1,629 research outputs found

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Multisensor navigation systems: a remedy for GNSS vulnerabilities?

    Get PDF
    Space-based positioning, navigation, and timing (PNT) technologies, such as the global navigation satellite systems (GNSS) provide position, velocity, and timing information to an unlimited number of users around the world. In recent years, PNT information has become increasingly critical to the security, safety, and prosperity of the World's population, and is now widely recognized as an essential element of the global information infrastructure. Due to its vulnerabilities and line-of-sight requirements, GNSS alone is unable to provide PNT with the required levels of integrity, accuracy, continuity, and reliability. A multisensor navigation approach offers an effective augmentation in GNSS-challenged environments that holds a promise of delivering robust and resilient PNT. Traditionally, sensors such as inertial measurement units (IMUs), barometers, magnetometers, odometers, and digital compasses, have been used. However, recent trends have largely focused on image-based, terrain-based and collaborative navigation to recover the user location. This paper offers a review of the technological advances that have taken place in PNT over the last two decades, and discusses various hybridizations of multisensory systems, building upon the fundamental GNSS/IMU integration. The most important conclusion of this study is that in order to meet the challenging goals of delivering continuous, accurate and robust PNT to the ever-growing numbers of users, the hybridization of a suite of different PNT solutions is required

    Vision Based Collaborative Localization and Path Planning for Micro Aerial Vehicles

    Get PDF
    Autonomous micro aerial vehicles (MAV) have gained immense popularity in both the commercial and research worlds over the last few years. Due to their small size and agility, MAVs are considered to have great potential for civil and industrial tasks such as photography, search and rescue, exploration, inspection and surveillance. Autonomy on MAVs usually involves solving the major problems of localization and path planning. While GPS is a popular choice for localization for many MAV platforms today, it suffers from issues such as inaccurate estimation around large structures, and complete unavailability in remote areas/indoor scenarios. From the alternative sensing mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the richness of information captured, along with small size and inexpensiveness. Another consideration that comes into picture for micro aerial vehicles is the fact that these small platforms suffer from inability to fly for long amounts of time or carry heavy payload, scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a task than just one. Collaboration between multiple vehicles allows for better accuracy of estimation, task distribution and mission efficiency. Combining these rationales, this dissertation presents collaborative vision based localization and path planning frameworks. Although these were created as two separate steps, the ideal application would contain both of them as a loosely coupled localization and planning algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole sensor for computing pose estimates. With this minimal setup, this dissertation first investigates methods to perform feature-based localization, with the possibility of fusing two types of localization data: one that is computed onboard each MAV, and the other that comes from relative measurements between the vehicles. Feature based methods were preferred over direct methods for vision because of the relative ease with which tangible data packets can be transferred between vehicles, and because feature data allows for minimal data transfer compared to large images. Inspired by techniques from multiple view geometry and structure from motion, this localization algorithm presents a decentralized full 6-degree of freedom pose estimation method complete with a consistent fusion methodology to obtain robust estimates only at discrete instants, thus not requiring constant communication between vehicles. This method was validated on image data obtained from high fidelity simulations as well as real life MAV tests. These vision based collaborative constraints were also applied to the problem of path planning with a focus on performing uncertainty-aware planning, where the algorithm is responsible for generating not only a valid, collision-free path, but also making sure that this path allows for successful localization throughout. As joint multi-robot planning can be a computationally intractable problem, planning was divided into two steps from a vision-aware perspective. As the first step for improving localization performance is having access to a better map of features, a next-best-multi-view algorithm was developed which can compute the best viewpoints for multiple vehicles that can improve an existing sparse reconstruction. This algorithm contains a cost function containing vision-based heuristics that determines the quality of expected images from any set of viewpoints; which is minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption (CMA-ES) that can handle very high dimensional sample spaces. In the second step, a sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes similar vision heuristics in an information gain based framework in order to drive individual vehicles towards areas that can benefit feature tracking and thus localization. Both steps of the planning framework were tested and validated using results from simulation

    Visual-based SLAM configurations for cooperative multi-UAV systems with a lead agent: an observability-based approach

    Get PDF
    In this work, the problem of the cooperative visual-based SLAM for the class of multi-UA systems that integrates a lead agent has been addressed. In these kinds of systems, a team of aerial robots flying in formation must follow a dynamic lead agent, which can be another aerial robot, vehicle or even a human. A fundamental problem that must be addressed for these kinds of systems has to do with the estimation of the states of the aerial robots as well as the state of the lead agent. In this work, the use of a cooperative visual-based SLAM approach is studied in order to solve the above problem. In this case, three different system configurations are proposed and investigated by means of an intensive nonlinear observability analysis. In addition, a high-level control scheme is proposed that allows to control the formation of the UAVs with respect to the lead agent. In this work, several theoretical results are obtained, together with an extensive set of computer simulations which are presented in order to numerically validate the proposal and to show that it can perform well under different circumstances (e.g., GPS-challenging environments). That is, the proposed method is able to operate robustly under many conditions providing a good position estimation of the aerial vehicles and the lead agent as well.Peer ReviewedPostprint (published version
    • …
    corecore