1,211 research outputs found

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    Efficient Detection of Counterfeit Products in Large-scale RFID Systems Using Batch Authentication Protocols

    Get PDF
    RFID technology facilitates processing of product information, making it a promising technology for anti-counterfeiting. However, in large-scale RFID applications, such as supply chain, retail industry, pharmaceutical industry, total tag estimation and tag authentication are two major research issues. Though there are per-tag authentication protocols and probabilistic approaches for total tag estimation in RFID systems, the RFID authentication protocols are mainly per-tag-based where the reader authenticates one tag at each time. For a batch of tags, current RFID systems have to identify them and then authenticate each tag sequentially, one at a time. This increases the protocol execution time due to the large volume of authentication data. In this paper, we propose to detect counterfeit tags in large-scale system using efficient batch authentication protocol. We propose FSA-based protocol, FTest, to meet the requirements of prompt and reliable batch authentication in large-scale RFID applications. FTest can determine the validity of a batch of tags with minimal execution time which is a major goal of large-scale RFID systems. FTest can reduce protocol execution time by ensuring that the percentage of potential counterfeit products is under the user-defined threshold. The experimental result demonstrates that FTest performs significantly better than the existing counterfeit detection approaches, for example, existing authentication techniques

    Towards Secure and Scalable Tag Search approaches for Current and Next Generation RFID Systems

    Get PDF
    The technology behind Radio Frequency Identification (RFID) has been around for a while, but dropping tag prices and standardization efforts are finally facilitating the expansion of RFID systems. The massive adoption of this technology is taking us closer to the well known ubiquitous computing scenarios. However, the widespread deployment of RFID technology also gives rise to significant user security issues. One possible solution to these challenges is the use of secure authentication protocols to protect RFID communications. A natural extension of RFID authentication is RFID tag searching, where a reader needs to search for a particular RFID tag out of a large collection of tags. As the number of tags of the system increases, the ability to search for the tags is invaluable when the reader requires data from a few tags rather than all the tags of the system. Authenticating each tag one at a time until the desired tag is found is a time consuming process. Surprisingly, RFID search has not been widely addressed in the literature despite the availability of search capabilities in typical RFID tags. In this thesis, we examine the challenges of extending security and scalability issues to RFID tag search and suggest several solutions. This thesis aims to design RFID tag search protocols that ensure security and scalability using lightweight cryptographic primitives. We identify the security and performance requirements for RFID systems. We also point out and explain the major attacks that are typically launched against an RFID system. This thesis makes four main contributions. First, we propose a serverless (without a central server) and untraceable search protocol that is secure against major attacks we identified earlier. The unique feature of this protocol is that it provides security protection and searching capacity same as an RFID system with a central server. In addition, this approach is no more vulnerable to a single point-of-failure. Second, we propose a scalable tag search protocol that provides most of the identified security and performance features. The highly scalable feature of this protocol allows it to be deployed in large scale RFID systems. Third, we propose a hexagonal cell based distributed architecture for efficient RFID tag searching in an emergency evacuation system. Finally, we introduce tag monitoring as a new dimension of tag searching and propose a Slotted Aloha based scalable tag monitoring protocol for next generation WISP (Wireless Identification and Sensing Platform) tags

    Security and Privacy in RFID Applications

    Get PDF
    Concerns about privacy and security may limit the deployment of RFID technology and its benefits, therefore it is important they are identified and adequately addressed. System developers and other market actors are aware of the threats and are developing a number of counter measures. RFID systems can never be absolutely secure but effort needs to be made to ensure a proper balance between the risks and the costs of counter measures. The approach taken to privacy and security should depend on the application area and the context of a specific application. In this chapter, we selected and discussed four application areas, but there are many others where privacy and security issues are relevant.JRC.J.4-Information Societ

    Practical Schemes For Privacy & Security Enhanced RFID

    Full text link
    Proper privacy protection in RFID systems is important. However, many of the schemes known are impractical, either because they use hash functions instead of the more hardware efficient symmetric encryption schemes as a efficient cryptographic primitive, or because they incur a rather costly key search time penalty at the reader. Moreover, they do not allow for dynamic, fine-grained access control to the tag that cater for more complex usage scenarios. In this paper we investigate such scenarios, and propose a model and corresponding privacy friendly protocols for efficient and fine-grained management of access permissions to tags. In particular we propose an efficient mutual authentication protocol between a tag and a reader that achieves a reasonable level of privacy, using only symmetric key cryptography on the tag, while not requiring a costly key-search algorithm at the reader side. Moreover, our protocol is able to recover from stolen readers.Comment: 18 page

    A New Algorithm for Solving Ring-LPN with a Reducible Polynomial

    Full text link
    The LPN (Learning Parity with Noise) problem has recently proved to be of great importance in cryptology. A special and very useful case is the RING-LPN problem, which typically provides improved efficiency in the constructed cryptographic primitive. We present a new algorithm for solving the RING-LPN problem in the case when the polynomial used is reducible. It greatly outperforms previous algorithms for solving this problem. Using the algorithm, we can break the Lapin authentication protocol for the proposed instance using a reducible polynomial, in about 2^70 bit operations
    • …
    corecore