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Efficient Detection of Counterfeit Products in 
Large-Scale RFID Systems Using Batch 
Authentication Protocols 
 

Farzana Rahman 
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Sheikh Iqbal Ahamed  
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Abstract 
RFID technology facilitates processing of product information, making it a promising technology for anti-
counterfeiting. However, in large-scale RFID applications, such as supply chain, retail industry, pharmaceutical 
industry, total tag estimation and tag authentication are two major research issues. Though there are per-tag 
authentication protocols and probabilistic approaches for total tag estimation in RFID systems, the RFID 
authentication protocols are mainly per-tag-based where the reader authenticates one tag at each time. For a 
batch of tags, current RFID systems have to identify them and then authenticate each tag sequentially, one at a 
time. This increases the protocol execution time due to the large volume of authentication data. In this paper, 

https://doi.org/10.1007/s00779-012-0629-8
http://epublications.marquette.edu/


we propose to detect counterfeit tags in large-scale system using efficient batch authentication protocol. We 
propose FSA-based protocol, FTest, to meet the requirements of prompt and reliable batch authentication in 
large-scale RFID applications. FTest can determine the validity of a batch of tags with minimal execution time 
which is a major goal of large-scale RFID systems. FTest can reduce protocol execution time by ensuring that the 
percentage of potential counterfeit products is under the user-defined threshold. The experimental result 
demonstrates that FTest performs significantly better than the existing counterfeit detection approaches, for 
example, existing authentication techniques. 

Introduction 
The International Chamber of Commerce estimates that seven percent of the world trade is in counterfeit 
goods, with the counterfeit market being worth 500 billion USD in 2004 [1]. Counterfeiting has an impact on the 
rights holder, the country where counterfeiting takes place and it also causes social costs. Counterfeit, whether 
of clothes, medicines or CDs, cost hundreds of billions of US dollars globally every year. The effects of these 
crimes range from loss of company revenues to threats to public health and safety. Many companies already use 
anti-counterfeiting measures like holograms to confine counterfeiting and product piracy. A drawback of 
existing anti-counterfeiting measures is the low achievable degree of automation when checking the originality 
of a product. Radio frequency identification, or RFID, helps to address this problem, and provides the possibility 
to implement secure protection mechanisms [2]. 

A very good example of a large-scale system is pharmaceutical industry that needs secure and efficient anti-
counterfeiting technique on everyday basis. It is one such market that is constantly fighting battles against anti-
counterfeiting (which makes up to 7 % of all pharmaceutical products in the international supply chain). Since 
pharmaceutical products are consumed by humans, any mistake during manufacturing may cause serious harm 
to people’s health and even lead to death. The importance of drug authenticity is obvious. In the United States, 
food and drug administration (FDA) has been considering the use of RFID tags to prevent counterfeit 
pharmaceutical products [2]. Radio frequency identification, or RFID, helps to address this problem, and 
provides the possibility to implement extensible, secure protection mechanisms. In fact, many RFID enabled 
anti-counterfeiting solutions have been already introduced in logistics, retailing, passports, etc. Because RFID 
has the capability of capturing and relaying data, it is what the pharmaceutical industry is looking toward to 
improve quality, reduce costs, and improve patient safety. 

The RFID tags are typically low-cost and pervasive devices, being attached to products or objects to enable the 
identification of those objects. A tag has small microchip and an antenna on board. The reader can collect the 
ids of tags via RF signals, without the need of keeping line of sight. As an effective automatic processing 
measure, RFID offers several attractive features over the barcode, such as non-optical proximity, interactive 
communication, rewritable ability, etc. 

A common technique of RFID enabled anti-counterfeiting is that the manufacture stores a serial number K (or 
termed as secret key) for each tag. The secret key is also stored in the central authentication server. During 
authentication, an RFID reader challenges a tag for its validity and the tag replies with its encrypted or hashed 
serial key. This encrypted message is passed to the server for validity checking. If the serial number is valid, the 
product to which the tag is attached is declared as genuine. During this process, however, an adversary can 
eavesdrop in between the channel and the learned information can be used to create a counterfeit tag. To 
address this issue, many efficient and private authentication protocols have been proposed in literature. Weis et 
al. [3] propose an authentication scheme based on Hash lock. The search complexity of Hash lock is O(N), 
where N is the total number of tags in the system. To improve the search efficiency, tree-based approaches [4–
6] convert the verification process to a depth-first-search in a key tree to reduce the search complexity 
to O(logN). However, the reader still needs much longer time to authenticate products in large supply chain. 



To solve the problem of RFID-based counterfeit detection, in this paper, we propose to authenticate tags in 
batches. However, if we apply straightforward private authentication technique, the protocol execution time 
will still be very high. If we consider this problem from a different perspective, we see that it is not always 
necessary to ensure the genuineness of every single product in a batch. In fact, even in the genuine products, 
there can be some products that are shipped as defectives from the manufacture. So it is acceptable if we 
guarantee the percentage of counterfeit products is sufficiently small. At this point, we summarize our 
contributions in this paper 

• We propose to verify the validity of a batch of tags using statistical inference-based sampling in a 
protocol named GTest. However, it is not efficient since it needs high execution time and large volume 
of authentication data. 

• To solve the problems of efficient batch authentication, we propose FSA-based authentication protocol 
(FTest) that uses a variation of framed slotted Aloha [7] technique. 

• To compare the performance of GTest and FTest protocols with a per-tag authentication protocol, we 
measure their execution time in a simulated RFID environment. 

 

The contributions of this paper are partially presented in [31]. The rest of this paper is organized as follows: 
Sect. 2 describes our major motivation. We introduce preliminary knowledge about different authentication and 
anti-collision protocols in Sect. 3. Our system model and assumptions are mentioned in Sect. 4. In Sects. 5 and 6, 
we describe the sampling-based GTest and FSA-based FTest batch authentication protocols, respectively. We 
discuss the security analysis of FTest protocol in Sect. 7. We examine the performance of FTest and GTest 
protocol in Sect. 8. This section is followed by the relevant related work in Sect. 9. Finally, we conclude the paper 
with some future works in Sect. 10. 

Motivation 
When detecting product counterfeiting in large systems, existing approaches can be impractical since tags needs 
to be authenticated one at a time. It may seem at first that the problem of counterfeit tag detection can be 
solved by using any RFID tag identification or authentication protocol, simply by allowing the reader to interact 
with the tags of the batch. However, this deterministic process will be very time consuming since reader needs 
to authenticate each and every tag of the batch to determine its validity. The situation will be even worse if 
there are large numbers of tags in the system. Such low authentication efficiency is unacceptable in practice 
especially in large-scale supply chain. Therefore, we need batch authentication not only to increase efficiency 
but also to prevent counterfeiting. In this paper, we propose a batch authentication protocol that is scalable, 
efficient as well as able to prevent product counterfeiting within a user-defined tolerance level. Due to this 
protocol, mass authentication along the supply chain can be possible, and the cost of maintaining integrity of 
supply chains can be significantly reduced. Eventually it may increase health security, social awareness, and 
global trading concerns. 

Background 
In this section, we discuss how framed slotted Aloha (FSA) and tree-based authentication protocol work. 

Tree-based authentication protocol 
In tree-based hash protocol [8–10, 25], the tags are organized in a secret key tree where each tag is assigned to 
a leaf of the tree. Secret keys are associated with each branch of the tree. Each tag (each leaf) receives all the 
secret keys along the path from the root to itself. If the tree has L levels, each tag stores L keys. The key tree is a 



balanced tree, therefore, if the branching factor is α, the log α N will be equal to L. Each tag has only one key that 
is not shared with any other tag of the system. Figure 1 shows a balanced key tree with N = 8 and α = 2. 

 

Fig. 1 A secret key tree for the tree-based hash protocol with N = 8 and α = 2 

 

According to this protocol, the reader queries a tag with a nonce n r . Upon the reception of the nonce from the 
reader, the tag replies to the reader with 

ℎ(𝑘𝑘0,𝑛𝑛𝑟𝑟),ℎ(𝑘𝑘𝑙𝑙1 ,𝑛𝑛𝑟𝑟),ℎ(𝑘𝑘𝑙𝑙1,𝑙𝑙2 ,𝑛𝑛𝑟𝑟), … ,ℎ(𝑘𝑘𝑙𝑙1,𝑙𝑙2,…,𝑙𝑙𝐿𝐿 ,𝑛𝑛𝑟𝑟), 

where each l i ∈ {1, …, α}, 1 ≤ i ≤ L and h(·) is a hash function. After receiving the response, the reader first finds a 
match with the first hash value of the response by hashing with all the keys of level 1. Whenever the reader 
obtains a match, the reader starts to search for the second hash value of the response by hashing with all the 
keys at the next level of the sub-tree rooted at the node where the reader has found the match. The reader 
repeats this step until it reaches a leaf. Thus, the reader’s complexity is reduced to O(log α N). In the worst case, 
the reader has to search with all the keys at each level of the tree and the complexity becomes α(log α N). 

The major drawback of this approach is each tag must transfer 4 hash values to the reader at each 
authentication. As we discussed before, such a large volume of data is a major bottleneck preventing us from 
accelerating the batch authentication. 

Framed slotted Aloha 
Aloha-based protocols are important because they reduce the probability of occurrence of tag collision. In case 
of pure slotted Aloha, tags select their response time arbitrarily. In slotted Aloha [7], tags select the timeslot 
randomly and reply at the beginning of the timeslot to avoid overlapping of transmissions. Framed slotted Aloha 
(FSA) algorithm can be used to identify a batch of tags. The protocol uses a fixed frame size and does not change 
the size during the process of tag identification. In FSA, the reader offers information to the tags about the 
frame size (f) and the random number (r) which is used for a tag to select a slot number in the frame. Each uses 
a hash function h(x), which is used to choose the slot number. After receiving f, each tag selects h(id ⊕ r) mod f, 
as its slot number. The reader then sequentially scans every slot in the frame. In each slot, if a tag’s slot number 
equals zero, it will send its id to the server immediately. Otherwise, the tag reduces its slot number by one. Since 
a tag cannot sense the signals replied from other tags, there are three types of slots from the reader’s 
perspective—slots with no reply, single reply, or multiple replies. We define these slots as empty slot, single-
reply slot, or collision slot, respectively. Slots can also be characterized as multi-bit response slots and single-bit 
response slots. Since the frame size of FSA is fixed, its implementation is simple but it exhibits low efficiency of 
tag identification. For example, if there are too many tags, no tag may be identified since the slots experience 
high collision. On the contrary, many slots wasted if the number of tags is small. Our FTest protocol is partially 
dependent on the concept of FSA. 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/1


System model and problem formulation 
Problem definition 
In our system, we assume that each object is attached with an RFID tag that has a unique id (e.g., secret key). We 
define the set of tags as population. These tags are divided into batches or groups of equal size. Suppose, N is 
the total number of tags in the system and 𝜏𝜏 is the number of groups. So, the group size is 𝑛𝑛 = 𝑁𝑁

𝜏𝜏
. The number of 

tags in a batch, n, is known in advance. We define a batch of tags as valid if no counterfeit tag is detected, 
otherwise this batch is considered as invalid. In our system, each batch is associated with a unique key that we 
refer to as a group key. In addition to each tag’s own secret key id i , every tag shares this group key with other 
members of the given group. Figure 2 shows the group organization of the tags where N = 8 and τ = 4. The k i ’s 
are the group keys, where 1 ≤ i ≤ τ. 

 

Fig. 2 Group organization of the tags for the batch authentication protocol, with N = 8 and τ = 4 

Architecture of the system 
There are mainly four components in the system: 

Issuer: The issuer initializes each tag during the deployment and also authorizes the reader access to the tags. 
We can think of the issuer as a certificate authority (CA). 

RFID Tag: Each RFID tag is denoted as T. The issuer assigns a unique key id i and a group key k to the ith tag T i of 
the system. The use of group key will be explained later. 

Reader: A reader (R) connects to the authentication server through a high-speed network. In this paper, we 
assume the communication channel between the reader and the backend server is secured. The reader receives 
all the secret information by the issuer during the deployment. 

Server: The authentication server maintains all the group keys and N secret keys corresponding to N tags in the 
database. The server also knows which tag belongs to which group by maintaining a database like Table 1. The 
server has powerful computing capability. 

Table 1 Database structure of the authentication server 

Group key Tag key Tag name 
k 1 id 1 T 1 
  id 2 T 2 
  … … 
  id i T i 
… … … 
k n id j+1 T j+1 
  … … 
  id N T N 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/2


 

Preliminaries and assumptions 
We assume that the reader and all the tags in the system have the knowledge of XOR operation and h(·), an 
irreversible one-way hash function to protect the integrity of the message. The outputs of h(·) cannot be linked 
back to its input so that an adversary cannot link back the tag ids. There are many efficient hash functions in the 
literature. The hash h(·) does not need to be a cryptographic hash function. In order to keep the tag’s hardware 
simple a cyclic redundancy check (CRC) function which is already found in existing RFID tags can be used as h(·). 
Communication between the reader and the tags is time-slotted. The synchronization between the clocks of the 
tags and reader is done by “start” signal of the reader. The reader uses a ‘slot start’ command to start a slot. Our 
protocols are request-response-based protocol, in which the reader issues a request in a time slot and then zero, 
one or more tags respond in the subsequent time slots. We assume that RFID reader is able to distinguish the 
three types of slots mentioned earlier. All the notations related to our system is shown in Table 2. 

Table 2 Notations 

Symbol Meaning 

T* Set of RFID tags 

R RFID Reader 

N Number of tags in the population 

n Number of tags in a batch 

τ Number of batch in the system 

h(·) One-way hash function 

Δ Counterfeit threshold 

n s Sampling size 

 

Protocol goal 
The goal of a server is to accurately and efficiently determine the validity of a batch of tags. It may seem at first 
that the problem of counterfeit tag detection can be solved by using any RFID tag identification or 
authentication protocol, simply by allowing the reader to interact with the tags of the batch. However, this 
deterministic process will be very time consuming since reader needs to authenticate each and every tag of the 
batch to determine its validity. The situation will be even worse if there are large numbers of tags in the system. 
In this paper, we design a probabilistic protocol to solve the batch authentication problem by using a variation of 
FSA-based tag detection algorithm. We call our protocol probabilistic since FSA itself is a probabilistic protocol. It 
will provide a provable probabilistic guarantee for valid batches of tags ensuring the percentage of potential 
counterfeit products is less than counterfeit threshold (Δ). Δ is a system parameter defined by the user in 
advance. We guarantee a batch is valid if there are no more than n × Δ counterfeit tags in the batch. Note that it 
does not mean that the batch will be declared as valid if the number of counterfeit tags is lower than n × Δ. Even 
if there is only one counterfeit tag in the batch, it will still be declared as invalid. 



Group test (GTest) batch authentication 
In this section, we present a batch authentication process called group test (GTest) that uses statistical inference 
to determine the validity of a batch of tags. The concept of GTest is to reduce the cost of detecting counterfeits 
in large populations which is believed to contain a small proportion of defectives by drawing sample from the 
large population randomly. If GTest protocol is applied to products of batches in a large supply chain, then there 
may be no interest in knowing which products are defective. The purpose may instead be to accept or reject the 
batch or to estimate the number of counterfeit products it contains. Therefore, it is useful to know the 
probability distribution of the number of counterfeit samples. 

GTest protocol design 
GTest protocol operates in two phases—(1) Group identification and (2) authentication. In the first phase, the 
reader queries the tags with a nonce n r . The tags, then, replies the following encrypted message with 
probability 0.5 

ℎ(𝑘𝑘𝑖𝑖‖𝑛𝑛𝑟𝑟) 

here, k i is the group key in which the tag belongs. Now the reader tries all the group keys to decrypt this 
message. If the reader finds the right group key that correctly decrypts the message, then the reader can learn 
the identification of all the tags corresponding to that group by online querying the database of the server. This 
process of tag identification is much efficient than per-tag-based identification since the reader do not need to 
query each individual tag of the batch. The reader will, then, start the authentication process by randomly 
selecting m tags as samples and collecting the authentication data from them. Next the reader forwards these 
data to the server. GTest declares this batch of tags as invalid if the server can detect one invalid or counterfeit 
tag. 

Protocol analysis 
According to the statistical inference based on sampling, we can estimate the proportion of individual samples 
that are defective when they have been taken at random from a large population. If n individual samples are 
combined τ at a time to give m pooled samples, then the number of counterfeit pooled samples follows 
approximately the binomial distribution B(m, δ t), where 

𝛿𝛿𝑡𝑡 = 1 − (1 − 𝛿𝛿)𝑡𝑡 = probability that a pooled sample is positive 

here, δ is the probability that an individual sample chosen at random from the entire population is defective. 
Suppose, that our complete population of tags (i.e., N tags) contains n c counterfeit tags. Therefore, 

𝛿𝛿 = 𝑛𝑛𝑐𝑐/𝑁𝑁 

A pooled sample is assumed to be invalid if and only if it includes at least one individual counterfeit sample. 
Then, the probability that exactly η of the pooled samples may be invalid is given by 

𝑓𝑓(𝜂𝜂|𝑛𝑛𝑐𝑐) = ( 𝑛𝑛𝑚𝑚)�(−1)𝑖𝑖( 𝑖𝑖
𝜂𝜂)( 𝑛𝑛−(𝜂𝜂−𝑖𝑖)𝑡𝑡

𝑁𝑁−𝜂𝜂𝑐𝑐 )/( 𝑛𝑛−(𝜂𝜂−𝑖𝑖)𝑡𝑡
𝑁𝑁 )

𝜂𝜂

𝑖𝑖=0

 

(1) 

where, max(0,𝑚𝑚 − (𝑁𝑁−𝑛𝑛𝑐𝑐)
𝑡𝑡

) ≤ 𝜂𝜂 ≤ min(𝑚𝑚,𝑛𝑛𝑐𝑐) 

In Eq. 1, when η is zero, we derive— 



𝑓𝑓(𝜂𝜂|𝜂𝜂𝑐𝑐) = ( 𝑛𝑛
𝑁𝑁−𝑛𝑛𝑐𝑐)/( 𝑛𝑛𝑁𝑁) 

(2) 

Equation 2 refers to the hypergeometric probability since the absence of counterfeit among the n individual 
samples is equivalent to the absence of positive pooled samples. 

Now, we know that the number of counterfeit tags follows the hyper-geometric distribution; we define random 
variable X to refer to the number of counterfeit products in a batch. Suppose, in a batch with n tags, we 
sample n s at a time. Then, the pdf of X will be: 

𝑓𝑓(𝑋𝑋|𝑛𝑛Δ) =
�𝑛𝑛Δ
𝑋𝑋 � �

𝑛𝑛(1 − Δ)
𝑛𝑛𝑠𝑠 − 𝑋𝑋 �

�
𝑛𝑛
𝑛𝑛𝑠𝑠�

 

here, E[X] = n s × Δ However, using GTest protocol, if we want to identify the validity of a batch, reader needs to 
read a high amount of data. For example, with n = 100,000, n s  = 1,000 and Δ = 0 % (meaning that every 
counterfeit tags need to be detected), reader needs to read 1,000 × 20 × log1,00000

2 = 3.1 MB of data which will 
take high response time. So, to decrease the protocol response time, we propose a more efficient protocol in 
the next section. 

FSA-based (FTest) batch authentication 
In this section, we propose FTest protocol which is dependent on a variation of frame slotted Aloha technique. 
We consider an RFID reader R, and a population of N RFID tags denoted as T*. Table 3 summarizes the notations 
for FTest protocol. 

Table 3 Notations for FTest protocol 

Symbol Meaning 
SP Slot position within frame 
RV Response vector generated by the reader with the replies of tags 
RV s Response vector generated by the server 
rem Set of tags that are removed from the authentication initialization phase to reduce 

collision slot 
 

FTest protocol design 
FTest has three phases: (1) Group identification, (2) Authentication initialization, and (3) Counterfeit detection. 
The group identification phase is similar to the one mentioned in GTest batch authentication protocol. The other 
two phases are discussed next. The entire process is illustrated in Fig. 3. 

 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/3


Fig. 3 Authentication process of FTest protocol 

Authentication initialization 
After identifying a group of tags using the group identification mechanism mentioned in GTest protocol, the 
authentication phase is initialized. Reader simply starts the authentication by sending “start authentication” 
command to the server and by receiving a frame size f and random number r. The reader broadcasts 
the f and r received from the server in the first step. The frame consists of f short-response time slots right after 
the request. Each tag uses the random number r and its key (id) to hash to a slot position, SP, between [1, f] 
where 

𝑆𝑆𝑆𝑆 = ℎ(𝑖𝑖𝑖𝑖, 𝑟𝑟)𝑚𝑚𝑚𝑚𝑖𝑖𝑓𝑓 

The tag transmits a short response at that slot (ex. 1 bit). Therefore, the time duration of all slots in our 
approaches is very short. After the frame ends, the reader abstracts the responses in the frame as a response 
vector (RV). RV is a vector in which each element is related to a slot in the frame. There are three types of 
elements in an RV—0, 1, and collision, representing empty slot, single-reply slot, and collided slot, respectively. 

We modify the slot picking behavior so that instead of having a tag, pick a slot and return its id, we let the tag 
reply with 1 bit of information signifying that the tag has chosen that slot. In other words, instead of the reader 
receiving 

{… |𝑖𝑖𝑖𝑖1|0| … |𝑐𝑐𝑚𝑚𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚𝑛𝑛|0|1| … }, 
where 0 indicates no tag has picked that slot to reply, and collision denotes multiple tags trying to reply in the 
same slot, the reader will receive {… |1|0| … |𝑟𝑟𝑟𝑟𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑖𝑖𝑟𝑟𝑐𝑐|0|1| … }. 

This is more efficient since the tag id is much longer than the bits transmitted. However, this approach is still 
inefficient because the information carried in the collision slot is totally unused. To utilize the collision slot, we 
turn it into a single-reply slot by removing one of the two tags from this phase. Suppose two tags T i and T j map 
to the same slot position. We remove the tag (T i ) from this phase so that it does not transmit any short 
response. Hence, another tag (T j ) corresponding to this slot has a singleton slot which allows it to be 
authenticated. This situation can be made more efficient by turning each p–collision (p tags mapped into one 
slot) slot into a singleton slot by randomly removing p–1 tags. 

All the tags that are removed using this process are instructed to keep silent in this phase and they are 
authenticated in the next phase. We refer to this set of tags as rem. In counterfeit detection phase, the reader 
authenticates those tags after another to verify their validity. The authentication protocol is shown in Fig. 4, 5, 
and 6. Each tag in the set executes Algorithm 1 (see Fig. 4) independently. The reader executes Algorithm 2 (see 
Figs. 5) to generate the RV and return it to the server. 

 
Fig. 4 Algorithm executed by tags in FTest protocol 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/4


 
Fig. 5 Algorithm executed by reader in FTest protocol 

 
Fig. 6 Counterfeit detection process in FTest Protocol 

Counterfeit detection 
In this phase, first the server starts the detection process by challenging the tags belonging to rem with a 
nonce n r . The tags, then, replies the following encrypted message: ℎ(𝑖𝑖𝑖𝑖 ∥ 𝑛𝑛_𝑟𝑟). 

The server considers those tags as valid for which it can find legitimate ids able to generate the corresponding 
hash values. Tags that cannot authenticate themselves are considered as counterfeit tags. After this per-tag 
authentication process is over, server starts to verify the validity of RV. Since the server knows all the keys of the 
tags corresponding to that batch, it can use those keys for reconstructing the RV. The server knows the locations 
of the empty, singleton, and collision slots. If such reconstructed response vector exists, which we name as RV s , 
the server deterministically accepts the batch of tags as valid. Otherwise, the batch is invalid. Because a 
counterfeit tag has no valid key, its corresponding reply is not expected. So if a slot is supposed to be empty but 
the server finds it singleton, then the server asserts the existence of counterfeit tag. If a slot is supposed to be 
singleton, but the server finds a collision, then at most one tag of that slot is valid and it is also an indication of 
the existence of counterfeit tag. Otherwise, the server goes to the next slot position. After the checking ends, if 
there is no counterfeit tag detected, the batch will be accepted as valid. 

Since our goal is to declare a batch invalid if the percentage of counterfeit tags exceeds counterfeit threshold Δ, 
we incorporate that parameter in our counterfeit detection process. This detection process will not continue if 
the number of total counterfeit tags in the batch to the number of total tags in the batch is greater than Δ. This 
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will significantly reduce the number of rounds in the counterfeit detection protocol since the entire RV does not 
need to be checked. It will also reduce the response time of the entire protocol. For example, suppose n = 1,000, 
number of counterfeit tag detected during per-tag authentication is 35. Number of counterfeit tags detected 
during the first 70 rounds of counterfeit detection protocol is 15. Then, 

𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑐𝑐_𝑐𝑐𝑚𝑚𝑐𝑐𝑛𝑛𝑟𝑟𝑐𝑐𝑟𝑟𝑓𝑓𝑐𝑐𝑖𝑖𝑟𝑟_𝑟𝑟𝑟𝑟𝑡𝑡/𝑛𝑛 =
50

100 = 0.05 

If Δ = 5 %, then the counterfeit detection protocol will stop after 70th round. The complete counterfeit detection 
algorithm is shown in Fig. 5. With n = 100,000, n s  = 1,000 and Δ = 0 %, FTest reads 0.03 MB of data per batch. 

Protocol analysis 
• In FTest protocol, we assume that all tags in a batch, both legitimate and counterfeit, will reply at least 

once in the frame. However, the counterfeit tags may reply more than once to introduce more collision 
and we name this type of attack as “collision attack”. Additionally, the counterfeit tags may not reply at 
all to hide their identity and we name this attack as “concealing attack”. It is very hard to defend against 
concealing attack and it is out of the scope of this paper. We can identify the collision attack by 
comparing the RV (response vector returned by the reader) and RV s (response vector generated by the 
server for genuine tags only). There can be following types of distinguishable situations that indicate the 
existence of collision attack: 

• When RV s [i] = 0 and RV[i] = 1, there should be no genuine tags replying in this slot. But the result shows 
one tag has chosen this slot. So, this tag must be a counterfeit. 

• When RV s [i] = 0 and RV[i], there should be no genuine tags replying in this slot. But the result shows 
more than one tags of this batch has chosen this slot. This also ensures that there are counterfeit tags in 
the system. 

 

When RV s [i] = 1 and RV[i] = collision, there should be only one genuine tag. But the result shows more than one 
tags has chosen this slot. It implies that at most one tag replied in this slot is genuine and the rest are 
counterfeit. 

Security analysis of FTest 
Attack model 
The goal of an adversary in our system is to install counterfeit tags in the system. Evidently, this fake tag can let 

a fake object to be identified as an authentic one. In this paper, an adversary is denoted as 𝐴𝐴
^

. We assume 𝐴𝐴
^

 is an 
active adversary who has full control over the entire communications channel between the tags and the reader. 
She can eavesdrop in between the channel and can use the learned information to create counterfeit tags and 

install in the system. Each counterfeit tag is denoted as 𝑇𝑇
^

. These counterfeit tags are just like genuine tags 
except their secret key, and group key is issued by the adversary. The attacker does not have any control over 
any other component of the system. However, the attacker may try to violate privacy and track each and 
individual genuine tags of the system. Our assumptions for this paper also include that genuine tags and reader 
cannot be compromised by the attacker. In our system, the following oracle-like construction exists: 

𝓞𝓞𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬(𝑹𝑹𝑹𝑹,𝑻𝑻𝑻𝑻, 𝒕𝒕𝒕𝒕): The adversary eavesdrops within a channel to listen to the communication protocol session 
at time t between reader R and one of its communicating tag T. 



𝓞𝓞𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑹𝑹𝑹𝑹(𝑹𝑹𝑹𝑹,𝑻𝑻𝑻𝑻,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕): The adversary impersonates a reader R in a protocol session at time t and sends a 
message M to the tag T. 

𝓞𝓞𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑾𝑾𝑻𝑻𝑾𝑾𝑻𝑻(𝑹𝑹𝑹𝑹,𝑻𝑻𝑻𝑻,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕): The counterfeit tag T impersonates a genuine tag in a protocol session at time t and 
sends a message M to the reader R. 

𝓞𝓞𝑸𝑸𝑸𝑸𝑬𝑬𝑬𝑬𝑸𝑸𝑸𝑸𝑸𝑸𝑬𝑬𝑬𝑬𝑸𝑸(𝑻𝑻𝑻𝑻, 𝒕𝒕𝒕𝒕): The adversary queries a tag T to learn information during a communication session at time t. 

𝓞𝓞𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑬𝑬(𝑼𝑼𝑼𝑼,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕): The adversary receives a message M from an entity U (e.g.,, either T or R) during the 
execution of protocol session at time t. 

Security analysis 
In this section, we analyze our proposed authentication protocol against different types of attacks. For every 
attack, we first describe how the attack is performed by an adversary. Then, how our protocol protects against 
the attack is explained. R and T i are referred to as a legitimate reader and legitimate tag. Each attack and 
defend, as a whole, have three phases: 

Phase 1 
Learning phase: This phase represents pre-attack preparations. Adversary, A^A^ uses non-destructive oracles 
such as 𝓞𝓞𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸(𝑅𝑅𝑅𝑅,𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇, 𝑟𝑟𝑟𝑟),𝓞𝓞𝑄𝑄𝑄𝑄𝐸𝐸𝑟𝑟𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑟𝑟𝑄𝑄(𝑊𝑊𝑇𝑇𝑊𝑊𝑇𝑇, 𝑟𝑟𝑟𝑟),𝓞𝓞𝐼𝐼𝑚𝑚𝐸𝐸𝐸𝐸𝑟𝑟𝑠𝑠𝐸𝐸𝑛𝑛𝐸𝐸𝑡𝑡𝐸𝐸𝐼𝐼𝑚𝑚𝐸𝐸𝐸𝐸𝑟𝑟𝑠𝑠𝐸𝐸𝑛𝑛𝐸𝐸𝑡𝑡𝐸𝐸𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇,𝑀𝑀𝑀𝑀, 𝑟𝑟𝑟𝑟), and 𝓞𝓞𝑅𝑅𝐸𝐸𝑐𝑐𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝑐𝑐𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸(𝑈𝑈𝑈𝑈,𝑀𝑀𝑀𝑀, 𝑟𝑟𝑟𝑟) on a set of target 
tags and reader to learn information related to them. 

Phase 2 
Attacking phase: 𝐴𝐴

^
 starts to attack by creating counterfeit tag (𝑇𝑇

^
) and installing them in the system. 

Phase 3 
Defend Phase: Our protocol is designed in such a way so that it can defend against majority of the attacks 

performed by the fake tag 𝑇𝑇
^

. 

Since the defend phase is different for each attack, we discuss this phase for following attacks: 

1. Collision Attack 

Learning and attack phase: 

Under this attack, 𝐴𝐴
^

 queries a set of valid tags with different (f, r) using 𝓞𝓞𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑹𝑹𝑹𝑹(𝑹𝑹𝑹𝑹,𝑻𝑻𝑻𝑻,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕) oracle to 
collect replies from the genuine tags. Using this learned information, she creates fake tags and installs them in 
the system. From then on, the fake tags will try to attack the system with their responses. 

Defend phase: 

In collision attack, a counterfeit tag emits replies in multiple slots for disturbing the distribution of slots in 
the RV. In fact, our approach is very immune to such attack, since generating more meaningless replies is 
equivalent to increasing the ratio of counterfeit tags, which helps to increase the probability of detecting 
counterfeit tags. 

2. Privacy violation attack 

Learning phase: 



Under this attack, 𝐴𝐴
^

 repeatedly queries T i with different (f, r) using 𝓞𝓞𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑰𝑰𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑰𝑰𝑬𝑬𝒕𝒕𝑬𝑬𝑹𝑹𝑹𝑹(𝑹𝑹𝑹𝑹,𝑻𝑻𝑻𝑻,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕) oracle to collect 
replies from the existing tags. 

Attacking phase: 

𝐴𝐴
^

 execute 𝓞𝓞𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑹𝑹𝑬𝑬𝑬𝑬(𝑼𝑼𝑼𝑼,𝑴𝑴𝑴𝑴, 𝒕𝒕𝒕𝒕) oracle to learn replies from the tags and create a response vector. The goal of the 
attacker is to learn the ids of different tags. 

Defend Phase: 

Our protocol can preserve the privacy of individual RFID tag since none of the tags reply their id. Therefore, the 
adversary cannot infer the ids from the replies of the tags. 

3. Tracking attack 

Learning phase: 

Here, 𝐴𝐴
^

 tries to track T i over time. 𝐴𝐴
^

 succeeds if it can distinguish WT i from other tags over time. 

Attacking phase: 

Under this attack, 𝐴𝐴
^

 repeatedly queries T i with different (f, r) using oracle 𝓞𝓞𝑄𝑄𝑄𝑄𝐸𝐸𝑟𝑟𝑄𝑄𝑄𝑄𝑄𝑄𝐸𝐸𝑟𝑟𝑄𝑄(𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟) to learn about the slot 
picking behavior of the tags. Then, the adversary executes oracle 𝓞𝓞𝑅𝑅𝐸𝐸𝑐𝑐𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝑐𝑐𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸(𝑈𝑈𝑈𝑈,𝑀𝑀𝑀𝑀, 𝑟𝑟𝑟𝑟) to receive replies from the 
tags. The goal of the attacker is to get a consistent reply that may become a signature of T i . 

Defend Phase: 

FTest protocol is resistant against tracking. Let an adversary 𝐴𝐴
^

 eavesdrops on the transaction between a 

reader R and the genuine tags. So 𝐴𝐴
^

 knows the queries and replies but based on this information the adversary 
cannot compute reply for any random query. The adversary can certainly be sure that a communication has 
taken place. However, it cannot figure out which tag replied in which slot since it do not have ids of the tags. 
Moreover, the slot picking behavior of the tags changes with the change of f and r. Therefore, the outputs of all 

the tags seems to be pure random to the adversary 𝐴𝐴
^

. 

4. Eavesdropping attack 

Learning phase: 

𝐴𝐴
^

 executes the oracle 𝓞𝓞𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝐸𝐸𝑟𝑟𝐸𝐸𝐸𝐸(𝑅𝑅𝑅𝑅,𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖, 𝑟𝑟𝑟𝑟) and later uses this information to launch different attacks (ex. replay 
attack). 

Attacking phase: 

𝐴𝐴
^

 learns every information exchanged between R and T i . The goal of 𝐴𝐴
^

 is to use the data to impersonate a fake 
tag. 

Defend phase: 

Our protocol is powerful against this attack. In our protocol 𝐴𝐴
^

 will not be able to find out the expected reply of 

the tags. In each pass, all tags will pick a different slot based on the random number sent by the reader. 𝐴𝐴
^

 can 



only observe the communication but it cannot link the outputs of the two parties. It cannot even launch replay 
attack by replaying previous messages since the slot picking nature of the tags changes with f and r. 

Evaluation 
We evaluate the efficiency of GTest and FTest protocol. Our comparison is based on the metric–execution time. 
To compare the performance of both protocols, we also simulate a per-tag authentication (PTA) protocol to 
identify the validity of batches. PTA is a deterministic approach, which authenticates all tags to detect the 
validity of a batch. The accuracy of PTA is certainly 100 % but its efficiency is very low. There are plenty of per-
tag authentication protocols in literature [4–6, 11–13, 25, 29]. 

We use AnonPri [6], a group-based authentication protocol as PTA. In our simulation, the authentication server 
is implemented on a high performance Dell PC. We use java for protocol simulation where we use SHA-1 as the 
hash function (returning 160 bits) in all three protocols. We also use MySQL to store secret keys for the 
simulated tags. In our simulated RFID environment, we have considered two systems with N = 216, τ = 8, 16, 32, 
64 and N = 220, τ = 512, 256, 128, 64. We deliberately introduce 1–4 % randomly generated counterfeits into the 
dataset. We have run the simulation for 100 times and reported the average. 

Execution time metric determines the time required for interaction between the reader and tags. This metric 
tells us the processing time of a protocol to determine the validity of tags with Δ = 0 %. It means that we need to 
identify all the counterfeit tags in each batch. However, Δ is a system parameter and it can also be changed to 
observe the change of execution time. Since every bit almost consumes the same transmission time which 
equals 25 μs [14] on average, we measure the execution time by multiplying the size of transmitted data (in bits) 
with 25 μs. 

For all protocols, we consider the tags uses SHA-1 hash function. Therefore, in GTest protocol, the length of data 
replied by tags is 160 bits [15]. The total size of data used for group identification equals 160 × n/2 (since tags 
will reply with probably 0.5). Now to verify a batch with n tags, suppose that n s tags are sampled and the length 
of random numbers equals 160 bits. The size of authentication phase will equal (160 + 160) × n s bits, since 
reader will challenge with a random number (160 bits) and tags will reply with their hashed response (160 bits). 
Therefore, the total data size of GTest protocol will be: 

𝑖𝑖_sizeGTest = (160 ×
𝑛𝑛
2 + (160 + 160) × 𝑛𝑛𝑠𝑠)bits 

For PTA protocol, the reader needs to check all the group keys and this has to be done for all the tags of the 
batch. Therefore, the data size will be 

𝑖𝑖_sizePTA = (160 × 𝑛𝑛 + (160 + 160) × 𝑛𝑛)bits 

On the contrary, the data transferred in FTest one random number and f replies. Since each echo is in the same 
size (1 bits), the total size: 

𝑖𝑖_sizeFTest = (160 × 𝑛𝑛/2 + (160 + 1) × (𝑛𝑛 − 𝑛𝑛rem) + (160 + 160) × 𝑛𝑛rem)bits 

Figure 7a, b shows the execution time of our two protocols. The figure shows that GTest performs better than 
PTA and FTest performs the best. We can see that FTest protocol significantly reduces the execution time. For 
system with N = 216, FTest reduces almost 800 s than PTA for the largest batch. And for system with N = 220, 
FTest reduces almost 1,700 s than PTA for the largest batch (see Table 4). 



 
Fig. 7 Comparison of execution time for FTest, GTest, and PTA protocol 

Table 4 Performance comparison table 

N FTest savings over PTA [6] 
216 ≈800 s 
220 ≈1,700 s 

 

Figure 8a, b shows the execution time of our two protocols when Δ ≈ 3 %. By Δ ≈ 3 %, we mean that the protocol 
will consider a batch invalid if it can identify at least 3 % of the tags as counterfeit. At that point, the protocol 
will declare the entire batch as invalid and will stop executing further. The figure clearly shows that, with 
Δ ≈ 3 %, FTest is the most efficient protocol. We can see that out approaches, especially FTest protocol 
significantly reduces the execution time. FTest with Δ ≈ 3 % saves almost 85 s for largest batch size. 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/7


 
Fig. 8 Comparison of execution time for FTest, GTest, and PTA protocol with Δ = 3 % 

Related work 
In literature, extensive research works have been proposed for different types of RFID applications and to 
ensure different set of goals. Most of the previous works on RFID systems concentrate on collecting the ids of a 
large number of tags as quickly as possible. The main challenge is to resolve radio contention when the tags 
compete for the same low-bandwidth channel to report their ids. Other work studies the tag-estimation 
problem, which is to use statistical methods to estimate the number of tags in a large system [16]. Tan et al. [17] 
design the trust reader protocol (TRP) to detect the missing tags with probability when the number of missing 
tags exceeds a certain threshold. TRP uses probabilistic method to choose a frame size that satisfies the system 
requirement. 

Collision is a critical problem in RFID systems when processing a batch of tags. In the literature, tag anti-collision 
algorithms can be categorized into Aloha-based algorithms and tree-based algorithms. Aloha-based algorithms 
makes only one tag respond in a slot, in the response of tags, by dividing a time into slot units. On the other 
hand, tree-based algorithms [18] make trees while performing the tag identification procedure using a unique id 
of each tag. Aloha-based protocols are known for their low complexity and computation, thus making them 
attractive for use in RFID networks. Examples include pure, slotted and framed slotted Aloha (FSA), and their 
variants [19–21]. In pure and slotted Aloha, a tag responds after a random delay, and continues doing so until it 
is identified. Lee et al. [7] show that the FSA reader can obtain a maximum identification throughput when the 
size of detecting frame equals to the number of tags and propose a dynamic FSA for RFID systems. Sheng et al. 
[22] study a fundamental problem of continuous scanning in RFID systems and designs algorithms based on the 

https://link.springer.com/article/10.1007/s00779-012-0629-8/figures/8


information gathered in the previous scanning. Yang et al. [23] proposes a probabilistic approach, SEBA, for fast 
and reliable batch authentications in RFID application. However, in this protocol, when queried by a reader, tags 
replies with some bits of their secret ids. But the drawback of this protocol is that any adversary eavesdropping 
in the channel may learn complete ids of tags over time and launch several successful attacks. 

Many approaches have been proposed for RFID private authentication and they can be classified into two 
categories, non-tree-based approaches and tree-based approaches. Non-tree-based protocols usually perform 
linear search to find out a tag. The search complexity is O(N), where N is the number of tags. Obviously, the 
linear search is not efficient in large-scale RFID systems that may have millions of tags [24]. Another non-tree-
based approach, Hash-lock [25] method, uses the hash value of a key to identify a tag. A variation of Hash lock 
needs exhaustive search through all ids to identify a tag. Molnar and Wagner proposed a tree-based approach in 
[3] that reduces the complexity of authentication from O(N) to O(logN). This reduction is made possible by using 
a key tree instead of a flat key space. The level of privacy provided by the scheme is decreases quickly as more 
and more tags are compromised. Numbers of research have been conducted to find out a trade-off between the 
complexity and the level of privacy provided by the key tree-based scheme. This trade-off is identified and 
analyzed by Avoine et al. [26] and Buttyan et al. [27], and more recently by Nohl and Evans [28]. Avoine et al. 
[29] proposed a group-based private authentication scheme in that improves the trade-off between scalability 
and privacy by dividing the tags into a number of groups. A lightweight RFID private authentication protocol, 
RWP, have been proposed in [30], based on the random walk concept. The analysis results show that RWP 
effectively enhances the security protection for RFID private authentication, and increases the authentication 
efficiency from O(logN) to O(1). However, this technique is suitable for tags with high computational power as 
the technique requires tags to perform randomized hash functions. Besides these types of deterministic 
approaches, some RFID application uses probabilistic methods to determine some important feature related to 
the system [32, 33]. 

Conclusions 
Detecting counterfeit tags in large-scale RFID systems is a very significant but underrated research issue. Most of 
the existing RFID authentication methods used for counterfeit detection require a pre-identification process, 
and suffer from high scanning cost and communication cost. We believe that an efficient, secure and fast 
counterfeit detection protocol may have good impact on the deployment of many large-scale RFID systems. In 
this paper, we present an efficient batch authentication protocol (FTest) to detect product counterfeiting in RFID 
enabled systems. Our simulation results show that our FTest can perform significantly better than per-tag 
authentication protocols. Future research work includes the investigation of defend mechanism against 
concealing attack and privacy-related issues. 
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