10,638 research outputs found

    Cloud Multi-Tenancy: Issues and Developments

    Get PDF
    Cloud Computing (CC) is a computational paradigm that provides pay-per use services to customers from a pool of networked computing resources that are provided on demand. Customers therefore does not need to worry about infrastructure or storage. Cloud Service Providers (CSP) make custom built applications available to customers online. Also, organisations and enterprises can build and deploy applications based on platforms provided by the Cloud service provider. Scalable storage and computing resources is also made available to consumers on the Clouds at a cost. Cloud Computing takes virtualization a step further through the use of virtual machines, it allows several customers share the same physical machine. In addition, it is possible for numerous customers to share applications provided by a CSP; this sharing model is known as multi-tenancy. Though Multi-tenancy has its drawbacks but however, it is highly desirable based on its cost efficiency. This paper presents the comprehensive study of existing literatures on relevant issues and development relating to cloud multitenancy using reliable methods. This study examines recent trends in the area of cloud multi-tenancy and provides a guide for future research. The analyses of this comprehensive study was based on the following questions relating to recent study in multi-tenancy which are: what is the current trend and development in cloud multi-tenancy? Existing publications were analyzed in this area including journals, conferences, white papers and publications in reputable magazines. The expected result at the end of this review is the identification of trends in cloud multi-tenancy. This will be of benefit to prospective cloud users and even cloud providers

    Multi-tenant Data Management in Collaborative Zero Defect Manufacturing

    Full text link
    [EN] This research paper describes different patterns and best practices to effectively implement multi-tenancy of production sensor data in collaborative applications. The paper explains the design considerations taken to support multi-tenancy in the Zero Defects Manufacturing Platform (ZDMP), using concrete collaborative use cases as an example. The main objective is to provide an overview of multi-tenancy as an enabler of collaborative use cases in digital manufacturing platforms, describe the different design patterns, the main trade-offs, and best practices.This work was supported in part by the European Commission under the Grant Agreement 825631. The author María Ángeles Rodríguez was supported by the Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte) under Grant-Agreement ACIF/2019/021.Fraile Gil, F.; Montalvillo, L.; Rodríguez-Sánchez, MDLÁ.; Navarro, H.; Ortiz Bas, Á. (2021). Multi-tenant Data Management in Collaborative Zero Defect Manufacturing. IEEE. 464-468. https://doi.org/10.1109/MetroInd4.0IoT51437.2021.948853446446

    Context-Awareness Enhances 5G Multi-Access Edge Computing Reliability

    Get PDF
    The fifth generation (5G) mobile telecommunication network is expected to support Multi- Access Edge Computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultra-responsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality, as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.Comment: Accepted by IEEE Access on Feb. 02, 201

    Application-based authentication on an inter-VM traffic in a Cloud environment

    Get PDF
    Cloud Computing (CC) is an innovative computing model in which resources are provided as a service over the Internet, on an as-needed basis. It is a large-scale distributed computing paradigm that is driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, storage, platforms, and services are delivered on demand to external customers over the Internet. Since cloud is often enabled by virtualization and share a common attribute, that is, the allocation of resources, applications, and even OSs, adequate safeguards and security measures are essential. In fact, Virtualization creates new targets for intrusion due to the complexity of access and difficulty in monitoring all interconnection points between systems, applications, and data sets. This raises many questions about the appropriate infrastructure, processes, and strategy for enacting detection and response to intrusion in a Cloud environment. Hence, without strict controls put in place within the Cloud, guests could violate and bypass security policies, intercept unauthorized client data, and initiate or become the target of security attacks. This article shines the light on the issues of security within Cloud Computing, especially inter-VM traffic visibility. In addition, the paper lays the proposition of an Application Based Security (ABS) approach in order to enforce an application-based authentication between VMs, through various security mechanisms, filtering, structures, and policies

    A Scalable Model for Secure Multiparty Authentication

    Get PDF
    Distributed system architectures such as cloud computing or the emergent architectures of the Internet Of Things, present significant challenges for security and privacy. Specifically, in a complex application there is a need to securely delegate access control mechanisms to one or more parties, who in turn can govern methods that enable multiple other parties to be authenticated in relation to the services that they wish to consume. We identify shortcomings in an existing proposal by Xu et al for multiparty authentication and evaluate a novel model from Al-Aqrabi et al that has been designed specifically for complex multiple security realm environments. The adoption of a Session Authority Cloud ensures that resources for authentication requests are scalable, whilst permitting the necessary architectural abstraction for myriad hardware IoT devices such as actuators and sensor networks, etc. In addition, the ability to ensure that session credentials are confirmed with the relevant resource principles means that the essential rigour for multiparty authentication is established
    corecore