55 research outputs found

    Parallel Continuous Preference Queries over Out-of-Order and Bursty Data Streams

    Get PDF
    Techniques to handle traffic bursts and out-of-order arrivals are of paramount importance to provide real-time sensor data analytics in domains like traffic surveillance, transportation management, healthcare and security applications. In these systems the amount of raw data coming from sensors must be analyzed by continuous queries that extract value-added information used to make informed decisions in real-time. To perform this task with timing constraints, parallelism must be exploited in the query execution in order to enable the real-time processing on parallel architectures. In this paper we focus on continuous preference queries, a representative class of continuous queries for decision making, and we propose a parallel query model targeting the efficient processing over out-of-order and bursty data streams. We study how to integrate punctuation mechanisms in order to enable out-of-order processing. Then, we present advanced scheduling strategies targeting scenarios with different burstiness levels, parameterized using the index of dispersion quantity. Extensive experiments have been performed using synthetic datasets and real-world data streams obtained from an existing real-time locating system. The experimental evaluation demonstrates the efficiency of our parallel solution and its effectiveness in handling the out-of-orderness degrees and burstiness levels of real-world applications

    Dependence-driven techniques in system design

    Get PDF
    Burstiness in workloads is often found in multi-tier architectures, storage systems, and communication networks. This feature is extremely important in system design because it can significantly degrade system performance and availability. This dissertation focuses on how to use knowledge of burstiness to develop new techniques and tools for performance prediction, scheduling, and resource allocation under bursty workload conditions.;For multi-tier enterprise systems, burstiness in the service times is catastrophic for performance. Via detailed experimentation, we identify the cause of performance degradation on the persistent bottleneck switch among various servers. This results in an unstable behavior that cannot be captured by existing capacity planning models. In this dissertation, beyond identifying the cause and effects of bottleneck switch in multi-tier systems, we also propose modifications to the classic TPC-W benchmark to emulate bursty arrivals in multi-tier systems.;This dissertation also demonstrates how burstiness can be used to improve system performance. Two dependence-driven scheduling policies, SWAP and ALoC, are developed. These general scheduling policies counteract burstiness in workloads and maintain high availability by delaying selected requests that contribute to burstiness. Extensive experiments show that both SWAP and ALoC achieve good estimates of service times based on the knowledge of burstiness in the service process. as a result, SWAP successfully approximates the shortest job first (SJF) scheduling without requiring a priori information of job service times. ALoC adaptively controls system load by infinitely delaying only a small fraction of the incoming requests.;The knowledge of burstiness can also be used to forecast the length of idle intervals in storage systems. In practice, background activities are scheduled during system idle times. The scheduling of background jobs is crucial in terms of the performance degradation of foreground jobs and the utilization of idle times. In this dissertation, new background scheduling schemes are designed to determine when and for how long idle times can be used for serving background jobs, without violating predefined performance targets of foreground jobs. Extensive trace-driven simulation results illustrate that the proposed schemes are effective and robust in a wide range of system conditions. Furthermore, if there is burstiness within idle times, then maintenance features like disk scrubbing and intra-disk data redundancy can be successfully scheduled as background activities during idle times

    A Dynamic Model for Load Balancing in Cloud Infrastructure

    Get PDF
    This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform-independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement) violations and saves power. To achieve this, incoming requests are monitored for sudden burst, a prediction model is employed to maintain high availability and a power-aware algorithm is applied for choosing a suitable physical node for a virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.For anyone building a private, public or hybrid IaaS cloud infrastructure, load balancing of virtual hosts on a limited number of physical nodes, becomes a crucial aspect. This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement) violations and saves power. To achieve this, incoming requests are monitored for sudden burst, prediction model is employed to maintain high availability and power aware algorithm is applied for choosing a suitable physical node for virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.

    Markovian Workload Characterization for QoS Prediction in the Cloud.

    No full text
    Resource allocation in the cloud is usually driven by performance predictions, such as estimates of the future incoming load to the servers or of the quality-of-service (QoS) offered by applications to end users. In this context, characterizing web workload fluctuations in an accurate way is fundamental to understand how to provision cloud resources under time-varying traffic intensities. In this paper, we investigate the Markovian Arrival Processes (MAP) and the related MAP/MAP/1 queueing model as a tool for performance prediction of servers deployed in the cloud. MAPs are a special class of Markov models used as a compact description of the time-varying characteristics of workloads. In addition, MAPs can fit heavy-tail distributions, that are common in HTTP traffic, and can be easily integrated within analytical queueing models to efficiently predict system performance without simulating. By comparison with trace-driven simulation, we observe that existing techniques for MAP parameterization from HTTP log files often lead to inaccurate performance predictions. We then define a maximum likelihood method for fitting MAP parameters based on data commonly available in Apache log files, and a new technique to cope with batch arrivals, which are notoriously difficult to model accurately. Numerical experiments demonstrate the accuracy of our approach for performance prediction of web systems. © 2011 IEEE

    Dealing with Burstiness in Multi-Tier Applications: Models and Their Parameterization

    No full text
    Abstract—Workloads and resource usage patterns in enterprise applications often show burstiness resulting in large degradation of the perceived user performance. In this paper, we propose a methodology for detecting burstiness symptoms in multi-tier applications but, rather than identifying the root cause of burstiness, we incorporate this information into models for performance prediction. The modeling methodology is based on the index of dispersion of the service process at a server, which is inferred by observing the number of completions within the concatenated busy times of that server. The index of dispersion is used to derive a Markov-modulated process that captures well burstiness and variability of the service process at each resource and that allows us to define queueing network models for performance prediction. Experimental results and performance model predictions are in excellent agreement and argue for the effectiveness of the proposed methodology under both bursty and non-bursty workloads. Furthermore, we show that the methodology extends to modeling flash crowds that create burstiness in the stream of requests incoming to the application. Index Terms—Capacity planning, multi-tier applications, bursty workload, bottleneck switch, index of dispersion.

    Extra Functional Properties Evaluation of Self-managed Software Systems with Formal Methods

    Get PDF
    Multitud de aplicaciones software actuales están abocadas a operar en contextos dinámicos. Estos pueden manifestarse en términos de cambios en el entorno de ejecución de la aplicación, cambios en los requisitos de la aplicación, cambios en la carga de trabajo recibida por la aplicación, o cambios en cualquiera de los elementos que la aplicación software pueda percibir y verse afectada. Además, estos contextos dinámicos no están restringidos a un dominio particular de aplicaciones sino que se pueden encontrar en múltiples dominios, tales como: sistemas empotrados, arquitecturas orientadas a servicios, clusters para computación de altas prestaciones, dispositivos móviles o software para el funcionamiento de la red. La existencia de estas características disuade a los ingenieros de desarrollar software que no sea capaz de cambiar de modo alguno su ejecución para acomodarla al contexto en el que se está ejecutando el software en cada momento. Por lo tanto, con el objetivo de que el software pueda satisfacer sus requisitos en todo momento, este debe incluir mecanismos para poder cambiar su configuración de ejecución. Además, debido a que los cambios de contexto son frecuentes y afectan a múltiples dispositivos de la aplicación, la intervención humana que cambie manualmente la configuración del software no es una solución factible. Para enfrentarse a estos desafíos, la comunidad de Ingeniería del Software ha propuesto nuevos paradigmas que posibilitan el desarrollo de software que se enfrenta a contextos cambiantes de un modo automático; por ejemplo las propuestas Autonomic Computing y Self-* Software. En tales propuestas es el propio software quien gestiona sus mecanismos para cambiar la configuración de ejecución, sin requerir por lo tanto intervención humana alguna. Un aspecto esencial del software auto-adaptativo (Self-adaptive Software es uno de los términos más generales para referirse a Self-* Software) es el de planear sus cambios o adaptaciones. Los planes de adaptación determinan tanto el modo en el que se adaptará el software como los momentos oportunos para ejecutar tales adaptaciones. Hay un gran conjunto de situaciones para las cuales la propiedad de auto- adaptación es una solución. Una de esas situaciones es la de mantener al sistema satisfaciendo sus requisitos extra funcionales, tales como la calidad de servicio (Quality of Service, QoS) y su consumo de energía. Esta tesis ha investigado esa situación mediante el uso de métodos formales. Una de las contribuciones de esta tesis es la propuesta para asentar en una arquitectura software los sistemas que son auto-adaptativos respecto a su QoS y su consumo de energía. Con este objetivo, esta parte de la investigación la guía una arquitectura de tres capas de referencia para sistemas auto-adaptativos. La bondad del uso de una arquitectura de referencia es que muestra fácilmente los nuevos desafíos en el diseño de este tipo de sistemas. Naturalmente, la planificación de la adaptación es una de las actividades consideradas en la arquitectura. Otra de las contribuciones de la tesis es la propuesta de métodos para la creación de planes de adaptación. Los métodos formales juegan un rol esencial en esta actividad, ya que posibilitan el estudio de las propiedades extra funcionales de los sistemas en diferentes configuraciones. El método formal utilizado para estos análisis es el de las redes de Petri markovianas. Una vez que se ha creado el plan de adaptación, hemos investigado la utilización de los métodos formales para la evaluación de QoS y consumo de energía de los sistemas auto-adaptativos. Por lo tanto, se ha contribuido a la comunidad de análisis de QoS con el análisis de un nuevo y particularmente complejo tipo de sistemas software. Para llevar a cabo este análisis se requiere el modelado de los cambios din·micos del contexto de ejecución, para lo que se han utilizado una variedad de métodos formales, como los Markov modulated Poisson processes para estimar los parámetros de las variaciones en la carga de trabajo recibida por la aplicación, o los hidden Markov models para predecir el estado del entorno de ejecución. Estos modelos han sido usados junto a las redes de Petri para evaluar sistemas auto-adaptativos y obtener resultados sobre su QoS y consumo de energía. El trabajo de investigación anterior sacó a la luz el hecho de que la adaptabilidad de un sistema no es una propiedad tan fácilmente cuantificable como las propiedades de QoS -por ejemplo, el tiempo de respuesta- o el consumo de energÌa. En consecuencia, se ha investigado en esa dirección y, como resultado, otra de las contribuciones de esta tesis es la propuesta de un conjunto de métricas para la cuantificación de la propiedad de adaptabilidad de sistemas basados en servicios. Para conseguir las anteriores contribuciones se realiza un uso intensivo de modelos y transformaciones de modelos; tarea para la que se han seguido las mejores prácticas en el campo de investigación de la Ingeniería orientada a modelos (Model-driven Engineering, MDE). El trabajo de investigación de esta tesis en el campo MDE ha contribuido con: el aumento de la potencia de modelado de un lenguaje de modelado de software propuesto anteriormente y métodos de transformación desde dos lenguajes de modelado de software a redes de Petri estocasticas
    corecore