1,294 research outputs found

    A survey of the use of crowdsourcing in software engineering

    Get PDF
    The term 'crowdsourcing' was initially introduced in 2006 to describe an emerging distributed problem-solving model by online workers. Since then it has been widely studied and practiced to support software engineering. In this paper we provide a comprehensive survey of the use of crowdsourcing in software engineering, seeking to cover all literature on this topic. We first review the definitions of crowdsourcing and derive our definition of Crowdsourcing Software Engineering together with its taxonomy. Then we summarise industrial crowdsourcing practice in software engineering and corresponding case studies. We further analyse the software engineering domains, tasks and applications for crowdsourcing and the platforms and stakeholders involved in realising Crowdsourced Software Engineering solutions. We conclude by exposing trends, open issues and opportunities for future research on Crowdsourced Software Engineering

    Delivering IoT Services in Smart Cities and Environmental Monitoring through Collective Awareness, Mobile Crowdsensing and Open Data

    Get PDF
    The Internet of Things (IoT) is the paradigm that allows us to interact with the real world by means of networking-enabled devices and convert physical phenomena into valuable digital knowledge. Such a rapidly evolving field leveraged the explosion of a number of technologies, standards and platforms. Consequently, different IoT ecosystems behave as closed islands and do not interoperate with each other, thus the potential of the number of connected objects in the world is far from being totally unleashed. Typically, research efforts in tackling such challenge tend to propose a new IoT platforms or standards, however, such solutions find obstacles in keeping up the pace at which the field is evolving. Our work is different, in that it originates from the following observation: in use cases that depend on common phenomena such as Smart Cities or environmental monitoring a lot of useful data for applications is already in place somewhere or devices capable of collecting such data are already deployed. For such scenarios, we propose and study the use of Collective Awareness Paradigms (CAP), which offload data collection to a crowd of participants. We bring three main contributions: we study the feasibility of using Open Data coming from heterogeneous sources, focusing particularly on crowdsourced and user-contributed data that has the drawback of being incomplete and we then propose a State-of-the-Art algorith that automatically classifies raw crowdsourced sensor data; we design a data collection framework that uses Mobile Crowdsensing (MCS) and puts the participants and the stakeholders in a coordinated interaction together with a distributed data collection algorithm that prevents the users from collecting too much or too less data; (3) we design a Service Oriented Architecture that constitutes a unique interface to the raw data collected through CAPs through their aggregation into ad-hoc services, moreover, we provide a prototype implementation

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    UNDERSTANDING USER PERCEPTIONS AND PREFERENCES FOR MASS-MARKET INFORMATION SYSTEMS – LEVERAGING MARKET RESEARCH TECHNIQUES AND EXAMPLES IN PRIVACY-AWARE DESIGN

    Get PDF
    With cloud and mobile computing, a new category of software products emerges as mass-market information systems (IS) that addresses distributed and heterogeneous end-users. Understanding user requirements and the factors that drive user adoption are crucial for successful design of such systems. IS research has suggested several theories and models to explain user adoption and intentions to use, among them the IS Success Model and the Technology Acceptance Model (TAM). Although these approaches contribute to theoretical understanding of the adoption and use of IS in mass-markets, they are criticized for not being able to drive actionable insights on IS design as they consider the IT artifact as a black-box (i.e., they do not sufficiently address the system internal characteristics). We argue that IS needs to embrace market research techniques to understand and empirically assess user preferences and perceptions in order to integrate the "voice of the customer" in a mass-market scenario. More specifically, conjoint analysis (CA), from market research, can add user preference measurements for designing high-utility IS. CA has gained popularity in IS research, however little guidance is provided for its application in the domain. We aim at supporting the design of mass-market IS by establishing a reliable understanding of consumer’s preferences for multiple factors combing functional, non-functional and economic aspects. The results include a “Framework for Conjoint Analysis Studies in IS” and methodological guidance for applying CA. We apply our findings to the privacy-aware design of mass-market IS and evaluate their implications on user adoption. We contribute to both academia and practice. For academia, we contribute to a more nuanced conceptualization of the IT artifact (i.e., system) through a feature-oriented lens and a preference-based approach. We provide methodological guidelines that support researchers in studying user perceptions and preferences for design variations and extending that to adoption. Moreover, the empirical studies for privacy- aware design contribute to a better understanding of the domain specific applications of CA for IS design and evaluation with a nuanced assessment of user preferences for privacy-preserving features. For practice, we propose guidelines for integrating the voice of the customer for successful IS design. -- Les technologies cloud et mobiles ont fait Ă©merger une nouvelle catĂ©gorie de produits informatiques qui s’adressent Ă  des utilisateurs hĂ©tĂ©rogĂšnes par le biais de systĂšmes d'information (SI) distribuĂ©s. Les termes “SI de masse” sont employĂ©s pour dĂ©signer ces nouveaux systĂšmes. Une conception rĂ©ussie de ceux-ci passe par une phase essentielle de comprĂ©hension des besoins et des facteurs d'adoption des utilisateurs. Pour ce faire, la recherche en SI suggĂšre plusieurs thĂ©ories et modĂšles tels que le “IS Success Model” et le “Technology Acceptance Model”. Bien que ces approches contribuent Ă  la comprĂ©hension thĂ©orique de l'adoption et de l'utilisation des SI de masse, elles sont critiquĂ©es pour ne pas ĂȘtre en mesure de fournir des informations exploitables sur la conception de SI car elles considĂšrent l'artefact informatique comme une boĂźte noire. En d’autres termes, ces approches ne traitent pas suffisamment des caractĂ©ristiques internes du systĂšme. Nous soutenons que la recherche en SI doit adopter des techniques d'Ă©tude de marchĂ© afin de mieux intĂ©grer les exigences du client (“Voice of Customer”) dans un scĂ©nario de marchĂ© de masse. Plus prĂ©cisĂ©ment, l'analyse conjointe (AC), issue de la recherche sur les consommateurs, peut contribuer au dĂ©veloppement de systĂšme SI Ă  forte valeur d'usage. Si l’AC a gagnĂ© en popularitĂ© au sein de la recherche en SI, des recommandations quant Ă  son utilisation dans ce domaine restent rares. Nous entendons soutenir la conception de SI de masse en facilitant une identification fiable des prĂ©fĂ©rences des consommateurs sur de multiples facteurs combinant des aspects fonctionnels, non-fonctionnels et Ă©conomiques. Les rĂ©sultats comprennent un “Cadre de rĂ©fĂ©rence pour les Ă©tudes d'analyse conjointe en SI” et des recommandations mĂ©thodologiques pour l'application de l’AC. Nous avons utilisĂ© ces contributions pour concevoir un SI de masse particuliĂšrement sensible au respect de la vie privĂ©e des utilisateurs et nous avons Ă©valuĂ© l’impact de nos recherches sur l'adoption de ce systĂšme par ses utilisateurs. Ainsi, notre travail contribue tant Ă  la thĂ©orie qu’à la pratique des SI. Pour le monde universitaire, nous contribuons en proposant une conceptualisation plus nuancĂ©e de l'artefact informatique (c'est-Ă -dire du systĂšme) Ă  travers le prisme des fonctionnalitĂ©s et par une approche basĂ©e sur les prĂ©fĂ©rences utilisateurs. Par ailleurs, les chercheurs peuvent Ă©galement s'appuyer sur nos directives mĂ©thodologiques pour Ă©tudier les perceptions et les prĂ©fĂ©rences des utilisateurs pour diffĂ©rentes variations de conception et Ă©tendre cela Ă  l'adoption. De plus, nos Ă©tudes empiriques sur la conception d’un SI de masse sensible au respect de la vie privĂ©e des utilisateurs contribuent Ă  une meilleure comprĂ©hension de l’application des techniques CA dans ce domaine spĂ©cifique. Nos Ă©tudes incluent notamment une Ă©valuation nuancĂ©e des prĂ©fĂ©rences des utilisateurs sur des fonctionnalitĂ©s de protection de la vie privĂ©e. Pour les praticiens, nous proposons des lignes directrices qui permettent d’intĂ©grer les exigences des clients afin de concevoir un SI rĂ©ussi

    Efficient Processing of Geospatial mHealth Data Using a Scalable Crowdsensing Platform

    Get PDF
    Smart sensors and smartphones are becoming increasingly prevalent. Both can be used to gather environmental data (e.g., noise). Importantly, these devices can be connected to each other as well as to the Internet to collect large amounts of sensor data, which leads to many new opportunities. In particular, mobile crowdsensing techniques can be used to capture phenomena of common interest. Especially valuable insights can be gained if the collected data are additionally related to the time and place of the measurements. However, many technical solutions still use monolithic backends that are not capable of processing crowdsensing data in a flexible, efficient, and scalable manner. In this work, an architectural design was conceived with the goal to manage geospatial data in challenging crowdsensing healthcare scenarios. It will be shown how the proposed approach can be used to provide users with an interactive map of environmental noise, allowing tinnitus patients and other health-conscious people to avoid locations with harmful sound levels. Technically, the shown approach combines cloud-native applications with Big Data and stream processing concepts. In general, the presented architectural design shall serve as a foundation to implement practical and scalable crowdsensing platforms for various healthcare scenarios beyond the addressed use case

    Design of an e-textile sleeve for tracking knee rehabilitation for older adults

    Get PDF
    The occurrence of total knee replacements is increasing in the United States for persons over the age of 45 because they are inexpensive and a very effective method for treating degenerative joint diseases. Rehabilitation requires regular access to a wide variety of resources and personnel and, as the demand for post-operative, rehabilitative care increases, the ability to marginally relieve the healthcare system by offloading resources to the patient is necessary. Tools to enable tracking a patient’s rehabilitative progress at home are an essential method to help unload the healthcare system. The purpose of this project is to design and develop a wearable home rehabilitation device for knee replacement. This thesis utilizes design ethnography tools such as expert interviews, rehabilitation observation, a participatory design workshop, iterative development, and an idea feedback study. Leveraging advancements in technology and the field of eTextiles, this study investigates the product feasibility and acceptance of discreet on-body sensors to provide a product that enables patients to better perform rehabilitation on their own, but also to allow for a feedback loop for physicians and therapists to view patient progress.M.S

    Enhancing Geospatial Data: Collecting and Visualising User-Generated Content Through Custom Toolkits and Cloud Computing Workflows

    Get PDF
    Through this thesis we set the hypothesis that, via the creation of a set of custom toolkits, using cloud computing, online user-generated content, can be extracted from emerging large-scale data sets, allowing the collection, analysis and visualisation of geospatial data by social scientists. By the use of a custom-built suite of software, known as the ‘BigDataToolkit’, we examine the need and use of cloud computing and custom workflows to open up access to existing online data as well as setting up processes to enable the collection of new data. We examine the use of the toolkit to collect large amounts of data from various online sources, such as Social Media Application Programming Interfaces (APIs) and data stores, to visualise the data collected in real-time. Through the execution of these workflows, this thesis presents an implementation of a smart collector framework to automate the collection process to significantly increase the amount of data that can be obtained from the standard API endpoints. By the use of these interconnected methods and distributed collection workflows, the final system is able to collect and visualise a larger amount of data in real time than single system data collection processes used within traditional social media analysis. Aimed at allowing researchers without a core understanding of the intricacies of computer science, this thesis provides a methodology to open up new data sources to not only academics but also wider participants, allowing the collection of user-generated geographic and textual content, en masse. A series of case studies are provided, covering applications from the single researcher collecting data through to collection via the use of televised media. These are examined in terms of the tools created and the opportunities opened, allowing real-time analysis of data, collected via the use of the developed toolkit
    • 

    corecore