1,073 research outputs found

    Human Activity Recognition in AAL Environments Using Random Projections

    Get PDF
    Automatic human activity recognition systems aim to capture the state of the user and its environment by exploiting heterogeneous sensors attached to the subject’s body and permit continuous monitoring of numerous physiological signals reflecting the state of human actions. Successful identification of human activities can be immensely useful in healthcare applications for Ambient Assisted Living (AAL), for automatic and intelligent activity monitoring systems developed for elderly and disabled people. In this paper, we propose the method for activity recognition and subject identification based on random projections from high-dimensional feature space to low-dimensional projection space, where the classes are separated using the Jaccard distance between probability density functions of projected data. Two HAR domain tasks are considered: activity identification and subject identification. The experimental results using the proposed method with Human Activity Dataset (HAD) data are presented

    From Activity Recognition to Intention Recognition for Assisted Living Within Smart Homes

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The global population is aging; projections show that by 2050, more than 20% of the population will be aged over 64. This will lead to an increase in aging related illness, a decrease in informal support, and ultimately issues with providing care for these individuals. Assistive smart homes provide a promising solution to some of these issues. Nevertheless, they currently have issues hindering their adoption. To help address some of these issues, this study introduces a novel approach to implementing assistive smart homes. The devised approach is based upon an intention recognition mechanism incorporated into an intelligent agent architecture. This approach is detailed and evaluated. Evaluation was performed across three scenarios. Scenario 1 involved a web interface, focusing on testing the intention recognition mechanism. Scenarios 2 and 3 involved retrofitting a home with sensors and providing assistance with activities over a period of 3 months. The average accuracy for these three scenarios was 100%, 64.4%, and 83.3%, respectively. Future will extend and further evaluate this approach by implementing advanced sensor-filtering rules and evaluating more complex activities

    Human Action Recognition with RGB-D Sensors

    Get PDF
    none3noHuman action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset.Cippitelli, Enea; Gambi, Ennio; Spinsante, SusannaCippitelli, Enea; Gambi, Ennio; Spinsante, Susann

    Human Action Recognition with RGB-D Sensors

    Get PDF
    Human action recognition, also known as HAR, is at the foundation of many different applications related to behavioral analysis, surveillance, and safety, thus it has been a very active research area in the last years. The release of inexpensive RGB-D sensors fostered researchers working in this field because depth data simplify the processing of visual data that could be otherwise difficult using classic RGB devices. Furthermore, the availability of depth data allows to implement solutions that are unobtrusive and privacy preserving with respect to classic video-based analysis. In this scenario, the aim of this chapter is to review the most salient techniques for HAR based on depth signal processing, providing some details on a specific method based on temporal pyramid of key poses, evaluated on the well-known MSR Action3D dataset

    Development of a simulation tool for measurements and analysis of simulated and real data to identify ADLs and behavioral trends through statistics techniques and ML algorithms

    Get PDF
    openCon una popolazione di anziani in crescita, il numero di soggetti a rischio di patologia è in rapido aumento. Molti gruppi di ricerca stanno studiando soluzioni pervasive per monitorare continuamente e discretamente i soggetti fragili nelle loro case, riducendo i costi sanitari e supportando la diagnosi medica. Comportamenti anomali durante l'esecuzione di attività di vita quotidiana (ADL) o variazioni sulle tendenze comportamentali sono di grande importanza.With a growing population of elderly people, the number of subjects at risk of pathology is rapidly increasing. Many research groups are studying pervasive solutions to continuously and unobtrusively monitor fragile subjects in their homes, reducing health-care costs and supporting the medical diagnosis. Anomalous behaviors while performing activities of daily living (ADLs) or variations on behavioral trends are of great importance. To measure ADLs a significant number of parameters need to be considering affecting the measurement such as sensors and environment characteristics or sensors disposition. To face the impossibility to study in the real context the best configuration of sensors able to minimize costs and maximize accuracy, simulation tools are being developed as powerful means. This thesis presents several contributions on this topic. In the following research work, a study of a measurement chain aimed to measure ADLs and represented by PIRs sensors and ML algorithm is conducted and a simulation tool in form of Web Application has been developed to generate datasets and to simulate how the measurement chain reacts varying the configuration of the sensors. Starting from eWare project results, the simulation tool has been thought to provide support for technicians, developers and installers being able to speed up analysis and monitoring times, to allow rapid identification of changes in behavioral trends, to guarantee system performance monitoring and to study the best configuration of the sensors network for a given environment. The UNIVPM Home Care Web App offers the chance to create ad hoc datasets related to ADLs and to conduct analysis thanks to statistical algorithms applied on data. To measure ADLs, machine learning algorithms have been implemented in the tool. Five different tasks have been identified. To test the validity of the developed instrument six case studies divided into two categories have been considered. To the first category belong those studies related to: 1) discover the best configuration of the sensors keeping environmental characteristics and user behavior as constants; 2) define the most performant ML algorithms. The second category aims to proof the stability of the algorithm implemented and its collapse condition by varying user habits. Noise perturbation on data has been applied to all case studies. Results show the validity of the generated datasets. By maximizing the sensors network is it possible to minimize the ML error to 0.8%. Due to cost is a key factor in this scenario, the fourth case studied considered has shown that minimizing the configuration of the sensors it is possible to reduce drastically the cost with a more than reasonable value for the ML error around 11.8%. Results in ADLs measurement can be considered more than satisfactory.INGEGNERIA INDUSTRIALEopenPirozzi, Michel

    State of the art of audio- and video based solutions for AAL

    Get PDF
    Working Group 3. Audio- and Video-based AAL ApplicationsIt is a matter of fact that Europe is facing more and more crucial challenges regarding health and social care due to the demographic change and the current economic context. The recent COVID-19 pandemic has stressed this situation even further, thus highlighting the need for taking action. Active and Assisted Living (AAL) technologies come as a viable approach to help facing these challenges, thanks to the high potential they have in enabling remote care and support. Broadly speaking, AAL can be referred to as the use of innovative and advanced Information and Communication Technologies to create supportive, inclusive and empowering applications and environments that enable older, impaired or frail people to live independently and stay active longer in society. AAL capitalizes on the growing pervasiveness and effectiveness of sensing and computing facilities to supply the persons in need with smart assistance, by responding to their necessities of autonomy, independence, comfort, security and safety. The application scenarios addressed by AAL are complex, due to the inherent heterogeneity of the end-user population, their living arrangements, and their physical conditions or impairment. Despite aiming at diverse goals, AAL systems should share some common characteristics. They are designed to provide support in daily life in an invisible, unobtrusive and user-friendly manner. Moreover, they are conceived to be intelligent, to be able to learn and adapt to the requirements and requests of the assisted people, and to synchronise with their specific needs. Nevertheless, to ensure the uptake of AAL in society, potential users must be willing to use AAL applications and to integrate them in their daily environments and lives. In this respect, video- and audio-based AAL applications have several advantages, in terms of unobtrusiveness and information richness. Indeed, cameras and microphones are far less obtrusive with respect to the hindrance other wearable sensors may cause to one’s activities. In addition, a single camera placed in a room can record most of the activities performed in the room, thus replacing many other non-visual sensors. Currently, video-based applications are effective in recognising and monitoring the activities, the movements, and the overall conditions of the assisted individuals as well as to assess their vital parameters (e.g., heart rate, respiratory rate). Similarly, audio sensors have the potential to become one of the most important modalities for interaction with AAL systems, as they can have a large range of sensing, do not require physical presence at a particular location and are physically intangible. Moreover, relevant information about individuals’ activities and health status can derive from processing audio signals (e.g., speech recordings). Nevertheless, as the other side of the coin, cameras and microphones are often perceived as the most intrusive technologies from the viewpoint of the privacy of the monitored individuals. This is due to the richness of the information these technologies convey and the intimate setting where they may be deployed. Solutions able to ensure privacy preservation by context and by design, as well as to ensure high legal and ethical standards are in high demand. After the review of the current state of play and the discussion in GoodBrother, we may claim that the first solutions in this direction are starting to appear in the literature. A multidisciplinary 4 debate among experts and stakeholders is paving the way towards AAL ensuring ergonomics, usability, acceptance and privacy preservation. The DIANA, PAAL, and VisuAAL projects are examples of this fresh approach. This report provides the reader with a review of the most recent advances in audio- and video-based monitoring technologies for AAL. It has been drafted as a collective effort of WG3 to supply an introduction to AAL, its evolution over time and its main functional and technological underpinnings. In this respect, the report contributes to the field with the outline of a new generation of ethical-aware AAL technologies and a proposal for a novel comprehensive taxonomy of AAL systems and applications. Moreover, the report allows non-technical readers to gather an overview of the main components of an AAL system and how these function and interact with the end-users. The report illustrates the state of the art of the most successful AAL applications and functions based on audio and video data, namely (i) lifelogging and self-monitoring, (ii) remote monitoring of vital signs, (iii) emotional state recognition, (iv) food intake monitoring, activity and behaviour recognition, (v) activity and personal assistance, (vi) gesture recognition, (vii) fall detection and prevention, (viii) mobility assessment and frailty recognition, and (ix) cognitive and motor rehabilitation. For these application scenarios, the report illustrates the state of play in terms of scientific advances, available products and research project. The open challenges are also highlighted. The report ends with an overview of the challenges, the hindrances and the opportunities posed by the uptake in real world settings of AAL technologies. In this respect, the report illustrates the current procedural and technological approaches to cope with acceptability, usability and trust in the AAL technology, by surveying strategies and approaches to co-design, to privacy preservation in video and audio data, to transparency and explainability in data processing, and to data transmission and communication. User acceptance and ethical considerations are also debated. Finally, the potentials coming from the silver economy are overviewed.publishedVersio

    Human action recognition and mobility assessment in smart environments with RGB-D sensors

    Get PDF
    openQuesta attività di ricerca è focalizzata sullo sviluppo di algoritmi e soluzioni per ambienti intelligenti sfruttando sensori RGB e di profondità. In particolare, gli argomenti affrontati fanno riferimento alla valutazione della mobilità di un soggetto e al riconoscimento di azioni umane. Riguardo il primo tema, l'obiettivo è quello di implementare algoritmi per l'estrazione di parametri oggettivi che possano supportare la valutazione di test di mobilità svolta da personale sanitario. Il primo algoritmo proposto riguarda l'estrazione di sei joints sul piano sagittale utilizzando i dati di profondità forniti dal sensore Kinect. La precisione in termini di stima degli angoli di busto e ginocchio nella fase di sit-to-stand viene valutata considerando come riferimento un sistema stereofotogrammetrico basato su marker. Un secondo algoritmo viene proposto per facilitare la realizzazione del test in ambiente domestico e per consentire l'estrazione di un maggior numero di parametri dall'esecuzione del test Timed Up and Go. I dati di Kinect vengono combinati con quelli di un accelerometro attraverso un algoritmo di sincronizzazione, costituendo un setup che può essere utilizzato anche per altre applicazioni che possono beneficiare dell'utilizzo congiunto di dati RGB, profondità ed inerziali. Vengono quindi proposti algoritmi di rilevazione della caduta che sfruttano la stessa configurazione del Timed Up and Go test. Per quanto riguarda il secondo argomento affrontato, l'obiettivo è quello di effettuare la classificazione di azioni che possono essere compiute dalla persona all'interno di un ambiente domestico. Vengono quindi proposti due algoritmi di riconoscimento attività i quali utilizzano i joints dello scheletro di Kinect e sfruttano un SVM multiclasse per il riconoscimento di azioni appartenenti a dataset pubblicamente disponibili, raggiungendo risultati confrontabili con lo stato dell'arte rispetto ai dataset CAD-60, KARD, MSR Action3D.This research activity is focused on the development of algorithms and solutions for smart environments exploiting RGB and depth sensors. In particular, the addressed topics refer to mobility assessment of a subject and to human action recognition. Regarding the first topic, the goal is to implement algorithms for the extraction of objective parameters that can support the assessment of mobility tests performed by healthcare staff. The first proposed algorithm regards the extraction of six joints on the sagittal plane using depth data provided by Kinect sensor. The accuracy in terms of estimation of torso and knee angles in the sit-to-stand phase is evaluated considering a marker-based stereometric system as a reference. A second algorithm is proposed to simplify the test implementation in home environment and to allow the extraction of a greater number of parameters from the execution of the Timed Up and Go test. Kinect data are combined with those of an accelerometer through a synchronization algorithm constituting a setup that can be used also for other applications that benefit from the joint usage of RGB, depth and inertial data. Fall detection algorithms exploiting the same configuration of the Timed Up and Go test are therefore proposed. Regarding the second topic addressed, the goal is to perform the classification of human actions that can be carried out in home environment. Two algorithms for human action recognition are therefore proposed, which exploit skeleton joints of Kinect and a multi-class SVM for the recognition of actions belonging to publicly available datasets, achieving results comparable with the state of the art in the datasets CAD-60, KARD, MSR Action3D.INGEGNERIA DELL'INFORMAZIONECippitelli, EneaCippitelli, Ene
    corecore