
148
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Application-Based Authentication on an Inter-VM

Traffic in a Cloud Environment

Karim Benzidane, Sâad Khoudali, Leila Fetjah, Said Jai Andaloussi and Abderrahim Sekkaki

Computer Science Department, Laboratory of Research in Computer Science and Innovation

University Hassan II, Faculty of Sciences Ain Chock, Casablanca, Morocco

Abstract: Cloud Computing (CC) is an innovative computing

model in which resources are provided as a service over the

Internet, on an as-needed basis. It is a large-scale distributed

computing paradigm that is driven by economies of scale, in which

a pool of abstracted, virtualized, dynamically-scalable, managed

computing power, storage, platforms, and services are delivered on

demand to external customers over the Internet. Since cloud is often

enabled by virtualization and share a common attribute, that is, the

allocation of resources, applications, and even OSs, adequate

safeguards and security measures are essential. In fact,

Virtualization creates new targets for intrusion due to the

complexity of access and difficulty in monitoring all

interconnection points between systems, applications, and data sets.

This raises many questions about the appropriate infrastructure,

processes, and strategy for enacting detection and response to

intrusion in a Cloud environment. Hence, without strict controls put

in place within the Cloud, guests could violate and bypass security

policies, intercept unauthorized client data, and initiate or become

the target of security attacks.

This article shines the light on the issues of security within Cloud

Computing, especially inter-VM traffic visibility. In addition, the

paper lays the proposition of an Application Based Security (ABS)

approach in order to enforce an application-based authentication

between VMs, through various security mechanisms, filtering,

structures, and policies.

Keywords: Cloud Computing, Security, Inter-VM, DPI, DPDK,

Blockchain, Inter-VM traffic, Virtualization.

1. Introduction

According to ISO subcommittee 38, the CC study group,

Cloud Computing (CC) is a paradigm for enabling

ubiquitous, convenient, on-demand network access to a

shared pool of configurable cloud resources accessed through

services which can be rapidly provisioned and released with

minimal management effort or service provider interaction

[1].

It has successfully managed to advertise itself as one of the

fastest growing service models. For organizations, the clouds

per-use approach provides tangible relief from hardware or

software investments by offering a pay-for-service model. As

an extension of Grid Computing and Distributed Computing,

CC aims to provide users with flexible services in a

transparent manner. The benefits of CC include greater

resource access, dynamic scaling, and improved costs, along

with the ease of automated management for resources and

performance. Consumers adopt cloud computing to reduce

infrastructure overhead, adjust service levels to meet

changing needs, and to quickly deliver applications. CC

relies on multi-tenant environments where multiple clients

are served by one software instance. It offers scaled

performance and services based on shared resources,

including databases, other applications, and OSs.

For some organizations, this leaves them open to a variety of

threats both from inside the firewall, as in the case of a

private cloud, and from outside. The major roadblock to full

adoption of CC has been concern regarding the security and

privacy of information. Furthermore, attackers can exploit

the large amount of resources in a cloud for their advantage.

Network security is an important subject that is defined by

protection of valuable resources such as services and

information in the network. An intrusion is a group of actions

that try to affect this security and consequently damage

confidentiality, integrity or availability of resources.

Therefore, providing security in a distributed system requires

more than user authentication with passwords or digital data

transmission.

In fact, due to it distributed nature, CC makes it an easy

target, vulnerable and prone to sophisticated attacks. Often

the most utilized technology to implement a Cloud

environment is virtualization with a massive multi-tenancy

usage; it opens a door to a whole other level of security

issues. The security factor of a CC infrastructure is an

important one. In this case, we need to look into the Cloud

environment (Network, Systems and applications) in a very

deep manner to keep it informant, that will help to prevent

security and performance disruptions which can destroy and

compromise smooth transactions, and since the main concept

of the CC is to allow end users to execute various

applications in on-premise or off-premise resources, most of

them are shared in a virtual environment creating new

security and performance challenges leveraging attacks to be

launched from compromised Virtual Machines (VM) that can

damage the ability to serve all end users demands. In a virtual

environment, there are several VMs hosted on a single

physical server or hypervisor, where communication level

issues can be identified either at the network level, host level

and application level [2]. VMs generally inter-communicate

with each other’s via virtual switch without leaving the

server, and this introduces the network blind spot letting any

network security appliance set on the LAN blind to any

communication between VMs and this could be within a

single host and also across physical servers. If the traffic

doesn’t need to pass through that security appliance mostly a

firewall, opening a loophole for all sorts of security attacks.

Thus, the starting point of an attacker is compromising only

one VM and using it as a springboard to take control of the

other VMs within the same hypervisor (a technique called

VM hopping or jumping) and this is generally done without

being monitored or detected, giving the attacker a huge hack

149
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

domain.

The remainder of this paper is organized as follows: in the

next section, we discuss some Cloud computing security

issues, and more specifically in regards to virtualization,

Software Defined Networking (SDN), and some basics of the

blockchain. The third section presents the layout of the

proposed approach, its various components, operations, and

implementation. The last section contains a summary and

conclusions.

2. Background

Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers,

storage, applications) delivered as a service. It is a disruptive

technology that has a direct impact into enhancing

collaboration, agility, scaling, availability, and provides the

opportunities for cost reduction through optimized and

efficient computing.

2.1 Cloud Computing Security Issues

As widely known, virtualization is the key technological driver

behind the huge success of CC. Initially driven by the need to

consolidate servers to achieve higher hardware utilization rates,

boost operational efficiency, and cut costs, companies have

implemented virtualization to get on-demand access to CC. This

access can result in the creation of multiple VMs out of a single

physical server. One of the outstanding properties of

virtualisation is its ability to isolate co-resident Operating

Systems (OSs) on the same physical platform. While

isolation is an important property from a security perspective,

co-resident virtual machines (VMs) often need to

communicate and exchange a considerable amount of data.

Additionally, Multi-tenant infrastructures typically offer

scaled performance and services based on shared resources,

including databases, other applications, and OSs.

Since each VM is itself a virtual server comprising a guest OS,

middleware, application and data, virtualization comes with new

challenges; new attack surface at the hypervisor level, as well as

an important impact on network security. It should be noted that

VMs communicate over a hardware backplane rather than a

network. As a result, the standard network security controls are

blind to the overlay traffic and cannot perform monitoring or in-

line blocking. In terms of actual threats to a virtualized

environment [3] [4], these fall into a number of categories,

cantered mostly on the hypervisor, which leaves some

organizations prone to a variety of threats [5] [6].

• Lack of data interoperability standards: It results into

Cloud user data lock-in state. If a Cloud user wants to shift to

other service provider due to certain reasons it would not be

able to do so, as Cloud user's data and application may not be

compatible with other vendor's data storage format or

platform. Security and confidentiality of data would be in the

hands of Cloud service provider and Cloud user would be

dependent on a single service provider.

• Cloud data confidentiality issue: Confidentiality of data

over Cloud is one of the glaring security concerns.

Encryption of data can be done with the traditional

techniques. However, encrypted data can be secured from a

malicious user but the privacy of data even from the

administrator of data at service provider's end could not be

hidden. Searching and indexing on encrypted data remains a

point of concern in that case.

• Network and host-based attacks on remote Server:

Host and network intrusion attacks on remote hypervisors are

a major security concern, as Cloud vendors use VM

technology. DOS and DDOS attacks are launched to deny

service availability to end users.

o ARP Attack: ARP lacks very much when it comes to

security, a malicious user is able to use a forged IP address

of Layer 3 and MAC address of Layer 2, there is no way to

verify those forged details in ARP. The malicious user

identifies him as a legitimate user and starts to use

resources available on the network. It’s even possible to

transmit ARP packets to a device in a different VLAN

using those forged details.

o VLAN Hopping Attack: VLAN hopping works by

sending packets to a port which should not be accessible.

Basically, in VLAN hopping attack there are two types. The

first one is switch spoofing happens when a malicious user

tries to configure a system to spoof itself as a switch by

matching itself to 802.1q or ISL. The malicious user is able

to spoof the switch with help of (Dynamic Trunk Protocol)

DTP signalling. The other type is double tagging, which is

a method involves tagging transmitted frames with two

802.1q headers, one of the headers is used for Victim

switch and another is used for the attacker’s switch.

o Private VLAN Attack: A Private VLAN is a feature in

Layer 2 which is used to isolate the traffic only at layer2.

When a layer 3, device such as a router is connected to a

Private VLAN, it supposed to forward all the traffic

received by the router to whatever destination it’s meant for.

Sometimes a malicious user might use it for his advantage.

o MAC Flooding Attack: MAC flooding attack is one of the

common attacks on a VLAN. In a MAC flooding attack,

the switch is flooded with packets of different MAC

address therefore consuming memory on the switch. During

the MAC flooding attack, switch starts to behave like a

“hub” where it starts to share the data with all the ports.

Thus, a malicious user is able to use a Packet sniffer to

extract the sensitive data.

• Virtualization security: Virtualization brings with it all the

security concerns (see figure 1) of the operating system

running as a guest, together with new security concerns about

the hypervisor layer, as well as new virtualization specific

threats, inter-VM attacks and blind spots, performance

concerns arising from CPU and memory used for security,

and operational complexity from “VM sprawl” as a security

inhibitor. New problems like instant-on gaps, data

comingling, the difficulty of encrypting VM images and

residual data destruction are coming into focus. Virtualization

has a large impact on network security. VMs may

communicate with each other over a hardware backplane,

rather than a network. As a result, standard network-based

security controls are blind to this traffic and cannot perform

monitoring or in-line blocking. Migration of VMs is also a

concern. An attack scenario could be the migration of a

malicious VM in a trusted zone, and with traditional network-

based security controls, its misbehaviour will not be detected.

Installing a full set of security tools on each individual VM is

150
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

another approach to add a layer of protection.

Figure 1. Virtual architecture, and its potential attack vectors

o Hyperjacking: Subverting the hypervisor or injecting a

rogue hypervisor on top of the hardware layer. Since

hypervisors run at the most privileged ring level on a

processor, it would be hard or even impossible for any OS

running on the hypervisor to detect. In theory, a hacker with

control of the hypervisor could control any virtual machine

running on the physical server.

o VM escapes: is a security attack designed to exploit a

hypervisor, it allows a hacker to gain access over the

hypervisor and attack the rest of the VMs. If the attacker

gains access to the host running multiple VMs, the attacker

can access the resources shared by the other VMs.

o VM Hopping/Guest jumping: is the process of hopping

from one VM to another VM using vulnerabilities in either

the virtual infrastructure or a hypervisor. These attacks are

often accomplished once an attacker has gained access to a

low-value, thus less secure, VM on the same host, which is

then used as a launch point for further attacks on the

system. Because there are several VMs running on the

same machine, there would be several victims of the VM

hopping attack. An attacker can falsify the SS user's data

once he gains access to a targeted VM by VM hopping,

endangering the confidentiality and integrity of SS. VM

hopping is a considerable threat because several VM’s can

run on the same host making them all targets for the

attacker.

o VM mobility/migration: enables the moving or copying of

VMs from one host to another over the network or by using

portable storage devices without physically stealing or

snatching a hard drive. It could lead to security problems

such as spread of vulnerable configurations. The severity of

the attack ranges from leaking sensitive information to

completely compromising the OS. A man-in-the-middle can

sniff sensitive data, manipulate services, and possibly even

inject a rootkit. As IS lets users create computing platforms

by importing a customized VM image into the

infrastructure service. The impact on confidentiality,

integrity, and availability via the VM mobility feature is

quite large.

o Inter-VM: In a traditional IT environment, network traffic

can be monitored, inspected and filtered using a range of

server security systems to try to detect malicious activity.

But the problem with virtualized environments provides

limited visibility to inter-VM traffic flows. This traffic is

not visible to traditional network-based security protection

devices, such as the network-based intrusion prevention

systems (IPSs) located in network, and cannot be

monitored in the normal way.

2.2 Multi-tenancy

Multi-tenancy in its simplest form implies the use of same

resources or application by multiple consumers that may

belong to same organization or different organization. The

impact of multi-tenancy is visibility of residual data or trace

of operations by another user or tenant. Multi-tenancy in

Cloud service models implies a need for policy-driven

enforcement, segmentation, isolation, governance, service

levels, and charge-back/billing models for different consumer

constituencies [7].

2.3 Software Defined Networking

According to the Open Networking Foundation (ONF),

“Software-Defined Networking (SDN) is an emerging

architecture that is dynamic, manageable, cost-effective, and

adaptable, making it ideal for the high-bandwidth, dynamic

nature of today’s applications.”. Although both virtualization

and Cloud predate SDN, the latter is now providing a reliable

and effective foundation for the growth and success of Cloud

business models. SDN is increasingly accepted as the path to

"cloud networking," meaning the transformation of networks

and services to support the use of cloud computing on a

massive scale. Navigating the various missions and

technology models of SDNs is critical to properly position

cloud services and realize advantages of cloud computing

[8]. The ONF lays out the architecture of SDN as an

architecture that “decouples the network control and

forwarding functions enabling the network control to become

directly programmable and the underlying infrastructure to be

abstracted for applications and network services”. According

to the ONF, the SDN architecture is:

• Directly programmable: Network control is directly

programmable because it is decoupled from forwarding

functions.

• Agile: Abstracting control from forwarding lets

administrators dynamically adjust network wide traffic

flow to meet changing needs.

• Programmatically configured: SDN lets network

managers configure, manage, secure, and optimize

network resources very quickly via dynamic, automated

SDN programs, which they can write themselves because

the programs do not depend on proprietary software.

• Open standards-based and vendor-neutral: When

implemented through open standards, SDN simplifies

network design and operation because instructions are

provided by SDN controllers instead of multiple, vendor-

specific devices and protocols.

• Centrally managed: Network intelligence is (logically)

centralized in software-based SDN controllers that

maintain a global view of the network, which appears to

applications and policy engines as a single (see figure 2),

logical switch. SDN Controllers receive instructions from

SDN Applications via Northbound APIs, and send other

instructions to "below" Devices via Southbound APIs.

Southbound APIs work in parallel with SDN Protocols,

like it is depicted in figure 2.

151
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 2. SDN architecture [9]

Open Flow Protocol is a standard and one of the ways of

achieving communication between controller and switching

infrastructure in SDN framework. Open Flow is standardized

through Open Networking Foundation (ONF) to achieve the

objectives of Increased Network Functionality, while

lowering operational expenses through simplified Hardware,

Software and Management. ONF through its working groups

responsible for the development of protocol, configuration

and interoperability testing [10].

2.4 Blockchain

Blockchain is a distributed ledger [11] (also called a shared

ledger, or referred to as Distributed Ledger Technology) that

is secured by different encryption techniques that provides an

integrity and availability of an information record without the

need for a verification by a centralized entity. As Blockchain

has started, it delivered trust (in a product, a transaction or

the integrity of data) far more efficiently and effectively than

any existing technology. Although it has existed since 2008

(as the basis for the Bitcoin cryptocurrency), its application

has expanded beyond the financial services realm towards

other fields pretty quickly.

Blockchain can be seen as a series of data blocks hence the

name [12], and each block is containing information about

events, transactions or any type of entries. Therefore, once

the block is recorded, the data in any given block cannot be

altered retroactively without the alteration of all subsequent

blocks. Each block is securely hashed and this hash is stored

in the next block which makes it nearly tamper proof. These

blocks are linked together into a chain and broadcast across

the network to various nodes to store into their own copy of

the ledger. This ledger is considered as shared/distributed,

which is a digital record of ownership that differs from

traditional database technologies, since it is replicated among

many different nodes in a peer-to-peer virtual private

network, and each transaction is uniquely signed with a

private key with no central administration nor storage. Before

adding a block to the chain, the block’s validity must go

through a consensus mechanism. The purpose of this

mechanism is to ensures that all participants of the distributed

ledger are on the same page. In a nutshell, a consensus is

defined as the full-circle verification of the correctness of a

set of transactions comprising a block. Thus, making it

difficult for hackers to introduce untrusted transactions (as

long as a majority of nodes are true), ensuring trust and

integrity without the need for a central authority eliminating

the risk of a single point of failure. In case of a breach

occurring, its location can be determined and isolated quickly

without impacting the rest of the network.

2.4.1 Consensus mechanisms:

Consensus mechanisms have been a topic of active research

for nearly three decades now, and way before the upcoming

of blockchain [13]. It is a mechanism that helps the update of

a distributed shared state in a secured fashion. Therefore,

distributing a shared state across multiple replicas in the

network is one of the common techniques used for achieving

fault tolerance in a distributed system but not its integrity. In

contrast, adding and validating the replicated shared state

should happen according to a pre-defined set of rules defined

by the state machine that should be executed on all the

replicas. This is what is called state machine replication,

where replication of state guarantees that the state is not lost

nor altered in one or more nodes. These replicas

communicate with each other to build what is called a

consensus and agree upon the irrevocability of the state after

a state change is executed. In the blockchain world, the

shared state is the distributed shared ledger and the state

transition rules are the rules of the blockchain protocol.

In Blockchain [13], consensus is accomplished ultimately

when a block’s entries have met the explicit policy rule

checks. These checks take place during the lifecycle of a

block, and include the usage of endorsement policies to

dictate which specific nodes must endorse a block, as well as

a business logic to ensure that these policies are enforced and

upheld. Prior to commitment, the peers will use these

business logics to make sure that enough endorsements are

present, and that they were derived from the appropriate

nodes. After that, a versioning check will take place during

which the current state of the ledger is agreed or consented

upon, before any blocks are appended to the ledger. This

final check provides protection against threats that might

compromise data integrity.

In general, a consensus protocol has three major key

properties based upon which its applicability and efficacy can

be determined.

• Safety/consistency – A consensus protocol is determined

to be safe if all nodes produce the same output and the

outputs produced by the nodes are valid according to the

rules of the protocol.

• Liveness - A consensus protocol guarantees liveness if all

non-faulty nodes participating in consensus eventually

produce a value.

• Fault Tolerance – A consensus protocol provides fault

tolerance if it can recover from a byzantine node

participating in consensus.

The most known use case of blockchain is bitcoin, which

uses a consensus mechanism called Proof of Work [12] [14].

PoW is the original consensus algorithm in a Blockchain

network where miners compete against each other to

complete transactions on the network and get rewarded. Its

approach is probabilistic and have to spend significant

amount of time/computing solving a cryptographic puzzle.

That is why, bitcoin has high transaction latencies and

therefore a low transaction rate. On the flip side of bitcoin

there is other cryptocurrencies and blockchains which are

152
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

using other types of consensus.

Proof of Stack [15] is one of them, where the key motivation

behind it is that mining is done by stakeholders in the

ecosystem who have the strongest incentives to be good

stewards of the system. Therefore, the election of the creator

of the next block is done via various combinations of random

selection and wealth or age (i.e., the stake) rather than

solving computationally an intensive puzzle to validate

transactions and create new blocks.

Another consensus mechanism that has been on the rise lately

is Proof of Authority [16] where blocks are validated by

approved accounts, known as validators. It is an algorithm

used in blockchains that have the need to deliver fairly fast

transactions through a consensus mechanism based on

identity as a stake.

Consensus in blockchain comes also to mitigate what is

called Byzantine Generals Problem [17], where a byzantine

node can lie, provide incorrect responses or mislead other

nodes involved in the consensus network. Therefore, a

consensus algorithm has to be able to function correctly and

reach consensus in the presence of Byzantine nodes as long

as their number within a distributed system are limited. One

of the first practical solution to the achieving consensus in

the face of Byzantine failures was Practical Byzantine Fault

Tolerance, an algorithm proposed by Miguel Castro and

Barbara Liskov [17]. PBFT uses the concept of state machine

replication and voting by replicas for state changes, provides

also some important optimization such as signing and

encryption of messages between replicas and clients which

reduces the overhead. The PBFT algorithm requires “3f+1”

replicas to be able to tolerate “f” failing nodes, where the

maximum number of nodes that I can be scaled to is 20

because the overhead increases significantly as the number of

replicas increases. This consensus mechanism is used by

Hyperledger; a project that allows developers to create their

own digital assets with a distributed ledger built on the

principles of BFT.

2.4.2 Permissioned blockchain:

Permissioned and permissionless blockchains are the two

main types of the blockchain platforms. The most known

cryptocurrencies such as Bitcoin and Ethereum are

considered as permissionless or open blockchains since they

are publicly available for use and any node can make

transactions as well as take part in the consensus process. In

contrast to permissionless platforms, there is permissioned

blockchains (can also go by the name of 'consortium'

blockchains.) such Hyperledger which are aimed at groups

where participation is closed. Submission of entries can be

done by any type of nodes within the group, but for the

validation of blocks where the restriction comes at hand,

which can be fixed to a set of peering nodes that run by

consortium members. These groups are expected to be small

in number and an access control layer is used to govern and

vet who can have access to the network, therefore the

consortium can employ alternative consensus mechanisms

than proof of work for instance such as PBFT, PoA... It

should be mentioned that there is no concept of digital

currency on private permissioned distributed ledgers because

the objective of this type of platform is different from a

public one.

2.4.3 Merkel Tree

Figure 3. Merkle tree of 4 values.

In computer science and cryptography, a Merkle tree [18], as

seen on figure 3, (or a hash tree) is a binary tree in which

every leaf is labelled with a data block and every non-leaf

node is labelled with the cryptographic hash of the labels of

its child nodes. Hence, the tree is constructed by recursively

hashing pairs of nodes until there is only one hash, called the

root, or Merkle root. Merkel trees allow efficient and secure

verification of the contents of large data structures such as a

block in a blockchain platform. Hash trees are a

generalization of hash lists and hash chains.

3. Our Approach

The emergence of Cloud Computing thrived immensely upon

virtualisation that got shifted towards a world of on-demand

scalability and service delivery over the Internet.

Virtualization is one of the key enablers and key technologies

to build upon a Cloud infrastructure. It is increasingly used in

portions of the back-end of Infrastructure as a Service (IS),

Platform as a Service (PS) and SS (Software as a Service)

providers as well. Virtualization is also, naturally, a key

technology for virtual desktops infrastructure (VDI), which

often times are delivered from private or public Clouds. The

benefits of virtualization are well known, including multi-

tenancy, better server utilization, and data centre

consolidation. Cloud Providers can achieve higher density,

which translates to better margins, thus companies can use

virtualization to shrink capital expenditure (Capex) on server

hardware, as well as increase operational efficiency.

However, as it has been mentioned at the introduction, a

malicious user has a huge hack domain since the inter-VM

communication is blind to the security appliances on the

LAN, giving him the possibility to take control of other VMs

via a compromised one. Thereby, the focus of our work is

about analysing this particular inter-VM traffic,

authenticate/authorise it, and then preventing the non-

compliant one.

Traditional network security mechanisms face new

challenges to keep up with the cloud infrastructure. For

instance, having virtualization as its foundation would bring

in the security issues of the said underlying technology, such

as virtual machine intrusion attacks and malicious user

activities.

153
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 4. Basic Cloud architecture (testbed) Basic Cloud architecture (testbed)

New security methods are therefore needed to mitigate those

new issues. Multiple research activities were introduced to

address the issues of intrusion detection within cloud

computing environments. [19] developed an intrusion

detection model leveraging machine learning approach, by

using 28 features subset without content features of

Knowledge Data Discovery (KDD) dataset to build machine

learning model and are most likely to be applied for the IDS.

[20] proposes an IDS based on mobile agents (MAs). Its

most important weaknesses are the performance and the

security issues related to MAs. [27] has classified the

deployment approaches of IDS in a cloud environment into

several categories ranging from guest-based, VMM-based,

Network-based, collaborative agent-based, to distributed.

[21] uses an IDS sensor such as the version of Snort installed

on VMware virtual ESX machine that sniffs in-bound traffic.

[22] made a prototype of Cloud IDS inspired by Dendritic

Cell mechanism, which mimics the activity and process of

Dendritic Cell which is known for detecting and killing any

pathogens that infected human tissue and cells. Snort matches

in bound packets against several intrusion patterns. If a match

occurs, all the traffic from the same IP address is dropped.

No evaluation of the accuracy and performance of this

solution is presented. Furthermore, network events are not

correlated to discover attacks against several virtual zones.

[28] has proposed a model that provides a security as a

service at the infrastructure layer and analysis the alerts of

users based on the system calls. [29] presents a design of a

virtualization-based detection solution called VMFence to

examine the network flow and integrity of a file and also to

detect the real-time attacks. [30] has proposed an analysis

solution based on k-means clustering for anomaly detection

and integrated it with a frequent attack generation module

using prior algorithms to detect recurrent attacks and find the

signature of the attack within the cloud environment. Relating

to previous works especially in intrusion detection [23] [24],

we find that all of the measures that should be taken must to

be distributed since it is a Cloud environment [25]. However,

the work done so far is about detecting and preventing

malicious traffic [26] outside of the wire i.e. the hypervisor.

Currently, cloud providers enforce data encryption for

storage containers, virtual firewalls and access control lists

[31]. The proposed framework builds upon the fact that new

levels of security onto those already supplied by cloud

providers are required. Therefore, the major contribution

from our work is a about authenticating the access to the

critical virtual machines, thus, by securing the inter-VM

communication. We are basing our work on a simple model

as depicted in Figure 4, containing the essential elements that

we can find in a Cloud Service Provider or a Cloud

Infrastructure: Cloud Manager, Hypervisor, Virtual

Machines...

• Cloud manager: is a management and orchestration

server for the admin/client in order to manage their Cloud

resource infrastructure.

• Hypervisor: also called Virtual Machine Monitor

(VMM) allows multiple operation systems, termed guests

or VMs, to run concurrently on a host server. Actually,

the hypervisor controls the host processor and resources,

allocates what is needed to each OS in turn and makes

sure that the guest VMs cannot disrupt each other.

• Virtual Machine: is a completely isolated guest

operation system installation within a normal host OS,

and as it was originally defined by Popek and Goldberg

as “an efficient, isolated duplicate of a real machine”. All

the VMs in our architecture has an embedded agent,

which will serve the purpose of our approach.

Our approach focusses particularly on the analysis and

authentication of the inter-VM traffic by introducing a

security structure characterized by a filed called frame tag.

This field is introduced by a VM embedded agent at the

beginning of the IP packet’ payload. Thus, ensuring a high

filtering level, by making the receiving VM/agent detect,

analyse and authenticate the incoming traffic then respond by

accepting or refusing this IP packet according to the

compliance of the information on the frame tag or the IP

packet in general. The idea behind this approach comes for

the issue of network visibility in a virtual environment, which

is a serious issue for the security appliances. Thus, a

compromised VM can be a jumping-off point in order to

send requests to other VMs. For instance, retrieving

information in a malicious way that should be detected by a

security solution, from a VM hosting a database, while in a

legitimate scenario as depicted in Figure 4, App1 hosted in a

VM in tenant 1 sends a request to the DB1 hosted in another

VM in order to get the requested information. Thereby, we

154
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

are having two distinctive elements which are the tenant and

the application, meaning who sends the request and from

where. Hence, what we are trying to achieve with our

approach is to authenticate each request/IP packet

communicating between VMs by encapsulating these two

identifiers in the frame tag which will be an authentication

credential for the IP packet by the sending VM/application,

then retrieved and analysed by the receiving VM/agent acting

like a light-weight intrusion prevention system or a firewall

by refusing (DORP or REJECT) the non-compliant packets.

This approach creates a boundary for malicious traffic,

between two communicating VMs. Traffic traversing this

boundary is subject to the access controls specified by the

policy of the receiving agent. In order to fulfil the

authentication factor, which is the cornerstone of our

approach we introduced some security mechanisms wrapping

the frame tag. This security is manifested in a Security

Contract between the communicating VMs, a policy

management and of course encryption. Those mechanisms

will be thoroughly introduced within the next sections.

This chapter provides a high-level description of the frame

tag, the security contract, the agent, and how they fit together.

The goal of this description is to have a clear view of the

overall approach, see how it fits into a Cloud infrastructure,

and its implementation which is describes in more details.

3.1 Frame Tag

Users in a Cloud environment access their services by

providing a digital identity. Commonly, this identity is a set

of bytes related to the user. Based on this digital identity, a

Cloud system can recognize what appropriate access this user

has and what is allowed to do. Most of the Cloud platforms

include an identity service management service (like

keystone in OpenStack, or IAM in AWS). Following the

same analogy, our approach is about identifying the

application that sends the request (IP packet) to another

machine in the same tenant. Hence, we propose a field called

frame tag, as shown in the figure 5. The frame tag is

generated between a pair of communicating agents, and its

structure contains two main fields: Tenant tag, and

Application Tag.

 Figure 5. Structure of a frame Tag.

• The tenant tag field: When a tenant is created in a

Cloud, the identity management service takes on the task

of creating an ID for this tenant. Similarly, the same thing

happens with the tenant tag which is a value generated

holding the identity of the tenant. Thus, when a request is

sent from a VM to another VM within the same tenant,

the tenant tag is retrieved from the database and injected

by the agent in the payload of the IP packet. This flied

ensures the integrity of the inter-VM communication, but

more importantly the prevention of spring boarding to

another VM within another tenant, thereby adding a

strong layer of tenant isolation alongside VLAN isolation.

• The application tag field: When an application is added

and installed on a VM, the admin has to certify it as

trusted by creating a signature to rely on for its detection

by the agents. The use of the application tag in our

approach would help authenticate for instance App1 in

Tenant 1 that wants to send a request to DB1 hosted in

another VM within the same tenant, provided that the

admin has certified App1 as trusted. The sending VM will

generate the application tag according to the detected

signature of the application on the IP packet.

The frame tag in our proposed approach plays the role of an

authenticator by encapsulating credentials (the tenant and the

application) of the whereabouts and the identity of the

application sending the request to another VM. Therefore,

ensuring a level of authentication of the inter-VM traffic in a

non-intrusive way and more importantly isolation between

tenants. Therefore, having a monitored traffic by an agent

acting as light-weight intrusion detection and prevention

system and responds according to the frame tag field’s

values.

3.2 Security Contract

Ensuring isolation and security in CC is a concerning issue

for potential users and clients. Therefore, our approach is

about giving a high level of trust and isolation within tenants,

through the security and the integrity of the tenant tag and the

application tag by introducing what we call a Security

Contract (SC) which can be seen analogous to IPSec [32]

[33]. An SC is a unidirectional connection that affords

security services to the frame tag carried by it. It is the

establishment of a mutually agreed-upon security

mechanisms and attributes (encryption algorithm, hash

algorithms...) between two communicating VMs/agents to

support a secure communication. Therefore, with an SC is

not only ensuring the integrity of the inter-VM traffic but also

its authentication. To secure typical, bi-directional

communication between two agents, a pair of SCs (one in

each direction) is required. If two VMs, A and B, are

communicating, then the host A will have an SC, SC-A, for

processing its inbound packets. The host B will also create an

SC, SC-B, for processing its inbound packets. Hence, The

SC-A and the SA-B will have the different security attributes.

Data sets associated with an SC are represented in the SC

Database (SCD). Though SCs are unidirectional, a shared

SCD between agents is maintained for all SCs used for

outbound and inbound processing. Once an SC is created, it

is added to the SCD and identified by a Security Contract ID

(SC-ID) defining its encryption algorithm (including key

length), hash algorithms, lifetime, and the quick mode status

as seen on figure 6 (meaning no encryption is being

performed).

• Security Contract ID: is an ID identifying a security

contract in the form of a generated UUID version 4. This

ID helps the VM to know which SC is going to be used

for outbound packets during a session. For example,

multiple contracts might be used if a VM is

communicating with multiple hosts simultaneously. This

situation can occur when an VM is hosting a Data Base

server for instance that responds multiple hosts. In this

situation, the DB VM uses the sc-id to determine which

SC is used for outbound packets in order to be

appropriately processed by the agent accordingly.

155
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 6. Sample of a Security Contract entry.

• Active: is a field that takes three values; true, false and

expired. When the value is true, it means that the SC is

enabled and can be used as opposed to a false value

which means that the SC is disabled temporarily. In

contrast to these two values, the expired value means that

the sc has reached its lifetime and it is disabled without

the option of being enabled again.

• Security contract lifetime: is an UNIX epoch time that

represents the expiration date of the security contract.

When reached, the active field gets the expired value in

order to disable the usage of the SC. Once a security

contract is expired, it will be removed from the heap.

• Lifetime: is a lifetime value associated with each SC

beyond which the SC can and cannot be operational. The

lifetime is divided into three fields in the SCD, key

regeneration lifetime, busy session lifetime and idle

session lifetime. Key regeneration lifetime is the key

lifetime used in an SC represented in the form of an

POSIX time. Whenever a key lifetime is reached, the SC

is updated with new regenerated keys. Busy and idle

session lifetimes are used to determine the lifetime of a

session in seconds before the current used SC is expired

and renegotiate another one.

The negotiation of an SC is the security needed for a frame

tag to be authenticated and processed properly. Therefore,

the communication between VMs has to abide to the

convened SC, by encrypting and encapsulating the frame tag

accordingly. During this negotiation, the VM sends three

important fields; the SCI, the frame tag and a session token.

The session token is a hash of the used SCI, frame tag and a

time stamp. It is only valid till the session lifetime expires,

and it is used as an inner header on the payload in order to be

authenticated during the communication.

3.3 Security Contract Database Blockchain

As it has been aforementioned, the SCD is a shared and

distributed database wherein every participant has their own

replicated copy where all the SCs are stored. Making any

unwanted change on the SCD a huge vulnerability that a

malicious user could take advantage of in order to send a

malicious traffic towards another VM. Therefore, securing

the integrity of the SCD from any type of unwarranted

alteration is of the utmost importance, hence applying

blockchain to it. Integrity is a way of avoiding any tampering

at the security contract entries. Blockchain uses

cryptographic hashing to ensure that the ledger remains

tamper-proof. One of the key characteristics of this hashing

function is that it is always one-way, which means it is

logically impossible to get the data back from the hash result

or from the message digest. It is also difficult to analyse the

pattern of message digest and predict the original data as

even a slight change in the actual message can result in a big

difference. Therefore, the application of blockchain to the

SCD would highlight its peer-to-peer distribution factor (i.e.

a distributed ledger) and also make it cryptographically

secure, append-only, immutable (extremely hard to change),

and updateable only via consensus or agreement among

peers.

With the implementation of blockchain, the SCD will consist

of two records; SC entries and blocks. The block hold

batches of SC entries that are hashed and encoded to a

Merkel tree. Each block of course would include the hash of

the prior block linking them together. As it was above-

mentioned in the background section, the ledger’ entries in

blockchain are kept synchronized across the network and

each block append is approved by the appropriate

participants within the blockchain’ network via an agreed

upon algorithm called a consensus.

The consensus in the SCD blockchain will make sure that

selected nodes will agree and validate the proposed SCs,

which then will result an update of the ledger i.e. SCD. The

proposed consensus mechanism for this blockchain will be a

set of procedures and rules that will keep a coherent SCs

state among the VMs on the same tenant.

3.3.1 Security Contract Block

The application of blockchain on the SCD comes as an

obvious choice due to the nature of their respective

distributed and shared implementation, but also to guarantee

the integrity of the SCs within the SCD since they are a key

component in the proposed approach. Therefore, once the

SCs are validated, the SCD blockchain cannot be altered

retroactively without the alteration of all subsequent blocks

as depicted on figure 7.

Simply put, a block (see figure 7) is a selection of SCs

bundled together with a block header. Its size of course may

vary depending on the amount of SCs created on the master.

Each block within the blockchain is identified by a hash,

generated using the SHA256 cryptographic hash algorithm

on the header of the block. Each block also references a

previous block, known as the parent block, through the

“previous block hash” field in the block header. In other

words, each block contains the hash of its parent inside its

own header. The sequence of hashes linking each block to its

parent creates a chain going back all the way to the first

block ever created, known as the genesis block. A genesis

block is the first block in the blockchain that was hardcoded

at the time the blockchain was started. The master will create

two default dummy security contracts just to populate this

genesis block. On the other hand, the process of creating a

block in the SCD blockchain stems from the creation of one

or more security contract.

156
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 7. General architecture of a blockchain.

Figure 8. General JSON Structure of a Block.

The SCs are either created manually or automatically on the

master, and their number should always be binary since they

are going to be hashed in a Merkle tree - For instance if only

one SC is created manually, the master will create a dummy

SC for the Merkle tree-. Then, the Merkle root will be sent

for validation via our proposed agreement protocol (see the

next section). Once validated, comes the commit phase where

the block is being created. The block is made of a header,

followed by the sub-block of the security contracts. The

block header (see figure 8) consists of four sets of block

metadata. First, there is a reference to a previous block hash

which is a hash of the block header that can even act as an

identifier, that connects the current block to the previous one.

The second set of metadata, namely timestamp which is the

epoch Unix time of the time of the block initialization. The

third piece of metadata is the Merkle root, a data structure

used to efficiently summarize all the security contracts in the

sub-block. The last metadata field is the block signature,

which is a cryptographic proof in the form of a hash that is

made during the consensus phase in order to validate and

commit the block in the SCD blockchain.

3.3.2 SCD Blockchain Consensus

It is known that the strength of blockchain comes from its

immutability, and that is due to the chosen consensus which

is considered the most crucial aspect that requires close

attention when implementing any type of blockchain.

We have settled on the fact that the SCD blockchain is a

permissioned blockchain, since all the participants of the

network are known and already trusted (relatively).

Therefore, the consensus mechanism for our particular

blockchain would be an agreement protocol that will be used

to maintain a shared and synchronized version of truth about

the state of records on the SCD. Consequently, that will

exclude any type of mining as all the participants are already

know each other and there is no requirement for mining to

secure the network.

Consensus is basically a distributed computing concept that

has been around for a long time, and it has been used in

blockchain as well in order to provide a means of agreeing to

a single version of truth by all peers on the blockchain

network. In our case, some of these nodes will verify and, if

appropriate, validate the proposed security contracts

according to an agreed-upon consensus process.

The consensus architecture of our SCD blockchain is a

master/slave type of architecture, where the master is the

starting point of the validation process of a block. This

process goes through several phases that are inspired by

existing consensus mechanisms.

The security contracts are created at the master level, which

is considered as a block generator. At each SCs creation, the

master is triggered to assemble them into a block as well as

compute the Merkle root from the created SCs. The Merkle

root will be digitally signed by the master in order for it to be

considered as a candidate in the consensus process, then

broadcasted over the blockchain network which will be

picked up by a selected leader node to begin the validation

process.

The leader selection as depicted on figure 9, is a two-fold

process. The first one is a pseudo-random selection of a node

to prevent any selective censorship attack, which is done

during each block validation phase. The second part is the

identity validation of said selected node in order to confirm

157
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 9. Workflow of the consensus process in the SCD Blockchain.

its election then become a leader. In order to help with the

identity validation, each node that joins the SCD blockchain

must create an ECDSA keypair. Since this is a permissioned

network, all nodes will have to register their identity with the

master in order to access the blockchain network. The master

will make use of the PKI to support identity management and

authorization operations during the whole block validation

and commit phase.

After the leader selection and proving its identity, the system

will switch to proof of stake. The master will send a Trusted

Nodes List (TNL) to the leader based on their stake in the

network. The stake in the SCD blockchain is represented by

the compute resources (RAM and CPU) of a node, and also a

security score which is a score attributed to a VM/node

according to the hosted trusted applications in it. Based on

the sent said list from the master, the leader will choose a

random group of validators (ensuring that no validator can

predict its turn in advance) from it to validate and sign the

new proposed block. At this final stage, the validation

becomes leader-less and only the chosen nodes will

participate in it. A node is defined as an individual VM that

holds a replicated copy of the SCD, and identified by their

public keys. All nodes are capable of sending and receiving

messages to and from each other. Nodes can be honest,

faulty, or malicious. A node that can exhibit arbitrary

behaviour is also known as a Byzantine node. This arbitrary

behaviour can be intentionally malicious, which is

detrimental to the validation phase.

Since that the SCD network is a permissioned one, this led us

to use a small consensus group over the need to achieve the

decentralization of open and public blockchains such as

Bitcoin or Ethereum. Therefore, the best consensus that fits

our network is PBFT. It is an effective consensus protocol for

providing high-throughput transactions without needing to

worry about optimizing the platform to scale to large

consensus groups. With the application of PBFT at this

validation stage, the elected validators will have to commit

new blocks in the blockchain. These validators participate in

the PBFT consensus protocol by broadcasting votes which

contain cryptographic signatures signed by each validator's

public key. The signature is based on ECDSA scheme and

makes use of the SECP256k1 curve, and it will also help

identify the source of the exchanged message since that each

node publishes their public key.

The application PBFT on the SCD blockchain works on three

stages in which nodes broadcast messages to each other.

First, the pre-prepare stage consisting of a leader selection

that has the Merkel root to commit. This stage has already

been done by the master during the aforementioned election

phase of the whole consensus. Next, the prepare stage

broadcasts the Merkel root replica to be validated. All the

state machine replication techniques require two major things

on their replicas, that applies also on the broadcasted Merkel

root replica in the SCD network. Replicas are required into

being deterministic, where the execution in a given state must

always produce the same result. Adding to that, Replicas

must always start in the same state. With those two

requirements, the PBFT guarantees the safety property by

ensuring that all none byzantine nodes agree on a total order

for the execution of requests despite failures. Finally, the

commit stage waits for more than two third quorum of all the

validators in a partially asynchronous model to confirm the

proposed value before announcing that the value is

committed. Once the leader has received two third

endorsements from the validators for the master’ proposed

Merkel hash, this value gets committed and the leader sends

it to the master. The master in its turn will generate the block

header, i.e. the timestamp and the block signature from the

ones sent by the leader, making the block full-fledged to

appended on the chain and committed to the ledger. It should

be mentioned that PBFT can only tolerate up to a one third of

Byzantine nodes, where failures can include arbitrary or

malicious behaviour, thus validators will never commit

conflicting blocks at the same height and the SCD blockchain

will never fork. In the case of the one third faulty nodes are

exceeded; the consensus process will fail and the master will

be notified by the leader testifying that an agreement couldn’t

be reached.

3.3.3 SCD Blockchain synchronization

As a new block is validated and added to the blockchain, it

triggers a need of an update process at the level of the SCD

and the SCD blockchain on the nodes. The master will send

the new block and also the new created security contracts

with its signature to nodes of the SCD network. The SCD

update process arranges the nodes in a linear fashion so that

each node will only receive the message from its predecessor

and send it to its successor. This process balances the load

among the nodes making the replication achieve the best

throughput possible. When a node receives the incoming

158
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

message from the network, it will valid block according to its

signature and then link it to the existing blockchain. To

establish the link, the node will examine the incoming block

header and look for the previous block hash to link it to.

Consistency and integrity checks are done periodically by

nodes to guaranty that the SCD is in sync and have the same

entries, especially when the network may fail to deliver the

attended message or act in a malicious way. Therefore, the

consistency and verification checks use a kind of Byzantine

fault tolerant model where the node sends a request for the

last replica verification to several nodes, and receives a

respond with only the digest of the result. The digest helps

the node to check the correctness of the result against the

digest its replica while reducing network bandwidth and CPU

overhead. If the node computes a different result from the

designated requested nodes, it will send a notification to the

master requesting the up to date SCD.

3.4 Application signature and identification

As aforementioned, the application tag (App-Tag) represents

an identification injected on the payload of an egress packet

of the application that sent a request/response to another VM

over the network. This tag is considered as a key field

alongside the tenant tag to authenticate the outgoing traffic,

so that it gets accepted or denied accordingly by the

receiving VM. For a packet to contain this App-Tag, the

application needs to be identified when it sends a request or a

response over the network. This identification process needs

to be done before sending any traffic out of the VM.

Therefore, an approach was set for this purpose to identify

the application from its signature on the payload of the egress

traffic, then and once identified, create an App-tag for the

purpose of authenticating and authorizing the ingress traffic

by the receiving VM.

The administrator is the one responsible of adding and

attesting that an application is trustworthy. The process of

adding an application to the database of trustworthy

applications i.e. AppDB, is an iterative process that needs

refining to get the application identification right through its

signature. An application signature is simply a pattern within

the outgoing packet from an application or a task. Therefore,

the process of identifying the App signature starts with the

analysis of the 6-tuple of the outgoing packet using layer 3

and 4 inspection, and going even to the seventh layer based

on the application’s unique characteristics, in order to

achieve granularity of visibility and control over the egress

traffic. The five tuples are a reference to six different values

that comprise a TCP/IP packet, which are; source IP address,

destination IP address, source port number, destination port

number, and payload. The engine behind the AppID tag is

driven by a series of pre-determined contexts. These contexts

use decoders to help identify applications and ensure the

success of proper layer 7 inspection at the packet load level.

The identification of the application layer protocol adopts

characteristics provided by the packet inspection module,

which is mainly based on regular expressions of match

recognition which not only improves the matching speed but

also increases the accuracy of matching.

The packet inspection module relies heavily on Deep Packet

inspection (DPI). DPI combines signature matching

technology with the analysis of data in order to determine the

impact of that communication stream, and identify the

contents of each and every packet flowing through the

network. It also takes packets apart to examines the data part

of the packet, comparing it with a set of criteria, searching

for pre-defined characteristics, making a decision based on

the detected content, and then re-assembles the packet. In

most use case of DPI, successful pattern matches are reported

to a managing application (in our case the master agent – see

the next section) for any appropriate further actions to be

taken. The packet inspection process in our case is split in

two phases. The first one is a shallow inspection or what is

called also a stateless inspection. It focuses on a simple

detection technique by only analysing the IP packet’s source

IP address, destination IP address, port source, port

destination, protocol type. This phase renders the

infrastructure’s visibility limited only from layer to 2 to layer

4. Thus, the introduction of the second phase which is DPI,

stems from the need of filling the void that the shallow

inspection has, by pushing the visibility up to layer 7, and

being able to see and understand the traffic up to that level.

This is done adding functions that analyses the application

layer which can identify the various applications and their

contents on that bases, making this phase more like an

application centric inspection.

As aforementioned, the detection of an application relies on

the detection of its signature on the packet. In their most

broad sense, signatures are pattern recipes which are chosen

for uniquely identifying an associated application (or

protocol) [34]. When a new application or protocol is added,

it is analysed and an appropriate App-tag is generated and

added to the AppDB. Those pattern recipes that represents a

signature of a particular application are detected through a

search for known sequences of bytes of for regular

expression matches on the packet. In order to make this

search faster, it is limited to only specific parts of the packet.

The analysis of the packet is done in two ways; analysis by

numerical matches and analysis by string matches. The

analysis by numerical matches involves the search of

numerical characteristics within a packet such as IP

addresses, port numbers, payload length, etc. On the other

hand, the string-matching analysis is a search for a sequence

of textual characters, numerical, or even several strings

distributed within the content of the packet, such as the

protocol type or the payload.

The process of detecting and identifying an application

should be as fast as possible, since a lot of packets will be

flowing through this module. [35] has showed that almost all

application signatures begin and end at the first 32 bytes of

the payload, hinting that a lightweight approach using only a

small portion of payload could be viable. The approach of

lightweight payload inspection is not something new: In [36],

the authors talk about the traffic classification approach of

NetPDL [37] as “lightweight”.

Our main focus for this module is at the payload level where

the inspection is similar to what is done by the libprotoident

library. The four bytes of the payload will be compared

against a known signature for the application, making a rule

that will include specific characters for all four bytes.

However, the particularity of this phase is to only inspect the

159
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

first outgoing packet and attempting to match it to the rules

that have been set as a signature of a particular application.

In fact, [35] has mentioned that the inspection of only few

bytes in the first packet can still be successfully used for

traffic classification by shifting the verification where the

application protocol injects its headers.

As aforementioned, writing an application signature is an

iterative process. Ann application signature should be precise

and cover all the needed scenarios. Therefore, an

administrator is required to test the crafted signature

meticulously before committing it. In our case, the

application signature comes in the form of a json file as

shown on figure 10 that comprises the following fields:

Figure 10. Structure of an app signature.

• Sig_id: Represents a unique ID for each signature

application. Generally, this filed is generated

automatically.

• App_name: Represents a simply the name of the

application. It is also used in the logs to identify the

application when it is being detected.

• Version: Represents the version of the signature. It is

used as a revision for version control.

• Description: Represents a textual description of the

application.

• Status: Represents the status of the signature. This fields

can take three values:

o Enabled: If set, it means that the signature is enabled,

and the agent is allowed to parse it.

o Disabled: If set, means that the signature is disabled for

some particular reason. Therefore, the agent will not

parse the signature since it won’t find it on the scoped

signature list. However, the signature will not be

deleted.

o Decommission: If set, it means that the signature of an

application is out of service. Therefore, the agent will

never parse this signature again.

• Src_ip: Represents the source IP address that is being

used by the application.

• Src_port: Represents the source port that is being used

by the application.

• Dst_ip: Represents the destination IP address that is

being used by the application.

• Dst_port: Represents the destination port that is being

used by the application.

• Proto_type: Represents the protocol type that is being

used by the application.

• Contents: Represents what should be detected within the

payload that defines the application. The contents section

may have as many content sub-sections as needed. The

content entry is defined by the following parameters:

o Offset: Represents which byte will be the starting point

on the payload where the search for a content should

begin.

o Depth: Represents the offset where on the payload the

search should stop.

o Expr: Represents the expression that the module will

match against on the payload. It can be a normal

expression as well as a regular expression. The usage of

the offset and depth parameter allows a very specific

matching that would help process the regular expression

in a faster pace on a small section of the payload rather

than the whole payload.

The application signature can be fine-grained to the extent of

making an application signature specific to a certain type of

traffic. For instance, a signature can be made specifically for

a download traffic going towards a web application.

Therefore, upload requests won’t be going towards the web

application, since they don’t have their own signature, hence

no App-tag created for this traffic.

It should be noted that the AppDB implements also the same

features of the SCD blockchain. However, the database is

only shared between the master(s) and the appropriate VM

that hosts those trusted applications, rather than being shared

with the whole VMs within the tenant.

3.5 Policy Management

In general, a Policy-based management (PM) is an

administrative approach that is used to simplify the

management of a given endeavour by establishing policies to

deal with situations that are likely to occur.

In our case, the PM is the module responsible for handling

outbound/inbound IP packets, in order to process them

accordingly (such as processing the frame tag or the Security

Contract, inbound packets...). The output of the policy will

be one of two actions -Allow, or Deny-. If the output of the

policy is discarded, the packet is dropped or rejected

according to the configuration done by the admin. Otherwise,

the packet is passed up to the next layer for further

processing. The protection afforded by the agents is defined

by a database called the PM Database (PMdb). This database

is maintained by an administrator who interacts with it for all

policy-related managements. This module is checked by the

agent to define the required processing of each outbound or

inbound packet. This processing is generally, either choosing

a particular security contract for an egress traffic, processing

a traffic as an inter-VM one, allowing the traffic to its

destination, or applying deeper processing. In order to reduce

the overhead of checking those policies, there is a policy

cache where most recent loaded polices are stored.

160
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

When a traffic occurs, IP packets are queued until being

checked against the PM, where the following actions are

performed:

• If the policy indicates a packet needing to be denied, then

the inbound IP packet is expected to be dropped or

rejected. When a packet is refused, a reject policy is made

so that the incoming packets from that host are dropped,

because the host is considered compromised and a

notification is sent to the administrator. Dropping the

traffic can also be done at the vSwitch level, by send a

rule add to the control of the SDN network if

implemented.

• If the policy indicates that the packet can be transmitted

without any extra security processing, this means that the

traffic is not inter-VM and the policy engine will allow

the traffic to be transmitted without any processing nor

frame tag injection.

• If the policy indicates an inbound/outbound inter-VM

traffic, the agent will be required to process the traffic

accordingly, which will be detailed in the next section.

Unlike SCD, the PMdb is not a shared database, but rather

local and private to each agent/VM.

3.6 The Agent

The goal of the proposed approach is mainly to target some

specific fields within the incoming/outgoing packets, in order

to be analysed and act on them accordingly. Therefore, we

thought about using a comprehensive agent implementation

embedded in every machine of interest [38]. Those agents are

the backbone of the proposed approach in order to have a

complete working cycle of an inter-VM exchange. The

agents include similarities of a minimal and lighter IDS or

firewall functionalities, since it has an essential aspect of

access control as well as filtering. They are primarily

responsible for enforcing the policies set by an administrator

within the PMdb, and also crafting all the needed fields

accordingly. As IP packets flow into a VM, the agent doesn't

perform a whole packet analysis, but rather targets only

specific fields of the IP packets and responds by an

ACCEPT, DROP, REJECT or FORWARD, according to the

PMdb and the AppDB.

The architecture of the proposed approach can be can be

viewed as a manager (master)/slave kind of architecture.

However, the manager is not considered as a single point of

failure, since the slave agents can function without any

problem even though the manager is unreachable. Hence, the

role of the manager can be considered as frontend offering an

entry point to manage the slave agent cluster, its different

features, databases, and blockchain. Consequently, when a

worker agent is freshly deployed, it is configured to make a

first contact with its manager and launch the discovery and

synchronization process with the other agents. The

communication between the manager and the slave is done in

a secure channel manage by a passwordless ssh connection,

in order to prevent rogue requests to the manager or having

some VMs impersonating the manager. Key rotation is used

as a standard mechanism to ensure security of the key pairs,

by periodically changing the encryption keys to thwart any

attacks if the keys have been compromised. When a change

of those key pair occurs, the manager sends a request to all of

his slave agents in order to update their keys. The

communication between the manager and its slaves is

different from communication of the slave between them.

When the agent receives a request from the manager, the

packet holds a special management frame tag containing a

masterTenant tag and matserApp tag, and there is no SC

negotiation due to the encrypted channel between them. The

manager has a mapping service that is used to document all

the information about the slave agents. This service publishes

IP addresses, identity certificates and the mode of each agent.

All the slaves announce their presence by registering to this

service when they first start up.

Additionally, the agent has a within its PMdb a mode that is

shared with its neighbouring agents within the same tenant

via the manager’s mapping service. This agent mode can in

fact take two distinctive values; full and quick. The

administrator is responsible of defining the right mode for

each machine/agent. This mode would have a direct impact

primarily on the processing of an outbound traffic. Because,

when a receiving machine/agent has is in quick mode for

instance, this means that the process of deep packet

inspection for the application signature detection would be

skipped and the agent will only send only a tenant tag with

the added frame field. Thus, making the inter-VM

communication much faster. Conversely, if the agent is in full

mode, the processing of the outbound packet will be in done

in full and phase will be skipped.

In order to have an optimal agent' behaviour on what action

should be done when a packet is received, we introduced a

flag at the beginning of the payload. This flag is a set of bits

that is passed between agents in order to perform various

actions depending on its value. Thus, it defines the type of

data carried within the payload by taking one of these values:

• Enrolment flag – occurs when a new agent is added to

the cluster. The manager will try to sync the slave agent

with all the needed data.

• Discovery flag – is exchanged between agents when

enrolled in order to be discovered by other peers on the

network and be added as well on their respective lists.

• Update flag – is generally sent by the manager to signal

an update is occurring. This can be at the level of the

policy management database, security contract database,

etc

• Handshake: is considered as a flag initiating a new

communication, letting the receiving agent what fields to

expect within the payload.

• Data flag: is simply a flag indicating that the payload

holds an application data.

At the first run of a slave, it will send a request to its manager

in order to retrieve its related information and be in sync. A

tenant can contain several machines and accordingly several

agents. Hence, a freshly deployed slave agent needs to

recognize its neighbouring agents within the same tenant, as

well as the sync of the shared ledger and databases.

Therefore, comes the role of the flag field. As mentioned

before the flag affects the agent' behaviour, when a slave

agent is newly deployed it sends a request to its manager in

order to enrol itself and receive its tenant tag, information

about its neighbouring agents (IP address and trust level),

161
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 11. Egress traffic processing workflow.

populating its SCD with the SCs created so far and sync its

blockchain consequently. The sync basically is done via

gossip protocol to ensure that data is routed to all members.

After this, the new salve agent sends a message with a

discovery flag, so that the neighbouring agents within the

same tenant add it to their list of agents. The mode of a new

agent is set by default to quick mode but it can be changed

via the console management on the manager agent by the

admin if needed. When a change of the mode occurs, the

manager agent sends a message with an update flag to the

designated slave agent in order to update its mode.

Consequently, this designated slave by its turn will send a

message to its peers with a discovery flag so that they update

their list of agents.

The implementation of distributed agents comes to relieve

the hypervisor from a bottleneck filtering, introspection

which is a technique that helps monitor the state of VM's

running on a hypervisor [39], and other security mechanisms.

Hence, adding another security level, but with an enhanced

focus on the tenant and its VMs, by adding another layer of

application-based authentication via the frame tags. The

proposed agents act like a light weight security gateway or an

IDS, more specifically like a Stack based IDPS as if it was an

independent device, where the packets are examined as they

go through the TCP/IP stack and, therefore, it is not

necessary for them to work with the network interface in

promiscuous mode. The protection offered by this approach

is based on requirements defined by the security policy

(trusted applications, mode, SC, PMdb) established and

maintained by an administrator, which afterward is translated

to an allow or a reject of the traffic accordingly. The integrity

of the agents is of the utmost importance. Hence operating

wise, they are executed in a privileged domain which the

Ring 0. Subsequently, the agents would be safer from being

controlled by any malicious application running within the

VM or any unauthorized users, and also enabling high

performance input/output at the network level.

To sum up, the agent interacts closely with the transport,

network layer and application layers. It is designed to

efficiently implement the following capabilities:

• Ability to inject fields at the beginning of the payload to

outbound packets via packet crafting.

• Ability to analyse and inspect packets via DPI then

decapsulate the payload from the injected filed(s) in the

case of inbound traffic and send it to the appropriate

application.

3.6.1 Egress/ingress inter-VM traffic workflow

processing:

When an outbound traffic flows within an agent (see figure

11), its workflow goes through several stages which are

governed by a set of policies that needs to be enforced.

The first station that the packet arrives to through the packet

capture is the shallow inspection. This inspection targets only

the IP header, and more specifically the IP destination. The

IP destination matching has two scenarios; either the traffic is

going outside of the network of the agent or it is an inter-VM

traffic i.e. an IP destination address of another agent within

the same tenant. In the case of the later, the agent will check

the mode of the destination agent. If the receiving agent is in

quick mode, the traffic will go directly to the packet crafting,

where only the tenant tag will be injected. Then, the packets

get to be sent to the destination VM. However, if the agent is

in full mode, the traffic will go the packet inspection stage,

where the application within the traffic will be matched

against the application signatures database. If matched with a

signature, the traffic will go to the packet crafting in order to

inject the tenant and the application tags unlike the quick

mode. Then, the traffic gets to be sent to the destination VM.

Moreover, if the application didn’t match any signature

during the packet inspection, the traffic will be dropped,

logged and a notification will be sent to the admin for further

investigation, which mostly can be due to an application

signature testing, a new application, a malicious application

or simply a false positive, etc.

Similar to the outbound traffic, inbound traffic (see figure 12)

goes through the same main station as well to enforces

different policies. First, and via the packet capture, the traffic

will flow through the shallow inspection to verify its origin

by verifying its IP source. In the case of a traffic coming

from the outside of the agent’ network, the packets will be

sent directly to their destination. However, in the case of a

traffic coming from a peer agent within the same tenant, the

traffic goes through the next phase which is packet

inspection. At first, the inspection goes through injected

payload flag and check its nature. In the case of a flag value

different from the data flag, the packet will be sent to the

162
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 12. Ingress traffic processing workflow.

agent. Otherwise, the inspection will translate to the next

field, which is the frame tag or session token to be matched.

The session token matching is pretty straightforward, where

the token will have to match to the saved current token

session. As for the frame tag, the inspection in this case

depends on the agent’ mode. Since during the quick mode,

the injected field in only the tenant tag, thus it will be the

only one to be verified and matched. However, in the case of

a full mode, the inspection will have to go through the two

fields of the frame tag; the tenant and application tag. Once a

successful matching occurs, the traffic will go to the packet

crafting phase, where the packets will get stripped of the

injected fields at the level of the payload. On the other hand,

if the frame tag or the token didn’t match, will result with a

refusal of the inbound traffic and send a notification to the

admin. Hence, the packets and according to the admin’

configuration, can be dropped or rejected. When rejected, the

agent sends an explicit notification back to the sending agent

of a closed connection. However, when the packets are

dropped, the agent will simply discard the packets and sends

no response to the sending agent. If DROP is chosen as a

strategy for refusing noncompliant packets, the packets and

with the help of SDN, can be dropped at the level of the

vSwitch, thus reducing the overhead of processing knowingly

refused packets.

3.6.2 Packet crafting:

Figure 13. Inter-VM Packet crafting processing.

The packet crafting phase as shown on figure 13, is not

straightforward as its preceding ones, since its processing can

be a bit different depending on the inter-VM exchange

stages. When an inter-VM communication occurs, there is

the initiation of two distinct handshakes from the

communicating agents that needs to take place first. Those

handshake (Figure ,13 -1-) (Figure ,13 -2-) are in the form of

a payload that encompasses relative fields and data in regards

to the current opened communication session. The first

injected field during the handshake phase is a flag. The value

that this flag is going to hold in this case is ‘Handshake’,

since it is a communication initiation between the two agents

with the negotiated information. After that, comes the

security contract ID, which is an ID of the SC chosen

(randomly or according to the policy) by VM/Agent ‘A’

letting the VM/Agent ‘B’ know which encryption key and

algorithm that will be used to communicate with it. As

aforementioned, the SCs are stored in a shared database

between the agents, therefore the VM/Agent ‘B’ will refer to

the SCI-1 and use it to encrypt the communication with

VM/Agent ‘A’ accordingly. It should be noted that the

VM/Agent ‘B’ will also inject its own security contract ID so

that the VM/Agent ‘A’ know in its turn which encryption

keys and algorithm that will be used to communicate with it.

The injection of the frame tag comes next, which its structure

depends on the agent ‘B’ mode. In the case of a quick mode,

only the tenant tag will be injected, however if it is a in full

mode, then both tenant and application tag will be injected as

the frame tag filed. Once those three first fields are created,

they will be combined with a time stamp and get hashed to

serve as the token for the current session. When the token is

created, this triggers the encryption of the frame tag and

token according to the chosen security contract (SCI-1).

Similarly, and since it is a bi-directional handshake, The

VM/Agent ‘B’ will encrypt its generate frame tag and token

according to the chosen security contract (SCI-2). The

randomness of choice of the security contract is reflected

directly on encryption of the frame tag and the token, which

are considered as key fields for the integrity of the

communication between the two agents. This randomness

would also help to hinder the likelihood of payload

tampering by a malicious user or a man in the middle.

When an agent receives a packet having a handshake flag, it

triggers the process of a communication initiation for the

receiving agents. Consequently, the agent will then determine

which security contract has been chosen in order to decrypt

properly the frame tag and the token, then authenticate the

frame tag and store the token for a further verification.

Once a successful handshake is reached, the agent ‘A’ will

send the application’ request data to VM ‘B’. However, this

time the injected flag will hold a different value which will be

DATA, since it is simply data that is being communicated

from a trustworthy application hosted on a VM to another

163
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

VM. In addition to the flag, the packet crafter will encrypt

the previously generated session token (token-1) as a

signature and inject it to the payload. This will help the

receiving agent to not only authenticate the traffic but to

authorize it as well by checking the value of the session token

with the stored and exchanged one from the handshake

phase. Once verified and validated, the agent will decapsulate

the payload from the flag and the token, then send the data to

the application of interest. The communication between the

two VMs/Agents from now on will take the same format,

which is injecting the DATA flag and their respective session

token to the payload.

The lifespan of the session is determined by the ‘busy/idle’

lifetime of the security contract which was determined during

its creation. Once a lifetime is reached, a connection

handshake must be renegotiated. In order to have an optimal

communication session between the VMs/Agents, it is

recommended to configure the policy of the agent on what

security contracts to be used (i.e. an optimal busy/idle

lifetime) for a specific traffic going towards a particular

agent/VM/application.

3.6.3 Agent implementation:

The agent is the cornerstone of the proposed approach since

it does implement the different blocks of packet processing

and make them stick together in a cohesive environment. The

implementation of the said agent should take under

consideration a huge factor, which is traffic latency because

all the ingress/egress traffic will flow through the agent.

In a general sense, each packet is processed layer by layer.

For instance, in an ingress scenario, the network flow goes

through the network card first so that it will be sent to RX, or

a receive queue. Then, the packet gets copied to the main

memory via the Direct Memory Access (DMA) mechanism.

After that, the system has to be informed that a new packet is

going through, and pass the data onto an allocated buffer.

This is a special buffer that Linux systems allocate for every

packet, and in order to do so, Linux uses an interrupt system

which is generated several times when a new packet enters

the system. The network stack in Linux offers a complete

implementation of the TCP/UPD protocols, as it was

showcase more in details of this implementation in [40].

After going through the transport layer, the packet can finally

be delivered to the userspace by taking on the data that got

copied from the buffer using the NAPI [41], last visited: July

2014 to start a poll loop if one was not running already, in

order to have a full access to that data by the application that

should receive the packet.

As aforementioned, the implementation of the agent has to

take under consideration major latency issues during the

processing of flowing packets. However, by looking at the

normal flow of a packet and how it is processed, it became

apparent that there are some issues that might hinder the

proper functioning of the agent. For instance, the network

card works in interrupt mode that might affect severely the

overall agent performance as well as the system. When a

packet enters the network interface, it registers itself in a poll

queue and disables the interrupt. Consequently, the system

periodically checks the queue for new devices and gathers

packets for further processing. As soon as the packets are

processed, the card will be deleted from the queue and

interrupts are again enabled. Additionally, in a virtual

environment, the VM Kernel is relying on the physical device

to generate these interrupts to process network

inputs/outputs. Therefore, the processing in a VM will suffer

from additional delays on the entire data plane from the

physical network interface to the guest machine. Another

issue, is related to the buffer that is allocated for each packet

and becomes free each time a packet enters the userspace.

This operation does consume a lot of bus cycles, since there

is a frequent data transfer from the CPU to the main memory.

Adding to this, the Linux network stack was designed to be

compatible with as many protocols as possible, which makes

all of their metadata get included in the buffer for the purpose

of processing the packet. All of these metadata are not

necessary for processing specific packets making it slower

than it could be. In addition to this, context switching also

affects negatively the performance. This context switching

happens when an application in the userspace needs to send

or receive a packet. The application has to execute a system

call, which means a switch to the kernel mode and then back

to the user mode.

The implementation architecture of the agent has to take

under consideration the aforementioned issues and mitigate

them. Therefore, one of the architectures taken under

consideration for the agent is fast path architecture, where the

data plane is split into two layers. The first layer is called fast

path. It is a layer that processes the majority of the ingress

traffic that is coming outside of the OS, without suffering

from the OS overheads that decrease the overall

performance. The second layer resides on the OS networking

stack, and take on only the packets that require complex

processing. This layer performs the necessary and needed

operations on the packet.

This fast path architecture influenced the implementation

architecture of the agent to be split in tow: an agent backend

and an agent frontend as depicted on figure 14.

Figure 14. Agent (front and back end) placement.

The frontend agent primarily performs inputs/outputs

operations via the physical device and also accepts

inputs/outputs requests from the backend agent. Additionally,

it reduces the per packet system call and also focuses on

moving packets from the kernel space towards the userspace

i.e. the backend agent. In contrast, the backend agent accepts

inputs/outputs requests from the kernel space i.e. the frontend

agent, as well as transferring them back to it. It is also

responsible for preforming packet processing as

aforementioned in the section before, and packet generation

according to the enforced policies against the egress/ingress

traffic.

164
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

Figure 15. Architecture of Intel Dataplane Development Kit

(DPDK). [42].

To help with implementation of the fast path architecture on

the agent, the choice has fallen on Intel Data Plane

Development Kit (DPDK) [43] [44]. In fact, DPDK enables

fast packet processing for data plane applications. As it is

shown in figure 15, its architecture provides a set of data

plane libraries and network interface controller drivers to

have basic Linux network stack functions for fast packet

processing, as well as the optimization for memory/buffer

allocation and mapping. DPDK provides a programming

framework for several processor architectures, and enables

faster development of high-speed data packet networking

applications. This can help to write networking applications

i.e. the agent that work entirely in the userland with no

system calls in order to bypass the heavy layers of the Linux

kernel networking stack and communicating directly to the

network hardware. Additionally, DPDK implements a low

overhead run-to-completion model for fast data plane

performance and accesses devices via polling to remove the

latency of interrupt processing at the trade-off of higher CPU

consumption. It should be noted that polling is very

advantageous when interrupts are frequent, since there will

be a noticeable overhead associated with each interrupt due

to the aforementioned back and forth switching from the user

mode to the supervisor mode. In the context of a VM, the

driver and the application will constantly busy-looping for an

input/output to be available. Therefore, an application in the

guest OS can process the Inputs/Outputs near realtime

instead of waiting for an interrupt to happen. This in fact will

enable a lower latency and a higher Packer Per Second rate.

On the other hand, each poll is generally only a check for a

value on a specific memory address. Consequently, the agent

implements via DPDK the Poll Mode Drivers (PMD). The

PMD consists of APIs that configure the devices and their

respective queues. It accesses the RX and TX descriptors

directly without any interrupts to receive, delivers and

process packets in a faster pace.

By implementing DPDK in any application, the massive

network traffic will usually be handled through Environment

Abstraction Layer to have fast access to hardware and

memory. The Environment Abstraction Layer (see figure 15),

or EAL is the main concept behind the DPDK. EAL is a set

of programming tools that let DPDK gain access to lower-

level resources such as hardware and memory space. It offers

a generic interface that hides the details of the environment

and provides a standard programming interface. It is also

responsible of a frequent initialization to decide how to

allocate resources such as memory space, PCI devices,

timers, etc. Common use cases are around special solutions

for instance Network Function Virtualization and advanced

high-throughput network switching that we can find in SDN.

Technically, EAL achieves physical memory allocation by

using mmap () in hugetlbfs through the usage of huge page

sizes to increase performance. In fact, it is what binds DPDK

to applications, since they must include its header files. The

most commonly of these include:

• rte_lcore.h — manages processor cores and sockets;

• rte_memory.h — manages memory;

• rte_pci.h — provides the interface access to PCI address

space;

• rte_debug.h — provides trace and debug functions

(logging, dump_stack, and more);

• rte_interrupts.h — processes interrupts.

Figure 16. Agent implementation through DPDK in a VM.

The main part of the agent as shown on figure 16, runs in the

userland using the pthread library. Additionally, PCI

information about devices and address space are discovered

through the /sys kernel interface and also via kernel modules

such as uio_pci_generic, or igb_uio, etc. The sheer amount of

processing that the agent has to do is backed by the DPDK,

since it can achieve a very low latency by completely

bypassing the kernel layer, where the PMD quickly delivers

them to the agent making the TX path as well the RX path

are equally fast.

The first station that a packet goes through in the agent is the

ring buffer that acts as a receiving queue, where the agent

periodically checks that buffer for new incoming packets.

Packets received in the DPDK are also sent to a queue

implemented on the rte_ring library. In the case of packet

descriptors existing within the said buffer, the agent will refer

to DPDK packet buffers in the specially allocated memory

pool using the pointers in the packet descriptors. However, in

the case of an empty buffer, the agent will queue the network

device under the DPDK and then refer to the ring again.

The adoption of DPDK for the agent helps tremendously to

implement its two major backend functionalities: packet

inspection and packet crafting. The packet capture/analysis

165
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

relies on a libpcap-based PMD, and more specifically on the

librte_pmd_pcap as shown on the figure 16, that reads and

writes packets using directly libpcap. When the agent wants

to start capturing packets, the library registers a callback-

function into the PMD to capture from, whether it is the RX

or TX PMDs or together. This is where resides the

aforementioned packet inspection that enforces the detection

of application according to their signatures. When an inter-

VM traffic occurs via a trusted application, the packets need

to go through the packet crafting module in order to

unencapsulate the payload from the frame tag. This feature is

implemented as shown on the figure 16 via pktgen-dpdk,

which is a traffic generator that is powered by the DPDK fast

packet processing framework. The pktgen-dpdk is capable of

generating 10Gbit wire rate traffic with 64-byte frames in

sequence by iterating IP addresses, MAC or ports destination

or source. It also can handle packets with several protocols

such as MPLS. GRE, TCP, UPD, ARP, ICMP, etc. At the

frontend agent side, there is the usage of raw_socket to

receive data packets and send them to the backend agent by

bypassing the normal TCP/IP protocols, offering a sort of a

fast lane for packets to be sent and processed by the backend

agent.

4. Conclusion

CC has emerged as a promising IT services provisioning

paradigm. It encompasses many technologies including

networks, virtualization, operating systems, resource

scheduling, databases, transaction management, etc.

Therefore, security issues for many of these systems and

technologies remains very much current issues in a CC

environment. For instance, VLAN isolation could be

bypassed via several techniques. For those techniques, we

could find VLAN hopping, which is basically attacking a

host on a VLAN to gain access to traffic on other VLANs

that would normally not be accessible. There is also VM

jumping, that exploits vulnerabilities in hypervisors that

allow malware or remote attacks to compromise VM

separation protections and gain access to other VMs.

Consequently, our proposal addresses mainly the inter-VM

traffic visibility and authentication by proposing a protocol

that processes and controls such traffic.

The approach relies on introducing a frame structure at the

payload, to fill the security gaps where mostly the isolation

breach occurs. This frame called frame tag that holds the

proper credentials which are the tenant and the application

that sends the IP packet, providing data origin authentication

and integrity. The processing of such frame tag is done

through embedded agents within the machine of interest

which are able to generate, capture and analyse this said

frame and respond to it by an automated acceptance or

refusal. The implementation of the agent was done with

DPDK to ensure a high throughput due to the amount of

traffic that needs to be processed by it. Additionally, to

ensure the integrity and security of the frame tag, security

mechanisms such blockchain and security contract we put

and place, complimented by a policy directory to govern the

overall all process. Since the authentication in our proposal is

primarily application centric, we also introduced a way of

detection applications in an exchanged IP packet relying on

application signature mechanisms. In order to make the

approach informant, the agent logs and events can be fed to a

Security Information Even Management [45] for a thorough

and better response in the case of breaches or malicious

behaviour. An adaptation of this approach can be envisioned

as future work for not only VMs but rather extending it to

containers as well.

References

[1] ISO/IEC JTC 1 SC38: Cloud Computing Overview and

Vocabulary. International Organization for Standardization,

Geneva, Switzerland.

[2] R Bhadauria, S Sanyal. Survey on security issues in Cloud

Computing and Associated Mitigation Techniques. Int J

Comput Appl (0975-888); 47(18), 2012

[3] Irfan Gul, M. Hussain, “Distributed Cloud Intrusion Detection

Model”, International Journal of Advanced Science and

Technology, Vol. 34, September, 2011

[4] 3 Ways to Secure Your Virtualized Data Center, Jull 29, 2010,

http://www.serverwatch.com/trends/article.php/3895846/3-

Ways-to-Secure-Your-Virtualized-Data-Center.htm,

Retrieved 2016-05-20.

[5] A comprehensive framework for securing virtualized data

centers, HP,Aug 2010.

[6] S. L. and Z. L. and X. C. and Z. Y. and J. Chen, S.Luo, Z. Lin,

X. Chen, Z. Yang, and J. Chen, ”Virtualization security for

cloud computing service” in International Conference on

Cloud and Service Computing (CSC), pp. 174-179, 2011.

[7] “Cloud Security Alliance Guidance Version 3.0 ”, Cloud

Security Alliance, 2011

[8] SDN: Development, Adoption and Research Trends, Lav

Gupta, Washington University in St. Louis, Retrieved 2018-

10-20. Retrieved 2017-02-17.

[9] The Northbound API- A Big Little Problem,

http://networkstatic.net/the-northbound-api-2/,

[10] Magic of SDN in Networking, Calsoft Labs, Santha Rami

Reddy, Retrieved 2017-02-17.

[11] Restructuring and Innovation in Banking. Scardovi, Claudio.

Springer. p. 36, 2016

[12] A. Antonopoulos, Mastering Bitcoin. O'Reilly. 2014

[13] R. Chan, Consensus Mechanisms used in Blockchain,

https://www.linkedin.com/pulse/consensus-mechanisms-used-

blockchain-ronald-chan/, Retrieved 2018-04-16.

[14] D. Cawrey, How Consensus Algorithms Solve Issues with

Bitcoin’s Proof of Work, http://www.coindesk.com/stellar-

ripple-hyperledger-rivals-bitcoin-proof-work/, Retrieved

2018-05-22.

[15] V. Buterin, Proof of Stake: How I Learned to Love Weak

Subjectivity, https://blog.ethereum.org/2014/11/25/proof-

stake-learned-love-weak-subjectivity/, Retrieved 2018-03-12.

[16] A. Naumoff, Why Blockchain Needs ‘Proof of Authority’

Instead of ‘Proof of Stake’,

https://cointelegraph.com/news/why-blockchain-needs-proof-

of-authority-instead-of-proof-of-stake, Retrieved 2018-01-11.

[17] Practical byzantine fault tolerance.Castro, & Liskov. 3rd

Symposium on Operating Systems Design and

Implementation, pp173-186. 1999

[18] G. Becker, R. Bochum, Merkle Signature Schemes, Merkle

Trees and Their Cryptanalysis.Becker, p. 16, 2008

[19] B. Wahyudi1, K. Ramli, H. Murfi, Implementation and

Analysis of Combined Machine Learning Method for

Intrusion Detection System, International Journal of

Communication Networks and Information Security (IJCNIS)

Vol. 10, No. 2, August 2018

[20] A. Vahid Dastjerdi, A. Kamalrulnizam, Sayed Gholam Hassan

Tabatabaei, Distributed Instrusion Detection in Clouds Using

Mobile Agents, Third International Conference on Advanced

Engineering Computing and Application in Sciences, October

11-16, 2009

http://www.serverwatch.com/trends/article.php/3895846/3-Ways-to-Secure-Your-Virtualized-Data-Center.htm
http://www.serverwatch.com/trends/article.php/3895846/3-Ways-to-Secure-Your-Virtualized-Data-Center.htm
http://networkstatic.net/the-northbound-api-2/
https://www.linkedin.com/pulse/consensus-mechanisms-used-blockchain-ronald-chan/
https://www.linkedin.com/pulse/consensus-mechanisms-used-blockchain-ronald-chan/
http://www.coindesk.com/stellar-ripple-hyperledger-rivals-bitcoin-proof-work/
http://www.coindesk.com/stellar-ripple-hyperledger-rivals-bitcoin-proof-work/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://cointelegraph.com/news/why-blockchain-needs-proof-of-authority-instead-of-proof-of-stake
https://cointelegraph.com/news/why-blockchain-needs-proof-of-authority-instead-of-proof-of-stake

166
International Journal of Communication Networks and Information Security (IJCNIS) Vol. 11, No. 1, April 2019

[21] A. Bakshi, Yogesh B. Dujodwala, ”Securing Cloud from

DDoS Attacks Using Intrusion Detection System in Virtual

Machine”, Proceedings of the 2010 Second International

Conference on Communication Software and Networks(

ICCSN ’10), P 260-264, 2010.

[22] A. Azuan, I. Norbik Bashah, Mohd Nazri Kama, CloudIDS:

Cloud Intrusion Detection Model Inspired by Dendritic Cell

Mechanism, International Journal of Communication

Networks and Information Security (IJCNIS) Vol. 9, No. 1,

April 2017

[23] A. Schulter et al., Intrusion Detection for Computational

Grids, Proc. 2nd Intl Conf. New Technologies, Mobility, and

Security, IEEE Press, 2008

[24] Kleber, schulter, Intrusion Detection for Grid and Cloud

Computing, IEEE Journal: IT Professional, 19 July 2010

[25] Irfan Gul, M. Hussain , Distributed Cloud Intrusion Detection

Model , International Journal of Advanced Science and

Technology , Vol. 34, September, 2011

[26] C. Mazzariello, R. Bifulco, R. Canonico, Integrating a

Network IDS into an Open Source Cloud Computing

Environment, IEEE sixth international conference on

Information Assurance and Security, 2010

[27] P Mishra, E S Pilli, V Varadharajan et al., "Intrusion detection

techniques in cloud environment", Journal of Network &

Computer Applications, vol. 77, no. C, pp. 18-47, 2017

[28] P. Deshpande, SC. Sharma, SK. Peddoju, S. Junaid, HIDS: a

host-based intrusion detection system for cloud computing

environment. Int J Syst Assur Eng Manag 9(3):567–576,

2018.

[29] H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhoa, M. Li, A VMM-

based intrusion prevention system in cloud computing

environment. J Supercomput 66(3):1133–1151. 2013.

[30] P. Padmakumari, K. Surendra, M. Sowmya, M. Sravya,

Effective intrusion detection system for cloud architecture.

ARPN J Eng Appl Sci 9(11):2135–2139

[31] A. V. Dastjerdi, K. Abu Bakar, and S. Tabatabaei,” Distributed

Intrusion Detection in Clouds Using Mobile Agents,” in

Third International Conference on Advanced Engineering

Computing and Applications in Sciences,p. 175-180, 2009.

[32] S. Kentl, K. Seo, Security Architecture for the Internet

Protocol, RFC 4301, 2005

[33] A. Freier, P. Karlton, The Secure Sockets Layer (SSL)

Protocol Version 3.0, RFC 6101, 2011

[34] Digging Deeper into Deep Packet Inspection (DPI), Datakom,

2017

[35] G. Aceto, A. Dainotti, W. de Donato, and A. Pescap,

“PortLoad: Taking the Best of Two Worlds in Traffic

Classification,” in IEEE INFOCOM 2010, 2010

[36] F. Risso, M. Baldi, O. Morandi, A. Baldini, P. Monclus,

“Lightweight, Payload-Based Traffic Classification: An

Experimental Evaluation,” in ICC’08, pp. 5869–5875, 2008.

[37] Computer Networks Group at Politecnico di Torino, “The

NetBee Library,” http://www.nbee.org/, Retrieved 2018-02-

27.

[38] E.H, Spafford and D. Zamboni, Intrusion Detection Using

Autonomous Agent, Computer Networks, vol.34, issue 4,

2000.

[39] A, Tapaswi S, Virtual machine introspection: towards bridging

the semantic gap. Journal of Cloud Computing, 2014.

[40] M. Rio et al.: A Map of the Networking Code in Linux Kernel

2.4.20, in: Technical Report DataTAG-2004-1, 2004

[41] Linux man page: socket, http://linux.die.net/man/7/socket,

Retrieved 2017-04-15.

[42] Chen-Nien MaoMu-Han HuangSatyajit Padhy,Minimizing

Latency of Real-Time Container Cloud for Software Radio

Access Networks, Conference: 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science

(CloudCom), 2015

[43] D. Scholz, “A look at Intels dataplane development kit,”

Network, vol. 115, 2014

[44] “DPDK web page,” http://dpdk.org/, Retrieved 2017-12-08.

[45] L. Fetjah, K. Benzidane, H. El Alloussi, O. El Warrak, S. Jai-

Andaloussi, A. Sekkaki, Toward a big data architecture for

security events analytic, 2016 IEEE 3rd International

Conference on Cyber Security and Cloud Computing

(CSCloud), 2016

http://www.nbee.org/
http://linux.die.net/man/7/socket
http://dpdk.org/

