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Abstract: Cloud Computing (CC) is an innovative computing 

model in which resources are provided as a service over the 

Internet, on an as-needed basis. It is a large-scale distributed 

computing paradigm that is driven by economies of scale, in which 

a pool of abstracted, virtualized, dynamically-scalable, managed 

computing power, storage, platforms, and services are delivered on 

demand to external customers over the Internet. Since cloud is often 

enabled by virtualization and share a common attribute, that is, the 

allocation of resources, applications, and even OSs, adequate 

safeguards and security measures are essential. In fact, 

Virtualization creates new targets for intrusion due to the 

complexity of access and difficulty in monitoring all 

interconnection points between systems, applications, and data sets. 

This raises many questions about the appropriate infrastructure, 

processes, and strategy for enacting detection and response to 

intrusion in a Cloud environment. Hence, without strict controls put 

in place within the Cloud, guests could violate and bypass security 

policies, intercept unauthorized client data, and initiate or become 

the target of security attacks. 

This article shines the light on the issues of security within Cloud 

Computing, especially inter-VM traffic visibility. In addition, the 

paper lays the proposition of an Application Based Security (ABS) 

approach in order to enforce an application-based authentication 

between VMs, through various security mechanisms, filtering, 

structures, and policies.  
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1. Introduction 
 

According to ISO subcommittee 38, the CC study group, 

Cloud Computing (CC) is a paradigm for enabling 

ubiquitous, convenient, on-demand network access to a 

shared pool of configurable cloud resources accessed through 

services which can be rapidly provisioned and released with 

minimal management effort or service provider interaction 

[1].  

It has successfully managed to advertise itself as one of the 

fastest growing service models. For organizations, the clouds 

per-use approach provides tangible relief from hardware or 

software investments by offering a pay-for-service model. As 

an extension of Grid Computing and Distributed Computing, 

CC aims to provide users with flexible services in a 

transparent manner. The benefits of CC include greater 

resource access, dynamic scaling, and improved costs, along 

with the ease of automated management for resources and 

performance. Consumers adopt cloud computing to reduce 

infrastructure overhead, adjust service levels to meet 

changing needs, and to quickly deliver applications. CC 

relies on multi-tenant environments where multiple clients 

are served by one software instance. It offers scaled 

performance and services based on shared resources, 

including databases, other applications, and OSs.  

For some organizations, this leaves them open to a variety of 

threats both from inside the firewall, as in the case of a 

private cloud, and from outside. The major roadblock to full 

adoption of CC has been concern regarding the security and 

privacy of information.   Furthermore, attackers can exploit 

the large amount of resources in a cloud for their advantage. 

Network security is an important subject that is defined by 

protection of valuable resources such as services and 

information in the network. An intrusion is a group of actions 

that try to affect this security and consequently damage 

confidentiality, integrity or availability of resources. 

Therefore, providing security in a distributed system requires 

more than user authentication with passwords or digital data 

transmission. 

In fact, due to it distributed nature, CC makes it an easy 

target, vulnerable and prone to sophisticated attacks. Often 

the most utilized technology to implement a Cloud 

environment is virtualization with a massive multi-tenancy 

usage; it opens a door to a whole other level of security 

issues. The security factor of a CC infrastructure is an 

important one. In this case, we need to look into the Cloud 

environment (Network, Systems and applications) in a very 

deep manner to keep it informant, that will help to prevent 

security and performance disruptions which can destroy and 

compromise smooth transactions, and since the main concept 

of the CC is to allow end users to execute various 

applications in on-premise or off-premise resources, most of 

them are shared in a virtual environment creating new 

security and performance challenges leveraging attacks to be 

launched from compromised Virtual Machines (VM) that can 

damage the ability to serve all end users demands. In a virtual 

environment, there are several VMs hosted on a single 

physical server or hypervisor, where communication level 

issues can be identified either at the network level, host level 

and application level [2].  VMs generally inter-communicate 

with each other’s via virtual switch without leaving the 

server, and this introduces the network blind spot letting any 

network security appliance set on the LAN blind to any 

communication between VMs and this could be within a 

single host and also across physical servers. If the traffic 

doesn’t need to pass through that security appliance mostly a 

firewall, opening a loophole for all sorts of security attacks. 

Thus, the starting point of an attacker is compromising only 

one VM and using it as a springboard to take control of the 

other VMs within the same hypervisor (a technique called 

VM hopping or jumping) and this is generally done without 

being monitored or detected, giving the attacker a huge hack 
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domain. 

The remainder of this paper is organized as follows: in the 

next section, we discuss some Cloud computing security 

issues, and more specifically in regards to virtualization, 

Software Defined Networking (SDN), and some basics of the 

blockchain. The third section presents the layout of the 

proposed approach, its various components, operations, and 

implementation. The last section contains a summary and 

conclusions. 
 

2.  Background 
 

Cloud Computing is a model for enabling ubiquitous, 

convenient, on-demand network access to a shared pool of 

configurable computing resources (e.g., networks, servers, 

storage, applications) delivered as a service. It is a disruptive 

technology that has a direct impact into enhancing 

collaboration, agility, scaling, availability, and provides the 

opportunities for cost reduction through optimized and 

efficient computing.  
 

2.1 Cloud Computing Security Issues 
 

As widely known, virtualization is the key technological driver 

behind the huge success of CC. Initially driven by the need to 

consolidate servers to achieve higher hardware utilization rates, 

boost operational efficiency, and cut costs, companies have 

implemented virtualization to get on-demand access to CC. This 

access can result in the creation of multiple VMs out of a single 

physical server. One of the outstanding properties of 

virtualisation is its ability to isolate co-resident Operating 

Systems (OSs) on the same physical platform. While 

isolation is an important property from a security perspective, 

co-resident virtual machines (VMs) often need to 

communicate and exchange a considerable amount of data. 

Additionally, Multi-tenant infrastructures typically offer 

scaled performance and services based on shared resources, 

including databases, other applications, and OSs.  

Since each VM is itself a virtual server comprising a guest OS, 

middleware, application and data, virtualization comes with new 

challenges; new attack surface at the hypervisor level, as well as 

an important impact on network security. It should be noted that 

VMs communicate over a hardware backplane rather than a 

network. As a result, the standard network security controls are 

blind to the overlay traffic and cannot perform monitoring or in-

line blocking. In terms of actual threats to a virtualized 

environment [3] [4], these fall into a number of categories, 

cantered mostly on the hypervisor, which leaves some 

organizations prone to a variety of threats [5] [6]. 

• Lack of data interoperability standards: It results into 

Cloud user data lock-in state. If a Cloud user wants to shift to 

other service provider due to certain reasons it would not be 

able to do so, as Cloud user's data and application may not be 

compatible with other vendor's data storage format or 

platform. Security and confidentiality of data would be in the 

hands of Cloud service provider and Cloud user would be 

dependent on a single service provider.  

• Cloud data confidentiality issue: Confidentiality of data 

over Cloud is one of the glaring security concerns. 

Encryption of data can be done with the traditional 

techniques. However, encrypted data can be secured from a 

malicious user but the privacy of data even from the 

administrator of data at service provider's end could not be 

hidden. Searching and indexing on encrypted data remains a 

point of concern in that case. 

• Network and host-based attacks on remote Server: 

Host and network intrusion attacks on remote hypervisors are 

a major security concern, as Cloud vendors use VM 

technology. DOS and DDOS attacks are launched to deny 

service availability to end users. 

o ARP Attack: ARP lacks very much when it comes to 

security, a malicious user is able to use a forged IP address 

of Layer 3 and MAC address of Layer 2, there is no way to 

verify those forged details in ARP. The malicious user 

identifies him as a legitimate user and starts to use 

resources available on the network. It’s even possible to 

transmit ARP packets to a device in a different VLAN 

using those forged details. 

o VLAN Hopping Attack: VLAN hopping works by 

sending packets to a port which should not be accessible. 

Basically, in VLAN hopping attack there are two types. The 

first one is switch spoofing happens when a malicious user 

tries to configure a system to spoof itself as a switch by 

matching itself to 802.1q or ISL. The malicious user is able 

to spoof the switch with help of (Dynamic Trunk Protocol) 

DTP signalling. The other type is double tagging, which is 

a method involves tagging transmitted frames with two 

802.1q headers, one of the headers is used for Victim 

switch and another is used for the attacker’s switch. 

o Private VLAN Attack: A Private VLAN is a feature in 

Layer 2 which is used to isolate the traffic only at layer2. 

When a layer 3, device such as a router is connected to a 

Private VLAN, it supposed to forward all the traffic 

received by the router to whatever destination it’s meant for. 

Sometimes a malicious user might use it for his advantage. 

o MAC Flooding Attack: MAC flooding attack is one of the 

common attacks on a VLAN. In a MAC flooding attack, 

the switch is flooded with packets of different MAC 

address therefore consuming memory on the switch. During 

the MAC flooding attack, switch starts to behave like a 

“hub” where it starts to share the data with all the ports. 

Thus, a malicious user is able to use a Packet sniffer to 

extract the sensitive data. 

• Virtualization security: Virtualization brings with it all the 

security concerns (see figure 1) of the operating system 

running as a guest, together with new security concerns about 

the hypervisor layer, as well as new virtualization specific 

threats, inter-VM attacks and blind spots, performance 

concerns arising from CPU and memory used for security, 

and operational complexity from “VM sprawl” as a security 

inhibitor. New problems like instant-on gaps, data 

comingling, the difficulty of encrypting VM images and 

residual data destruction are coming into focus. Virtualization 

has a large impact on network security. VMs may 

communicate with each other over a hardware backplane, 

rather than a network. As a result, standard network-based 

security controls are blind to this traffic and cannot perform 

monitoring or in-line blocking. Migration of VMs is also a 

concern. An attack scenario could be the migration of a 

malicious VM in a trusted zone, and with traditional network-

based security controls, its misbehaviour will not be detected. 

Installing a full set of security tools on each individual VM is 
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another approach to add a layer of protection. 
 

 
 

Figure 1. Virtual architecture, and its potential attack vectors 
 

o Hyperjacking: Subverting the hypervisor or injecting a 

rogue hypervisor on top of the hardware layer. Since 

hypervisors run at the most privileged ring level on a 

processor, it would be hard or even impossible for any OS 

running on the hypervisor to detect. In theory, a hacker with 

control of the hypervisor could control any virtual machine 

running on the physical server. 

o VM escapes: is a security attack designed to exploit a 

hypervisor, it allows a hacker to gain access over the 

hypervisor and attack the rest of the VMs. If the attacker 

gains access to the host running multiple VMs, the attacker 

can access the resources shared by the other VMs. 

o VM Hopping/Guest jumping: is the process of hopping 

from one VM to another VM using vulnerabilities in either 

the virtual infrastructure or a hypervisor. These attacks are 

often accomplished once an attacker has gained access to a 

low-value, thus less secure, VM on the same host, which is 

then used as a launch point for further attacks on the 

system. Because there are several VMs running on the 

same machine, there would be several victims of the VM 

hopping attack. An attacker can falsify the SS user's data 

once he gains access to a targeted VM by VM hopping, 

endangering the confidentiality and integrity of SS. VM 

hopping is a considerable threat because several VM’s can 

run on the same host making them all targets for the 

attacker. 

o VM mobility/migration: enables the moving or copying of 

VMs from one host to another over the network or by using 

portable storage devices without physically stealing or 

snatching a hard drive. It could lead to security problems 

such as spread of vulnerable configurations. The severity of 

the attack ranges from leaking sensitive information to 

completely compromising the OS. A man-in-the-middle can 

sniff sensitive data, manipulate services, and possibly even 

inject a rootkit. As IS lets users create computing platforms 

by importing a customized VM image into the 

infrastructure service. The impact on confidentiality, 

integrity, and availability via the VM mobility feature is 

quite large. 

o Inter-VM: In a traditional IT environment, network traffic 

can be monitored, inspected and filtered using a range of 

server security systems to try to detect malicious activity. 

But the problem with virtualized environments provides 

limited visibility to inter-VM traffic flows. This traffic is 

not visible to traditional network-based security protection 

devices, such as the network-based intrusion prevention 

systems (IPSs) located in network, and cannot be 

monitored in the normal way. 
 

2.2 Multi-tenancy 
 

Multi-tenancy in its simplest form implies the use of same 

resources or application by multiple consumers that may 

belong to same organization or different organization. The 

impact of multi-tenancy is visibility of residual data or trace 

of operations by another user or tenant. Multi-tenancy in 

Cloud service models implies a need for policy-driven 

enforcement, segmentation, isolation, governance, service 

levels, and charge-back/billing models for different consumer 

constituencies [7]. 
 

2.3 Software Defined Networking 
 

According to the Open Networking Foundation (ONF), 

“Software-Defined Networking (SDN) is an emerging 

architecture that is dynamic, manageable, cost-effective, and 

adaptable, making it ideal for the high-bandwidth, dynamic 

nature of today’s applications.”. Although both virtualization 

and Cloud predate SDN, the latter is now providing a reliable 

and effective foundation for the growth and success of Cloud 

business models. SDN is increasingly accepted as the path to 

"cloud networking," meaning the transformation of networks 

and services to support the use of cloud computing on a 

massive scale. Navigating the various missions and 

technology models of SDNs is critical to properly position 

cloud services and realize advantages of cloud computing 

[8]. The ONF lays out the architecture of SDN as an 

architecture that “decouples the network control and 

forwarding functions enabling the network control to become 

directly programmable and the underlying infrastructure to be 

abstracted for applications and network services”.  According 

to the ONF, the SDN architecture is:  

• Directly programmable: Network control is directly 

programmable because it is decoupled from forwarding 

functions.  

• Agile: Abstracting control from forwarding lets 

administrators dynamically adjust network wide traffic 

flow to meet changing needs.  

• Programmatically configured: SDN lets network 

managers configure, manage, secure, and optimize 

network resources very quickly via dynamic, automated 

SDN programs, which they can write themselves because 

the programs do not depend on proprietary software.  

• Open standards-based and vendor-neutral: When 

implemented through open standards, SDN simplifies 

network design and operation because instructions are 

provided by SDN controllers instead of multiple, vendor-

specific devices and protocols. 

• Centrally managed: Network intelligence is (logically) 

centralized in software-based SDN controllers that 

maintain a global view of the network, which appears to 

applications and policy engines as a single (see figure 2), 

logical switch. SDN Controllers receive instructions from 

SDN Applications via Northbound APIs, and send other 

instructions to "below" Devices via Southbound APIs. 

Southbound APIs work in parallel with SDN Protocols, 

like it is depicted in figure 2. 
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Figure 2. SDN architecture [9] 
 

Open Flow Protocol is a standard and one of the ways of 

achieving communication between controller and switching 

infrastructure in SDN framework. Open Flow is standardized 

through Open Networking Foundation (ONF) to achieve the 

objectives of Increased Network Functionality, while 

lowering operational expenses through simplified Hardware, 

Software and Management. ONF through its working groups 

responsible for the development of protocol, configuration 

and interoperability testing [10]. 
 

2.4 Blockchain  
 

Blockchain is a distributed ledger [11] (also called a shared 

ledger, or referred to as Distributed Ledger Technology) that 

is secured by different encryption techniques that provides an 

integrity and availability of an information record without the 

need for a verification by a centralized entity. As Blockchain 

has started, it delivered trust (in a product, a transaction or 

the integrity of data) far more efficiently and effectively than 

any existing technology. Although it has existed since 2008 

(as the basis for the Bitcoin cryptocurrency), its application 

has expanded beyond the financial services realm towards 

other fields pretty quickly.  

Blockchain can be seen as a series of data blocks hence the 

name [12], and each block is containing information about 

events, transactions or any type of entries. Therefore, once 

the block is recorded, the data in any given block cannot be 

altered retroactively without the alteration of all subsequent 

blocks. Each block is securely hashed and this hash is stored 

in the next block which makes it nearly tamper proof. These 

blocks are linked together into a chain and broadcast across 

the network to various nodes to store into their own copy of 

the ledger. This ledger is considered as shared/distributed, 

which is a digital record of ownership that differs from 

traditional database technologies, since it is replicated among 

many different nodes in a peer-to-peer virtual private 

network, and each transaction is uniquely signed with a 

private key with no central administration nor storage. Before 

adding a block to the chain, the block’s validity must go 

through a consensus mechanism. The purpose of this 

mechanism is to ensures that all participants of the distributed 

ledger are on the same page. In a nutshell, a consensus is 

defined as the full-circle verification of the correctness of a 

set of transactions comprising a block. Thus, making it 

difficult for hackers to introduce untrusted transactions (as 

long as a majority of nodes are true), ensuring trust and 

integrity without the need for a central authority eliminating 

the risk of a single point of failure. In case of a breach 

occurring, its location can be determined and isolated quickly 

without impacting the rest of the network. 
 

2.4.1 Consensus mechanisms: 
 

Consensus mechanisms have been a topic of active research 

for nearly three decades now, and way before the upcoming 

of blockchain [13]. It is a mechanism that helps the update of 

a distributed shared state in a secured fashion. Therefore, 

distributing a shared state across multiple replicas in the 

network is one of the common techniques used for achieving 

fault tolerance in a distributed system but not its integrity. In 

contrast, adding and validating the replicated shared state 

should happen according to a pre-defined set of rules defined 

by the state machine that should be executed on all the 

replicas. This is what is called state machine replication, 

where replication of state guarantees that the state is not lost 

nor altered in one or more nodes. These replicas 

communicate with each other to build what is called a 

consensus and agree upon the irrevocability of the state after 

a state change is executed. In the blockchain world, the 

shared state is the distributed shared ledger and the state 

transition rules are the rules of the blockchain protocol. 

In Blockchain [13], consensus is accomplished ultimately 

when a block’s entries have met the explicit policy rule 

checks. These checks take place during the lifecycle of a 

block, and include the usage of endorsement policies to 

dictate which specific nodes must endorse a block, as well as 

a business logic to ensure that these policies are enforced and 

upheld. Prior to commitment, the peers will use these 

business logics to make sure that enough endorsements are 

present, and that they were derived from the appropriate 

nodes. After that, a versioning check will take place during 

which the current state of the ledger is agreed or consented 

upon, before any blocks are appended to the ledger. This 

final check provides protection against threats that might 

compromise data integrity. 

In general, a consensus protocol has three major key 

properties based upon which its applicability and efficacy can 

be determined. 

• Safety/consistency – A consensus protocol is determined 

to be safe if all nodes produce the same output and the 

outputs produced by the nodes are valid according to the 

rules of the protocol.  

• Liveness - A consensus protocol guarantees liveness if all 

non-faulty nodes participating in consensus eventually 

produce a value. 

• Fault Tolerance – A consensus protocol provides fault 

tolerance if it can recover from a byzantine node 

participating in consensus. 

The most known use case of blockchain is bitcoin, which 

uses a consensus mechanism called Proof of Work [12] [14]. 

PoW is the original consensus algorithm in a Blockchain 

network where miners compete against each other to 

complete transactions on the network and get rewarded. Its 

approach is probabilistic and have to spend significant 

amount of time/computing solving a cryptographic puzzle. 

That is why, bitcoin has high transaction latencies and 

therefore a low transaction rate. On the flip side of bitcoin 

there is other cryptocurrencies and blockchains which are 



152 
International Journal of Communication Networks and Information Security (IJCNIS)                                           Vol. 11, No. 1, April 2019 

 

using other types of consensus.  

Proof of Stack [15] is one of them, where the key motivation 

behind it is that mining is done by stakeholders in the 

ecosystem who have the strongest incentives to be good 

stewards of the system. Therefore, the election of the creator 

of the next block is done via various combinations of random 

selection and wealth or age (i.e., the stake) rather than 

solving computationally an intensive puzzle to validate 

transactions and create new blocks.   

Another consensus mechanism that has been on the rise lately 

is Proof of Authority [16] where blocks are validated by 

approved accounts, known as validators. It is an algorithm 

used in blockchains that have the need to deliver fairly fast 

transactions through a consensus mechanism based on 

identity as a stake.  

Consensus in blockchain comes also to mitigate what is 

called Byzantine Generals Problem [17], where a byzantine 

node can lie, provide incorrect responses or mislead other 

nodes involved in the consensus network. Therefore, a 

consensus algorithm has to be able to function correctly and 

reach consensus in the presence of Byzantine nodes as long 

as their number within a distributed system are limited. One 

of the first practical solution to the achieving consensus in 

the face of Byzantine failures was Practical Byzantine Fault 

Tolerance, an algorithm proposed by Miguel Castro and 

Barbara Liskov [17]. PBFT uses the concept of state machine 

replication and voting by replicas for state changes, provides 

also some important optimization such as signing and 

encryption of messages between replicas and clients which 

reduces the overhead. The PBFT algorithm requires “3f+1” 

replicas to be able to tolerate “f” failing nodes, where the 

maximum number of nodes that I can be scaled to is 20 

because the overhead increases significantly as the number of 

replicas increases. This consensus mechanism is used by 

Hyperledger; a project that allows developers to create their 

own digital assets with a distributed ledger built on the 

principles of BFT. 
 

2.4.2 Permissioned blockchain:  
 

Permissioned and permissionless blockchains are the two 

main types of the blockchain platforms. The most known 

cryptocurrencies such as Bitcoin and Ethereum are 

considered as permissionless or open blockchains since they 

are publicly available for use and any node can make 

transactions as well as take part in the consensus process. In 

contrast to permissionless platforms, there is permissioned 

blockchains (can also go by the name of 'consortium' 

blockchains.) such Hyperledger which are aimed at groups 

where participation is closed. Submission of entries can be 

done by any type of nodes within the group, but for the 

validation of blocks where the restriction comes at hand, 

which can be fixed to a set of peering nodes that run by 

consortium members. These groups are expected to be small 

in number and an access control layer is used to govern and 

vet who can have access to the network, therefore the 

consortium can employ alternative consensus mechanisms 

than proof of work for instance such as PBFT, PoA... It 

should be mentioned that there is no concept of digital 

currency on private permissioned distributed ledgers because 

the objective of this type of platform is different from a 

public one. 
 

2.4.3 Merkel Tree 
  

 
 

Figure 3. Merkle tree of 4 values. 
 

In computer science and cryptography, a Merkle tree [18], as 

seen on figure 3, (or a hash tree) is a binary tree in which 

every leaf is labelled with a data block and every non-leaf 

node is labelled with the cryptographic hash of the labels of 

its child nodes. Hence, the tree is constructed by recursively 

hashing pairs of nodes until there is only one hash, called the 

root, or Merkle root. Merkel trees allow efficient and secure 

verification of the contents of large data structures such as a 

block in a blockchain platform. Hash trees are a 

generalization of hash lists and hash chains. 
 

3. Our Approach 
 

The emergence of Cloud Computing thrived immensely upon 

virtualisation that got shifted towards a world of on-demand 

scalability and service delivery over the Internet. 

Virtualization is one of the key enablers and key technologies 

to build upon a Cloud infrastructure. It is increasingly used in 

portions of the back-end of Infrastructure as a Service (IS), 

Platform as a Service (PS) and SS (Software as a Service) 

providers as well. Virtualization is also, naturally, a key 

technology for virtual desktops infrastructure (VDI), which 

often times are delivered from private or public Clouds. The 

benefits of virtualization are well known, including multi-

tenancy, better server utilization, and data centre 

consolidation. Cloud Providers can achieve higher density, 

which translates to better margins, thus companies can use 

virtualization to shrink capital expenditure (Capex) on server 

hardware, as well as increase operational efficiency.  

However, as it has been mentioned at the introduction, a 

malicious user has a huge hack domain since the inter-VM 

communication is blind to the security appliances on the 

LAN, giving him the possibility to take control of other VMs 

via a compromised one. Thereby, the focus of our work is 

about analysing this particular inter-VM traffic, 

authenticate/authorise it, and then preventing the non-

compliant one.  

Traditional network security mechanisms face new 

challenges to keep up with the cloud infrastructure.  For 

instance, having virtualization as its foundation would bring 

in the security issues of the said underlying technology, such 

as virtual machine intrusion attacks and malicious user 

activities.
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Figure 4. Basic Cloud architecture (testbed) Basic Cloud architecture (testbed) 
 

New security methods are therefore needed to mitigate those 

new issues. Multiple research activities were introduced to 

address the issues of intrusion detection within cloud 

computing environments. [19] developed an intrusion 

detection model leveraging machine learning approach, by 

using 28 features subset without content features of 

Knowledge Data Discovery (KDD) dataset to build machine 

learning model and are most likely to be applied for the IDS. 

[20] proposes an IDS based on mobile agents (MAs). Its 

most important weaknesses are the performance and the 

security issues related to MAs. [27] has classified the 

deployment approaches of IDS in a cloud environment into 

several categories ranging from guest-based, VMM-based, 

Network-based, collaborative agent-based, to distributed. 

[21] uses an IDS sensor such as the version of Snort installed 

on VMware virtual ESX machine that sniffs in-bound traffic. 

[22] made a prototype of Cloud IDS inspired by Dendritic 

Cell mechanism, which mimics the activity and process of 

Dendritic Cell which is known for detecting and killing any 

pathogens that infected human tissue and cells. Snort matches 

in bound packets against several intrusion patterns. If a match 

occurs, all the traffic from the same IP address is dropped. 

No evaluation of the accuracy and performance of this 

solution is presented. Furthermore, network events are not 

correlated to discover attacks against several virtual zones. 

[28] has proposed a model that provides a security as a 

service at the infrastructure layer and analysis the alerts of 

users based on the system calls. [29] presents a design of a 

virtualization-based detection solution called VMFence to 

examine the network flow and integrity of a file and also to 

detect the real-time attacks. [30] has proposed an analysis 

solution based on k-means clustering for anomaly detection 

and integrated it with a frequent attack generation module 

using prior algorithms to detect recurrent attacks and find the 

signature of the attack within the cloud environment. Relating 

to previous works especially in intrusion detection [23] [24], 

we find that all of the measures that should be taken must to 

be distributed since it is a Cloud environment [25]. However, 

the work done so far is about detecting and preventing 

malicious traffic [26] outside of the wire i.e. the hypervisor.  

Currently, cloud providers enforce data encryption for 

storage containers, virtual firewalls and access control lists 

[31].  The proposed framework builds upon the fact that new 

levels of security onto those already supplied by cloud 

providers are required. Therefore, the major contribution 

from our work is a about authenticating the access to the 

critical virtual machines, thus, by securing the inter-VM 

communication. We are basing our work on a simple model 

as depicted in Figure 4, containing the essential elements that 

we can find in a Cloud Service Provider or a Cloud 

Infrastructure: Cloud Manager, Hypervisor, Virtual 

Machines... 

• Cloud manager: is a management and orchestration 

server for the admin/client in order to manage their Cloud 

resource infrastructure. 

• Hypervisor: also called Virtual Machine Monitor 

(VMM) allows multiple operation systems, termed guests 

or VMs, to run concurrently on a host server. Actually, 

the hypervisor controls the host processor and resources, 

allocates what is needed to each OS in turn and makes 

sure that the guest VMs cannot disrupt each other.  

• Virtual Machine: is a completely isolated guest 

operation system installation within a normal host OS, 

and as it was originally defined by Popek and Goldberg 

as “an efficient, isolated duplicate of a real machine”. All 

the VMs in our architecture has an embedded agent, 

which will serve the purpose of our approach.  

Our approach focusses particularly on the analysis and 

authentication of the inter-VM traffic by introducing a 

security structure characterized by a filed called frame tag. 

This field is introduced by a VM embedded agent at the 

beginning of the IP packet’ payload. Thus, ensuring a high 

filtering level, by making the receiving VM/agent detect, 

analyse and authenticate the incoming traffic then respond by 

accepting or refusing this IP packet according to the 

compliance of the information on the frame tag or the IP 

packet in general.  The idea behind this approach comes for 

the issue of network visibility in a virtual environment, which 

is a serious issue for the security appliances. Thus, a 

compromised VM can be a jumping-off point in order to 

send requests to other VMs. For instance, retrieving 

information in a malicious way that should be detected by a 

security solution, from a VM hosting a database, while in a 

legitimate scenario as depicted in Figure 4, App1 hosted in a 

VM in tenant 1 sends a request to the DB1 hosted in another 

VM in order to get the requested information. Thereby, we 
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are having two distinctive elements which are the tenant and 

the application, meaning who sends the request and from 

where. Hence, what we are trying to achieve with our 

approach is to authenticate each request/IP packet 

communicating between VMs by encapsulating these two 

identifiers in the frame tag which will be an authentication 

credential for the IP packet by the sending VM/application, 

then retrieved and analysed by the receiving VM/agent acting 

like a light-weight intrusion prevention system or a firewall 

by refusing (DORP or REJECT) the non-compliant packets. 

This approach creates a boundary for malicious traffic, 

between two communicating VMs. Traffic traversing this 

boundary is subject to the access controls specified by the 

policy of the receiving agent. In order to fulfil the 

authentication factor, which is the cornerstone of our 

approach we introduced some security mechanisms wrapping 

the frame tag. This security is manifested in a Security 

Contract between the communicating VMs, a policy 

management and of course encryption. Those mechanisms 

will be thoroughly introduced within the next sections.  

This chapter provides a high-level description of the frame 

tag, the security contract, the agent, and how they fit together. 

The goal of this description is to have a clear view of the 

overall approach, see how it fits into a Cloud infrastructure, 

and its implementation which is describes in more details. 
 

3.1 Frame Tag 
 

Users in a Cloud environment access their services by 

providing a digital identity. Commonly, this identity is a set 

of bytes related to the user. Based on this digital identity, a 

Cloud system can recognize what appropriate access this user 

has and what is allowed to do. Most of the Cloud platforms 

include an identity service management service (like 

keystone in OpenStack, or IAM in AWS). Following the 

same analogy, our approach is about identifying the 

application that sends the request (IP packet) to another 

machine in the same tenant. Hence, we propose a field called 

frame tag, as shown in the figure 5. The frame tag is 

generated between a pair of communicating agents, and its 

structure contains two main fields: Tenant tag, and 

Application Tag. 
 

 
 

 Figure 5. Structure of a frame Tag. 
 

• The tenant tag field: When a tenant is created in a 

Cloud, the identity management service takes on the task 

of creating an ID for this tenant. Similarly, the same thing 

happens with the tenant tag which is a value generated 

holding the identity of the tenant. Thus, when a request is 

sent from a VM to another VM within the same tenant, 

the tenant tag is retrieved from the database and injected 

by the agent in the payload of the IP packet. This flied 

ensures the integrity of the inter-VM communication, but 

more importantly the prevention of spring boarding to 

another VM within another tenant, thereby adding a 

strong layer of tenant isolation alongside VLAN isolation.  

• The application tag field: When an application is added 

and installed on a VM, the admin has to certify it as 

trusted by creating a signature to rely on for its detection 

by the agents. The use of the application tag in our 

approach would help authenticate for instance App1 in 

Tenant 1 that wants to send a request to DB1 hosted in 

another VM within the same tenant, provided that the 

admin has certified App1 as trusted. The sending VM will 

generate the application tag according to the detected 

signature of the application on the IP packet. 

The frame tag in our proposed approach plays the role of an 

authenticator by encapsulating credentials (the tenant and the 

application) of the whereabouts and the identity of the 

application sending the request to another VM. Therefore, 

ensuring a level of authentication of the inter-VM traffic in a 

non-intrusive way and more importantly isolation between 

tenants. Therefore, having a monitored traffic by an agent 

acting as light-weight intrusion detection and prevention 

system and responds according to the frame tag field’s 

values. 
 

3.2 Security Contract 
 

Ensuring isolation and security in CC is a concerning issue 

for potential users and clients. Therefore, our approach is 

about giving a high level of trust and isolation within tenants, 

through the security and the integrity of the tenant tag and the 

application tag by introducing what we call a Security 

Contract (SC) which can be seen analogous to IPSec [32] 

[33]. An SC is a unidirectional connection that affords 

security services to the frame tag carried by it. It is the 

establishment of a mutually agreed-upon security 

mechanisms and attributes (encryption algorithm, hash 

algorithms...) between two communicating VMs/agents to 

support a secure communication. Therefore, with an SC is 

not only ensuring the integrity of the inter-VM traffic but also 

its authentication. To secure typical, bi-directional 

communication between two agents, a pair of SCs (one in 

each direction) is required. If two VMs, A and B, are 

communicating, then the host A will have an SC, SC-A, for 

processing its inbound packets. The host B will also create an 

SC, SC-B, for processing its inbound packets. Hence, The 

SC-A and the SA-B will have the different security attributes. 

Data sets associated with an SC are represented in the SC 

Database (SCD). Though SCs are unidirectional, a shared 

SCD between agents is maintained for all SCs used for 

outbound and inbound processing. Once an SC is created, it 

is added to the SCD and identified by a Security Contract ID 

(SC-ID) defining its encryption algorithm (including key 

length), hash algorithms, lifetime, and the quick mode status 

as seen on figure 6 (meaning no encryption is being 

performed). 

• Security Contract ID: is an ID identifying a security 

contract in the form of a generated UUID version 4. This 

ID helps the VM to know which SC is going to be used 

for outbound packets during a session. For example, 

multiple contracts might be used if a VM is 

communicating with multiple hosts simultaneously. This 

situation can occur when an VM is hosting a Data Base 

server for instance that responds multiple hosts. In this 

situation, the DB VM uses the sc-id to determine which 

SC is used for outbound packets in order to be 

appropriately processed by the agent accordingly. 
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Figure 6. Sample of a Security Contract entry. 
 

• Active: is a field that takes three values; true, false and 

expired. When the value is true, it means that the SC is 

enabled and can be used as opposed to a false value 

which means that the SC is disabled temporarily. In 

contrast to these two values, the expired value means that 

the sc has reached its lifetime and it is disabled without 

the option of being enabled again.  

• Security contract lifetime: is an UNIX epoch time that 

represents the expiration date of the security contract. 

When reached, the active field gets the expired value in 

order to disable the usage of the SC. Once a security 

contract is expired, it will be removed from the heap. 

• Lifetime: is a lifetime value associated with each SC 

beyond which the SC can and cannot be operational. The 

lifetime is divided into three fields in the SCD, key 

regeneration lifetime, busy session lifetime and idle 

session lifetime. Key regeneration lifetime is the key 

lifetime used in an SC represented in the form of an 

POSIX time. Whenever a key lifetime is reached, the SC 

is updated with new regenerated keys. Busy and idle 

session lifetimes are used to determine the lifetime of a 

session in seconds before the current used SC is expired 

and renegotiate another one. 

The negotiation of an SC is the security needed for a frame 

tag to be authenticated and processed properly. Therefore, 

the communication between VMs has to abide to the 

convened SC, by encrypting and encapsulating the frame tag 

accordingly. During this negotiation, the VM sends three 

important fields; the SCI, the frame tag and a session token.  

The session token is a hash of the used SCI, frame tag and a 

time stamp. It is only valid till the session lifetime expires, 

and it is used as an inner header on the payload in order to be 

authenticated during the communication. 
 

3.3 Security Contract Database Blockchain 
 

As it has been aforementioned, the SCD is a shared and 

distributed database wherein every participant has their own 

replicated copy where all the SCs are stored. Making any 

unwanted change on the SCD a huge vulnerability that a 

malicious user could take advantage of in order to send a 

malicious traffic towards another VM. Therefore, securing 

the integrity of the SCD from any type of unwarranted 

alteration is of the utmost importance, hence applying 

blockchain to it. Integrity is a way of avoiding any tampering 

at the security contract entries. Blockchain uses 

cryptographic hashing to ensure that the ledger remains 

tamper-proof. One of the key characteristics of this hashing 

function is that it is always one-way, which means it is 

logically impossible to get the data back from the hash result 

or from the message digest. It is also difficult to analyse the 

pattern of message digest and predict the original data as 

even a slight change in the actual message can result in a big 

difference. Therefore, the application of blockchain to the 

SCD would highlight its peer-to-peer distribution factor (i.e. 

a distributed ledger) and also make it cryptographically 

secure, append-only, immutable (extremely hard to change), 

and updateable only via consensus or agreement among 

peers.  

With the implementation of blockchain, the SCD will consist 

of two records; SC entries and blocks. The block hold 

batches of SC entries that are hashed and encoded to a 

Merkel tree. Each block of course would include the hash of 

the prior block linking them together. As it was above-

mentioned in the background section, the ledger’ entries in 

blockchain are kept synchronized across the network and 

each block append is approved by the appropriate 

participants within the blockchain’ network via an agreed 

upon algorithm called a consensus.  

The consensus in the SCD blockchain will make sure that 

selected nodes will agree and validate the proposed SCs, 

which then will result an update of the ledger i.e. SCD. The 

proposed consensus mechanism for this blockchain will be a 

set of procedures and rules that will keep a coherent SCs 

state among the VMs on the same tenant. 
 

3.3.1 Security Contract Block 
 

The application of blockchain on the SCD comes as an 

obvious choice due to the nature of their respective 

distributed and shared implementation, but also to guarantee 

the integrity of the SCs within the SCD since they are a key 

component in the proposed approach. Therefore, once the 

SCs are validated, the SCD blockchain cannot be altered 

retroactively without the alteration of all subsequent blocks 

as depicted on figure 7. 

Simply put, a block (see figure 7) is a selection of SCs 

bundled together with a block header. Its size of course may 

vary depending on the amount of SCs created on the master.  

Each block within the blockchain is identified by a hash, 

generated using the SHA256 cryptographic hash algorithm 

on the header of the block. Each block also references a 

previous block, known as the parent block, through the 

“previous block hash” field in the block header. In other 

words, each block contains the hash of its parent inside its 

own header. The sequence of hashes linking each block to its 

parent creates a chain going back all the way to the first 

block ever created, known as the genesis block. A genesis 

block is the first block in the blockchain that was hardcoded 

at the time the blockchain was started. The master will create 

two default dummy security contracts just to populate this 

genesis block. On the other hand, the process of creating a 

block in the SCD blockchain stems from the creation of one 

or more security contract. 
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Figure 7. General architecture of a blockchain. 
 

 

 
 

Figure 8. General JSON Structure of a Block. 
 

The SCs are either created manually or automatically on the 

master, and their number should always be binary since they 

are going to be hashed in a Merkle tree - For instance if only 

one SC is created manually, the master will create a dummy 

SC for the Merkle tree-. Then, the Merkle root will be sent 

for validation via our proposed agreement protocol (see the 

next section). Once validated, comes the commit phase where 

the block is being created. The block is made of a header, 

followed by the sub-block of the security contracts. The 

block header (see figure 8) consists of four sets of block 

metadata. First, there is a reference to a previous block hash 

which is a hash of the block header that can even act as an 

identifier, that connects the current block to the previous one. 

The second set of metadata, namely timestamp which is the 

epoch Unix time of the time of the block initialization. The 

third piece of metadata is the Merkle root, a data structure 

used to efficiently summarize all the security contracts in the 

sub-block. The last metadata field is the block signature, 

which is a cryptographic proof in the form of a hash that is 

made during the consensus phase in order to validate and 

commit the block in the SCD blockchain.  
 

3.3.2 SCD Blockchain Consensus 
 

It is known that the strength of blockchain comes from its 

immutability, and that is due to the chosen consensus which 

is considered the most crucial aspect that requires close 

attention when implementing any type of blockchain.  

We have settled on the fact that the SCD blockchain is a 

permissioned blockchain, since all the participants of the 

network are known and already trusted (relatively). 

Therefore, the consensus mechanism for our particular 

blockchain would be an agreement protocol that will be used 

to maintain a shared and synchronized version of truth about 

the state of records on the SCD. Consequently, that will 

exclude any type of mining as all the participants are already 

know each other and there is no requirement for mining to 

secure the network. 

Consensus is basically a distributed computing concept that 

has been around for a long time, and it has been used in 

blockchain as well in order to provide a means of agreeing to 

a single version of truth by all peers on the blockchain 

network. In our case, some of these nodes will verify and, if 

appropriate, validate the proposed security contracts 

according to an agreed-upon consensus process. 

The consensus architecture of our SCD blockchain is a 

master/slave type of architecture, where the master is the 

starting point of the validation process of a block. This 

process goes through several phases that are inspired by 

existing consensus mechanisms.   

The security contracts are created at the master level, which 

is considered as a block generator. At each SCs creation, the 

master is triggered to assemble them into a block as well as 

compute the Merkle root from the created SCs. The Merkle 

root will be digitally signed by the master in order for it to be 

considered as a candidate in the consensus process, then 

broadcasted over the blockchain network which will be 

picked up by a selected leader node to begin the validation 

process.  

The leader selection as depicted on figure 9, is a two-fold 

process. The first one is a pseudo-random selection of a node 

to prevent any selective censorship attack, which is done 

during each block validation phase. The second part is the 

identity validation of said selected node in order to confirm 
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Figure 9. Workflow of the consensus process in the SCD Blockchain. 
 

its election then become a leader. In order to help with the 

identity validation, each node that joins the SCD blockchain 

must create an ECDSA keypair. Since this is a permissioned 

network, all nodes will have to register their identity with the 

master in order to access the blockchain network. The master 

will make use of the PKI to support identity management and 

authorization operations during the whole block validation 

and commit phase.  

After the leader selection and proving its identity, the system 

will switch to proof of stake. The master will send a Trusted 

Nodes List (TNL) to the leader based on their stake in the 

network. The stake in the SCD blockchain is represented by 

the compute resources (RAM and CPU) of a node, and also a 

security score which is a score attributed to a VM/node 

according to the hosted trusted applications in it. Based on 

the sent said list from the master, the leader will choose a 

random group of validators (ensuring that no validator can 

predict its turn in advance) from it to validate and sign the 

new proposed block.  At this final stage, the validation 

becomes leader-less and only the chosen nodes will 

participate in it. A node is defined as an individual VM that 

holds a replicated copy of the SCD, and identified by their 

public keys. All nodes are capable of sending and receiving 

messages to and from each other. Nodes can be honest, 

faulty, or malicious. A node that can exhibit arbitrary 

behaviour is also known as a Byzantine node. This arbitrary 

behaviour can be intentionally malicious, which is 

detrimental to the validation phase.   

Since that the SCD network is a permissioned one, this led us 

to use a small consensus group over the need to achieve the 

decentralization of open and public blockchains such as 

Bitcoin or Ethereum. Therefore, the best consensus that fits 

our network is PBFT. It is an effective consensus protocol for 

providing high-throughput transactions without needing to 

worry about optimizing the platform to scale to large 

consensus groups. With the application of PBFT at this 

validation stage, the elected validators will have to commit 

new blocks in the blockchain. These validators participate in 

the PBFT consensus protocol by broadcasting votes which 

contain cryptographic signatures signed by each validator's 

public key. The signature is based on ECDSA scheme and 

makes use of the SECP256k1 curve, and it will also help 

identify the source of the exchanged message since that each 

node publishes their public key. 

The application PBFT on the SCD blockchain works on three 

stages in which nodes broadcast messages to each other. 

First, the pre-prepare stage consisting of a leader selection 

that has the Merkel root to commit. This stage has already 

been done by the master during the aforementioned election 

phase of the whole consensus. Next, the prepare stage 

broadcasts the Merkel root replica to be validated. All the 

state machine replication techniques require two major things 

on their replicas, that applies also on the broadcasted Merkel 

root replica in the SCD network. Replicas are required into 

being deterministic, where the execution in a given state must 

always produce the same result. Adding to that, Replicas 

must always start in the same state. With those two 

requirements, the PBFT guarantees the safety property by 

ensuring that all none byzantine nodes agree on a total order 

for the execution of requests despite failures. Finally, the 

commit stage waits for more than two third quorum of all the 

validators in a partially asynchronous model to confirm the 

proposed value before announcing that the value is 

committed. Once the leader has received two third 

endorsements from the validators for the master’ proposed 

Merkel hash, this value gets committed and the leader sends 

it to the master. The master in its turn will generate the block 

header, i.e. the timestamp and the block signature from the 

ones sent by the leader, making the block full-fledged to 

appended on the chain and committed to the ledger. It should 

be mentioned that PBFT can only tolerate up to a one third of 

Byzantine nodes, where failures can include arbitrary or 

malicious behaviour, thus validators will never commit 

conflicting blocks at the same height and the SCD blockchain 

will never fork. In the case of the one third faulty nodes are 

exceeded; the consensus process will fail and the master will 

be notified by the leader testifying that an agreement couldn’t 

be reached.  
 

3.3.3 SCD Blockchain synchronization  
 

As a new block is validated and added to the blockchain, it 

triggers a need of an update process at the level of the SCD 

and the SCD blockchain on the nodes. The master will send 

the new block and also the new created security contracts 

with its signature to nodes of the SCD network. The SCD 

update process arranges the nodes in a linear fashion so that 

each node will only receive the message from its predecessor 

and send it to its successor. This process balances the load 

among the nodes making the replication achieve the best 

throughput possible. When a node receives the incoming 
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message from the network, it will valid block according to its 

signature and then link it to the existing blockchain. To 

establish the link, the node will examine the incoming block 

header and look for the previous block hash to link it to.  

Consistency and integrity checks are done periodically by 

nodes to guaranty that the SCD is in sync and have the same 

entries, especially when the network may fail to deliver the 

attended message or act in a malicious way. Therefore, the 

consistency and verification checks use a kind of Byzantine 

fault tolerant model where the node sends a request for the 

last replica verification to several nodes, and receives a 

respond with only the digest of the result. The digest helps 

the node to check the correctness of the result against the 

digest its replica while reducing network bandwidth and CPU 

overhead. If the node computes a different result from the 

designated requested nodes, it will send a notification to the 

master requesting the up to date SCD. 
 

3.4 Application signature and identification  
 

As aforementioned, the application tag (App-Tag) represents 

an identification injected on the payload of an egress packet 

of the application that sent a request/response to another VM 

over the network. This tag is considered as a key field 

alongside the tenant tag to authenticate the outgoing traffic, 

so that it gets accepted or denied accordingly by the 

receiving VM. For a packet to contain this App-Tag, the 

application needs to be identified when it sends a request or a 

response over the network. This identification process needs 

to be done before sending any traffic out of the VM. 

Therefore, an approach was set for this purpose to identify 

the application from its signature on the payload of the egress 

traffic, then and once identified, create an App-tag for the 

purpose of authenticating and authorizing the ingress traffic 

by the receiving VM. 

The administrator is the one responsible of adding and 

attesting that an application is trustworthy.  The process of 

adding an application to the database of trustworthy 

applications i.e. AppDB, is an iterative process that needs 

refining to get the application identification right through its 

signature. An application signature is simply a pattern within 

the outgoing packet from an application or a task. Therefore, 

the process of identifying the App signature starts with the 

analysis of the 6-tuple of the outgoing packet using layer 3 

and 4 inspection, and going even to the seventh layer based 

on the application’s unique characteristics, in order to 

achieve granularity of visibility and control over the egress 

traffic. The five tuples are a reference to six different values 

that comprise a TCP/IP packet, which are; source IP address, 

destination IP address, source port number, destination port 

number, and payload. The engine behind the AppID tag is 

driven by a series of pre-determined contexts. These contexts 

use decoders to help identify applications and ensure the 

success of proper layer 7 inspection at the packet load level. 

The identification of the application layer protocol adopts 

characteristics provided by the packet inspection module, 

which is mainly based on regular expressions of match 

recognition which not only improves the matching speed but 

also increases the accuracy of matching.  

The packet inspection module relies heavily on Deep Packet 

inspection (DPI). DPI combines signature matching 

technology with the analysis of data in order to determine the 

impact of that communication stream, and identify the 

contents of each and every packet flowing through the 

network. It also takes packets apart to examines the data part 

of the packet, comparing it with a set of criteria, searching 

for pre-defined characteristics, making a decision based on 

the detected content, and then re-assembles the packet. In 

most use case of DPI, successful pattern matches are reported 

to a managing application (in our case the master agent – see 

the next section) for any appropriate further actions to be 

taken. The packet inspection process in our case is split in 

two phases. The first one is a shallow inspection or what is 

called also a stateless inspection. It focuses on a simple 

detection technique by only analysing the IP packet’s source 

IP address, destination IP address, port source, port 

destination, protocol type. This phase renders the 

infrastructure’s visibility limited only from layer to 2 to layer 

4. Thus, the introduction of the second phase which is DPI, 

stems from the need of filling the void that the shallow 

inspection has, by pushing the visibility up to layer 7, and 

being able to see and understand the traffic up to that level. 

This is done adding functions that analyses the application 

layer which can identify the various applications and their 

contents on that bases, making this phase more like an 

application centric inspection.  

As aforementioned, the detection of an application relies on 

the detection of its signature on the packet.  In their most 

broad sense, signatures are pattern recipes which are chosen 

for uniquely identifying an associated application (or 

protocol) [34]. When a new application or protocol is added, 

it is analysed and an appropriate App-tag is generated and 

added to the AppDB. Those pattern recipes that represents a 

signature of a particular application are detected through a 

search for known sequences of bytes of for regular 

expression matches on the packet. In order to make this 

search faster, it is limited to only specific parts of the packet. 

The analysis of the packet is done in two ways; analysis by 

numerical matches and analysis by string matches. The 

analysis by numerical matches involves the search of 

numerical characteristics within a packet such as IP 

addresses, port numbers, payload length, etc. On the other 

hand, the string-matching analysis is a search for a sequence 

of textual characters, numerical, or even several strings 

distributed within the content of the packet, such as the 

protocol type or the payload. 

The process of detecting and identifying an application 

should be as fast as possible, since a lot of packets will be 

flowing through this module. [35] has showed that almost all 

application signatures begin and end at the first 32 bytes of 

the payload, hinting that a lightweight approach using only a 

small portion of payload could be viable. The approach of 

lightweight payload inspection is not something new: In [36], 

the authors talk about the traffic classification approach of 

NetPDL [37] as “lightweight”.  

Our main focus for this module is at the payload level where 

the inspection is similar to what is done by the libprotoident 

library. The four bytes of the payload will be compared 

against a known signature for the application, making a rule 

that will include specific characters for all four bytes. 

However, the particularity of this phase is to only inspect the 
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first outgoing packet and attempting to match it to the rules 

that have been set as a signature of a particular application. 

In fact, [35] has mentioned that the inspection of only few 

bytes in the first packet can still be successfully used for 

traffic classification by shifting the verification where the 

application protocol injects its headers.  

As aforementioned, writing an application signature is an 

iterative process. Ann application signature should be precise 

and cover all the needed scenarios. Therefore, an 

administrator is required to test the crafted signature 

meticulously before committing it. In our case, the 

application signature comes in the form of a json file as 

shown on figure 10 that comprises the following fields:   
 

 
 

Figure 10. Structure of an app signature. 
 

• Sig_id: Represents a unique ID for each signature 

application. Generally, this filed is generated 

automatically. 

• App_name: Represents a simply the name of the 

application. It is also used in the logs to identify the 

application when it is being detected. 

• Version: Represents the version of the signature. It is 

used as a revision for version control. 

• Description: Represents a textual description of the 

application. 

• Status: Represents the status of the signature. This fields 

can take three values: 

o Enabled: If set, it means that the signature is enabled, 

and the agent is allowed to parse it. 

o Disabled: If set, means that the signature is disabled for 

some particular reason. Therefore, the agent will not 

parse the signature since it won’t find it on the scoped 

signature list. However, the signature will not be 

deleted. 

o Decommission: If set, it means that the signature of an 

application is out of service. Therefore, the agent will 

never parse this signature again. 

• Src_ip: Represents the source IP address that is being 

used by the application. 

• Src_port: Represents the source port that is being used 

by the application. 

• Dst_ip: Represents the destination IP address that is 

being used by the application. 

• Dst_port: Represents the destination port that is being 

used by the application. 

• Proto_type: Represents the protocol type that is being 

used by the application. 

• Contents: Represents what should be detected within the 

payload that defines the application. The contents section 

may have as many content sub-sections as needed. The 

content entry is defined by the following parameters:  

o Offset: Represents which byte will be the starting point 

on the payload where the search for a content should 

begin.   

o Depth: Represents the offset where on the payload the 

search should stop. 

o Expr: Represents the expression that the module will 

match against on the payload. It can be a normal 

expression as well as a regular expression. The usage of 

the offset and depth parameter allows a very specific 

matching that would help process the regular expression 

in a faster pace on a small section of the payload rather 

than the whole payload.  

The application signature can be fine-grained to the extent of 

making an application signature specific to a certain type of 

traffic. For instance, a signature can be made specifically for 

a download traffic going towards a web application. 

Therefore, upload requests won’t be going towards the web 

application, since they don’t have their own signature, hence 

no App-tag created for this traffic.  

It should be noted that the AppDB implements also the same 

features of the SCD blockchain. However, the database is 

only shared between the master(s) and the appropriate VM 

that hosts those trusted applications, rather than being shared 

with the whole VMs within the tenant. 
 

3.5 Policy Management 
 

In general, a Policy-based management (PM) is an 

administrative approach that is used to simplify the 

management of a given endeavour by establishing policies to 

deal with situations that are likely to occur.   

In our case, the PM is the module responsible for handling 

outbound/inbound IP packets, in order to process them 

accordingly (such as processing the frame tag or the Security 

Contract, inbound packets...). The output of the policy will 

be one of two actions -Allow, or Deny-.  If the output of the 

policy is discarded, the packet is dropped or rejected 

according to the configuration done by the admin. Otherwise, 

the packet is passed up to the next layer for further 

processing. The protection afforded by the agents is defined 

by a database called the PM Database (PMdb). This database 

is maintained by an administrator who interacts with it for all 

policy-related managements. This module is checked by the 

agent to define the required processing of each outbound or 

inbound packet. This processing is generally, either choosing 

a particular security contract for an egress traffic, processing 

a traffic as an inter-VM one, allowing the traffic to its 

destination, or applying deeper processing. In order to reduce 

the overhead of checking those policies, there is a policy 

cache where most recent loaded polices are stored.  
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When a traffic occurs, IP packets are queued until being 

checked against the PM, where the following actions are 

performed: 

• If the policy indicates a packet needing to be denied, then 

the inbound IP packet is expected to be dropped or 

rejected. When a packet is refused, a reject policy is made 

so that the incoming packets from that host are dropped, 

because the host is considered compromised and a 

notification is sent to the administrator. Dropping the 

traffic can also be done at the vSwitch level, by send a 

rule add to the control of the SDN network if 

implemented. 

• If the policy indicates that the packet can be transmitted 

without any extra security processing, this means that the 

traffic is not inter-VM and the policy engine will allow 

the traffic to be transmitted without any processing nor 

frame tag injection.   

• If the policy indicates an inbound/outbound inter-VM 

traffic, the agent will be required to process the traffic 

accordingly, which will be detailed in the next section. 

Unlike SCD, the PMdb is not a shared database, but rather 

local and private to each agent/VM.  
 

3.6 The Agent 
 

The goal of the proposed approach is mainly to target some 

specific fields within the incoming/outgoing packets, in order 

to be analysed and act on them accordingly.  Therefore, we 

thought about using a comprehensive agent implementation 

embedded in every machine of interest [38]. Those agents are 

the backbone of the proposed approach in order to have a 

complete working cycle of an inter-VM exchange. The 

agents include similarities of a minimal and lighter IDS or 

firewall functionalities, since it has an essential aspect of 

access control as well as filtering. They are primarily 

responsible for enforcing the policies set by an administrator 

within the PMdb, and also crafting all the needed fields 

accordingly. As IP packets flow into a VM, the agent doesn't 

perform a whole packet analysis, but rather targets only 

specific fields of the IP packets and responds by an 

ACCEPT, DROP, REJECT or FORWARD, according to the 

PMdb and the AppDB. 

The architecture of the proposed approach can be can be 

viewed as a manager (master)/slave kind of architecture. 

However, the manager is not considered as a single point of 

failure, since the slave agents can function without any 

problem even though the manager is unreachable. Hence, the 

role of the manager can be considered as frontend offering an 

entry point to manage the slave agent cluster, its different 

features, databases, and blockchain. Consequently, when a 

worker agent is freshly deployed, it is configured to make a 

first contact with its manager and launch the discovery and 

synchronization process with the other agents.  The 

communication between the manager and the slave is done in 

a secure channel manage by a passwordless ssh connection, 

in order to prevent rogue requests to the manager or having 

some VMs impersonating the manager. Key rotation is used 

as a standard mechanism to ensure security of the key pairs, 

by periodically changing the encryption keys to thwart any 

attacks if the keys have been compromised. When a change 

of those key pair occurs, the manager sends a request to all of 

his slave agents in order to update their keys. The 

communication between the manager and its slaves is 

different from communication of the slave between them. 

When the agent receives a request from the manager, the 

packet holds a special management frame tag containing a 

masterTenant tag and matserApp tag, and there is no SC 

negotiation due to the encrypted channel between them. The 

manager has a mapping service that is used to document all 

the information about the slave agents. This service publishes 

IP addresses, identity certificates and the mode of each agent. 

All the slaves announce their presence by registering to this 

service when they first start up.   

Additionally, the agent has a within its PMdb a mode that is 

shared with its neighbouring agents within the same tenant 

via the manager’s mapping service. This agent mode can in 

fact take two distinctive values; full and quick. The 

administrator is responsible of defining the right mode for 

each machine/agent. This mode would have a direct impact 

primarily on the processing of an outbound traffic. Because, 

when a receiving machine/agent has is in quick mode for 

instance, this means that the process of deep packet 

inspection for the application signature detection would be 

skipped and the agent will only send only a tenant tag with 

the added frame field. Thus, making the inter-VM 

communication much faster. Conversely, if the agent is in full 

mode, the processing of the outbound packet will be in done 

in full and phase will be skipped. 

In order to have an optimal agent' behaviour on what action 

should be done when a packet is received, we introduced a 

flag at the beginning of the payload. This flag is a set of bits 

that is passed between agents in order to perform various 

actions depending on its value. Thus, it defines the type of 

data carried within the payload by taking one of these values:  

• Enrolment flag – occurs when a new agent is added to 

the cluster. The manager will try to sync the slave agent 

with all the needed data. 

• Discovery flag – is exchanged between agents when 

enrolled in order to be discovered by other peers on the 

network and be added as well on their respective lists. 

• Update flag – is generally sent by the manager to signal 

an update is occurring. This can be at the level of the 

policy management database, security contract database, 

etc 

• Handshake: is considered as a flag initiating a new 

communication, letting the receiving agent what fields to 

expect within the payload. 

• Data flag: is simply a flag indicating that the payload 

holds an application data.  

At the first run of a slave, it will send a request to its manager 

in order to retrieve its related information and be in sync. A 

tenant can contain several machines and accordingly several 

agents. Hence, a freshly deployed slave agent needs to 

recognize its neighbouring agents within the same tenant, as 

well as the sync of the shared ledger and databases. 

Therefore, comes the role of the flag field. As mentioned 

before the flag affects the agent' behaviour, when a slave 

agent is newly deployed it sends a request to its manager in 

order to enrol itself and receive its tenant tag, information 

about its neighbouring agents (IP address and trust level), 



161 
International Journal of Communication Networks and Information Security (IJCNIS)                                           Vol. 11, No. 1, April 2019 

 

 
 

Figure 11. Egress traffic processing workflow. 
 

populating its SCD with the SCs created so far and sync its 

blockchain consequently. The sync basically is done via 

gossip protocol to ensure that data is routed to all members. 

After this, the new salve agent sends a message with a 

discovery flag, so that the neighbouring agents within the 

same tenant add it to their list of agents. The mode of a new 

agent is set by default to quick mode but it can be changed 

via the console management on the manager agent by the 

admin if needed. When a change of the mode occurs, the 

manager agent sends a message with an update flag to the 

designated slave agent in order to update its mode. 

Consequently, this designated slave by its turn will send a 

message to its peers with a discovery flag so that they update 

their list of agents. 

The implementation of distributed agents comes to relieve 

the hypervisor from a bottleneck filtering, introspection 

which is a technique that helps monitor the state of VM's 

running on a hypervisor [39], and other security mechanisms. 

Hence, adding another security level, but with an enhanced 

focus on the tenant and its VMs, by adding another layer of 

application-based authentication via the frame tags. The 

proposed agents act like a light weight security gateway or an 

IDS, more specifically like a Stack based IDPS as if it was an 

independent device, where the packets are examined as they 

go through the TCP/IP stack and, therefore, it is not 

necessary for them to work with the network interface in 

promiscuous mode. The protection offered by this approach 

is based on requirements defined by the security policy 

(trusted applications, mode, SC, PMdb) established and 

maintained by an administrator, which afterward is translated 

to an allow or a reject of the traffic accordingly. The integrity 

of the agents is of the utmost importance. Hence operating 

wise, they are executed in a privileged domain which the 

Ring 0. Subsequently, the agents would be safer from being 

controlled by any malicious application running within the 

VM or any unauthorized users, and also enabling high 

performance input/output at the network level. 

To sum up, the agent interacts closely with the transport, 

network layer and application layers. It is designed to 

efficiently implement the following capabilities: 

• Ability to inject fields at the beginning of the payload to 

outbound packets via packet crafting. 

• Ability to analyse and inspect packets via DPI then 

decapsulate the payload from the injected filed(s) in the 

case of inbound traffic and send it to the appropriate 

application.  
 

3.6.1 Egress/ingress inter-VM traffic workflow 

processing: 
 

When an outbound traffic flows within an agent (see figure 

11), its workflow goes through several stages which are 

governed by a set of policies that needs to be enforced.  

The first station that the packet arrives to through the packet 

capture is the shallow inspection. This inspection targets only 

the IP header, and more specifically the IP destination. The 

IP destination matching has two scenarios; either the traffic is 

going outside of the network of the agent or it is an inter-VM 

traffic i.e. an IP destination address of another agent within 

the same tenant. In the case of the later, the agent will check 

the mode of the destination agent. If the receiving agent is in 

quick mode, the traffic will go directly to the packet crafting, 

where only the tenant tag will be injected. Then, the packets 

get to be sent to the destination VM. However, if the agent is 

in full mode, the traffic will go the packet inspection stage, 

where the application within the traffic will be matched 

against the application signatures database. If matched with a 

signature, the traffic will go to the packet crafting in order to 

inject the tenant and the application tags unlike the quick 

mode.  Then, the traffic gets to be sent to the destination VM. 

Moreover, if the application didn’t match any signature 

during the packet inspection, the traffic will be dropped, 

logged and a notification will be sent to the admin for further 

investigation, which mostly can be due to an application 

signature testing, a new application, a malicious application 

or simply a false positive, etc. 

Similar to the outbound traffic, inbound traffic (see figure 12) 

goes through the same main station as well to enforces 

different policies. First, and via the packet capture, the traffic 

will flow through the shallow inspection to verify its origin 

by verifying its IP source. In the case of a traffic coming 

from the outside of the agent’ network, the packets will be 

sent directly to their destination. However, in the case of a 

traffic coming from a peer agent within the same tenant, the 

traffic goes through the next phase which is packet 

inspection. At first, the inspection goes through injected 

payload flag and check its nature. In the case of a flag value 

different from the data flag, the packet will be sent to the 
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Figure 12. Ingress traffic processing workflow. 
 

agent. Otherwise, the inspection will translate to the next 

field, which is the frame tag or session token to be matched. 

The session token matching is pretty straightforward, where 

the token will have to match to the saved current token 

session. As for the frame tag, the inspection in this case 

depends on the agent’ mode. Since during the quick mode, 

the injected field in only the tenant tag, thus it will be the 

only one to be verified and matched. However, in the case of 

a full mode, the inspection will have to go through the two 

fields of the frame tag; the tenant and application tag. Once a 

successful matching occurs, the traffic will go to the packet 

crafting phase, where the packets will get stripped of the 

injected fields at the level of the payload.  On the other hand, 

if the frame tag or the token didn’t match, will result with a 

refusal of the inbound traffic and send a notification to the 

admin. Hence, the packets and according to the admin’ 

configuration, can be dropped or rejected. When rejected, the 

agent sends an explicit notification back to the sending agent 

of a closed connection. However, when the packets are 

dropped, the agent will simply discard the packets and sends 

no response to the sending agent. If DROP is chosen as a 

strategy for refusing noncompliant packets, the packets and 

with the help of SDN, can be dropped at the level of the 

vSwitch, thus reducing the overhead of processing knowingly 

refused packets. 
 

3.6.2 Packet crafting: 
 

 
 

Figure 13. Inter-VM Packet crafting processing. 
 

The packet crafting phase as shown on figure 13, is not 

straightforward as its preceding ones, since its processing can 

be a bit different depending on the inter-VM exchange 

stages. When an inter-VM communication occurs, there is 

the initiation of two distinct handshakes from the 

communicating agents that needs to take place first. Those 

handshake (Figure ,13 -1-) (Figure ,13 -2-) are in the form of 

a payload that encompasses relative fields and data in regards 

to the current opened communication session. The first 

injected field during the handshake phase is a flag. The value 

that this flag is going to hold in this case is ‘Handshake’, 

since it is a communication initiation between the two agents 

with the negotiated information. After that, comes the 

security contract ID, which is an ID of the SC chosen 

(randomly or according to the policy) by VM/Agent ‘A’ 

letting the VM/Agent ‘B’ know which encryption key and 

algorithm that will be used to communicate with it. As 

aforementioned, the SCs are stored in a shared database 

between the agents, therefore the VM/Agent ‘B’ will refer to 

the SCI-1 and use it to encrypt the communication with 

VM/Agent ‘A’ accordingly. It should be noted that the 

VM/Agent ‘B’ will also inject its own security contract ID so 

that the VM/Agent ‘A’ know in its turn which encryption 

keys and algorithm that will be used to communicate with it. 

The injection of the frame tag comes next, which its structure 

depends on the agent ‘B’ mode. In the case of a quick mode, 

only the tenant tag will be injected, however if it is a in full 

mode, then both tenant and application tag will be injected as 

the frame tag filed. Once those three first fields are created, 

they will be combined with a time stamp and get hashed to 

serve as the token for the current session. When the token is 

created, this triggers the encryption of the frame tag and 

token according to the chosen security contract (SCI-1). 

Similarly, and since it is a bi-directional handshake, The 

VM/Agent ‘B’ will encrypt its generate frame tag and token 

according to the chosen security contract (SCI-2). The 

randomness of choice of the security contract is reflected 

directly on encryption of the frame tag and the token, which 

are considered as key fields for the integrity of the 

communication between the two agents. This randomness 

would also help to hinder the likelihood of payload 

tampering by a malicious user or a man in the middle. 

When an agent receives a packet having a handshake flag, it 

triggers the process of a communication initiation for the 

receiving agents. Consequently, the agent will then determine 

which security contract has been chosen in order to decrypt 

properly the frame tag and the token, then authenticate the 

frame tag and store the token for a further verification. 

Once a successful handshake is reached, the agent ‘A’ will 

send the application’ request data to VM ‘B’. However, this 

time the injected flag will hold a different value which will be 

DATA, since it is simply data that is being communicated 

from a trustworthy application hosted on a VM to another 
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VM. In addition to the flag, the packet crafter will encrypt 

the previously generated session token (token-1) as a 

signature and inject it to the payload. This will help the 

receiving agent to not only authenticate the traffic but to 

authorize it as well by checking the value of the session token 

with the stored and exchanged one from the handshake 

phase. Once verified and validated, the agent will decapsulate 

the payload from the flag and the token, then send the data to 

the application of interest. The communication between the 

two VMs/Agents from now on will take the same format, 

which is injecting the DATA flag and their respective session 

token to the payload.  

The lifespan of the session is determined by the ‘busy/idle’ 

lifetime of the security contract which was determined during 

its creation. Once a lifetime is reached, a connection 

handshake must be renegotiated. In order to have an optimal 

communication session between the VMs/Agents, it is 

recommended to configure the policy of the agent on what 

security contracts to be used (i.e. an optimal busy/idle 

lifetime) for a specific traffic going towards a particular 

agent/VM/application. 
 

3.6.3 Agent implementation:  
 

The agent is the cornerstone of the proposed approach since 

it does implement the different blocks of packet processing 

and make them stick together in a cohesive environment. The 

implementation of the said agent should take under 

consideration a huge factor, which is traffic latency because 

all the ingress/egress traffic will flow through the agent.  

In a general sense, each packet is processed layer by layer. 

For instance, in an ingress scenario, the network flow goes 

through the network card first so that it will be sent to RX, or 

a receive queue. Then, the packet gets copied to the main 

memory via the Direct Memory Access (DMA) mechanism. 

After that, the system has to be informed that a new packet is 

going through, and pass the data onto an allocated buffer. 

This is a special buffer that Linux systems allocate for every 

packet, and in order to do so, Linux uses an interrupt system 

which is generated several times when a new packet enters 

the system. The network stack in Linux offers a complete 

implementation of the TCP/UPD protocols, as it was 

showcase more in details of this implementation in [40]. 

After going through the transport layer, the packet can finally 

be delivered to the userspace by taking on the data that got 

copied from the buffer using the NAPI [41], last visited: July 

2014 to start a poll loop if one was not running already, in 

order to have a full access to that data by the application that 

should receive the packet. 

As aforementioned, the implementation of the agent has to 

take under consideration major latency issues during the 

processing of flowing packets. However, by looking at the 

normal flow of a packet and how it is processed, it became 

apparent that there are some issues that might hinder the 

proper functioning of the agent. For instance, the network 

card works in interrupt mode that might affect severely the 

overall agent performance as well as the system. When a 

packet enters the network interface, it registers itself in a poll 

queue and disables the interrupt. Consequently, the system 

periodically checks the queue for new devices and gathers 

packets for further processing. As soon as the packets are 

processed, the card will be deleted from the queue and 

interrupts are again enabled.  Additionally, in a virtual 

environment, the VM Kernel is relying on the physical device 

to generate these interrupts to process network 

inputs/outputs. Therefore, the processing in a VM will suffer 

from additional delays on the entire data plane from the 

physical network interface to the guest machine. Another 

issue, is related to the buffer that is allocated for each packet 

and becomes free each time a packet enters the userspace. 

This operation does consume a lot of bus cycles, since there 

is a frequent data transfer from the CPU to the main memory. 

Adding to this, the Linux network stack was designed to be 

compatible with as many protocols as possible, which makes 

all of their metadata get included in the buffer for the purpose 

of processing the packet. All of these metadata are not 

necessary for processing specific packets making it slower 

than it could be. In addition to this, context switching also 

affects negatively the performance. This context switching 

happens when an application in the userspace needs to send 

or receive a packet. The application has to execute a system 

call, which means a switch to the kernel mode and then back 

to the user mode.  

The implementation architecture of the agent has to take 

under consideration the aforementioned issues and mitigate 

them. Therefore, one of the architectures taken under 

consideration for the agent is fast path architecture, where the 

data plane is split into two layers. The first layer is called fast 

path. It is a layer that processes the majority of the ingress 

traffic that is coming outside of the OS, without suffering 

from the OS overheads that decrease the overall 

performance. The second layer resides on the OS networking 

stack, and take on only the packets that require complex 

processing. This layer performs the necessary and needed 

operations on the packet.  

This fast path architecture influenced the implementation 

architecture of the agent to be split in tow: an agent backend 

and an agent frontend as depicted on figure 14.  
 

 
 

Figure 14. Agent (front and back end) placement. 
 

The frontend agent primarily performs inputs/outputs 

operations via the physical device and also accepts 

inputs/outputs requests from the backend agent. Additionally, 

it reduces the per packet system call and also focuses on 

moving packets from the kernel space towards the userspace 

i.e. the backend agent. In contrast, the backend agent accepts 

inputs/outputs requests from the kernel space i.e. the frontend 

agent, as well as transferring them back to it. It is also 

responsible for preforming packet processing as 

aforementioned in the section before, and packet generation 

according to the enforced policies against the egress/ingress 

traffic.  
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Figure 15. Architecture of Intel Dataplane Development Kit 

(DPDK). [42]. 
 

To help with implementation of the fast path architecture on 

the agent, the choice has fallen on Intel Data Plane 

Development Kit (DPDK) [43] [44]. In fact, DPDK enables 

fast packet processing for data plane applications. As it is 

shown in figure 15, its architecture provides a set of data 

plane libraries and network interface controller drivers to 

have basic Linux network stack functions for fast packet 

processing, as well as the optimization for memory/buffer 

allocation and mapping. DPDK provides a programming 

framework for several processor architectures, and enables 

faster development of high-speed data packet networking 

applications. This can help to write networking applications 

i.e. the agent that work entirely in the userland with no 

system calls in order to bypass the heavy layers of the Linux 

kernel networking stack and communicating directly to the 

network hardware. Additionally, DPDK implements a low 

overhead run-to-completion model for fast data plane 

performance and accesses devices via polling to remove the 

latency of interrupt processing at the trade-off of higher CPU 

consumption. It should be noted that polling is very 

advantageous when interrupts are frequent, since there will 

be a noticeable overhead associated with each interrupt due 

to the aforementioned back and forth switching from the user 

mode to the supervisor mode. In the context of a VM, the 

driver and the application will constantly busy-looping for an 

input/output to be available. Therefore, an application in the 

guest OS can process the Inputs/Outputs near realtime 

instead of waiting for an interrupt to happen. This in fact will 

enable a lower latency and a higher Packer Per Second rate. 

On the other hand, each poll is generally only a check for a 

value on a specific memory address.  Consequently, the agent 

implements via DPDK the Poll Mode Drivers (PMD). The 

PMD consists of APIs that configure the devices and their 

respective queues. It accesses the RX and TX descriptors 

directly without any interrupts to receive, delivers and 

process packets in a faster pace.  

By implementing DPDK in any application, the massive 

network traffic will usually be handled through Environment 

Abstraction Layer to have fast access to hardware and 

memory. The Environment Abstraction Layer (see figure 15), 

or EAL is the main concept behind the DPDK. EAL is a set 

of programming tools that let DPDK gain access to lower-

level resources such as hardware and memory space. It offers 

a generic interface that hides the details of the environment 

and provides a standard programming interface. It is also 

responsible of a frequent initialization to decide how to 

allocate resources such as memory space, PCI devices, 

timers, etc. Common use cases are around special solutions 

for instance Network Function Virtualization and advanced 

high-throughput network switching that we can find in SDN. 

Technically, EAL achieves physical memory allocation by 

using mmap () in hugetlbfs through the usage of huge page 

sizes to increase performance. In fact, it is what binds DPDK 

to applications, since they must include its header files. The 

most commonly of these include: 

• rte_lcore.h — manages processor cores and sockets; 

• rte_memory.h — manages memory; 

• rte_pci.h — provides the interface access to PCI address 

space; 

• rte_debug.h — provides trace and debug functions 

(logging, dump_stack, and more); 

• rte_interrupts.h — processes interrupts. 
 

 
 

Figure 16. Agent implementation through DPDK in a VM. 
 

The main part of the agent as shown on figure 16, runs in the 

userland using the pthread library. Additionally, PCI 

information about devices and address space are discovered 

through the /sys kernel interface and also via kernel modules 

such as uio_pci_generic, or igb_uio, etc. The sheer amount of 

processing that the agent has to do is backed by the DPDK, 

since it can achieve a very low latency by completely 

bypassing the kernel layer, where the PMD quickly delivers 

them to the agent making the TX path as well the RX path 

are equally fast.   

The first station that a packet goes through in the agent is the 

ring buffer that acts as a receiving queue, where the agent 

periodically checks that buffer for new incoming packets. 

Packets received in the DPDK are also sent to a queue 

implemented on the rte_ring library. In the case of packet 

descriptors existing within the said buffer, the agent will refer 

to DPDK packet buffers in the specially allocated memory 

pool using the pointers in the packet descriptors. However, in 

the case of an empty buffer, the agent will queue the network 

device under the DPDK and then refer to the ring again.  

The adoption of DPDK for the agent helps tremendously to 

implement its two major backend functionalities: packet 

inspection and packet crafting. The packet capture/analysis 
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relies on a libpcap-based PMD, and more specifically on the 

librte_pmd_pcap as shown on the figure 16, that reads and 

writes packets using directly libpcap. When the agent wants 

to start capturing packets, the library registers a callback-

function into the PMD to capture from, whether it is the RX 

or TX PMDs or together. This is where resides the 

aforementioned packet inspection that enforces the detection 

of application according to their signatures. When an inter-

VM traffic occurs via a trusted application, the packets need 

to go through the packet crafting module in order to 

unencapsulate the payload from the frame tag. This feature is 

implemented as shown on the figure 16 via pktgen-dpdk, 

which is a traffic generator that is powered by the DPDK fast 

packet processing framework. The pktgen-dpdk is capable of 

generating 10Gbit wire rate traffic with 64-byte frames in 

sequence by iterating IP addresses, MAC or ports destination 

or source. It also can handle packets with several protocols 

such as MPLS. GRE, TCP, UPD, ARP, ICMP, etc. At the 

frontend agent side, there is the usage of raw_socket to 

receive data packets and send them to the backend agent by 

bypassing the normal TCP/IP protocols, offering a sort of a 

fast lane for packets to be sent and processed by the backend 

agent.  
 

4. Conclusion  
 

CC has emerged as a promising IT services provisioning 

paradigm. It encompasses many technologies including 

networks, virtualization, operating systems, resource 

scheduling, databases, transaction management, etc. 

Therefore, security issues for many of these systems and 

technologies remains very much current issues in a CC 

environment. For instance, VLAN isolation could be 

bypassed via several techniques. For those techniques, we 

could find VLAN hopping, which is basically attacking a 

host on a VLAN to gain access to traffic on other VLANs 

that would normally not be accessible. There is also VM 

jumping, that exploits vulnerabilities in hypervisors that 

allow malware or remote attacks to compromise VM 

separation protections and gain access to other VMs. 

Consequently, our proposal addresses mainly the inter-VM 

traffic visibility and authentication by proposing a protocol 

that processes and controls such traffic.  

The approach relies on introducing a frame structure at the 

payload, to fill the security gaps where mostly the isolation 

breach occurs. This frame called frame tag that holds the 

proper credentials which are the tenant and the application 

that sends the IP packet, providing data origin authentication 

and integrity. The processing of such frame tag is done 

through embedded agents within the machine of interest 

which are able to generate, capture and analyse this said 

frame and respond to it by an automated acceptance or 

refusal. The implementation of the agent was done with 

DPDK to ensure a high throughput due to the amount of 

traffic that needs to be processed by it. Additionally, to 

ensure the integrity and security of the frame tag, security 

mechanisms such blockchain and security contract we put 

and place, complimented by a policy directory to govern the 

overall all process. Since the authentication in our proposal is 

primarily application centric, we also introduced a way of 

detection applications in an exchanged IP packet relying on 

application signature mechanisms. In order to make the 

approach informant, the agent logs and events can be fed to a 

Security Information Even Management [45] for a thorough 

and better response in the case of breaches or malicious 

behaviour. An adaptation of this approach can be envisioned 

as future work for not only VMs but rather extending it to 

containers as well. 
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