9,668 research outputs found

    Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application

    Get PDF
    Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving each modality's immersion and performance factors. This paper concerns manipulation tasks and proposes a visuo-haptic system integrating immersive visualization, tactile force and tactile feedback with co-location. An industrial application is presented

    Portable Dextrous Force Feedback Master for robot telemanipulation (PDMFF)

    Get PDF
    A major drawback of open loop masters is a lack of force feedback, limiting their ability to perform complex tasks such as assembly and repair. Researchers present a simple dextrous force feedback master for computer assisted telemanipulation. The device is compact, portable and can be held in the operator hand, without the need for a special joystick or console. The system is capable of both position feed forward and force feedback, using electronic position sensors and a pneumatic micro-actuator. The level of forces exercised by the pneumatic actuator is such that near rigidity may be attained. Experimental results showing good system linearity and small time lag are given

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Haptic induced motor learning and the extension of its benefits to stroke patients

    Get PDF
    In this research, the Haptic Master robotic arm and virtual environments are used to induce motor learning in subjects with no known musculoskeletal or neurological disorders. It is found in this research that both perception and performance of the subject are increased through the haptic and visual feedback delivered through the Haptic Master. These system benefits may be extended to enhance therapies for patients with loss of motor skills due to neurological disease or brain injury. Force and visual feedback were manipulated within virtual environment scenarios to facilitate learning. In one force feedback condition, the subject is required to maneuver a sphere through a haptic maze or linear channel. In the second feedback condition, the subject\u27s movement was stopped when the sphere came in contact with the haptic walls. To resume movement, the force vector had to be redirected towards the optimal trajectory. To analyze the efficiency of the various scenarios, the area between the optimal and actual trajectories was used as a measure of learning. The results from this research demonstrated that within more complex environments one type of force feedback was more successful in facilitating motor learning. In a simpler environment, two out of three subjects experienced a higher degree of motor learning with the same type of force feedback. Learning is not enhanced with the presence of visual feedback. Also, in nearly all studied cases, the primary limitation to learning is shoulder and attention fatigue brought on by the experimentation

    State-of-the-Art of Hand Exoskeleton Systems

    Get PDF
    This paper deals with the analysis of the state-of-the-art of robotic hand exoskeletons (updated at May 2011), which is intended as the first step of a designing activity. A large number of hand exoskeletons (both products and prototypes) that feature some common characteristics and many special peculiarities are reported in the literature. Indeed, in spite of very similar functionalities, different hand exoskeletons can be extremely different for the characteristics of their mechanism architectures, control systems and working principles. The aim of this paper is to provide the reader with a complete and schematic picture of the state-of-the-art of hand exoskeletons. The focus is placed on the description of the main aspects that are involved in the exoskeleton design such as the system kinematics, the actuator systems, the transmission parts and the control schemes. Additionally, the critical issues provided by the literature analysis are discussed in order to enlighten the differences and the common features of different practical solutions. This paper may help to understand both the reasons why certain solutions are proposed for the different applications and the advantages and drawbacks of the different designs proposed in the literature. The motivation of this study is the need to design a new hand exoskeleton for rehabilitation purposes

    Docking Haptics: Extending the Reach of Haptics by Dynamic Combinations of Grounded and Worn Devices

    Full text link
    Grounded haptic devices can provide a variety of forces but have limited working volumes. Wearable haptic devices operate over a large volume but are relatively restricted in the types of stimuli they can generate. We propose the concept of docking haptics, in which different types of haptic devices are dynamically docked at run time. This creates a hybrid system, where the potential feedback depends on the user's location. We show a prototype docking haptic workspace, combining a grounded six degree-of-freedom force feedback arm with a hand exoskeleton. We are able to create the sensation of weight on the hand when it is within reach of the grounded device, but away from the grounded device, hand-referenced force feedback is still available. A user study demonstrates that users can successfully discriminate weight when using docking haptics, but not with the exoskeleton alone. Such hybrid systems would be able to change configuration further, for example docking two grounded devices to a hand in order to deliver twice the force, or extend the working volume. We suggest that the docking haptics concept can thus extend the practical utility of haptics in user interfaces

    Robotic Rehabilitation System In Malaysia

    Get PDF
    The goal of this project entitled Robotic Rehabititation System in Malaysia is to examine the purpose of robotics to therapeutic procedures for achieving the finest possible motor and functional recovery for persons with impairments following various diseases such as amputations, life-threatening wounds, brain injury, pain management issues, orthopaedics, pulmonary, spinal cord injuries and strokes. Feasibility study and research concerning robotic rehabilitation system iue prepared for the development of robotic based rehabilitation system in Malaysia to be fulfilled. However, there are significant research challenges in developing and testing rehabilitation robots so that they meet the requirements of the patients. The technology must be capable of improving person's impaired limbs or part of the body. In addition, robots must be able to understand the complexity of human type of movements. Thus, non-robotic rehabilitation centre can be transformed to a robotic based rehabilitation centre by analysing the possibility of transforming the current practice of rehabilitation programs conducted via physiotherapist to an automated rehabilitation activity by means of robot follows with good evidence on how robots might enhance the delivery of robotic rehabilitation to people of all ages

    A survey of haptics in serious gaming

    Get PDF
    Serious gaming often requires high level of realism for training and learning purposes. Haptic technology has been proved to be useful in many applications with an additional perception modality complementary to the audio and the vision. It provides novel user experience to enhance the immersion of virtual reality with a physical control-layer. This survey focuses on the haptic technology and its applications in serious gaming. Several categories of related applications are listed and discussed in details, primarily on haptics acts as cognitive aux and main component in serious games design. We categorize haptic devices into tactile, force feedback and hybrid ones to suit different haptic interfaces, followed by description of common haptic gadgets in gaming. Haptic modeling methods, in particular, available SDKs or libraries either for commercial or academic usage, are summarized. We also analyze the existing research difficulties and technology bottleneck with haptics and foresee the future research directions
    corecore