
A Safeguarded Teleoperation Controller

Terrence Fong1, Charles Thorpe1 and Charles Baur2

1The Robotics Institute 2Institut de Systèmes Robotiques
Carnegie Mellon University Ecole Polytechnique Fédérale de Lausanne

Pittsburgh, Pennsylvania 15213 USA CH-1015 Lausanne EPFL, Switzerland

IEEE International Conference on Advanced Robotics 2001, August 2001, Budapest, Hungary
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Abstract

This paper presents a control system for mobile robots.
The controller was developed to satisfy the needs of a wide
range of operator interfaces and teleoperation in unknown,
unstructured environments. In particular, the controller
supports varying degrees of cooperation between the oper-
ator and robot, from direct to supervisory control. The con-
troller has a modular architecture and includes
interprocess communications, localization, map building,
safeguarding, sensor management, and speech synthesis.
In this paper, we describe the design of the controller and
discuss its use in several applications.

1 Introduction

Since 1997, we have been developing tools and technol-
ogy for vehicle teleoperation. Our goal is to make vehicle
teleoperation easier and more productive for all users, nov-
ices and experts alike. Thus, we have been developing a
new teleoperation control model (collaborative control)
and operator interfaces incorporating sensor-fusion dis-
plays, gesture and haptic input, personal digital assistants
(PDA), and the WorldWideWeb[5][6].

Although all our interfaces support remote driving, each
interface has different characteristics and is intended for
use under different conditions. Some of our interfaces are
geared towards novices. Other interfaces are designed for
trained experts. Additionally, we employ numerous teleop-
eration control models: continuous, shared/traded, collabo-
rative, and supervisory. Finally, our interfaces operate on a
variety of hardware (PDA to workstations) and over a wide
range of communication links (28.8 kbps to 10 Mbps, with
and without delay).

To meet the requirements of our interfaces, we have
developed a mobile robot controller which supports vary-
ing degrees of cooperation between operator and robot. We
designed the controller to be modular and to function in
unknown and/or unstructured environments, both indoor
and outdoor. Most importantly, however, the controller pro-
vides continuous safeguarding to ensure that the robot is
kept safe regardless of control mode, operator input, and
environmental hazards.

2 Related Work

2.1 Safeguarded Teleoperation

The safeguarded teleoperation concept was developed
to enable remote driving of a lunar rover[11]. Command
fusion enables operators to share control with a safeguard-
ing system on-board the robot. In benign situations, the
operator has full control of vehicle motion. In hazardous
situations, however, the safeguarder modifies or overrides
operator commands to maintain safety. The safeguarder,
therefore, exhibits many characteristics of autonomous sys-
tems such as perception, command generation, etc.

Unlike the system described in [11], which was
designed exclusively for untrained operators and continu-
ous control, our controller supports a range of users (nov-
ices to experts) and intermittent as well as continuous
control. Moreover, in addition to safeguarding vehicle
motion (preventing collision and rollover), our controller
monitors system health (vehicle power, motor stall, etc.)
and “safes” the vehicle when necessary.

2.2 Control Systems for Teleoperation

Numerous researchers have addressed the problem of
designing control systems for teleoperation. Although
some restrict the term teleoperation to denote only direct,
continuous control (i.e., no autonomous functions), we
consider teleoperation to encompass the broader spectrum
from manual to supervisory control[14]. Thus, teleopera-
tion controllers encompass an extremely varied range of
designs and techniques. The majority, however, can be
described within the framework of one or more existing
robot control architectures[9].

A parallel, three-layered control architecture for teleop-
eration of mobile robots is described in [13]. This control-
ler provides reflexes for obstacle avoidance, plan learning,
and compressed communications. A “generic” telerobotic
controller is discussed in [8]. The design uses a network of
low-level control behaviors switched on and off by a high-
level symbolic layer. A mobile robot control system with
multisensor feedback is presented in [12]. The system sup-
ports four teleoperation control modes (direct, traded,
shared, supervisory) and allows operators to interactively
assist in environment modelling.

https://core.ac.uk/display/147896883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 Design

3.1 Requirements

All teleoperation interfaces include tools and displays
to help the operator perceive the remote environment, to
make decisions, and to generate commands [5]. An effec-
tive teleoperation controller, therefore, provides resources
to support these tools and displays. In particular, the con-
troller must supply capabilities and sensory feedback
which make the interface work well and the remote task
easy to perform.

Our interfaces are intended for remote driving in
unstructured, unknown environments. Thus, we designed
our controller to emphasize navigation and motion control.
To support a range of human-robot interaction, the control-
ler must provide a variety of motion commands (Table 1).

To support navigation, the controller must provide
visual feedback (still images and/or video), spatial feed-
back (sensor-based maps), and situational feedback (robot
health, position, command status). Additionally, because
navigation is strongly dependent on perception, the con-
troller is required to provide facilities for sensor manage-
ment and processing. For example, sensor-based map
building requires range data processing.

In order to support untrained users as well as operation
in non-benign environments, the controller must be able to
perform real-time, reactive safeguarding. Specifically, the
controller should be capable of maintaining robot safety at
all times. This entails avoiding collisions, avoiding roll-
over, monitoring health (power level, temperature, etc.) and
safeing the vehicle when necessary.

Finally, because our interfaces operate on a variety of
hardware, the controller must be able to function when
using poor communication links. In particular, the control-
ler, should still perform competently when limited band-
width is available, when there is transmission delay, and
when the link is unreliable.

3.2 Robot Hardware

We designed our controller to operate Pioneer1 mobile
robots. We are currently using a Pioneer2-AT (Figure 1)
which is skid-steered and capable of traversing moderately
rough terrain. It is equipped with a microprocessor-based
servo controller, on-board computing (233 MHz Pentium
MMX), 802.11 wireless ethernet.

We use numerous sensors for localization, mapping and
operator feedback (Table 2). These include a pan/tilt/zoom
color CCD camera, wheel encoders, differential GPS, a
three-axis orientation sensor, and an ultrasonic sonar ring.

We should note that the TCM2 (which is widely used)
outputs roll, pitch, compass heading, magnetic field, and
temperature measurements. Although the unit provides
reliable static tilt data, dynamic performance and heading
output is marginal at best [2].

Table 1. Motion control requirements

Control model Motion commands

continuous translation/rotation rates
relative translate/rotate

shared/traded translation/rotation rates
absolute heading

collaborative absolute heading
translation/rotation rates
relative translate/rotate
pose (2D, 3D, path)

supervisory relative translate/rotate
pose (2D, 3D, path)

1Pioneer is a trademark of ActivMedia, Inc.

Figure 1. Pioneer2-AT mobile robot

Table 2. P2AT sensor suite

Sensor Description Key characteristics

Sony
EVI-D30

Color CCD camera
12x zoom, pan/tilt

4.4˚ to 48.8˚ HFOV
±100˚ pan, ±25˚ tilt

Garmin
GPS35-HVS

12-channel C/A
GPS receiver

20 cm resolution
(Cartesian user grid)

Aztec
RXMAR2

dGPS (RTCM) RDS
receiver

up to 1m SEP

Precision
Navigation
TCM2

triaxial magneto-
meter and biaxial
inclinometer

±2˚ heading accuracy
0.1˚ tilt accuracy
±20˚ tilt range

Polaroid
600 sonar

time-of-flight
ultrasonic ranging

15 cm to 10 m range
1% accuracy

Garmin GPS35

Sony EVI-D30

Polaroid sonar

TCM 2

Aztec RXMAR2

wireless ethernet

dGPS

3.3 Architecture

Our controller is implemented as a distributed set of
modules, connected by interprocess communications.
Some of the modules run standalone and operate asynchro-
nously. Other modules, particularly those which process
sensor data or operate robot hardware, have precise timing
or data requirements and operate in the Saphira system.

Saphira is a framework for constructing mobile robot
controllers and contains both a system and a robot control
architecture [10]. The system architecture provides a
micro-tasking operating system and functions for commu-
nicating with and operating robot hardware. The robot con-
trol architecture contains representations and routines for
sensor processing, for environment mapping, and for con-
trolling robot actions.

We use Saphira for several reasons: (1) it is a mature
system and works well with Pioneer robots; (2) it provides
efficient command fusion through fuzzy behaviors; (3) it is
extensible, modular and portable; and (4) the micro-tasking
operating system is synchronous and interrupt-driven, thus
making it easy to implement modules with precise timing.

Table 3 lists the modules in our current controller and
describes the function, execution style, and implementation
of each. Figure 2 shows where the modules reside and how
they are connected.

3.4 Interprocess Communications

In the past, most robot software was designed as a sin-
gle, monolithic block of code. Modern robotic systems,
however, are constructed as a group of modules, each of
which performs distinct processing functions. Modular
design provides many benefits including encouraging team
development, facilitating module implementation, and
enabling distributed computation. At the same time, how-
ever, this approach requires that some mechanism be used
to integrate modules and to distribute data between them.
The most common mechanism is a network-based, inter-
process communication toolkit.

Interprocess communication toolkits have long been
used to support distributed and parallel computing.
Although there are a large number of general purpose com-
munication libraries, very few are appropriate for robotic
applications. This is because the suitability of a toolkit is
determined not merely by how efficiently it can move data,
but rather by how well its communication paradigm (mes-
saging model) and functions match the dataflow of the
robot architecture. Thus, numerous interprocess communi-
cation toolkits have been developed for robotics including
IPT, NDDS, NML, TCA/TCX/IPC, and RTC [7].

In our controller, we use the Fourth Planet Communica-
tor (FPC) toolkit [4]. FPC’s design was inspired by both
message-based (e.g., TCA/TCX/IPC) and information-
based (e.g., NDDS) systems. FPC uses a “publish and sub-
scribe” framework with centralized caching for efficient,
dynamically reconfigurable, and scalable data distribution.

We chose FPC for several reasons. First, it provides
both reliable (for message sequences) and unreliable (for
fast idempotent data) delivery. Second, its performance
(message rate and latency) is well suited to the needs of our
controller modules. Finally, it facilitates integration of
diverse modules with multiple language interfaces (C, Java,
Perl, TCL) and support for multiple operating systems
(Linux, WinNT, IRIX, Solaris, HP-UX).

Table 3. Controller modules

name function
exec.
style

imple-
mentation

Audio
Manager

sound playback
speech synthesis

asynch standalone
C

Camera
Manager

camera control asynch standalone
C

Hardware
Control

servo control
vehicle electronics

real-
time

Pioneer
µcontrol

Image
Server

image capture asynch standalone
C

Localizer position
estimation

synch
(10 Hz)

Saphira
C

MapMaker /
MapServer

map building
map generation

asynch standalone
C

Motion
Control

high-level motion synch
(10 Hz)

Saphira
C+behavior

Safeguarder health monitoring
motion safeguards

synch
(10 Hz)

Saphira
C+behavior

Sensor
Modules

sensor processing synch
(10 Hz)

Saphira
C

UIGateway proxy server for
user interfaces

synch
(varies)

standalone
C

Figure 2. Controller architecture

U
se

r
In

te
rf

ac
e

Controller CPU

camera

Mobile Robot

servo control

encoders
dGPS

orientation
power
sonar

temperature
watchdog

Camera
Manager

Image
Server

Map
Server

Map
Maker

Safe-
guarder

UI
Gateway

Motion
Control

Localizer

Audio
Manager

FPC
Server

Sensor
Modules

3.5 Modules

AudioServer
For some applications, particularly when the robot must

operate around or with humans, audio plays an important
role in human-robot interaction. Specifically, audio is a
highly effective mechanism for conveying the robot’s intent
and for communicating information to humans. Thus, the
AudioServer is designed to perform two functions: sound
playback and speech synthesis.

We use sound playback to produce informative signals.
For example, we use a train whistle to warn that the robot
is approaching and to request that people move out of the
way. We have found that a train whistle produces a signifi-
cantly better response (i.e., people pay more heed and react
more positively) than a horn or klaxon.

We use speech synthesis for information which cannot
be conveyed by sound alone, such as status messages
(“turning right”, “stop”, etc.), health warnings (“low bat-
tery”), and alerts (“motor stall”). The AudioServer pro-
duces speech with the MBROLA speech synthesizer [3].

CameraManager
The CameraManager operates the robot’s camera sys-

tems. its primary function is to control steerable CCD cam-
eras, i.e., cameras mounted on or incorporating a
positioning mechanism. The CameraManager is also used
to configure imaging parameters (gain, aperture, magnifi-
cation, etc.). Whenever it changes a camera’s configura-
tion, the CameraManager outputs a message describing the
camera’s state (position, magnification, field-of-view, etc.).

ImageServer
Remote driving is an inherently visual task, especially

for unstructured and/or unknown terrain. In many vehicle
teleoperation systems, video is the primary source of visual
feedback. High-quality video, however, uses significant
communication bandwidth. Moreover, for applications
with poor communications (low bandwidth and/or high
transmission delay), video may not be practical.

As an alternative to video, we have designed an event-
driven ImageServer. It minimizes bandwidth consumption
by outputting images only when certain events occur. Spe-
cifically, the ImageServer captures (or loads) a frame, com-
presses it into a JPEG image, and sends it whenever the
operator issues a request, the robot stops, an obstacle (static
or moving) is detected, or an interframe timer expires.

We have found that event-driven imagery is a flexible
mechanism for visual feedback. For example, if an applica-
tion allows use of a high-bandwidth, low-latency commu-
nication link, we set the interframe timer to a low value
(e.g., 0.2 sec). This results in an image stream which pro-

vides a fair approximation of video. Alternatively, if the
link is low-bandwidth or has high delay, we set the timer to
a high value. In this case, images are transmitted only when
important teleoperation events occur. Since we are most
likely to be using intermittent control (e.g., waypoint-based
driving) in this situation, event-driven imagery works well.

Localizer
The Localizer estimates vehicle position and orienta-

tion. On the P2AT, we estimate position using odometry
and dGPS, and orientation using the TCM2 and odometry.
When the Localizer is running, it continually outputs its
pose estimate and localization uncertainty. The Localizer
provides estimates in two coordinate frames.

The navigation (world) frame is inertially-fixed and
locally-level: is east, is true north, and is up (i.e.,
gravity aligned). When we have valid dGPS fixes, the
world frame coincides with the regional Cartesian user grid
(e.g., UTM). The body (local) frame is vehicle-fixed with
the origin set at the center of rotation. On the P2AT, this is
the mid-point of the longitudinal center-line at axle height.
The body-frame axes are: forward, left, and up.

MapMaker
Although image-based driving is an efficient command

mechanism, it may fail to provide sufficient contextual cues
for good situational awareness. Maps can remedy this by
providing reference to environmental features, explored
regions and traversed path. In addition, maps can be effi-
ciently used for collision and obstacle avoidance.

The MapMaker builds maps using a 2D histogram
occupancy grid and range sensors. Our method is inspired
by [1], but has several differences. First, we use a fixed-
sized grid (20x20m with 10cm cells). If the robot
approaches a border, we shift cells to keep the robot in the
grid. Second, each cell holds a signed, 8-bit certainty
value2 (CV). This wider range improves map appearance
and speeds safeguarding (e.g., collision avoidance only
considers cells with CV>0). Third, in addition to updating
the grid when moving, we update when stopped. Finally,
we update the entire grid to reflect localization uncertainty:
as it increases, we increment/decrement CV’s towards zero.

MapServer
The MapServer provides maps as images. Whenever it

receives a request, the MapServer queries the MapMaker
for the relevant histogram grid region and converts CV’s to
gray-level3. Clear areas appear as white, obstacles as black,
and unknown as light-gray. The MapServer can generate

2CV range is -127 (clear) to 127 (obstacle). 0 indicates “unknown”.
3gray-level = CV + 127

x̂ ŷ ẑ

x̂ ŷ ẑ

maps in either the world or local frame, with arbitrary res-
olution (it performs sub/super sampling) and of any extent
(regions outside of the grid are marked “unknown”). Figure
3 shows some typical maps generated by the MapServer.

MotionController
The MotionController executes and monitors motion

commands. It generates position and rate setpoints (trans-
lation and rotation) for the robot’s low-level servo control-
ler. Our current MotionController supports the motion
command set shown in Table 4. Each command is imple-
mented as a Saphira behavior. This allows all vehicle
motion to be safeguarded (i.e., through command fusion
with Safeguarder commands). Because Pioneer robots can
turn in place, we use a “turn then move” motion strategy.

The MotionController continuously monitors the
progress and status of each executing motion behavior.
Whenever it detects lack of progress (e.g., due to safe-
guarding) or failure, the MotionController outputs a mes-
sage to any connected operator interface.

Safeguarder
The Safeguarder maintains vehicle safety. To avoid col-

lisions, it scans the MapMaker’s occupancy grid for obsta-
cles. Our approach is similar to the first stage of [15], but
instead of histogramming obstacle density, we compute
distance to obstacles in the direction of motion. Whenever
the robot approaches an obstacle, the Safeguarder reduces
translation speed. If an obstacle reaches the standoff dis-
tance, the Safeguarder forces the robot to stop.

The Safeguarder prevents rollovers by monitoring vehi-
cle attitude. Whenever roll or pitch exceeds a specified
threshold for more than a short period, the Safeguarder
forces the robot to stop. It also constantly monitors system
health and takes action if it detects problems. In particular,
the Safeguarder prevents vehicle motion if it detects low
power, high temperature, excessive motor stall (indicative
of drive obstruction), or hardware controller failure.

Sensor Modules
A Sensor Module interacts with a single sensor or a

group of related sensors. Each module works like an oper-
ating system driver: it communicates with the device using
sensor-specific protocols, processes the sensor data, then
publishes the results for other controller modules to use.
There are currently five Sensor Modules in the controller:
GPS, Health, Odometer, Sonar, and TCM2.

The GPS module acquires GPS position fixes and trans-
forms the data from geodesic coordinates to the regional
Cartesian user grid. If data is unavailable, or of poor quality
(e.g., high DOP), the GPS module outputs a warning.

The Health module monitors vehicle health sensors. At
this time, these are power (battery voltage), temperature
(environment), and watchdog (hardware controller).

The Odometer module processes wheel encoder data. It
computes differential position and velocity based on
encoder changes.

The Sonar module controls a ring of ultrasonic sonar. It
is used to enable/disable transducers and to configure poll-
ing order (to minimize crosstalk). The Sonar module pro-
cesses range data by applying a cut-off filter (ranges greater
than a cut-off are discarded) and then transforming the
range to a position (world frame).

The TCM2 module acquires orientation (roll, pitch,
compass heading) data from the TCM2. To reduce noise,
the module smooths the data using an exponential filter.

UIGateway
The UIGateway is a proxy server for user interfaces. It

provides access to controller services (e.g., motion control)
while hiding the controller’s complexity. The UIGateway
uses a simple message protocol which works well even
over low-bandwidth connections. The protocol is text-
based (which speeds integration of diverse interfaces) and
synchronous (to reduce latency and to improve safety).

Whenever an interface is connected, the UIGateway
continually monitors the connection. If it detects a commu-
nication problem (e.g., network outage) or that the interface
is no longer responding, the UIGateway immediately stops
the robot and closes the connection. Thus, the UIGateway
ensures that operator commands are only executed while
the interface is active and functioning.

Figure 3. MapServer maps: room (left), corridor (right)

Table 4. Motion control commands

command control variable

translate distance, rate

rotate heading (relative/absolute), rate

vector heading (absolute) + translate rate

pose 2D (x, y), 3D (x, y, heading), path

4 Results

To date, we have used our safeguarded teleoperation
controller with three operator interfaces having very differ-
ent characteristics[6]. WebDriver operates using the World
Wide Web. We conducted informal, indoor user tests and
found that safeguarding improves the driving experience
for novices. In particular, novices reported that safeguard-
ing reduces their fear of “breaking something”, especially
when exploring unfamiliar rooms and corridors.

GestureDriver is based on visual gesturing. Hand
motions are tracked with a color stereo vision system and
mapped into motion commands. Since the primary interac-
tion mode maps hand gestures (which are often noisy)
directly to vehicle rates, safeguarding is needed to prevent
collision and rollover during operator training.

PdaDriver (Figure 4) is our most recent interface and
runs on a Casio Cassiopeia PDA. It provides a variety of
driving modes and supports collaborative control (which
enables the robot to query the operator for information and
advice). We have used the PdaDriver for remote driving on
paved roads, on benign natural terrain, and indoors. In all
environments, we have found that the controller works
well: waypoint-based driving is efficient, safeguarding pre-
vents collisions (with fixed/moving obstacles), and audio
enables interaction with humans in the environment.

5 Conclusion

We have developed a teleoperation controller which
supports remote driving in unknown, unstructured environ-
ments. Our controller differs from other teleoperation con-
trol systems because it satisfies the needs of a broad range
of operator interfaces and control modes. In addition, the
controller provides continuous safeguarding to maintain
vehicle safety regardless of control mode, operator input,
and environmental hazards.

Although the controller satisfies the needs of our cur-
rent interfaces, further development would make it more
robust. Better localization would aid navigation and motion
control. Additional range sensors (stereo vision, ladar)
would improve map building and provide better collision
avoidance. Finally, wheel-slip and wheel-blocked sensors
would enhance safeguarding.

Acknowledgements
We would like to thank Kurt Konolige for providing

Saphira source code and his tireless support. This work was
partially supported by a grant from SAIC and the DARPA
ITO MARS program.

References
[1] Borenstein, J. and Koren, Y., “Histogramic In-Motion Mapping for

Mobile Robot Obstacle Avoidance”, IEEE Journal of Robotics and
Automation, 7(4), 1991.

[2] Deschler, M., “TCM2 Sensor Development”, Technical Report,
VRAI Group, EPFL, 1998.

[3] Dutoit, T., et. al., “The MBROLA Project: Towards a Set of High-
Quality Speech Synthesizers”, ICSLP, 1996.

[4] Fong, T., FPC: Fourth Planet Communicator, Fourth Planet, Inc.,
Los Altos, CA, 1998.

[5] Fong, T., and Thorpe, C., “Vehicle Teleoperation Interfaces”, Auton-
omous Robots, Vol 11(1), 2001.

[6] Fong, T., Thorpe, C., and Baur, C., “Advanced Interfaces for Vehicle
Teleoperation: Collaborative Control, Sensor Fusion Displays, and
Remote Driving Tools”, Autonomous Robots, Vol 11(1), 2001.

[7] Gowdy.J, “A Qualitative Comparison of Interprocess Communica-
tions Toolkits for Robotics”, CMU-RI-TR-00-16, Carnegie Mellon
University, 2000.

[8] Graves, A. and Czarnecki, C., “A Generic Control Architecture for
Telerobotics”, UMCS-99-3-1, University of Manchester, 1999.

[9] Hasemann, J-M., “Robot Control Architectures: Application,
Requirements, Approaches, and Technologies”, SPIE Intelligent
Robots and Manufacturing Systems, Philadelphia, PA, 1995.

[10] Konolige, K. and Myers, K., “The Saphira Architecture for Autono-
mous Mobile Robots”, in AI and Mobile Robots, (Bonasso, R. and
Murphy, R., eds.), MIT Press, Cambridge, MA, 1997.

[11] Krotkov, E., et. al., “Safeguarded Teleoperation for Lunar Rovers:
From Human Factors to Field Trials”, IEEE Planetary Rover Tech.
and Sys. Workshop, 1996.

[12] Lin, I. et. al., “An Advanced Telerobotic Control System for a
Mobile Robot with Multisensor Feedback”, IAS-4, IOS Press, 1995.

[13] Maslowski, A., et. al., “Autonomous Mobile Robot Controller for
Teleoperation System”, ISMCR, Prague, Czech Republic, 1998.

[14] Sheridan, T., Telerobotics, Automation, and Human Supervisory
Control, MIT Press, Cambridge, MA, 1992.

[15] Ulrich, I., and Borenstein, J., “VFH+: Reliable Obstacle Avoidance
for Fast Mobile Robots”, IEEE ICRA, Leuven, Belgium, May 1998.

Figure 4. PdaDriver: image mode (left), map mode (right)

	Abstract
	1 Introduction
	2 Related Work
	2.1 Safeguarded Teleoperation
	2.2 Control Systems for Teleoperation

	3 Design
	3.1 Requirements
	Table 1. Motion control requirements

	3.2 Robot Hardware
	Figure 1. Pioneer2-AT mobile robot
	Table 2. P2AT sensor suite

	3.3 Architecture
	Table 3. Controller modules
	Figure 2. Controller architecture

	3.4 Interprocess Communications
	3.5 Modules
	AudioServer
	CameraManager
	ImageServer
	Localizer
	MapMaker
	MapServer
	Figure 3. MapServer maps: room (left), corridor (right)

	MotionController
	Table 4. Motion control commands

	Safeguarder
	Sensor Modules
	UIGateway

	4 Results
	Figure 4. PdaDriver: image mode (left), map mode (right)

	5 Conclusion
	Acknowledgements
	References

