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Abstract

Human action recognition, also known as HAR, is at the foundation of many different 
applications related to behavioral analysis, surveillance, and safety, thus it has been a 
very active research area in the last years. The release of inexpensive RGB-D sensors 
fostered researchers working in this field because depth data simplify the processing 
of visual data that could be otherwise difficult using classic RGB devices. Furthermore, 
the availability of depth data allows to implement solutions that are unobtrusive and 
privacy preserving with respect to classic video-based analysis. In this scenario, the aim 
of this chapter is to review the most salient techniques for HAR based on depth signal 
processing, providing some details on a specific method based on temporal pyramid of 
key poses, evaluated on the well-known MSR Action3D dataset.

Keywords: kinect, human action recognition, bag of key poses, RGB-D sensors

1. Introduction

The topic known as human action recognition (HAR) has become of interest in the last years 

mainly because different applications can be developed from the understanding of human 
behaviors. The technologies used to recognize activities can be varied and based on different 
approaches [1]. The use of environmental and acoustic sensors allows to infer the activity from 

the interaction of the user with the environment and the objects located in it, but vision-based 

solutions [2] and wearable devices [3] are usually the most used technologies to detect human 

body movements. RGB-D sensors, i.e., Red-Green-Blue and depth sensors, can be considered 

as enhanced vision-based devices since they can additionally provide depth data that can 

facilitate the detection of human movements. In fact, depth information may help to improve 

the performance of HAR algorithms because it is easier to implement a crucial process such as 
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distribution, and reproduction in any medium, provided the original work is properly cited.



the extraction of human silhouette, reducing its dependence from shadows, light reflections, 
and color similarity [4]. Skeleton joints, which can be even exploited to calculate features for 

action recognition, are extracted from depth data [5].

The aim of this chapter is to discuss HAR algorithms exploiting RGB-D sensors, providing 

a review of the most salient methods proposed in literature and an overview of nonvision-

based devices. A method for HAR exploiting skeleton joints and known as temporal pyra-

mid of key poses is described and experimental results on a well-known RGB-D dataset are 

provided.

Section 2 of this chapter aims to review methods for human action recognition based on dif-

ferent technologies, with a particular focus on RGB-D data. An algorithm based on histo-

grams of key poses exploiting skeleton joints extracted by Kinect is presented in Section 3. 

Finally, the last section of the chapter highlights the main conclusion on the proposed topic.

2. Methods and technologies for HAR

HAR methods can be implemented on data gathered from different technologies, which can 
infer the action from the movements made by the person, or from the interaction with objects 

or the environment. A review of sensors and technologies for detection of different human 
activities in smart homes can be found in Ref. [6], where the aim is to face the phenomenon of 

aging population. Following the same unobtrusive approach, researchers are working also on 
radio-based techniques [7], where they take advantage of signal attenuation due to the body, 
and channel fading of wireless radio. Other works have been also published considering 

wearable devices, such as smartphones, that can be used to collect data and to classify actions 

[8]. A more general architecture implemented with wearable devices requires the usage of 

small sensors with sensing and communication capabilities that can acquire data (usually 

related to acceleration) and send them to a central unit [9].

2.1. Related works on not vision-based devices

HAR based on data generated by environmental devices in home environment may exploit 

unobtrusive sensors equipping objects with which people usually interact, or other sensors 

that are installed in the rooms. State-changes sensors, which activate and deactivate if they 

detect a change, can provide powerful clues about movements in the apartment if placed on 

windows or doors. If attached to ovens and fridges, or toilet and washing machines, they can 
reveal kitchen-related activities or activities associated to toileting and doing laundry [10]. 

Passive infrared sensors (PIRs) detect the presence of a person in a room and a set of activi-

ties can be inferred if they are jointly used with other sensors, such as state-changes sensors 

and flush sensors, to detect the use of the toilet [11]. Multiple binary sensors such as motion 

detectors, contact switches, break-beam sensors, and pressure mats have been used in Ref. 

[12]. Using an approach based on particle filter and an ID sensor (RFID) to detect people’s 
identity, the system can reveal information about the occupied rooms and the number of 

occupants, and recognize if they are moving or not and track their movement. An integrated 
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platform including PIRs, magnetic sensors, force sensors, gas and smoke detection sensors, 

water and gas flux meters, power meters connected to some objects has been implemented 
in a laboratory environment [13]. Some simple activities, such as cooking, sitting, watching 
TV, can be easily inferred by processing the output data of sensors. Environmental sensors 

can be installed also in nursing homes, to support and help assistance of Alzheimer’s disease 
patients [14]. In this scenario, even the detection of simple events such as “presence in bed” 

or “door opening” may be relevant to ensure comfort and safety of patients. Environmental 

sensors are completely unobtrusive and privacy preserving but they usually require some 

time for the installation. Furthermore, the amount of information that can be obtained from 
the sensors is limited, and does not include the extraction of human movements.

Other unobtrusive sensors revealing the interaction with the environment can be audio 

sensors. In fact, some activities generate sounds that can be captured using one or mul-

tiple microphones. Characteristic sounds are generated for example by chatting or read-

ing newspapers activities, as well as drink and food intake events, that can be classified 
considering their features [15]. Tremblay et al. [16] proposed an algorithm to recognize a 

limited set of activities from six microphones installed at different positions in a test apart-
ment. Two activities of daily living (ADLs), i.e., breakfast and household, constituted by 

multiple steps have been recognized with a promising accuracy. Multiple audio sensors 

in the same apartment could constitute a wireless sensor network (WSN), addressing the 

challenges of limited amount of memory and processing power of the nodes. However, it 

has been proven that low complexity features extraction algorithms can be adopted with 

good performance considering the indoor scenario [17]. Vuegen et al. [18] proposed a WSN 

constituted by seven nodes placed in different rooms: living room/kitchen, bedroom, bath-

room and toilet, covering the entire apartment. A set of 10 ADLs has been recorded consid-

ering two test users and an artificial dataset to examine the influence of background noise. 
Acoustic sensors can be adopted in assistive environments to detect dangerous events such 

as falls [19, 20].

Radio-based techniques do not require any physical sensing module and they may work with-

out the need of wearing any device, but only exploiting the existing WiFi links between the 
access point and connected devices. With one access point and three devices, a set of nine in-

place activities (such as cooking, eating, washing dishes, etc.) and eight walking activities (dis-

tinguishing the direction of movement within the apartment) can be recognized [21]. Another 

radio-based technique is represented by micro-Doppler signatures (MDS). Commercial radar 

motes can be used to discern among a small set of activities, such as walking, running, and 

crawling, with high accuracy values [22]. A larger set of MDS captured from humans per-

forming 18 movements has been collected and presented in Ref. [23]. Activities have been 

grouped in three categories: stationary, forward-moving and multitarget, and characterized 
both in free-space and through-wall environments, associating the general properties of the 

signatures to their phenomenological characteristics. Björklund et al. [24] included a set of 

five activities (crawling, creeping on their hands and knees, walking, jogging, and running) in 
their study. They evaluated the performance of an activity recognition algorithm based on a 

support vector machine (SVM) with features in the time-velocity domain and in the cadence-

velocity domain, obtaining comparable results of about 90% of accuracy.
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Wearable sensors can be used to extract the human movements since they usually provide accel-

eration data. Considering inertial data, many different features for human action recognition 
have been proposed, with the aim to reduce the complexity of the features extraction process 

and to enhance the separation among the classes [25]. Wearable inertial sensors are quite cheap 

and generate a limited amount of data that can be processed easily with respect to video data, 

even if they do not provide information about the context. The placement of wearable sensors 

can be an issue and this step has to be carefully addressed [26]. This choice mainly depends 

on the movements constituting the set of activities that have to be recognized. The placement 

on the waist of the subject is close to the center of mass, and can be used to represent activities 

involving the whole body. With this configuration, sitting, standing, and lying postures can be 
detected with a high degree of accuracy considering a dataset acquired in a laboratory environ-

ment [27]. The placement on the subject’s waist, as well as the one on the subject’s chest or knee, 
gives good results with transitional activities also in Ref. [28]. On the other hand, high level 

activities such as running (in a corridor or on a treadmill) and cycling are revealed mostly by 

an ear worn sensor, since it measures the change in body posture. The placement of wearable 

unit on the dominant wrist may help the discrimination of upper body movements constituting 

for example the activities of brushing teeth, vacuuming, and working at computer [29]. On the 

other hand, the recognition of gait-related activities, such as normal walking, stair descending, 

stair ascending, and so on, requires the positioning of the devices on the lower limbs. In par-

ticular, even if the shank’s sensor could be enough to predict the activities, the usage of other 
IMUs, placed on tight, foot and waist, can enhance the final accuracy [30]. A multisensor system 

for activity recognition usually allows to increase the accuracy with respect to a single-sensor 

system, even if the latter employs a higher sampling rate, more complex features and a more 
sophisticated classifier [31]. The main drawback is the increasing level of obtrusiveness for the 

subject being monitored. Furthermore, if it may be acceptable to ask people to wear a device for 
a limited amount of time, for example to extract some parameters during movement assessment 

tests [32], it may be unacceptable to request wearing several IMUs to continuously track ADLs.

2.2. Related works on RGB-D sensors

Video-based devices (and especially RGB-D sensors) allow to extract activities from body 

movements but they are not obtrusive and they do not pose many issues about installation 

as environmental sensors do. Furthermore, RGB-D sensors do not raise problems related to 
radiation impact, differently from radar-based techniques, which can limit their acceptability. 
On the other hand, video-based sensors may be deemed not acceptable for privacy concerns 

but RGB-D sensors provide not negligible advantages from this point of view. In fact, when 

the data processing algorithms exploit only depth information, the privacy of the subject is 

preserved because no plain images are collected, and many details cannot be extracted from 

depth signal only. Different levels of privacy can be considered according to the user’s pref-
erences, thanks to the possibility to extract the human silhouette, or even to represent the 
human subject only by means of the skeleton [33].

Many different reviews on HAR based on vision sensors have been published in the past, 
each of which proposing its own taxonomy to classify different approaches [34–36]. Aggarwal 

and Xia [37], in their review, considered only methods based on 3D data that can be obtained 
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from three different technologies: marker-based systems, stereo images or range sensors, and 
organizing the papers in five categories based on the features considered.

The review of action recognition algorithms based on RGB-D sensors is organized consider-

ing the data processed by the algorithms, separating methods based on depth data from others 

exploiting skeleton information. Due to the simple extraction process of the silhouette from depth 
data, approaches based on this information may exploit features extracted from silhouettes. Li et 
al. [38] calculate a bag of 3D points from human silhouette, sampling the points on the contours 
of the planar projections of the 3D depth map. An action graph, where each node is associated 

to a salient posture, is adopted to explicitly model the dynamics of the actions. Features from 
2D silhouettes have been considered in Ref. [39], where an action is modeled as a sequence of 

key poses, extracted by means of a clustering algorithm, from a training dataset. Dynamic time 

warping (DTW) is suitable in this case because sequences can be inconsistent in terms of time 

scale, but they preserve the time order, and DTW can associate an unknown sequence of key 

poses to the closest sequence in the training set, thus performing the recognition process. Other 

approaches exploiting depth data considered the extraction of local or holistic descriptors. Local 

spatio-temporal interest points (STIPs), which have been used with RGB data, can be adapted 

to depth including additional strategies to reduce the noise typical of depth data, such as the 

inaccurate identification of objects’ borders, or the presence of holes in the frame [40]. A spatio-

temporal subdivision of the space in multiple segments has been proposed in Ref. [41], where 

the occupancy patterns are extracted from a 4D grid. Holistic descriptors, namely histogram of 
oriented 4D normals (HON4D) and histogram of oriented principal components (HOPC) have 

been exploited respectively in Refs. [42, 43]. HON4D is based on the orientation of normal sur-

faces in 4D while HOPC can represent the geometric characteristics of a sequence of 3D points.

Skeleton joints represent a compact and effective description of the human body, for this rea-

son they are assumed and exploited as input data by many action recognition algorithms. 

Kinect sensor provides 3D coordinates of 20 skeleton joints, thus motion trajectories in a 

60-dimensional space can be associated to human motion [44]. A trajectory is the evolution 

of the positions of joint coordinates along a sequence of frames related to an action. A kNN 

classifier learns the trajectories of different actions and performs classification. Gaglio et al. 
[45] proposed an algorithm constituted by three steps: features detection, where the skeleton 
coordinates are elaborated to extract features; posture analysis, that consists in the detection of 

salient postures through a clustering algorithm and their classification with a support vector 
machine (SVM); and activity recognition, where a sequence of postures is modeled by an hid-

den Markov model (HMM). In Ref. [46], the coordinates of human skeleton models generate 

body poses and an action can be seen as a sequence of body poses over time. According to this 

approach, a feature vector is obtained representing each pose in a multidimensional feature 

space. A movement can be now represented as a trajectory in the feature space, which may 

constitute a signature of the associated action, if the transformation and features are carefully 

chosen. An effective representation based on skeleton joints is called APJ3D [47], which is built 

from 3D joint locations and angles. The key postures are extracted by a k-means clustering 

algorithm and, following a representation through an improved Fourier temporal pyramid, the 
recognition task is carried out with random forests. Xia et al. [48] proposed a method to com-

pactly represent human postures with histograms of 3D joints (HOJ3D). The positions of the 
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joints are translated into a spherical coordinate system and, after a reprojection of the HOJ3D 
vectors using linear discriminant analysis (LDA), a number of key postures are extracted from 

training sequences. The temporal evolution of postures is modeled through HMM.

Research on HAR using RGB-D sensors has been fostered by the release of many datasets. 

An extensive review of the datasets collected for different purposes, going for example from 
camera tracking and scene reconstruction to pose estimation or semantic reasoning, can be 

found in Ref. [49]. Another review, which is focused on RGB-D datasets for HAR, has been 

published in Ref. [50]. In the latter work, the datasets have been organized considering the 
methods applied for data collection, which can include a single view setup, with one captur-

ing device, a multiview setup with more devices, or a multiperson setup where some interac-

tions among different people are included in the set of classes.

A list of the most used datasets for HAR is provided in Table 1, where different features of each 
dataset are highlighted. Many datasets provide the most important data streams available with 

a RGB-D device, i.e., the color and depth frames along with skeleton coordinates. They are usu-

ally featured by a number of actions between 10 and 20, performed by different subjects (around 
10), and repeated 2 or 3 times. Considering the set of actions included in the datasets, they can 

be used for two main applications that are the detection of daily activities (DA) and the human 

Name Data Application Actions Actors Times Samples Citations Year

MSR 

DailyActivity3D [51]

C, D, S DA 16 10 2 320 614 2012

MSR Action3D [38] D, S HCI 20 10 2 or 3 567 603 2010

UTKinect Action [48] C, D, S HCI/DA 10 10 2 200 444 2012

MSR ActionPairs [42] D DA 6 10 3 180 338 2013

CAD-60 [52] C, D, S DA 12 2 + 2 – 60 281 2012

CAD-120 [53] C, D, S DA 10 2 + 2 – 120 219 2013

RGBD-HuDaAct [54] C, D DA 12 30 2 or 4 1189 211 2011

MSRC-12 

KinectGesture [55]

S HCI 12 30 – 594 197 2012

MSR Gesture3D [56] D HCI 12 10 2 or 3 336 159 2012

Berkeley MHAD [57] C, D, M, Au, Ac HCI 11 7 + 5 5 ~660 110 2013

G3D [58] C, D, S HCI 20 10 3 – 61 2012

Florence 3D Action 
[59]

C, S DA 9 10 2 or 3 215 54 2012

ACT4 Dataset [60] C, D DA 14 24 >1 6844 53 2012

LIRIS Human 

Activities [61]

C, D DA 10 21 – – 49 2012

3D Online Action 

[62]

C, D, S DA 7 24 – – 41 2014

UPCV Action [46] S DA 10 20 – – 39 2014

WorkoutSu-10 

Gesture [63]

D, S DA 10 15 10 1500 32 2013
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computer interaction (HCI). Datasets belonging to the first group usually include actions like 
walking, eating, drinking, and sometimes they are recorded in a real scenario, which introduces 

partial occlusions and a complex background [51, 52]. Datasets focused on HCI applications 

may contain actions like draw x, draw circle, side kick, and they are usually captured with a sim-

pler background, even if they can be challenging, due to the similarity of many gestures and to 

the differences in speeds and way to perform the movement, considering different actors.

The oldest and the newest datasets included in the list are deeply discussed because of 

their characteristics. MSR Action3D [38] was the first relevant dataset for HAR, it has been 
released in 2010 and it includes 20 actions that are suitable for HCI. The following activi-

ties are included in the dataset: high arm wave, horizontal arm wave, hammer, hand catch, for-

ward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand wave, side boxing, 

bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick-up, and throw. As 

described in Ref. [38], the dataset has been often evaluated considering three subsets of 8 

actions each, namely AS1, AS2, and AS3. As can be noticed from Table 2, AS1 and AS2 are 

built by grouping actions with similar movements, and AS3 includes actions that require 

more complex movements. From Figure 1 it is possible to observe sequences of frames con-

stituting two similar actions in AS1: hammer and forward punch. Sequences of frames from 

Name Data Application Actions Actors Times Samples Citations Year

KARD [45] C, D, S HCI/DA 18 10 3 540 23 2014

UTD-MHAD [64] C, D, S HCI 27 8 4 861 22 2015

IAS-Lab Action [65] C, D, S DA 15 12 3 540 21 2013

NTU RGB+D [66] C, D, S, IR HCI/DA 60 40 – 56880 14 2016

Note: In the column related to data, each label represents the availability of a different type of data: RGB (C), Depth (D), 
Skeleton (S), Acceleration (Ac), Audio (Au), Mocap (M). The datasets can be oriented to two main applications: Daily 
Activities (DA) and Human Computer Interaction (HCI).

Table 1. List of the most important RGB-D datasets for Human Action Recognition, listed considering the number of 

citations according to Google Scholar on January 3rd 2017.

AS1 AS2 AS3

(a02) Horizontal arm wave (a01) High arm wave (a06) High throw

(a03) Hammer (a04) Hand catch (a14) Forward kick

(a05) Forward punch (a07) Draw x (a15) Side kick

(a06) High throw (a08) Draw tick (a16) Jogging

(a10) Hand clap (a09) Draw circle (a17) Tennis swing

(a13) Bend (a11) Two-hand wave (a18) Tennis serve

(a18) Tennis serve (a12) Side boxing (a19) Golf swing

(a20) Pick-up and throw (a14) Forward kick (a20) Pick-up and throw

Table 2. Actions constituting the three subsets of MSR Action3D: AS1, AS2, AS3.
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Draw x and Draw tick, two similar actions in AS2, are shown in Figure 2. The dataset has 

been collected using a structured light depth sensor and the provided data are represented 

by depth frames, at a resolution of 320 × 240, and skeleton coordinates. The entire dataset 

includes 567 sequences but, considering that 10 of them are affected by wrong or miss-

ing skeletons, only 557 sequences of skeleton joint coordinates are available. The evalua-

tion method usually adopted on this dataset is called cross-subject test [38] and takes into 

account samples from actors 1-3-5-7-9 for training, and the remaining data for testing. NTU 

RGB+D [66] is one of the most recent datasets for HAR and, to the authors’ best knowledge, 
the largest. In fact, it includes 60 different actions that can be grouped in 40 daily actions 
(reading, writing, wear jacket, take off jacket), 9 health-related actions (falling down, touch head, 

touch neck), and 11 interactions (walking toward each other, walking apart from each other, hand-

shaking). A number of 40 actors have been recruited to perform the actions multiple times, 

involving also 17 different setups of the Kinect v2 sensors adopted for data collection. Each 

Figure 1. Sequences of frames constituting similar actions in AS1 subset of MSR Action3D: hammer (top) and forward 

punch (bottom).

Figure 2. Sequences of frames constituting similar actions in AS2 subset of MSR Action3D: draw x (top) and draw tick 

(bottom).
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action has been captured from three sensors simultaneously, having three different views of 
the same scene (0°, +45°, −45° directions). All the data provided by Kinect v2 (RGB, depth, 
infrared frames and skeleton coordinates) are collected and included in the released dataset. 

Two evaluation methods have been proposed in Ref. [66], aiming to test the goodness of 

HAR methods with unseen subjects and new views. In the cross-subject test, a specific list 
of subjects is used for training and the remaining represent the test data, while in the cross-

view test the sequences from devices 2 and 3 are used for training and the ones from camera 

1 are adopted for testing.

3. Human action recognition based on temporal pyramid of key poses

A HAR method that allows to achieve state-of-the-art results has been proposed in Ref. [67] 

and can be defined as temporal pyramid of key poses. It exploits the bag of key poses model 
[68] and it adopts a temporal pyramid to model the temporal structure of the key poses con-

stituting an action sequence.

3.1. Algorithm overview

The algorithm based on temporal pyramid of key poses can be represented by the scheme 

shown in Figure 3. It performs four main steps that include the extraction of posture features, 

the adoption of the bag of key poses model, and the representation of the action sequence 

through a temporal pyramid of key poses; finally, the classification by a multiclass SVM 
takes place.

The algorithm takes as an input the coordinates of skeleton joints, that can be seen as a 

3-dimensional vector J
i
 for the i-th joint of a body with P joints. The aim of the first step is to 

obtain view- and position-invariant features from the raw coordinates. The feature computa-

tion scheme derives from the one proposed in Ref. [69], but here a virtual joint called center-

of-mass is introduced. Considering all the skeleton joints stored in the vector P
n
 related to the 

n-th frame of a sequence, the center-of-mass J
cm

 is calculated by averaging the coordinates 

of all the P joints. In order to normalize coordinates with respect to the size of the body, the 

normalization factor s is computed by averaging the L-2 norm between the skeleton joints and 

J
cm

, as follows:

  s =   1 __ 
P

     ∑ 
i=0

  P−1     ‖   J  
i
   −  J  

cm
   ‖     

2
    (1)

The normalization with respect to the position of the skeleton is implemented considering the 

displacement between each joint position and the center-of-mass, normalized by the factor s. 

Each joint is thus represented by a 3 dimensional vector d
i
:

   d  
i
   =   

 J  
i
   −  J  

cm
  
 _____ s    (2)

Finally, as can be noticed in the first part of Figure 3, each vector p
n
 corresponding to the 

coordinates of the skeleton in the n-th frame, is translated into a vector f
n
 which includes the 

features related to that skeleton.
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Once the features related to the skeleton have been obtained, the bag of key poses method 

is adopted to extract the most significant postures and the action is then represented as a 
sequence of key poses. In more detail, the clustering algorithm k-means is applied consider-

ing separately the training sequences of each class, setting a different number of key poses for 
each action of the dataset, i.e., K

1
 for class 1, K

2
 for class 2, up to K

M
 if the dataset is constituted 

by M classes. Following the clustering process performed separately for each class, the key 
poses, which are the centres of the clusters, have to be merged to obtain a unique codebook. 

Finally, each posture feature vector is associated to the closest key pose in terms of Euclidean 
distance, and a sequence of key poses S = [k

1, 
k

2, 
k

3, …, 
k
N
] represents an action of N frames.

The temporal structure of an action can be represented with the adoption of a temporal pyramid. 

The idea is to provide different representations of the action: the most general one is provided at 
the first level of the pyramid, whereas the most detailed one is given at the last level. For each level, 
the computation of the histograms of key poses is implemented, having at the end of the process 

a histogram for each segment at each level. Starting from the consideration of the entire sequence 

at the first level of the pyramid, two segments are considered in the second level and they are split 
again in two at the third level, giving a number of seven histograms when three levels are consid-

ered. These histograms H represent the input data to the final step, which is the classifier.

The classification step aims to associate the data extracted from an unknown data sequence to 
the correct action label, knowing the training set. In particular, the classifier has to be trained 
with a set of histograms H for which the action labels L are known. Then, in the testing phase, 

an unknown H has to be associated to the corresponding L. A multiclass SVM has been cho-

sen for classification purpose. The approach considered for the implementation of the mul-
ticlass scheme is defined as “one-versus-one,” where a set of M(M – 1)/2 binary SVMs are 
required for a dataset of M classes, each of which has to distinguish two classes. The output 

class is elected with a voting strategy considering the result of each binary SVM.

3.2. Experimental results and discussion

This method has been evaluated on one of the most used RGB-D dataset for HAR: MSR Action3D 
[38]. The test scheme adopted is the cross-subject test, described in the previous section.

Figure 3. Global scheme of the algorithm based on temporal pyramid of key poses. Step 1 extracts the feature vectors 

related to posture while step 2 is represented by the bag of key poses model. The third phase exploits the temporal 

pyramid to model the temporal structure of the sequences and the last step is the classification phase.
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The algorithm requires to set different parameters in order to be executed, which are the num-

ber of key poses per class (clusters), the set of skeleton joints (features) and the set of training 

sequences (instances). These parameters can be chosen randomly or using some optimization 

strategies in order to maximize the performance. In this chapter, results are shown using both 

the options, adopting the optimization process, based on evolutionary [70] and coevolutionary 

[71] algorithms. These optimization strategies are applied as wrapper methods, associating the 

fitness of each individual in the population to the accuracy of the action recognition algorithm.

Since the idea is to optimize three parameters, the structure of each individual is constituted by 

three parts [72]. The first one is related to features, and it is a binary vector of length P, which is 

the number of joints in a skeleton. A bin is featured by a 1 value if the associated joint has to be 

considered by the action recognition algorithm; otherwise it is featured by a 0 value. The same 

approach is used for the part related to training instances, which is therefore represented by a 

binary vector of length I. Regarding the optimization of the number of key poses, it is necessary 

to adopt a vector of integer values with a length of M, where each bin is associated to a class of 

the dataset, and contains the number of its clusters. Crossover and mutation operators have to be 

used to evolve the population’s individuals, and a standard 1-point crossover operator is applied 
for the subindividuals related to instances and clusters. A specific crossover operator which 
takes into account the structure of the skeleton joints is applied to the features part. Finally, three 
different mutation probabilities are considered, for the three parts of the individual.

In addition to the evolutionary algorithm, a cooperative coevolutionary optimization method can 

be also implemented. The main difference between evolutionary and coevolutionary approaches 
is in the organization of the population of individuals. In particular, in the latter case, each sub-

individual is part of a different population, thus generating a set of three populations. The selec-

tion of one element from each population is necessary to execute the action recognition algorithm 

and to extract the fitness value, which is associated to each subindividual. Crossover and muta-

tion operators can be applied according to the same considerations made for the evolutionary 

computation. In order to improve the performance of the optimization process, different priori-
ties are given to the individuals of the populations. In particular, in the populations related to 

features and instances, the individuals with a lower number of ones are preferred, while in the 

populations related to clusters, the individuals featuring a lower number of key poses are favored.

The three parameter selection methods can be described as follows:

 - Random selection: the number of clusters required by the bag of key poses method is selected 
randomly within the interval [4, 26] for the subsets AS1 and AS2 and the interval [44, 76] for 

AS3. All the skeleton joints and training instances are included in the processing.

 - Evolutionary optimization: the evolutionary algorithm selects the best combination of skel-
eton joints and clusters, considering all the training sequences. The same intervals adopted 

in the random selection are used for the optimization of the number of key poses.

 - Coevolutionary optimization: the optimization method selects all the parameters required 
by the HAR algorithm: features, clusters, and instances. In this case, the intervals for clusters 

optimization are [4, 16] for AS1 and AS2, and [4, 64] for AS3.
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The results are summarized in Table 3, where it can be noticed that, for all the parameters 

selection methods, the best results are obtained for AS3, AS1, and finally AS2. In fact, as 
already stated, subsets AS1 and AS2 group have similar gestures (Figures 1 and 2). More in 

detail, from Figure 2 it is quite evident that Draw x and Draw tick involve the same poses, and 

the main cue to differentiate them is their order.

An average accuracy of 92.45% can be achieved considering the random selection of num-

ber of key poses. The subset AS2 is the most critical one, with an accuracy of 86.61% due 

to the aforementioned reasons. Considering evolutionary optimization, where the evaluated 

parameters are the number of key poses and the set of skeleton joints, there is a noticeable 

improvement in AS2 and AS3, and the HAR algorithm shows an average accuracy of 95.14%. 

Similar average results are obtained with the adoption of the coevolutionary optimization 

method, including also the set of training instances in the optimization process. In particular, 

there is a further improvement in AS2, which shows an accuracy of 91.96%, while a subopti-

mal result (98.2%) is achieved in AS3.

Table 4 aims to compare the results obtained by different HAR methods on MSR Action3D 
considering the cross-subject evaluation protocol and averaging the results on AS1, AS2, and 

AS1 AS2 AS3 Avg

Random selection 95.24 86.61 95.5 92.45

Evolutionary 

optimization

95.24 90.18 100 95.14

Coevolutionary 

optimization

95.24 91.96 98.2 95.13

Table 3. Results in terms of accuracy (%) obtained on MSR Action3D by the method based on temporal pyramid of key 

poses.

AS1 AS2 AS3 Avg

Li et al. [38] 72.9 71.9 79.2 74.67

Chaaraoui et al. [68] 92.38 86.61 96.4 91.8

Lo Presti et al. [73] 90.29 95.15 93.29 92.91

Tao and Vidal [74] 89.81 93.57 97.03 93.5

Du et al. [75] 93.3 94.64 95.5 94.49

Temporal pyramid of 

key poses

95.24 90.18 100 95.4

Lillo et al. [76] 94.3 92.9 99.1 95.4

Xu et al. [77] 99.1 92.9 96.4 96.1

Liang et al. [78] 98.1 92.9 99.1 96.7

Shahroudy et al. [79] – – – 98.2

Table 4. Results in terms of accuracy (%) obtained by main HAR algorithms evaluated on cross-subject tests.
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AS3 [38]. Only the works in which the use of cross-subject test with actors 1-3-5-7-9 for train-

ing and the rest for testing is clearly stated are included in the table.

Some recently published works outperform the performance achieved by the method based 

on temporal pyramid of key poses. Lillo et al. [76] proposed an activity recognition method 

based on three levels of abstraction. The first level is dedicated to learning the most represen-

tative primitives related to body motion. The poses are combined to compose atomic actions 

at the mid-level, and more atomic actions are combined to create more complex activities at 

the top-level. As input data, the aforementioned proposal exploits angles and planes from 

segments extracted from joint coordinates, adding also histograms of optical flow calculated 
from RGB patches centered at the joint locations. Xu et al. [77] proposed the adoption of depth 

motion map (DMM), which is computed from the differences among consecutive maps, to 
describe the dynamic feature of an action. In addition to this method, the depth static model 

(DSM) can describe the static feature of an action. The so-called TPDM-SPHOG descriptor 

encodes DMMs and DSM represented by a temporal pyramid and histogram of oriented gra-

dient (HOG) extracted using a spatial pyramid. DMM and multiscale HOG descriptors are 

also exploited by Liang et al. [78], and they are combined with local space-time auto-corre-

lation of gradients (STACOG), which compensates the loss of temporal information. l
2
-regu-

larized collaborative representation classification (CRC) is adopted to take as inputs for the 
proposed descriptors and classify the actions. In Ref. [79], a joint sparse regression learning 

method, which models each action as a combination of multimodal features from body parts, 

is proposed. In fact, each skeleton is separated into a number of parts and different features, 
related to the movement and local depth information, are extracted from each part. A small 

number of active parts for each action class are selected through group sparsity regulariza-

tion. A hierarchical mixed norm, which includes three levels of regularization over learning 

weights, is integrated into the learning and selection framework.

The comparison of the algorithm based on temporal pyramid of key poses to other approaches 

achieving higher accuracies on MSR Action3D allows to conclude that all the considered works 

exploit not only skeleton data but also RGB or depth information. One approach is based on 

the extraction of the most important postures considering skeleton joints and RGB data [76], 

DMM and HOG descriptors calculated from depth data are exploited by more papers [77, 78], 

and a heterogeneous set of depth and skeleton-based features has been considered in Ref. [79].

4. Conclusion

Human action recognition performed exploiting data collected by RGB-D devices has been 

an active research field and many researchers are developing algorithms exploiting the prop-

erties and characteristics of depth sensors. The main advantages in using this technology 

include unobtrusiveness and privacy preservation, differently from video-based solutions; 
additionally, it does not extract movements from interaction with objects, as environmental 

sensors do, and it does not require the subject to wear any device, differently from systems 
based on wearable technologies.
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Among the HAR algorithms based on RGB-D data, the chapter provided a detailed discus-

sion of a method exploiting a temporal pyramid of key poses that has been able to achieve 

state-of-the-art results on the well-known MSR Action3D dataset.
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