some of these methods guarantee a sub-quadratic running time in special cases or under certain assumptions, but not in general. The others are not sub-quadratic at all. We develop a new force-directed algorithm that is based on a combination of an efficient multilevel strategy and a method for approximating the repulsive forces in the system by rapidly evaluating potential fields. The worst-case running time of the new method is O(|V| log|V|+|E|) with linear memory requirements. In practice, the algorithm generates nice drawings of graphs containing up to 100000 nodes in less than five minutes. Furthermore, it clearly visualizes even the structures of those graphs that turned out to be challenging for other tested methods

    Real-time scalable video coding for surveillance applications on embedded architectures

    Get PDF
    • …
    corecore