18 research outputs found

    Towards real-time body pose estimation for presenters in meeting environments

    Get PDF
    This paper describes a computer vision-based approach to body pose estimation.\ud The algorithm can be executed in real-time and processes low resolution,\ud monocular image sequences. A silhouette is extracted and matched against a\ud projection of a 16 DOF human body model. In addition, skin color is used to\ud locate hands and head. No detailed human body model is needed. We evaluate the\ud approach both quantitatively using synthetic image sequences and qualitatively\ud on video test data of short presentations. The algorithm is developed with the\ud aim of using it in the context of a meeting room where the poses of a presenter\ud have to be estimated. The results can be applied in the domain of virtual\ud environments

    Balloon Shapes: Reconstructing and Deforming Objects with Volume from Images

    Full text link

    Human pose estimation from silhouettes - a consistent approach using distance level sets

    No full text
    ABSTRACT We present a novel similarity measure (likelihood) for estimating three-dimensional human pose from image silhouettes in model-based vision applications. One of the challenges in such approaches is the construction of a model-to-image likelihood that truly reflects the good configurations of the problem. This is hard, commonly due to the violation of consistency principle resulting in the introduction of spurious, unrelated peaks/minima that make the search for model localization difficult. We introduce an entirely continuous formulation which enforces model estimation consistency by means of an attraction/explanation silhouette-based term pair. We subsequently show how the proposed method provides significant consolidation and improved attraction zone around the desired likelihood configurations and elimination of some of the spurious ones. Finally, we present a skeleton-based smoothing method for the image silhouettes that stabilizes and accelerates the search process

    Human Pose Estimation from Silhouettes. A Consistent Approach Using Distance Level Sets

    Get PDF
    We present a novel similarity measure (likelihood) for estimating three-dimensional human pose from image silhouettes in model-based vision applications. One of the challenges in such approaches is the construction of a model-to-image likelihood that truly reflects the good configurations of the problem. This is hard, commonly due to the violation of consistency principle resulting in the introduction of spurious, unrelated peaks/minima that make the search for model localization difficult. We introduce an entirely continuous formulation which enforces model estimation consistency by means of an attraction/explanation silhouette-based term pair. We subsequently show how the proposed method provides significant consolidation and improved attraction zone around the desired likelihood configurations and elimination of some of the spurious ones. Finally, we present a skeleton-based smoothing method for the image silhouettes that stabilizes and accelerates the search process.

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    自己および相互オクルージョンを考慮したマルチタスク深層学習による人物スケルトン推定

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    Geometric Invariance In The Analysis Of Human Motion In Video Data

    Get PDF
    Human motion analysis is one of the major problems in computer vision research. It deals with the study of the motion of human body in video data from different aspects, ranging from the tracking of body parts and reconstruction of 3D human body configuration, to higher level of interpretation of human action and activities in image sequences. When human motion is observed through video camera, it is perspectively distorted and may appear totally different from different viewpoints. Therefore it is highly challenging to establish correct relationships between human motions across video sequences with different camera settings. In this work, we investigate the geometric invariance in the motion of human body, which is critical to accurately understand human motion in video data regardless of variations in camera parameters and viewpoints. In human action analysis, the representation of human action is a very important issue, and it usually determines the nature of the solutions, including their limits in resolving the problem. Unlike existing research that study human motion as a whole 2D/3D object or a sequence of postures, we study human motion as a sequence of body pose transitions. We also decompose a human body pose further into a number of body point triplets, and break down a pose transition into the transition of a set of body point triplets. In this way the study of complex non-rigid motion of human body is reduced to that of the motion of rigid body point triplets, i.e. a collection of planes in motion. As a result, projective geometry and linear algebra can be applied to explore the geometric invariance in human motion. Based on this formulation, we have discovered the fundamental ratio invariant and the eigenvalue equality invariant in human motion. We also propose solutions based on these geometric invariants to the problems of view-invariant recognition of human postures and actions, as well as analysis of human motion styles. These invariants and their applicability have been validated by experimental results supporting that their effectiveness in understanding human motion with various camera parameters and viewpoints

    컴퓨터를 활용한 여러 사람의 동작 연출

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 전기·컴퓨터공학부, 2017. 8. 이제희.Choreographing motion is the process of converting written stories or messages into the real movement of actors. In performances or movie, directors spend a consid-erable time and effort because it is the primary factor that audiences concentrate. If multiple actors exist in the scene, choreography becomes more challenging. The fundamental difficulty is that the coordination between actors should precisely be ad-justed. Spatio-temporal coordination is the first requirement that must be satisfied, and causality/mood are also another important coordinations. Directors use several assistant tools such as storyboards or roughly crafted 3D animations, which can visu-alize the flow of movements, to organize ideas or to explain them to actors. However, it is difficult to use the tools because artistry and considerable training effort are required. It also doesnt have ability to give any suggestions or feedbacks. Finally, the amount of manual labor increases exponentially as the number of actor increases. In this thesis, we propose computational approaches on choreographing multiple actor motion. The ultimate goal is to enable novice users easily to generate motions of multiple actors without substantial effort. We first show an approach to generate motions for shadow theatre, where actors should carefully collaborate to achieve the same goal. The results are comparable to ones that are made by professional ac-tors. In the next, we present an interactive animation system for pre-visualization, where users exploits an intuitive graphical interface for scene description. Given a de-scription, the system can generate motions for the characters in the scene that match the description. Finally, we propose two controller designs (combining regression with trajectory optimization, evolutionary deep reinforcement learning) for physically sim-ulated actors, which guarantee physical validity of the resultant motions.Chapter 1 Introduction 1 Chapter 2 Background 8 2.1 Motion Generation Technique 9 2.1.1 Motion Editing and Synthesis for Single-Character 9 2.1.2 Motion Editing and Synthesis for Multi-Character 9 2.1.3 Motion Planning 10 2.1.4 Motion Control by Reinforcement Learning 11 2.1.5 Pose/Motion Estimation from Incomplete Information 11 2.1.6 Diversity on Resultant Motions 12 2.2 Authoring System 12 2.2.1 System using High-level Input 12 2.2.2 User-interactive System 13 2.3 Shadow Theatre 14 2.3.1 Shadow Generation 14 2.3.2 Shadow for Artistic Purpose 14 2.3.3 Viewing Shadow Theatre as Collages/Mosaics of People 15 2.4 Physics-based Controller Design 15 2.4.1 Controllers for Various Characters 15 2.4.2 Trajectory Optimization 15 2.4.3 Sampling-based Optimization 16 2.4.4 Model-Based Controller Design 16 2.4.5 Direct Policy Learning 17 2.4.6 Deep Reinforcement Learning for Control 17 Chapter 3 Motion Generation for Shadow Theatre 19 3.1 Overview 19 3.2 Shadow Theatre Problem 21 3.2.1 Problem Definition 21 3.2.2 Approaches of Professional Actors 22 3.3 Discovery of Principal Poses 24 3.3.1 Optimization Formulation 24 3.3.2 Optimization Algorithm 27 3.4 Animating Principal Poses 29 3.4.1 Initial Configuration 29 3.4.2 Optimization for Motion Generation 30 3.5 Experimental Results 32 3.5.1 Implementation Details 33 3.5.2 Animation 34 3.5.3 3D Fabrication 34 3.6 Discussion 37 Chapter 4 Interactive Animation System for Pre-visualization 40 4.1 Overview 40 4.2 Graphical Scene Description 42 4.3 Candidate Scene Generation 45 4.3.1 Connecting Paths 47 4.3.2 Motion Cascade 47 4.3.3 Motion Selection For Each Cycle 49 4.3.4 Cycle Ordering 51 4.3.5 Generalized Paths and Cycles 52 4.3.6 Motion Editing 54 4.4 Scene Ranking 54 4.4.1 Ranking Criteria 54 4.4.2 Scene Ranking Measures 57 4.5 Scene Refinement 58 4.6 Experimental Results 62 4.7 Discussion 65 Chapter 5 Physics-based Design and Control 69 5.1 Overview 69 5.2 Combining Regression with Trajectory Optimization 70 5.2.1 Simulation and Motor Skills 71 5.2.2 Control Adaptation 75 5.2.3 Control Parameterization 79 5.2.4 Efficient Construction 81 5.2.5 Experimental Results 84 5.2.6 Discussion 89 5.3 Example-Guided Control by Deep Reinforcement Learning 91 5.3.1 System Overview 92 5.3.2 Initial Policy Construction 95 5.3.3 Evolutionary Deep Q-Learning 100 5.3.4 Experimental Results 107 5.3.5 Discussion 114 Chapter 6 Conclusion 119 6.1 Contribution 119 6.2 Future Work 120 요약 135Docto
    corecore