
W&M ScholarWorks

Dissertations, Theses, and Masters
Projects Theses, Dissertations, & Master Projects

2009

Dependence-driven techniques in system design
Ningfang Mi
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation
Mi, Ningfang, "Dependence-driven techniques in system design" (2009). Dissertations,
Theses, and Masters Projects. Paper 1539623549.
https://dx.doi.org/doi:10.21220/s2-2jmp-q235

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master
Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters
Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact
scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-2jmp-q235
mailto:scholarworks@wm.edu

Dependence-driven Techniques In System Design

Ningfang Mi

Nanjing, Jiangsu, China

Bachelor of Science, Nanjing University, 2000
Master of Science, University of Texas at Dallas, 2004

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philocophy

Department of Computer Science

The College of William and Mary
August, 2009

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

~
;; Ningfang Mi

Approved by the Committee, June, 2009

~
Dr. Evgenia Smirni

College of William and Mary

~/, _____ /flt -
Dr. Phil Kearns

The College of William and Mary

? a:: ~Jl..._____
Dr. Peter Kemper

The College of William and Mary

Dr. Weizhen Mao
The College of William and Mary

~"~---
Dr. Ludmila Cherkasova
Hewlett-Packard Labs

ABSTRACT PAGE

Burstiness in workloads is often found in multi-tier architectures, storage systems, and
communication networks. This feature is extremely important in system design because it can
significantly degrade system performance and availability. This dissertation focuses on how to use
knowledge of burstiness to develop new techniques and tools for performance prediction,
scheduling, and resource allocation under bursty workload conditions.

For multi-tier enterprise systems, burstiness in the service times is catastrophic for performance. Via
detailed experimentation, we identify the cause of performance degradation on the persistent
bottleneck switch among various servers. This results in an unstable behavior that cannot be
captured by existing capacity planning models. In this dissertation, beyond identifying the cause and
effects of bottleneck switch in multi-tier systems, we also propose modifications to the classic TPe
W benchmark to emulate bursty arrivals in multi-tier systems.

This dissertation also demonstrates how burstiness can be used to improve system performance.
Two dependence-driven scheduling policies, SWAP and ALoe, are developed. These general
scheduling policies counteract burstiness in workloads and maintain high availability by delaying
selected requests that contribute to burstiness. Extensive experiments show that both SWAP and
ALoe achieve good estimates of service times based on the knowledge of burstiness in the service
process. As a result, SWAP successfully approximates the shortest job first (SJF) scheduling
without requiring a priori information of job service times. ALoe adaptively controls system load
by infinitely delaying only a small fraction of the incoming requests.

The knowledge of burstiness can also be used to forecast the length of idle intervals in storage
systems. In practice, background activities are scheduled during system idle times. The scheduling
of background jobs is crucial in terms of the performance degradation of foreground jobs and the
utilization of idle times. In this dissertation, new background scheduling schemes are designed to
determine when and for how long idle times can be used for serving background jobs, without
violating predefined performance targets of foreground jobs. Extensive trace-driven simulation
results illustrate that the proposed schemes are effective and robust in a wide range of system
conditions. Furthermore, if there is burstiness within idle times, then maintenance features like disk
scrubbing and intra-disk data redundancy can be successfully scheduled as background activities
during idle times.

Table of Contents

Acknowledgments X

List of Tables xi

List of Figures xiii

1 Introduction

1.1 Contributions

Capacity Planning Models 0

General Scheduling Policies

1.1.1

1.1.2

1.1.3 Idleness Management in Storage Systems

2

4

5

7

8

1. 2 Organization 0 10

2 Background 11

201 Introduction to Burstiness 0 11

202 Autocorrelation 0 13

203 Index of Dispersion 0 15

204 Markovian Arrival Processes (MAPs) 0 16

iv

2.5 Performance Impacts . 19

2.6 Chapter Summary . 21

3 Capacity Planning in Multi-tier Enterprise Systems

3.1 Related Work .

22

. 25

3.2 Burstiness in the Service Process of Multi-Tier Applications 27

3.2.1 Experimental Environment . 27

3.2.2 Bottleneck Switch in TPC-W 33

3.2.3 The Analysis of Bottleneck Switch 35

3.2.4 Traditional MVA Performance Models Do not Work 39

3.3 Integrating Burstiness in Performance Models 42

3.3.1 Measuring the Index of Dispersion 43

3.3.2 Integrating I in Performance Models 46

3.3.3 Impact of Measurement Granularity and Monitoring Windows 47

3.3.4 Validation of Prediction Accuracy on Different Transaction Mixes 51

3.4 Injecting Burstiness in the Arrival Process of Multi-tier Benchmarks 52

3.4.1 Limitations of Standard TPC-W 53

3.4.2 Using MAP to Model Traffic Bursts 55

3.4.3 Integrating Burstiness in TPC-W . 56

3.4.4 Case Study: TPC-W . 59

3.5 Chapter Summary . 67

4 General Dependence-driven Scheduling Policies 69

4.1 Related Work . 70

v

4.2 Delay-Based Scheduling Policy: SWAP . 71

4.2.1 Forecasting Job Service Times .

4.2.2 The Delaying Algorithm: SWAP

. 73

. 75

4.2.3 Self-Adjusting the Threshold LT 77

4.2.4 Performance Evaluation of SWAP 81

4.3 Autocorrelation-Guided Load Control Policy 92

4.4

4.3.1 ACF-Guided Dropping.

4.3.2 ALoC: Static Version .

4.3.3

4.3.4

D_ALoC: Dynamic Version

Trace Driven Evaluation .

Chapter Summary

5 Perforrnability of Systems with Background Jobs

5.1

5.2

5.3

5.4

Related Work .

Storage System

5.2.1 Workload Parameterization

5.2.2 Background Tasks in Storage Systems

The Markov Chain

5.3.1 Modeling Dependence in the Arrival Process

Performance Evaluation Results

5.4.1 Performance of Foreground Jobs

5.4.2 Performance of Background Jobs

5.4.3

5.4.4

Effect of "Idle Wait" Duration .

The Impact of Dependence in the Arrival Process .

vi

. 93

94

. 103

. 107

. llO

112

. ll3

. ll5

. ll5

. ll7

. 120

. 122

. 125

. 126

. 127

. 129

. 130

5.5 Chapter Summary . 132

6 Background Scheduling in Storage Systems

6.1

6.2

6.3

6.4

6.5

6.6

Related Work

Characterizing Idleness .

6.2.1

6.2.2

Independent Idle Intervals

Bursty Idle Intervals . .

Background Scheduling Policy .

6.3.1

6.3.2

6.3.3

Background Activity in Independent Idle Intervals

Background Activity in Bursty Idle Intervals

Case Study: Disk Drives

Application: Enhancing Data Availability

6.4.1

6.4.2

6.4.3

6.4.4

6.4.5

Background: MTTDL estimation .

Trace Characteristics and Simulations

Infinite Background Activities: Scrubbing

Finite Background Activities: Intra-disk Parity Update

Multi-feature Case: Scrubbing and Intra-disk Parity

Background Schedulability Algorithm

6.5.1

6.5.2

Algorithmic Framework

Analysis and Evaluation

Chapter Summary

7 Conclusions and Future Work

7.1 Future Work

vii

134

. 135

. 137

. 137

. 140

. 141

. 143

. 156

. 162

165

167

. 168

. 171

. 173

. 181

. 186

186

194

199

201

. 204

A MAP(2) Generation

B Revised TPC-W Benchmark

B.1 www_map.m.

B.2 rbe.MMPP.java

B.3 rbe.RBE.java

B.4 rbe.EB.java

Bibliography

Vita

viii

207

209

. 209

. 213

. 219

. 220

221

229

http://www.map.rn

To my parents, my husband Bo, and my son Anray.

ix

ACKNOWLEDGMENTS

This dissertation is the result of the support of many people over the years. First and

foremost, I would like to thank my thesis advisor Dr. Evgenia Smirni. She has provided

continuous assistance in numerous ways whenever I needed it. Her advice and guidance

!lt crucial points have been invaluable in helping me grow and mature as a researcher. I

feel fortunate to have her as my advisor, and I hope to one day be as good an advisor as

she is.

I would also like to thank my committee members, Dr. Phil Kearns, Dr. Peter Kemper,

Dr. Weizhen Mao, and Dr. Ludmila Cherkasova. Their thoughtful feedback have been

extremely helpful in improving this thesis.

I am especially grateful to Dr. Alma Riska, my mentor at Seagate Research, and Dr.

Ludmila Cherkasova, my mentor at HP Labs. I could not have asked for better mentors to

show me the ropes in the "real world". Their patient advice as well as their rich experience

and knowledge have made my internships truly productive and memorable.

My research has benefited from collaborating with other talented researchers. I would

like to thank Dr. Qi Zhang for her help and encouragement when I first started my

research. My smooth transition to research would not have been possible without Qi's

help. I would also like to say a special thank you to Dr. Giuliano Casale for his help in

the later part of my research. During his 2-year stay at William and Mary, we had many

productive discussions and fruitful collaborations on several topics. Working closely with

Giuliano was a rewarding experience. He has been a role model for me with his wide

breadth of knowledge, diligence, and work ethic.

In addition, I would like to thank the academic staff in the Computer Science De

partment, especially Vanessa Godwin and Jacqulyn Johnson, for their assistance over the

years. My PhD journey would not have been this smooth without their help.

Finally, I would like to express my deepest gratitude to my family for their uncondi

tional love and support all these years. I am indebted to my parents, my grandparents,

and my sister for encouraging me and being patient for so many years. Special thanks to

my husband Bo Sheng who has helped and supported me through this journey. I would

like to dedicate this thesis to my lovely son Anray Sheng, who has been the source of my

energy in the final stage of writing this thesis.

X

List of Tables

2.1 Response time of theM /Trace/1 queue relatively to the service times traces shown

in Figure 2.5. The server is evaluated for utilizations p = 0.5 and p = 0.8. 21

3.1 Hardware/software components of the TPC-W testbed. 28

3.2 The 14 transactions defined in TPC-W. 29

3.3 Think time values considered in the accuracy validation experiments. 50

4.1 Mean system throughput (TPUT) and relative improvement over FCFS for

a network with M = 2 queues, N ~ 500 jobs, .\1 = 2 and autocorrelation

profile ACF1. 83

4.2 Queue service rates in the three experiments used to study SWAP sensitivity to

different network sizes. 90

6.1 Overall characteristics of traces used in this evaluation. The measurement

unit isms 162

6.2 Parameters used for MTTDL estimation. . 168

6.3 Overall characteristics of traces used in our evaluation. The measurement

unit is ms. 169

xi

6.4 Background activities characteristics. The unit of measurement is ms. . .. 169

6.5 Scrubbing performance for traces T3, T4, and T5 under body-based, tail-

based, and tail+bursty-based idle time managing policies. . 172

6.6 MTTDL improvement via scrubbing 173

6.7 Parity update performance for trace T3 (low variability). . 175

6.8 Probabilities of user WRITES in trace T3 (low variability) that find dirty

parity .. 176

6.9 Probabilities of user WRITES in trace T4 (high variability) that find dirty

parity 179

6.10 MTTDL improvement via intra-disk data redundancy. . 181

6.11 MTTDL improvement via scrubbing and intra-disk parity. . 186

6.12 Overall characteristics of traces used in our evaluation. The measurement

unit is ms. 194

6.13 FG delay, completed BG requests, and completed BG work relative to the

incoming FG work. 196

xii

List of Figures

2.1 The probabilities of pairs (small,small)k> (small,large)k> (large,small)k and

(large,large)k as a function of lags k. 12

2.2 Illustrating the ACF of the four service processes with different autocorrelation

profiles ACF1 , ACF2 , ACF3 , and ACF4 , respectively.

2.3 Burstiness of arrivals to server 0 in the 1998 FIFA World Cup trace over ten

consecutive days. This figure focuses on the server with label "0" from day 61 to

. 13

day 71. The index of dispersion I is reported on the top of the figure. 16

2.4 State transitions of MAP(2). Transitions shown in solid arrows are associated with

the events in MAP and transitions shown in dashed arrows are associated with the

changes between states only. 17

2.5 Four workload traces with identical MAP distribution (mean f.L-l = 1,

SCV = 3), but different burstiness profiles. 20

3.1 E-commerce experimental environment. 28

3.2 TPC-W experimental configuration with the Diagnostics tool. 31

3.3 The transaction latency measured by the Diagnostics tool. 32

xiii

3.4 Illustrating a) system overall throughput, b) average CPU utilization of the front

server, and c) average CPU utilization of the database server for three TPC-W

transaction mixes. The mean think time is set to E[Z] = 0.5s. 33

3.5 The CPU utilization of the front server and the database server across time with

1 second granularity for (a) the browsing mix, (b) the shopping mix, and (c) the

ordering mix under 100 EBs. The monitoring window is 300 seconds. 35

3.6 The CPU utilization of the database server and average queue length at

the database server across time for (a) the browsing mix, (b) the shopping

mix, and (c) the ordering mix.

3. 7 The overall queue length at the database server and the number of current

requests in system for the Best Seller transaction across time for (a) the

browsing mix, (b) the shopping mix, and (c) the ordering mix.

3.8 The number of current requests in system for the Home transaction across time

for (a) the browsing mix, (b) the shopping mix, and (c) the ordering mix, with 100

. 36

. 38

EBs and mean think time equal to 0.5s. The monitoring window is 120 seconds. 38

3.9 The closed queueing network for modeling the multi-tier system. 40

3.10 MVA model predictions versus measured throughput. 42

3.11 Estimation of I from utilization samples.

3.12 Comparing the results for the model which fits MAPs with different E[Zestim] =

0.5s and E[Zestim] = 7s. On each bar, the relative error with respect to the

experimental data is also reported.

45

50

3.13 Modeling results for three transaction mixes as a function of the number of EBs. 51

3.14 Model of traffic bursts based on regulation of think times 56

xiv

3.15 Arriving clients to the system (front server) for the shopping mix with (a) non

bursty (standard TPC-W), (b) I = 400, and (c) I = 4000 in user think times,

where the maximum number of client connections is set to N = 1000.

3.16 Average latencies as a function of the number of maximum client connections N

61

for (a) browsing mix, (b) shopping mix, and (c) ordering mix with non-bursty and

bursty of I = 4000 and 400 in the user think times. 62

3.17 CDFs of latencies for (a) browsing mix, (b) shopping mix, and (c) ordering mix with

non-bursty and bursty of I = 4000 and 400 in user think times, where N = 1000

and the corresponding average latencies are also marked. . 62

3.18 Shopping mix: transient utilizations at the front server and the database server for

(a) non-bursty, (b) I= 400, and (c) I= 4000 in user think times, where N = 1000. 63

3.19 Shopping mix: PDFs of utilizations at (I) the front server and (II) the database

server for non-bursty, I= 400, and I= 4000 in user think times, where N = 1000. 63

3.20 Shopping mix: transient number of active clients in the system, i.e., summation of

queue length at the front and the database servers, for (a) non- bursty, (b) I = 400,

and (c) I= 4000 in user think times, where N = 1000. . 64

3.21 Browsing mix: transient utilizations at the front server and the database server for

(a) non-bursty, (b) I= 400, and (c) I= 4000 in user think times, where N = 1000. 66

3.22 Browsing mix: PDFs of utilizations at (I) the front server and (II) the database

server for non-bursty, I = 400, and I = 4000 in user think times, where N = 1000. 66

3.23 Browsing mix: transient number of active clients in the system, i.e., summation of

queue length at the front and the database servers, for (a) non-bursty, (b) I= 400,

and (c) I= 4000 in user think times, where N = 1000. 67

XV

4.1 Description of SWAP. 79

4.2 Description of how to self-adjust the large threshold LT.

4.3 The ACF of the service process that generates the autocorrelated flows in the

system, where the service times are drawn from MMPP(2)s with ACF1 , ACF2 and

80

A CF3, respectively. 82

4.4 Comparative evaluation of SWAP, SJF and FCFS: (a) CCDF of round trip times,

(b) autocorrelation (ACF) of service times at QAcF, and (c) CDF of the number

of times jobs are delayed at QACF· . 84

4.5 Sensitivity to service process ratio in a network with M = 2, N = 500, and ACF1 . 85

4.6 Illustrating the CCDF of round trip times in a network with M = 2, N = 500,

and ACF1 . The service rate >'I of the exponential queue is equal to (a) 1, (b) 2,

and (c) 5

4.7 Sensitivity to temporal dependence in a network with M = 2, N = 500, and

AI = 2, where the relative improvement over the FCFS policy is indicated on each

. 86

bar. 87

4.8 Illustrating the CCDF of round trip time in a network with M = 2, N = 500,

and AI= 2. The service process of QAcF has temporal dependence (a) ACF1, (b)

4.9 Sensitivity to network population in the system with M = 2, A1 = 2, and ACF1 ,

. 88

where the relative improvement over the FCFS policy is indicated on each bar. . . 89

4.10 Illustrating the CCDF of round trip time in a network with M = 2, A1 = 2, ACFJ.

The network population is (a) N = 500, (b) N = 800, and (c) N = 1000. 89

XVI

4.11 Illustrating the eeDF of round trip time in a network with M = 2,)q = 2,

and ACF1.. 90

4.12 Sensitivity to network size in a network with N = 500 and A CF1 , where the relative

improvement over the FCFS policy is indicated on each bar. . 91

4.13 Illustrating the CCDF of round trip time in a network with N = 500 and ACFJ.

The number of queues in the network is (a) M = 2, (b) M = 3, and (c) M = 4. 92

4.14 llustration of ALoe's operations. 96

4.15 Description of ALoe. All input parameters are determined off-line. 97

4.16 Average response times of ALoe for Experiment 1 and Experiment 2, with

N = 500 and Q = 490 (98% of N). 99

4.17 Average drop ratio and average response time reduction achieved by ALoe

as a function of Q for Experiment 1 and Experiment 2 with three MMPP(2)

processes (i.e., ACF1, ACF2, and ACF3) at QACF· N = 500.

4.18 eeDFs of response times for Experiment 1 for the random and ALoe

policies. Service times of QAcF have ACF2, N = 500 and Q = 490. The

drop ratio of both Random and ALoe is equal to 0.10.

4.19 AeF of the departure process of QAcF for Experiment 1. N = 500, the

autocorrelation of the service process is A CF2 , and Q = 490. The drop

' 101

' 102

ratio of random and ALoe is 0.10. 103

4.20 Description of D_ALoe. All policy parameters are computed on-line. . 104

4.21 Average response times under drop ratios of 0.0, 0.06, 0.08, 0.10, and 0.13,

for Experiment 1 and Experiment 2. 105

xvii

4.22 CCDFs of response times under drop ratios of 0.0 (i.e., no drop), 0.06,

0.08, 0.10, and 0.13, for Experiment 1, where the service times of QAcF are

drawn from ACF2 . N = 500.

4.23 The ACF of the service times at a streaming device.

4.24 Average performance response times when 0% (no dropping), 7%, 12%, and

16% of the work in the second server (disk) is dropped.

4.25 CCDFs of response times using the real traces. N = 200.

5.1 ACF of inter-arrival times of three traces, the respective mean (in ms) and

CV of the inter-arrival and service times.

5.2 ACF of our 2-state MMPP models for the interarrival times of the three

traces and their parameterization.

5.3 The Markov chain of the queueing system with infinite buffer size for fore-

. 106

. 108

. 109

. 110

116

. 117

ground tasks and a buffer size of 2 for background tasks. 121

5.4 Changes in the Markov chain of Figure 5.3 when the arrival process is a

2-state MMPP 123

5.5 Average queue length of foreground jobs for (a) the Email and (b) the

Software Dev. traces as a function of foreground load. 127

5.6 Portion of foreground jobs delayed by a background job for (a) the Email

and (b) the Software Dev. traces as a function of foreground load. 127

5. 7 Completion rate for background jobs for (a) the Email and (b) the Software

Dev. traces as a function of foreground load. . 128

5.8 Average queue length of background jobs in the workloads (a) Email and

(b) Software Dev. as a function of foreground load 128

xviii

5.9 Foreground jobs average queue length for (a) the Email and (b) the Software

Dev. traces as a function of idle wait (in multiples of service time). . 129

5.10 Completion rate for background jobs in the workloads (a) Email and (b)

Software Dev. as a function of idle wait (in multiples of service time). . .. 130

5.11 Average queue length for foreground jobs for the "E-mail" workload as a

function of foreground load in the system. 131

5.12 Completion rate of background jobs for the "E-mail" workload as a function

of foreground load in the system. .. 132

5.13 Portion of foreground jobs delayed by a background job for the "E-mail"

workload as a function of foreground load in the system 132

6.1 CDF of idle times with (a) low CV and (b) high CV. The x-axis gives idle

times normalized by their mean. 138

6.2 Overall system performance when the idle intervals are independent and

with low variability. . 147

6.3 Relation between the slope of the CDF and the length of idle wait when

the distribution has high CV 150

6.4 Overall system performance when the idle intervals are independent and

with high variability 151

6.5 Tail of the foreground response time in the presence of or not of background

activity when the idle intervals are independent. 156

6.6 Number of completed background jobs and overall system utilization when

under bursty idle intervals. 158

6. 7 System performance under background jobs when the idle intervals are bursty.160

XlX

6.8 Probabilities of (large,small) and (large,large) pairs for traces T1 and T2. . 163

6.9 Number of completed BG jobs and foreground slowdown for trace Tl. ... 164

6.10 Average slowdown of foreground jobs and the tail of response time distri-

bution for three levels of completed background work, for trace T2 165

6.11 CDF of scrubbing time distribution for traces (a) T3, (b) T4, and (c) T5. . 172

6.12 CDF of parity updates time for trace T3 (low variability). . 175

6.13 Performance of parity updates for trace T4 (high variability) and four dif-

ferent user WRITE traffic, i.e., 1%, 10%, 50% and 90%. 176

6.14 CDF of parity update time for trace T4 (high variability) and four different

user WRITE traffic, i.e., 1%, 10%, 50% and 90% 178

6.15 Average (a) scrubbing and (b) parity update times when running individ-

ually and together. .. 182

6.16 Overall system utilization under scrubbing and parity updates when they

run individually and together 183

6.17 Average time for (a) an entire scrubbing, (b) parity updates for trace T3

(low variability). 184

6.18 Overall system utilization . 185

6.19 Three cases of idleness utilization. . 187

6.20 Transition from E to (Ii, Ti) in a cumulative data histogram. . 191

6.21 Estimation of the BG work Bi that completes during idle intervals if (h Ti)

is the schedulability pair. . 193

6.22 CDH of idle times for traces T3 and T6. . 195

6.23 Trace T3. FG delay and completed BG work for any (I, T) pair. . 197

XX

6.24 Trace T6. FG delay and completed BG work for any (I, T) pair. 198

xxi

Dependence-driven Techniques In System Design

Chapter 1

Introduction

Burstiness has been widely observed in different levels of real systems, such as the service

demands in e-commerce Web servers [64], the arrivals at storage systems [78], and the

arrivals in grid services [51]. Under bursty conditions, it is more likely that large service

times progressively aggregate in bursts, resulting in the reduction of system throughput for

a period. Similarly, burstiness in the arrivals may cause more persistent flash crowds in the

system, where periods of continuous peak arrivals significantly deviate from the normal

traffic intensity. As a result, burstiness in both the arrival and the service processes

significantly reduces system performance and availability.

In networking, a lot of studies have been done to counteract the performance effect

of burstiness and to maintain high service availability, e.g., the development of accurate

models of bursty traffic processes [39, 100], and measurement-based admission control

schemes for network availability under rapidly changing flows [37]. Unfortunately, these

models and schemes cannot be easily applied to systems due to the systematic violation of

the underlying assumptions. In this dissertation, we focus on identifying the characteristics

2

3

of workload burstiness in systems and on understanding their performance implications.

Such an understanding is critical for developing new techniques and tools to maintain

performance and availability in systems with bursty workloads.

One particular target area is multi-tier enterprise systems which have risen in popular

ity during the past decade. It is critical and difficult to ensure performance and availability

of such enterprise systems, especially when their complexity increases. Sizing enterprise

systems to meet the needs of future workloads is a very challenging task. To address

this problem, practitioners use capacity planning (i.e., predict future system performance

using mathematical models) in order to decide on software and/or hardware. However, if

workload flows in enterprise systems are bursty, then no capacity planning methods exist

that can capture the effects of burstiness in system performance. Thus, there is a clear

need for new capacity planning models and methods. Scheduling, another important com

ponent in system design, can also use burstiness to improve system performance. Deriving

information on the future workload from its burstiness profile can be used to design more

efficient scheduling techniques.

An additional area of interest is to maintain data availability and reliability at disk

drives. Nowadays, the needs for hard disk drives are not only from traditional computer

systems but also from a wide range of consumer electronic devices. As digital storage of

commercial and personal data becomes mainstream, high data availability and reliability

become imminently critical. As a result, maintenance tasks are developed to gain reliable

disk-based storage systems, such as disk scrubbing to detect sector errors via background

media scans [84] and intra-disk data redundancy to recover from sector errors [23, 45].

Since most computer systems operate 24 hours a day, 7 days a week, they must complete

4

these maintenance tasks while in operation. This additional work, although labeled as low

priority, still affects the performance of foreground tasks, especially if it is non-preemptive.

Therefore, developing efficient scheduling of maintenance tasks becomes an important issue

in storage systems. Additionally, as disk drives operate under a wide range of applications

exhibiting high variability and strong burstiness [78], reliable storage devices must be

driven by policies that incorporate burstiness.

In general, burstiness in workloads processed by multi-tier architectures, storage sys

tems, and communication networks, significantly reduces system performance, thus it is

necessary to consider burstiness in performance models and system design. Capturing

burstiness within performance models can be used to implicitly model caching, context

switching overhead, and contention for memory or locks, while keeping the model sur

prisingly simple. Additionally, burstiness, as a form of temporal aependence, provides

information on the upcoming workload arrivals and service demands. Therefore, by taking

advantage of burstiness, one may effectively predict the immediate future, e.g., estimate

service times in multi-tier systems and forecast idle interval lengths in storage systems.

This dissertation focuses on how to use burstiness to develop new techniques and tools

for improving performance prediction, scheduling, and resource allocation in enterprise

systems and storage systems.

1.1 Contributions

The contributions of this dissertation are summarized as follows.

- effective capacity planning models that capture workload burstiness are developed

5

for multi-tier enterprise systems. Model parameterization is achieved via coarse

measurements in real systems, see Section 1.1.1;

- new general scheduling policies are designed for systems with bursty workloads to

estimate service times of upcoming requests and improve system performance and

availability, see Section 1.1.2;

- a model for evaluating the performance of foreground/background jobs at the disk

drive level is proposed and new background scheduling schemes that efficiently man

age the idle times in storage systems are developed, see Section 1.1.3.

1.1.1 Capacity Planning Models

Capacity planning is a critical area in IT management and aims at quality of service

support and decision making. Building effective models of complex enterprise systems is

a priority for capacity planning and resource provisioning. In this dissertation, we build

simple capacity planning models that can predict the performance of systems with bursty

workloads.

• We observe that the bursty workloads often result in dramatic degradation of the

perceived user performance in an e-commerce system that is built according to the

TPC-W benchmark. We show that existing capacity planning models, e.g., Mean

Value Analysis (MVA) models, cannot capture burstiness in the service process, and

thus yield large inaccuracies in performance prediction if the system operates under

bursty conditions.

6

• We propose to use the index of dispersion to capture burstiness. The index of

dispersion can jointly capture service variability and burstiness in a single number

but without identifying the low-level exact cause of burstiness as traditional models

would require. We first find a simple and practical approach to measure the index

of dispersion of the service process at a server, which is inferred by observing the

number of completions within the concatenated busy periods of that server. Then, we

integrate the index of dispersion into performance models by using it together with

other measurements (i.e., the "estimated" mean and the 95th percentile of service

times) to derive a Markov-modulated process. We show that these parameterized

models accurately predict the system performance, despite inevitable inaccuracies

that result from inexact and limited measurements.

• We develop a simple and powerful approach to incorporate burstiness into bench

marking of client-server systems. Benchmarking is a critical step for capacity plan

ning and resource provisioning. An effective benchmark should take account of

the system behavior under bursty conditions. However, the traditional client-server

benchmarks, e.g., the standard TPC-W benchmark, do not provide any mecha

nisms for injecting burstiness into the workload. In this dissertation, we rectify

this deficiency of TPC-W by generating workloads that emulate the traffic bursty

phenomenon in a controllable way, and thus provide a mechanism that enables test

ing and evaluation of client-server system performance under reproducible bursty

workloads. This new approach injects different amounts of burstiness into the ar

rival stream using the index of dispersion, a single parameter that can be used as a

turnable knob.

7

1.1.2 General Scheduling Policies

Recent work in Web systems, such as Internet servers [97], multi-tier architectures [18],

and online Data Stream Management Systems (DSMSs) [28], has drawn attention to the

problem of defining effective scheduling techniques to keep a system responsive under a

variety of overload conditions. In this dissertation, we show how to counteract burstiness

and maintain high availability by delaying selected requests that contribute to temporal

locality.

• We show that by selectively delaying requests that contribute to burstiness, delay

based scheduling can achieve significant performance gains and high system avail

ability. We observe that delaying selected requests significantly improves system

throughput across the network, which allows delay-based scheduling to increase the

amount of requests that a server can process at a given time, therefore avoids harmful

congestion conditions.

• We design a new delay-based scheduling policy, called SWAP. This policy classifies

(i.e., "predicts") requests as short or long based on the knowledge of burstiness in

service times and approximates the behavior of the shortest job first (SJF) scheduling

by delaying the predicted long requests. We show that SWAP significantly improves

system performance and availability, where the system capacity under SWAP is

largely increased compared to the first-come first-served (FCFS) scheduling and is

highly-competitive with SJF, but without requiring a priori information of job service

times.

• We also define two scheduling policies, call ALoC and D_ALoC, which extend

8

SWAP by infinitely delaying the selected requests in order to meet pre-defined

quality-of-service levels. Both policies are easy to implement and rely on minimal

assumptions. In particular, D_ALoC is a fully no-knowledge measurement-based

policy that self-adjusts its scheduling parameters based on policy targets and sta

tistical information of requests served in the past. We show that if these policies

are employed in the server with a bursty service process, then the overall system

performance (e.g., end-to-end response time across all servers) can be significantly

improved by only infinitely delaying a small fraction of the incoming requests.

1.1.3 Idleness Management in Storage Systems

An additional area of focus is to use the knowledge of burstiness in storage systems for

efficiently scheduling maintenance tasks at disk drive levels and thus improving system

reliability, availability and performance. These maintenance tasks are considered as addi

tional work and scheduled during idle intervals. However, they still affect the performance

of foreground tasks, especially if they are non-preemptive. In this dissertation, we develop

algorithms to schedule background jobs in storage systems that can work effectively under

both bursty and non-bursty conditions.

• We propose an analytic model to evaluate the performance trade-offs of the amount

of maintenance (or background) work that a storage system can sustain. The

proposed model results in a quasi-birth-death (QBD) process that is analytically

tractable. We show that under bursty arrivals both foreground and background

performance strongly depends on system load. In contrast, if arrivals of foreground

jobs are not bursty, performance sensitivity to load is reduced. The model identifies

9

burstiness in the arrivals of foreground jobs as an important characteristic that con

trols the decision of how much background load the system can accept to maintain

high availability and performance gains.

• A common approach in system design is to be non-work-conserving by "idle wait

ing", i.e., delay scheduling of a background job to avoid slowing down upcoming

foreground tasks. We show that "idle waiting" is insufficient as a "standalone" tech

nique for idleness management, because it may cause background starvation while

trying to meet the foreground performance targets. We propose to complement

"idle waiting" with the "estimation" of background work to be served in every idle

interval. This new scheduling scheme can well balance the trade-offs between the

performance of foreground and background tasks. If burstiness exists in idle inter

vals, then this information can be used to predict the length of the upcoming idle

intervals. Predicting that the next idle interval is long given that the current inter

val is also long is of particular interest, because scheduling of background jobs can

become more aggressive but without affecting more on foreground performance.

• We show that two known techniques to detect and/or recover from latent sector

errors, namely scrubbing and intra-disk data redundancy, can be treated as back

ground activities and be effectively served by the proposed background scheduling

scheme without affecting foreground task performance, while reducing the window

of vulnerability for data loss.

o We develop a new algorithmic framework to determine the schedulability of non

preemptable background tasks, i.e., estimating when and for how long idle times

10

can be used to serve background work without violating pre-defined foreground

performance targets. The estimation is based on monitored system information that

includes the histogram of idle times. This histogram captures accurately important

statistical characteristics of the complex demands of the foreground activity.

1.2 Organization

The dissertation is organized as follows. In Chapter 2, we present an overview of basic

concepts and terminology that are used in this dissertation. In Chapter 3, we present

new capacity planning models for effectively capturing burstiness in workloads and for

explicitly introducing burstiness in a client-server benchmark. In Chapter 4, we present

new general scheduling policies for improving the performance and availability in systems

with bursty workloads. In Chapter 5, we propose an analytic model for the evaluation

of disk drives or storage systems with background jobs. In Chapters 6, we show how to

efficiently manage the idleness in storage systems for serving background jobs without

violating pre-defined performance targets of foreground jobs. Finally, a summary of this

dissertation and future work are outlined in Chapter 7.

Chapter 2

Background

In this chapter, we introduce basic concepts and models that are used in the entire dis

sertation to quantify, identify, and model burstiness in workloads. We also present the

performance impact of burstiness that motivates this dissertation.

2.1 Introduction to Burstiness

Burstiness captures the order of a sequence in the time series. For example, with burstiness

in arrival streams, we can observe a burst of requests arriving during some periods but

very few requests during some other periods. Similarly, when the service times are bursty,

requests with long service times are frequently clustered together while short ones are next

to each other as well.

Figure 2.1 gives an example to better understand this intuition. In this example, we

use two different service processes, where one is independent without burstiness in service

times (see Figure 2.1(1)) and the other one exhibits strong burstiness (see Figure 2.1(II)).

For each of the two service processes, the two subfigures (i.e., Figure 2.1(a)-(b) and Fig-

11

12

ure 2.1(c)-(d)) compare the probability of occurrence of (small,small)k (white part of the

bar) and (small,large)k (black part of the bar) pairs with the similarly defined probability

of occurrence of (large,small)k (white part of the bar) and (large,large)k (black part of the

bar) pairs, as a function of the lag k, 1 ::::; k::::; 9, i.e., their relative distance in the sequence.

Figure 2.1(1) shows that without burstiness the probability of the next observation being

small or large neither depends on the lag k nor on the current observation. The opposite

is observed in Figure 2.1 (II), where the lag-k probability of the next observation being

small or large strongly depends on the current observation. We see that the probability

of having large observations within the next nine lags after a large one is significant and

ranges from "' 65% to "' 35%, see Figure 2.1(d). Similarly, the probability of having a

small observation after another small one is very large, see Figure 2.1(c).

_;as
.0 .g 0.6

C..o.4

(I) Without Burstiness

I

_;- 0.8

~ 0.6 .g
a o.4

a.
2

I I I I I I I I I 0.2

Ill I II II
123456789

lag (k)
123456789

lag (k)

(a) (small.small) = (small. large)- (b) (large.small) = (large.Jarge) -

~ 0.8

~ 0.6
9
5. 0.4

0.2

(II) With Burstiness

£ 0.8

B o.6
1i
~ 0.4

0.2 IIIII
123456789 123456789

lag (k) lag (k)

(c) (small,small) c::l (small,large)- (d) (large,small) c::l (large,large)-

Figure 2.1: The probabilities of pairs (small,small)k, (small,large)k, (large,small)k and
(large,large)k as a function of lags k. Plots (a) and (b) give results for a sequence without bursti
ness. Plots (c) and (d) give results for a sequence with burstiness.

13

One can take advantage of the above information to predict the near future based on

the recent past. Meanwhile, this also implies that burstiness may have significant impact

on system performance, which will be shown later in Section 2.5. Therefore, it is important

to find some measures to capture burstiness in flows. In the following sections, we describe

two statistical measures that identify burstiness.

2.2 Autocorrelation

The autocorrelation function (ACF) is used to quantitatively describe burstiness in flows [13].

Let { Xt} be a stationary time series of identically distributed random variables, where

t = 0, 1, 2, ... , oo. The autocorrelation function Pk is the sequence of correlation coeffi-

cients:

(2.1)

where p, -l is the mean and a 2 is the variance of { Xt}; the subscript k is called the lag and

denotes the number of observations that separate Xt and Xt+k· The values of Pk are in

the range [-1, 1]. In most cases, Pk approaches zero as k increases. If Pk = 0 at all lags,

then we say the time series { Xt} is not autocorrelated.

0.35 ~·. 0.3 , ·. ACFJ
o.25 .., ·. I

[..!... 0.2 .: ...

~ 0.15 f:\ \., ACF2 . . .
0.1 ·(ACF3 ·· ... _

0.05 '·· .. / ·. · ... ·.

0 '····-------., .. -~'---~-~-----·-'-"-''"· .. ·
....__ ACF4 -0.05 L__ _ _!_ __ .L__---'._L __ _,_ _ ___j

0 100 200 300 400 500
lag (k)

Figure 2.2: Illustrating the ACF of the four service processes with different autocorrelation
profiles ACF1 , ACF2 , ACF3, and ACF4, respectively.

14

Figure 2.2 shows the examples of the ACF of four service processes with different

autocorrelation profiles:

• ACF1 : p1 = 0.35 decays to zero beyond lag k = 680;

• ACF2: p1 = 0.32 decays to zero beyond lag k = 210;

• ACF3: Pl = 0.30 decays to zero beyond lag k = 37;

• ACF4: Pk = 0 for all lags k ~ 1.

Here, A CF4 in Figure 2.2 gives an example of the service process without burstiness, where

ACF values are equal to 0 at all lags. ACF1 has the highest values across all lags and

illustrates the service process with the strongest burstiness.

Intuitively, higher ACF values indicate stronger burstiness within the workload. If

a time series is not bursty, then samples in this time series are drawn in a random way

without any temporal locality in the distribution space, i.e., given the current sampled

value, any value of the distribution space is equally likely to occur in the next sampling.

We say that such a stochastic process is memoryless and not bursty. In contrast, an

autocorrelated stochastic process generates random variables within a certain range for

some time before moving into another range. This way of sampling can keep the same

distribution function for overall values but does create temporal locality, i.e., very large

or very small values are sampled close to one another. Such a stochastic process exhibits

burstiness.

15

2.3 Index of Dispersion

The autocorrelation function describes burstiness as a function of lags. However, this fo'rm

of description may not be suitable for effective use in practice. In this section, we consider

an alternative simple measure, called the index of dispersion I, to capture burstiness. The

main advantage of I is that it can qualitatively identify burstiness in a single number and

thus can provide a simple and effective way to infer different burstiness profiles in flows.

The index of dispersion has a broad applicability and wide popularity in stochastic

analysis and engineering [20]. From a mathematical perspective, the index of dispersion

of a stochastic process is a measure defined on the squared coefficient-of-variation SCV

and on the lag-k autocorrelations Pk, k 2: 1, of the samples in the time series as follows:

I = SCV (1 + 2 ~ Pk) . (2.2)

The joint presence of SCV and autocorrelations in I captures burstiness in flows. For

example, we have examined the 1998 FIFA World Cup website trace available at [5] over a

period of ten days and found significant burstiness in the arrivals to server 0, see Figure 2.3.

By using the theoretical formulas in [38] Eq.(6), we estimate that the arrival stream has

I slightly larger than 6300. This implies that a parameterization of I spanning a range

from single to multiple digits can give a good sense of scalability between workloads with

"no burstiness" and workloads with "dramatic burstiness".

If the stochastic process is exponential, then I = 1. Thus, the index of dispersion

may be interpreted qualitatively as the ratio of the observed burstiness with respect to a

Poisson process. Values of I of the order of hundreds or more indicate a clear departure

"0 § 150

"' 100
&
"' "ii!
·i:
t;; 61 62 63

Index of dispersion estimtate: I~ 6300

64 65 66 67
Day

68

16

69 70 71

Figure 2.3: Burstiness of arrivals to server 0 in the 1998 FIFA World Cup trace over ten consec
utive days. This figure focuses on the server with label "0" from day 61 to day 71. The index of
dispersion I is reported on the top of the figure.

from the exponentiality assumptions and, unless the real SCV is anomalously high, I can

be used as a good indicator of burstiness.

2.4 Markovian Arrival Processes (MAPs)

After measuring workload burstiness, a mathematical model is needed to integrate bursti-

ness into a stochastic process. In this dissertation, we use Markovian Arrival Processes

(MAPs) to express the arrival and/or service process in queueing networks. MAPs, intro-

duced by Neuts [67], can easily model general distributions and nonrenewal features such

as autocorrelation of the stochastic process. Previous work in [69, 43, 16] has developed

efficient fitting schemes for MAP parameterization from measurements and the resulting

MAP can approximate effectively long-range and short-range dependence [69].

The MAP is a generalization of the Poisson process by having non-exponential dis-

tributed sojourn times between arrivals. Guided by the transitions of an underlying

Markov chain, the MAP can signify real events to generate a single random variable.

The MAP is formally described by two square matrices Do and D 1, with dimensions

equal to the number of states in the Markov chain. Matrix D 1 captures all transitions

that are associated with real events in the MAP while matrix D 0 only captures the tran-

17

112

V12

111
In

V21

121

Figure 2.4: State transitions of MAP(2). Transitions shown in solid arrows are associated with
the events in MAP and transitions shown in dashed arrows are associated with the changes between
states only.

sitions between states without signifying any real events. All off-diagonal entries of Do

and all entries in D 1 are non-negative.

Let 1rMAP be the stationary probability vector of the underlying Markov chain for MAP,

i.e., 1rMAP(D1 +Do) = 0, rrMAPe = 1, where 0 and e are vectors of zeros and ones of

the appropriate dimension. A variety of performance measures are computed using 1rMAP'

D 0 , and D 1 , such as the mean arrival rate, the squared coefficient of variation, the n-th

moments, and the lag-k of its autocorrelation function ACF [68]:

ACF(k)
E[(X0 - E[X])(Xk- E[X])]

Var[X]

A7rMAP((-Do)-1 Dl)k(-Do)-1e- 1

2A7TMAP(-Do)-le- 1

where Xo and Xk denote two inter-event times with k lags apart.

(2.3)

(2.4)

(2.5)

(2.6)

18

As an example, Figure 2.4 illustrates the state transitions of a 2-state MAP with the

following 2 x 2 matrices Do and D 1 .

Do
V12

-(v21 + b + l22)

(2.7)

As shown in Figure 2.4, there are three kinds of transitions: (1) the transitions that only

change the state from "1" (resp., "2") to "2" (resp., "1") but do not correspond to any

real events, see the dashed arrows with mean rate of v 12 (resp., v 21) in the figure; (2) the

transitions that only signify real events but do not change the state "1" (resp., "2"), see

the solid arrows with mean rate of ln (resp., 121) in the figure, and (3) the transitions that

change the state from "1" (resp., "2") to "2" (resp., "1") and signify real events, see the

solid arrows with mean rate of 112 (resp., 121) in the figure. Based on this description, we

provide in Appendix A the generation of a MAP process in the form of a pseudo code.

A special case of MAP(2) is a 2-state Markov-Modulated Poisson Process (MMPP(2)) [42,

57, 49]. The matrix representation of the MMPP(2) is defined as follows.

Do [
-(lu + v12)

V21

[
lu 0]
0 122

(2.8)

As shown in Eq.(2.8), matrix D 1 is diagonal. That is, there is no solid arrows with mean

rate of h2 and 121 in Figure 2.4. All the transitions that are associated with real events do

not change the state. MMPP(2) is the type of process that is popular because it has only

four parameters and can be easily parameterized. One can set any of the four parameters

19

(e.g., v12) as the free parameter and calculate the remaining three parameters by using the

Eqs.(2.3), (2.4), and (2.6) to match the pre-defined mean, squared coefficient of variation

and ACF(1) of a process.

2.5 Performance Impacts

In this section, we use a simple example to exemplify the performance impact of burstiness.

Consider the four workloads shown in Figure 2.5, where each plot represents a sample of

20,000 service times generated from the same MAP distribution with mean p.,- 1 = 1 and

squared coefficient-of-variation SCV = 3. The only difference is that we impose to each

service trace a unique burstiness profile. Here, for the details on the trace generation, we

refer the reader to Section 2.4. In Figure 2.5(b)-(d), the large service times progressively

aggregate in bursts, while in Figure 2.5(a) they appear in random points of the trace. In

particular, Figure 2.5(d) shows the extreme case where all large requests are compressed

into a single large burst. Additionally, the values of I for these four traces are also shown

in Figure 2.5: for the trace in Figure 2.5(a), the correlations are statically negligible, thus

the value of I is exactly equal to SCV; however, for the trace in Figure 2.5(d), consecutive

samples tend to assume similar values, therefore the sum of autocorrelation in Eq.(2.2) is

maximal in Figure 2.5(d), which gives the largest value of I among the four traces.

What is the performance implication on systems of the different burstiness profiles in

Figure 2.5(a)-(d)? Assume that the request arrival times to the server follow an exponen

tial distribution with mean _A- 1 = 2 and 1.25. A simulation analysis of the M/Trace/1

queue at 50% and 80% utilization provides the response times, i.e., the service time plus

waiting/queueing times in a server, shown in Table 2.1.

Q)

E ;::
i'l ·:;;
Q)

(/)

0

50

" "' E
;::
i'l 3

2'
Q).

(/)

0

0

0

0

mean=1, SCV=3, index of dispersion=3.0

05 1 1.5
Service Time Sample Sequence Number (K) x 10•

(a)

mean=1, SCV=3, index of dispersion=92.6

IL L, J lt,,,J ·"·"' ,.J,.~.~t/,,1 ..J,ij

0.5 1 1 5 2
Service Time Sample Sequence Number (K) ~ 10

4

(c)

60

50

" 40
E
;::
i'l 30

2'
" (/)

20

60

50

" 40
E
;::
i'l 30

2'
Q)

(/) 20

10

mean=1, SCV=3, index of dispersion=22.3

05 1 15 2
Service Time Sample Sequence Number (K) ~ 10•

(b)

mean=1, SCV=3, index of dispersion=488.70

,,.L •. L cfiJ ;, t.~lJ :,,,,.,.i/t, ·"'"" d.cL ·,u/
0o 05 1 1 5 2

Service Time Sample Sequence Number (K} x 10
4

(d)

20

Figure 2.5: Four workload traces with identical MAP distribution (mean /-t-I = 1, SCV = 3),
but different burstiness profiles. Given the identical variability, trace (d) represents the case of
maximum burstiness where all large service times appear consecutively in a large burst. The index
of dispersion I, reported on top of each plot, is able to capture the significantly different burstiness
of the four workloads.

Irrespectively of the identical service time distribution, burstiness clearly has paramount

impact on system performance, in terms of both response time mean and tail. For instance,

at 50% utilization the mean response time for the trace in Figure 2.5(d) is approximately 40

times slower than the service times in Figure 2.5(a) and the 95th percentile of the response

times is nearly 80 times longer. In general, the performance degradation is monotonically

increasing with burstiness; therefore it is important to consider the performance effect of

burstiness in system design.

21

Response Time (util=0.5) Response Time (util=0.8)

Workload mean 95th percentile mean 95th percentile

Fig. 2.5(a) 3.02 14.42 8.70 33.26

Fig. 2.5(b) 11.00 83.35 43.35 211.76

Fig. 2.5(c) 26.69 252.18 72.31 485.42

Fig. 2.5(d) 120.49 1132.40 150.32 1346.53

Table 2.1: Response time of the M /Trace/1 queue relatively to the service times traces shown
in Figure 2.5. The server is evaluated for utilizations p = 0.5 and p = 0.8.

2.6 Chapter Summary

In this chapter, we give an overview of basic concepts and terminology. We focus on

burstiness, the main topic in this dissertation, as well as the related concepts and models,

including autocorrelation function, index of dispersion and Markovian-Arrival Process. In

particular, the index of dispersion is exploited as a metric to capture burstiness in arrival

streams and service times, see Chapter 3. The autocorrelation function is used to predict

the immediate future, e.g., to estimate service times in multi-tier systems (see Chapter 4)

and to forecast idle interval lengths in storage systems, see Chapter 6. This dissertation

also use the MAP models to represent the arrival and/or service process to regulate bursty

flows in systems.

Chapter 3

Capacity Planning in Multi-tier

Enterprise Systems

The performance of a multi-tier system is determined by the interactions between the in

coming requests and the different hardware architectures and software systems that serve

them. In order to model these interactions for capacity planning, a detailed characteriza

tion of the workloads and of the application is needed, but such "customized" analysis and

modeling may be very time consuming, error-prone, and inefficient in practice. An alterna

tive approach is to rely on live system measurements and to assume that the performance

of each software or hardware resource is completely characterized by its mean service time,

a quantity that is easy to obtain with simple measurement procedures. The mean service

times of different classes of transaction requests together with the transaction mix can

be used as inputs to the widely-used Mean Value Analysis (MVA) models [50, 92, 101]

to predict the overall system performance under various load conditions. The popularity

of MVA-based models is due to their simplicity and to their ability to capture complex

22

23

systems and workloads in a straightforward manner. In this chapter, we present strong

evidence that MVA models of multi-tier architectures can be unacceptably inaccurate if

the processed workloads exhibit burstiness.

Burstiness in the service process is often found in multi-tier systems. The source of

burstiness can be located in the application server [64] or in the back-end database [63]

and is an effect of the hardware/software configuration of the system. In such multi-tier

systems, this congestion may arise from the super-position of several events including

database locks, variability in service time of software operations, memory contention,

and/or characteristics of the scheduling algorithms. The above events interact in a com

plex way with the underlying hardware/software systems and with the incoming requests,

often resulting in burstiness in service processes and creating congestion periods where

and the entire system is significantly slowed down. For example, even for multi-tier sys

tems where the database server is highly-efficient, a locking condition on a database table

may slow down the service of multiple requests that try to access the same data and make

the database the bottleneck server for a time period. During that period of time, the

database performance dominates the performance of the overall system, while most of the

time another resource, e.g., the application server, may be the primary cause of delays in

the system. Thus, the performance of the multi-tier system can vary in time depending

on which is the current bottleneck resource and can be significantly conditioned by de

pendencies between servers. However, this time-varying bottleneck switch, as a symptom

of burstiness in service processes, cannot by captured by MVA models.

Motivated by this problem, we define a new methodology for effective capacity plan

ning under systems with bursty service demands. This new approach integrates burstiness

24

in performance models, by relying on server busy periods (they are immediately obtained

from server utilization measurements across time) and measurements of request comple

tions within the busy periods. All measurements are collected with coarse granularity by

existing commercial tools, e.g., the HP Diagnostic tool. After giving quantitative exam

ples of the importance of integrating burstiness in performance models, we analyze a real

three-tier architecture subject to TPC-W workloads with different burstiness profiles. We

show that burstiness in the service process can be inferred effectively from traces using

the index of dispersion and the accuracy of the model prediction can be increased by

up to 30% compared to standard queueing models parameterized only with mean service

demands [74].

Later in this chapter, we propose a methodology that can introduce burstiness into the

arrival process of a benchmark. The methodology complements the existing benchmarks

which only present burstiness in the service process but not in the arrival process. An ef

fective benchmark should evaluate the system responsiveness under a wide range of client

traffic. The existing benchmarks, e.g., the standard TPC-W benchmark, are designed to

assess the system responsiveness only under a steady /normal traffic. However, the system

behavior under bursty traffic may actually be very different from that under the steady

one. Due to its tremendous performance implications, burstiness must be accounted in

capacity planning and must be incorporated into benchmarking of client-server systems.

Therefore, we present a new methodology for generating workloads that emulate bursti

ness in a controllable way by introducing it into the arrival stream, and thus providing a

mechanism to test and evaluate the system performance under reproducible bursty work

loads. We exemplify this new methodology to create bursty workloads within the TPC-W

25

benchmark.

3.1 Related Work

Capacity planning of multi-tier systems is a critical part of the architecture design pro

cess and requires reliable quantitative methods, see [61] for an introduction. Queueing

models are popular for predicting system performance and answering what-if capacity

planning questions [61, 94, 93, 92]. Single-tier queueing models focus on capturing the

performance of the most-congested resource only (i.e., bottleneck tier): [94] describes

the application tier of an e-commerce system as a M/GI/1/PS queue; [73] abstracts the

application tier of aN-node cluster as a multi-server G/G/N queue.

Mean Value Analysis (MVA) queueing models that capture all the multi-tier archi

tecture performance have been validated in [93, 92] using synthetic workloads running on

real systems. The parameterization of these MVA-based models requires only the mean

service demand placed by requests at the different resources. In [81], the authors use lin

ear regression techniques for estimating from utilization measurements the mean service

demands of applications in a single-threaded software server. In [55], Liu et al. calibrate

queueing model parameters using inference techniques based on end-to-end response time

measurements. A traffic model for Web traffic has been proposed in [54], which fits real

data using mixtures of distributions.

The observations in [64, 63] show that burstiness does exist in the service process of

multi-tier systems, which can cause the phenomenon of bottleneck switch between the tiers.

Indeed, [11] shows that burstiness in the World Wide Web and its related applications

increases the load of the Web server beyond its capacity, which results in significant

26

degradation of the server performance. The class of MAP queueing networks has been

first introduced in [15] together with a bounding technique to approximate the model

solution of queueing network models with bursty service processes. Here, we propose a

parameterization of MAP queueing networks based on the coarse measurements from real

systems.

Several studies have shown that the arrival process in a Web-based system is self

similar [21, 58]. Self-similar workloads exhibit significant request correlations or bursts

over multiple timescales [3]. If a system is not able to support bursts at some timescale,

significant queuing delays may occur [73]. Several commonly used workload generators

have been developed for testing Web servers [12, 47, 65, 48]. For example, SURGE [12] uses

an offline trace generation engine to create a trace of HTTP requests, but this approach is

difficult to apply for controlling or enforcing the aggregate traffic characteristics, especially

the network impact on the individual user arrival process. The GEIST tool [47] attempts

to match the aggregate workload characteristics and models attributes of the request

arrival process at the system level. The Httperf [65] tool provides a flexible facility to

generate various HTTP workloads for measuring Web server performance. However, none

of these tools provide a special, controlled way of enforcing burstiness into the generated

workload. In this dissertation, we present a hybrid approach which can generate bursty

request arrivals for Web and e-commerce workloads. We show that this approach supports

session-based workloads and in addition enables a fine control over the aggregate request

arrival process in the system.

27

3.2 Burstiness In the Service Process of Multi-Tier Appli-

cations

The multi-tier architecture is now the industry standard for implementing scalable client

server enterprise applications. In our experiments, we use a testbed of a multi-tier e

commerce site that is built according to the TPC-W specifications. This allows to conduct

experiments under different settings in a controlled environment, which then allows to

evaluate the proposed modeling methodology that is based on the index of dispersion.

3.2.1 Experimental Environment

TPC-W is a widely used e-commerce benchmark that simulates the operation of an on

line bookstore [32]. Typically, this multi-tier application uses a three-tier architecture

paradigm, which consists of a web server, an application server, and a back-end database.

A client communicates with this web service via a web interface, where the unit of ac

tivity at the client-side corresponds to a webpage download. In general, a web page is

composed by an HTML file and several embedded objects such as images. In a production

environment, it is common that the web and the application servers reside on the same

hardware, and shared resources are used by the application and web servers to generate

main HTML files as well as to retrieve page embedded objects. We opt to put both the

web server and the application server on the same machine called the front server. Note,

we use terms "front server" and "application server" interchangeably in this chapter. A

high-level overview of the experimental set-up is illustrated in Figure 3.1 and specifics of

the software/hardware used are given in Table 3.1.

28

Client 2

Figure 3.1: E-commerce experimental environment.

Processor RAM OS

Clients (Emulated-Browsers) Pentium D, 2-way x 3.2GHz 4GB Linux Redhat 9.0

Front Server (Apache/Tomcat5.5) Pentium D, 1-way x 3.2GHz 4GB Linux Redhat 9.0

Database Server (MySQL5.0) Pentium D, 2-way x 3.2GHz 4GB Linux Redhat 9.0

Table 3.1: Hardware/software components of the TPC-W testbed.

Since the HTTP protocol does not provide any means to delimit the beginning or

the end of a web page, it is very difficult to accurately measure the aggregate resources

consumed due to web page processing at the server side. Accurate CPU consumption

estimates are required for building an effective application provisioning model but there is

no practical way to effectively measure the service times for all page objects. To address

this problem, we define a client transaction as a combination of all processing activities

that deliver an entire web page requested by a client, i.e., generate the main HTML file

as well as retrieve embedded objects and perform related database queries.

Typically, a continuous period of time during which a client accesses a Web service

is referred to as a User Session which consists of a sequence of consecutive individual

transaction requests. According to the TPC-W specification, the number of concurrent

sessions (i.e., customers) or emulated browsers (EBs) is kept constant throughout the

29

experiment. For each EB, the TPC-W benchmark defines the user session length, the

user think time, and the queries that are generated by the session. In our experimental

environment, two Pentium D machines are used to simulate the EBs. If there are m EBs

in the system, then each machine emulates m/2 EBs. One Pentium D machine is used

as the back-end database server, which is installed with MySQL 5.0 having a database of

10,000 items in inventory.

There are 14 different transactions defined by TPC-W. In general, these transac

tions can be roughly classified of "Browsing" or "Ordering" type, as shown in Table 3.2.

Furthermore, TPC-W defines three standard transaction mixes based on the weight of

Browsing Type Ordering Type

Home Shopping Cart

New Products Customer Registration

Best Sellers Buy Request

Product detail Buy Confirm

Search Request Order Inquiry

Execute Search Order Display

Admin Request

Admin Confirm

Table 3.2: The 14 transactions defined in TPC-W.

each type (i.e., browsing or ordering) in the particular transaction mix:

• the browsing mix with 95% browsing and 5% ordering;

• the shopping mix with 80% browsing and 20% ordering;

• the ordering mix with 50% browsing and 50% ordering.

30

One way to capture the navigation pattern within a session is through the Customer

Behavior Model Graph (CBMG) [60], which describes patterns of user behavior, i.e., how

users navigate through the site, and where arcs connecting states (transactions) reflect

the probability of the next transaction type. TPC-W is parameterized by the set of

probabilities that drive user behavior from one state to another at the user session level.

During a session, each EB cycles through a process of sending a transaction request,

receiving the response web page, and selecting the next transaction request. Typically, a

user session starts with a Home transaction request.

Thansaction Latency Monitoring

The TPC-W implementation is based on the J2EE standard~ a Java platform which is

used for web application development and designed to meet the computing needs of large

enterprises. For transaction monitoring we use the HP (Mercury) Diagnostics [98] tool

which offers a monitoring solution for J2EE applications. The Diagnostics tool consists of

two components: the Diagnostics Probe and the Diagnostics Server as shown in Figure 3.2.

The Diagnostics tool collects performance and diagnostic data from applications with

out the need for application source code modification or recompilation. It uses bytecode

instrumentation and industry standards for collecting system and JMX metrics. Instru

mentation refers to bytecode that the Probe inserts into the class files of the application

as they are loaded by the class loader of the virtual machine. Instrumentation enables a

Probe to measure execution time, count invocations, retrieve arguments, catch exceptions

and correlate method calls and threads.

HTTP request
Client 1

HTTP reply

Client 2

Front Server
+ !2I;EProbe

' --'---

MySQL query

MySQL reply

Mercury Diagnostics Server

Database Server

Figure 3.2: TPC-W experimental configuration with the Diagnostics tool.

31

The J2EE Probe shown in Figure 3.2 is responsible for capturing events from the

application, aggregating the performance metrics, and sending these captured performance

metrics to the Diagnostics Server. In a monitoring window, Diagnostics provides the

following information for each transaction type:

• a transaction count;

• an average overall transaction latency for observed transactions. This overall latency

includes transaction processing time at the application server as well as all related

query processing at the database server, i.e., latency is measured from the moment

of the request arrival at the application server to the time when a prepared reply is

sent back by the application server, see Figure 3.3;

• a count of outbound (database) calls of different types;

• an average latency of observed outbound calls (of different types). The average

32

Database Server
time

Application Server : send response
' to clients

Transaction Latency ____ __,

~ DB Server Latency Application Server Latency:

Figure 3.3: The transaction latency measured by the Diagnostics tool.

latency of an outbound call is measured from the moment the database request

is issued by the application server to the time when a prepared reply is returned

back to the application server, i.e., the average latency of the outbound call includes

database processing and communication latency.

Currently, the Diagnostics server reports the measured metrics via a GUI interface

and stores them in a time series database. A Java-based processing utility has been

implemented for extracting performance data from the Diagnostics server in real-time

and creating a so-called "application log" that provides a complete information on all

transactions processed during the monitoring window, such as their transaction counts,

overall latencies, and outbound calls. While in this work, we use only a subset of the

extracted fields, we believe that the proposed application log format enables many value-

added services such as anomaly detection and application behavior diagnosis.

33

3.2.2 Bottleneck Switch in TPC-W

For each transaction mix, we run a set of experiments with different numbers of EBs

ranging from 25 to 150. Each experiment runs for 3 hours, where the first 5 minutes and

the last 5 minutes are considered as warm-up and cool-down periods and thus omitted

in the analysis. User think times are exponentially distributed with mean E[Z] = 0.5s.

Figure 3.4 presents the overall system throughput, the mean system utilization at the

front server and the mean system utilization at the database server as a function of EBs.

Figure 3.4(a) shows that the system becomes overloaded when the number of EBs reaches

75, 100, and 150 under the browsing mix, the shopping mix, and the ordering mix, respec-

tively. Beyond these EB values, the system throughput remains asymptotically fiat. This

is due to the "closed loop" aspect of the system, i.e., the fixed number of EBs (customers),

that is effectively an upper bound on the number of jobs that circulate in the system at

all times.

(a) System Throughput
250 ,_---,--,-,----,---,--,--

~ 200
0 .,
~ 150

~ e 1oo

~
"'" 50

Browsing -+
Shopping .. x ..

Ordering ··-*··
oL--L~-~~-~_L~

20 40 60 80 100 120 140 160

Number of EBs

100

:I e._. 80

= 0 60 .,
]
·c 40
" " Q.

20 "
0

(b) Front Server

Browsing --+--
Shopping .. k

Ordering ··-*··

20 40 60 80 100 120 140

Number of EBs

:I e._.
c
0

iii
.~
'E
" " e-

160

(c) Database Server

100
Browsing --+--

80 Shopping ~

60 Ordering ·*··

40 x x
X

20 *"' ···*•""' •*-"' '"*
oL_~~-~~-l__L~

20 40 60 80 100 120 140 160

Number of EBs

Figure 3.4: Illustrating a) system overall throughput, b) average CPU utilization of the front
server, and c) average CPU utilization of the database server for three TPC-W transaction mixes.
The mean think time is set to E[Z] = 0.5s.

The results from Figure 3.4(b) and (c) show that under the shopping and the ordering

mixes, the front server is a bottleneck, where the CPU utilizations are almost 100% at the

front tier but only 20-40% at the database tier. For the browsing mix, we see that the

34

CPU utilization of the front server increases very slowly as the number of EBs increases

beyond 75, which is consistent with the very slow growth of throughput. For example,

when the front server is already 100% utilized under the shopping and the ordering mixes,

the front server for the browsing mix is just around 80%. Meanwhile, for the browsing

mix, the CPU utilization of the database server increases quickly as the number of EBs

increases. When the number of EBs is beyond 100, it is not obvious which server is

responsible for the bottleneck: the average CPU utilizations of two servers are about the

same, differing by a statistically insignificant margin. In presence of burstiness in the

service times, this may suggest that the phenomenon of bottleneck switch occurs between

the front and the database servers acmss time. This phenomenon is not specific to the

testbed described in the current work. In an earlier work [102], a similar situation was

observed for a different TPC-W testbed. That is, a server may become the bottleneck

while processing consecutively large requests, but be lightly loaded during other periods.

In general, additional investigation to determine the existence of bottleneck switch is

required when the average utilizations are relatively close or when the workloads are

known to be highly variable.

To confirm our conjecture about the existence of bottleneck switch in the browsing mix

experiment, we present CPU utilizations of the front and the database servers across time

for the browsing mix, as well as for the shopping and the ordering mixes with 100 EBs,

see Figure 3.5. A bottleneck switch occurs when the database server utilization becomes

significantly higher than the front server utilization, as clearly visible in Figure 3.5(a)

under the browsing mix workload. Such bottleneck switch is a characteristic effect of

burstiness in the service times. This unstable behavior is extremely hard to model. In

35

contrast, as shown in Figure 3.5(b) and (c), there is no bottleneck switch for the shopping

and the ordering mixes, although these two workloads are also highly variable.

(a) Browsing Mix (b) Shopping Mix (c) Ordering Mix

100 100 100

~ 80 l 80 ~ f;_.
80

c c c
0 60

·~
0 60 ·a
.~ -~

60

'§ 40 'C
~

40 'C
~

40
~ ~ ~
0. 20 <..>

0.
<..>

0. 20 <..>

50 100 150 200 250 300 50 100 150 200 250 300 50 I 00 150 200 250 300

time (s) time (s) time(s)

Front Server - DB Server

Figure 3.5: The CPU utilization of the front server and the database server across time with 1
second granularity for (a) the browsing mix, (b) the shopping mix, and (c) the ordering mix under
100 EBs. The monitoring window is 300 seconds.

3.2.3 The Analysis of Bottleneck Switch

Now, we focus on the burstiness in a multi-tier application to further analyze the symp-

toms and possible causes of the bottleneck switch. Indeed, for a typical request-reply

transaction, the application server may issue multiple database calls while preparing the

reply of a web page. This cascading effect of various tasks breaks down the overall trans-

action service time into several parts, including the transaction processing time at the

application server as well as all related query processing times at the database server.

Therefore, the application characteristics and the high variability in database server may

cause burstiness in the overall transaction service times.

To verify the above conjecture, we record the queue length at the database server at

each instance that the database request is issued by the application server and a prepared

reply is returned back to the application server. Figure 3.6 presents the queue length across

time at the database server (see solid lines in the figure) as well as the CPU utilizations

36

of the database server (see dashed lines in the figure) for all three transaction mixes.

(a) Browsing Mix (b) Shopping Mix (c) Ordering Mix
100 ,-----,-----,----,---,------,-----,

80 80

60 60

40 40

20 20 20

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

time (s) time(s) time(s)
CPU Utilization (range 0-1 00%) Average DB Queue Length (range 0-100, there are 100 EBs)-

Figure 3.6: The CPU utilization of the database server (dashed lines) and average queue length
at the database server (solid lines) across time for (a) the browsing mix, (b) the shopping mix,
and (c) the ordering mix. In this figure, the y-axis range of both performance metrics is the same
because there are 100 EBs (clients) in the system. The monitoring window is 120 seconds.

Here, in order to make the figure easy to read, we show the case with 100 EBs such

that the y-axis range for both performance metrics (i.e., queue length and utilization)

is the same. First of all, the results for the browsing mix in Figure 3.6(a) verify that

burstiness does exist in the queue length at the database server, where the queue holds

less than 10 jobs for some periods, while sharply increases to as high as 90 jobs during

other periods. More importantly, the burstiness in the database queue length exactly

matches the burstiness in the CPU utilizations of the database server. Thus, at some

periods almost all the transaction processing happens either at the application server (with

the application server being a bottleneck) or at the database server (with the database

server being a respective bottleneck). This leads to the alternated bottleneck between the

application vs the database servers.

In contrast, no burstiness can be observed in the queue length for the shopping and

the ordering mixes, although these two workloads have also high variability in their uti-

lizations, see Figure 3.6(b) and (c). These results are consistent with those shown in

37

Figure 3.5(b) and (c), where the application server is the main system bottleneck.

According to the TPC-W specification, different transaction types may have differ

ent number of outbound database queries. For example, the Home transaction has two

database queries in maximum and one in minimum for each transaction request while the

Best Seller transaction always has two outbound database queries per transaction request.

To analyze whether burstiness in the database queue length originates from some partic

ular transaction types, we measure the number of current requests for each transaction

type over time. After revisiting all 14 transaction types, we find that the sources of this

burstiness are indeed due to specific transaction types. Figures 3.7 and 3.8 show the re

sults for two representative transaction types, the Best Seller transaction and the Home

transaction, under three transaction mixes.

In Figure 3. 7, the overall database queue length across time is also plotted as a base

line. As shown in Figure 3.7(a), although in the browsing mix only 11% of requests belongs

to the Best Seller transaction type, the number of these requests dominates the overall

database queue length: the spikes in the overall queue length in the database clearly

originate from this particular transaction type. Furthermore, there is burstiness in the

number of requests for this transaction type and this burstiness "matches" well the overall

queue length in the database server. In addition, for some extremely high spikes, e.g., at

timestamp 40 in Figure 3.7(a), the requests of another popular transaction type, the Home

transaction, also contribute to burstiness (see Figure 3.8(a)). These figures indicate that

Best Seller and Home transactions share some resources required for their processing at

the database server, which leads to extreme burstiness during such time periods.

For the shopping and the ordering mixes, there is no visible burstiness in either the

(a) Browsing Mix (b) Shopping Mix

Q~UQ~IU~--LL~~~-

0 2Q 4Q 60 8Q !OQ 12Q 2Q 40 6Q 8Q 1QQ 12Q

time (s) time (s)

Best Seller Transaction - Overall

38

(c) Ordering Mix
!QQ.--.---.--,---,--,--,

~ 8Q
1l
gj 6Q
"' ;::

;; 4Q

&
"' 2Q
~

2Q 40 6Q 8Q IOQ 12Q

time(s)

Figure 3. 7: The overall queue length at the database server (dashed lines) and the number of
current requests in system for the Best Seller transaction (solid lines) across time for (a) the
browsing mix, (b) the shopping mix, and (c) the ordering mix, with 100 EBs and mean think time
equal to 0.5s. The monitoring window is 120 seconds.

(a) Browsing Mix (b) Shopping Mix (c) Ordering Mix
10Q IQQ IQQ

.<:: .<:: .<::
bO 8Q bO 8Q bO 8Q " " " 1l 1l 1l

"' 60 "' 6Q "' 6Q ;:: ;:l ;::

"' <1.) <1.)
;:: ;:l ;:l
c::r

4Q
c::r

40
c::r

40 <1.) "' <1.)
co co co
~

2Q
~

20
~

2Q "' "' "' > >
J ... !h

~ "' "' Q 0 0
Q 20 40 60 80 IOQ 120 0 20 40 6Q 80 100 12Q 0 20 40 60 80 IOQ 12Q

time (s) time (s) time(s)

Home Transaction

Figure 3.8: The number of current requests in system for the Home transaction across time for
(a) the browsing mix, (b) the shopping mix, and (c) the ordering mix, with 100 EBs and mean
think time equal to 0.5s. The monitoring window is 120 seconds.

queue length at the database server or the number of current requests for each transaction

type, as shown in Figure 3.7(b)-(c) and Figure 3.8(b)-(c), respectively.

In summary, we showed that

• burstiness in the service times can be a result of a certain workload combination

(mix) in the multi-tier applications (e.g., burstiness in the service times may exist

under the browsing mix in the TPC-W testbed);

e burstiness in the service times can be caused by a bottleneck switch between the

tiers, and can be a result of "hidden" resource contention between the transactions

39

of different types and across different tiers.

Systems with burstiness result in unstable behavior that is extremely hard to express

and model. The super-position of several events, such as database locking conditions, vari

ability in service time of software operations, memory contention, and/or characteristics

of the scheduling algorithms, may interact in a complex way, resulting in burstiness in the

system. The challenging is instead of identifying the low-level exact causes of burstiness

as traditional models would require, whether one can provide an effective way to infer

this information using live system measurements in order to capture burstiness into new

capacity planning models.

3.2.4 Traditional MVA Performance Models Do not Work

In this section, we use standard performance evaluation methodologies to define an ana

lytical model of the multi-tier architecture presented in Section 3.2.1. Our goal is to show

that existing queueing models can be largely inaccurate in performance prediction if the

system is subject to bottleneck switches. We show in Section 3.3 how performance models

can be generalized to correctly account for burstiness and bottleneck switches based on

the index of dispersion.

We model the multi-tier architecture studied in our experiments by a closed queue

ing network composed of two queues and a delay center as shown in Figure 3.9. Closed

queueing networks (see [50] for an introduction) are established as the standard capacity

planning models for predicting the performance of distributed architectures using inex

pensive algorithms, e.g., Mean Value Analysis (MVA) [75].

In the MVA model shown in Figure 3.9, the two queues are used to abstract perfor-

[z

0
0
0
Clients

MAPFS MAPDB

3IJJJ0------t·l' IllS------'
Front Server DB Server

Figure 3.9: The closed queueing network for modeling the multi-tier system.

40

mance of the front server and of the database server, respectively. The delay center is

instead representative of the average user think time E[Z] between receiving a Web page

and submitting a new page download request. The main difference between a queue and

a delay server is that the mean response time at the latter is independent of the number of

requests present. The two queues serve jobs according to a processor-sharing scheduling

discipline. In the real application, the servlet code is a mix of instructions at the front

server and the database server: without an expensive analysis of the source code, it is truly

difficult to characterize the switch of the execution from the front server to the database

server and back, we thus make a simplification by assuming that requests first execute at

the front server without any interruption and then the residual service time is processed at

the database server. Consequently, with this simplification, the two queues in Figure 3.9

are connected in series. In the following sections, we consider the burstiness associated to

the execution of these requests at the front server and at the database server. We stress

that our abstraction ignores the order of execution of portions of the servlet code and

has no impact on the burstiness estimates because the requests complete faster than the

monitoring window of the measurement tool. Thus, for an external observer, it would

be impossible to distinguish between samples collected from the real system and those

of the abstracted system where the code first executes only at the front server and then

41

completes at the database server.

The proposed MVA model can be immediately parameterized by the following values:

• the mean service time Sps of the front server;

• the mean service time SDB of the database server;

• the average user think time E[Z];

• the number of emulated browsers (EBs).

Note that the arrival process at the multi-tier system, which is in the real system the

arrival of new TPC-W sessions, is fully reproduced by the E[Z] parameter. In fact, a new

TPC-W session is generated in E[Z] seconds after completion of a previously-running user

session: thus, the feedback-loop aspect of TPC-W is fully captured by the closed nature

of the queueing network and the user think time E[Z] completes the model of the TPC-W

arrival process.

The values of Sps and SDB can be determined with linear regression methods from the

CPU utilization samples measured across time at the two servers [101]. Instead, E[Z] and

the number of EBs are imposed to set a specific scenario. For example, in Figure 3.10, we

evaluate an increase of the number of EBs under the fixed think time E[Z] = 0.5s; other

choices of the delay are possible, see Section 3.3.3 for a discussion. Indeed, increasing the

EB number is a typical way in capacity planning to explore the impact of increasingly

larger traffic intensities on system performance. Figure 3.10 shows the results of the MVA

model predictions versus the actual measured throughputs (TPUTs) of the system as a

function of the number of EBs.

(a) Browsing Mix- Bottleneck Switch

200 X·· .. .X
';;;' 1 80 xperiment -+-- X

g 160 MVA .. X

i:~~rx
E,IOO
f-
::J 80
!=: 60
40~~~~--L-~~~

20 40 60 80 100 120 140 160
Number of EBs

(b) Shopping Mix- Negligible Bottleneck Switch
zoo.-~~----~~~---.

-;;;']80
g 160 . .,
~ 140
§ 120
E,100

5 80
!=: 60
40~~~~~--~~~

20 40 60 80 100 120 140 160
Number of EBs

42

(c) Ordering Mix- Negligible Bottleneck Switch
220 .--~~----.---.---.-----,-.,-r-,

-;;;'200
§ 180
·e 16o
"' ~ 140
; 120
i:"100
i2 80
f- 60
40~~~~--L-~~~

20 40 60 80 100 120 140 160
Number of EBs

Figure 3.10: MVA model predictions versus measured throughput.

The three plots in the figure illustrate the accuracy of the MVA model under the

browsing, the shopping, and the ordering mixes. The results show that the MVA model

prediction is quite accurate for the shopping and ordering mixes, but there exists a large

error up to 36% between the predicted and the measured throughputs for the browsing

mix, see Figure 3.10(a). This indicates that MVA models can deal very well with systems

without burstiness (e.g., the ordering mix in Figure 3.10(c)) and with systems where

burstiness does not result in a bottleneck switch (e.g., the shopping mix in Figure 3.10(b)).

However, the fundamental and most challenging case of burstiness that causes bottleneck

switches reveals the limitation of the MVA modeling technique, see Figure 3.10(a). This

is consistent with established theoretical results for MVA models, which rule out the

possibility of capturing the bottleneck switching phenomenon [10].

3.3 Integrating Burstiness In Performance Models

In this section, we consider the index of dispersion I for counts to characterize the bursti-

ness of service times [20, 38]. As shown in Chapter 2, I can be used as a good indicator of

burstiness and can be jointly defined by the squared coefficient-of-variation SCV and the

lag-k autocorrelations Pk of the samples in the time series. Although this mathematical

43

definition of I in Eq.(2.2) is simple, this formulation is not practical for estimation because

of the infinite summation involved and its sensitivity to noise. In the following subsection,

we describe a simple alternative way of estimating I.

3.3.1 Measuring the Index of Dispersion

Instead of Eq.(2.2), we provide an alternative definition of the index of dispersion for a

service process as follows. Let Nt be the number of requests completed in a time window

oft seconds, where the t seconds are counted ignoring the server's idle time (that is, by

conditioning on the period where the system is busy, Nt is a property of the service process

which is independent of queueing or arrival characteristics). If we regard Nt as a random

variable, that is, if we perform several experiments by varying the time window placement

in the trace and obtain different values of Nt, then the index of dispersion I is the limit

[20]:

I l
. Var(Nt)

- !Ill
- t-->+oo E[Nt] '

(3.1)

where Var(Nt) is the variance of the number of completed requests and E[Nt] is the mean

service rate during busy periods. Since the value of I depends on the number of completed

requests in an asymptotically large observation period, an approximation of this index can

be also computed if the measurements are obtained with coarse granularity. For example,

suppose that the sampling resolution is T =60s, and assume to approximate t---> +oo as

t ~ 2 hours, then Nt is computed by summing the number of completed requests in 120

consecutive samples. Repeating the evaluation for different positions of the time window

of length t, we compute Var(Nt) and E[Nt]· Here, we use the pseudo-code in Figure 3.11

to estimate I directly from Eq.(3.1). The pseudo-code is a straight-forward evaluation of

44

V ar(Nt) / E[Nt] for different values oft. Intuitively, the algorithm in Figure 3.11 calculates

I of the service process by observing the completions of jobs in concatenated busy period

samples. Because of this concatenation, queueing is masked out and the index of dispersion

of job completions serves as a good approximation of the index of dispersion of the service

process.

Here, we use a measure of burstiness for the parameterization of the performance model

presented in Figure 3.9. In Section 3.3.2, we first present the methodology for integrating

the burstiness in queueing models and then discuss the impact of measurement granularity

in Section 3.3.3. The experimental results that validate the proposed model are given in

Section 3.3.4.

Input

T, the sampling resolution (e.g., 60s)

K, total number of samples, assume K > 100

Uk, utilization in the kth period, 1 ::::; k ::::; K

nk> number of completed requests in the kth period, 1 ::::; k ::::; K

tal, convergence tolerance (e.g., 0.20)

Estimation of the Index of Dispersion I

1. get the busy time in the kth period Bk := Uk · T, 1 ::::; k ::::; K;

2. initialize t = T and Y(O) = 0;

3. do

a. for each Ak = (Bk> Bk+l, ... , Bk+j), 'Li=o Bk+i ~ t,

aa. compute Ntk = 'Li=o nk+i;

b. if the set of values Ntk has less than 100 elements,

bb. stop and collect new measures because the trace is too short;

d. increase t by T;

until 11- (Y(t)/Y(t- T))l ::::; tal, i.e., the values of Y(t) converge.

4. return the last computed value of Y(t) as estimate of I.

Figure 3.11: Estimation 6f I from utilization samples.

45

46

3.3.2 Integrating I in Performance Models

In order to integrate the index of dispersion in queueing models, we model service times

as a two-phase Markovian Arrival Process (MAP(2)) [67, 80, 15]. As shown in Chapter 2,

a MAP(2) can be fitted with closed-form formulas (see Eqs.(2.3), (2.4), (2.5), and (2.6))

given the mean, SCV, skewness, and lag-1 autocorrelation coefficient p1 of the measured

service times [30, 17]. We use these closed-form formulas to define the MAP(2) as follows.

After estimating the mean service time and the index of dispersion I of the trace, we

also estimate the 95th percentile of the service times as we describe at the end of this

subsection. Given the mean, the index of dispersion I, and the 95th percentile of service

times, we generate a set of MAP(2)s that have ±20% maximal error on I, see [40, 4] for

computational formulas of I in MAP(2)s. Among this set of MAP(2)s, we choose the one

with its 95th percentile closest to the trace. Overall, the computational cost of fitting the

MAP(2)s is negligible both in time and space requirements. For instance, the fitting of the

MAP(2)s has been performed in MATLAB in less than five minutes for the experiments in

this work. Occasionally, and only for certain combinations of I and 95th percentile, there

may exist more than one MAP(2) with identical mean, I, and 95th percentile. We have

not found this case during the experiments in this work, but in general we recommend to

choose the MAP(2) with largest lag-1 autocorrelation since this results in a slightly more

aggressive burstiness profile that provides conservative capacity planning estimates.

We conclude by explaining how to estimate the 95th percentile of the service times

from the measured trace. We compute the 95th percentile of the measured busy times

Bk in Figure 3.11 and scale it by the median number of requests processed in the busy

periods. If the trace has high dispersion (e.g., I>> 100), this estimate is very accurate

47

because the nk jobs that are served in the kth busy period receive a similar service time

Sk and the busy time is therefore Bk ~ nkSk. This approximation consists in assuming

that nk is always constant and equal to its median value med(nk)· Under this hypothesis

the 95th percentile of Bk is simply med(nk) times the 95th percentile of Sk. Conversely, if

the trace has low dispersion (e.g., I< 100), the estimation is inaccurate. Nevertheless, we

observe that we can still use this simplification, because under low-burstiness conditions

the queueing performance is dominated by the mean and the SCV of the distribution,

and therefore a biased estimate of the 95th percentile does not have any appreciable effect

on accuracy. In practice, we have found this estimation approach to be highly satisfactory

for system modeling as shown by the experimental results reported in the next sections.

3.3.3 Impact of Measurement Granularity and Monitoring Windows

Starting from the MAP-based model defined in the previous section, we validate the

accuracy of the new analytic model using the same experimental setup as in Section 3.2.4.

We denote by E[Zqn] the think time used in the capacity planning queueing network model

that represents the system presented in Section 3.2.4. For validation, we always compare

the predictions of this model with a real experiment where the TPC-W has think time

E[Z]qn· The notation E[Zestim] denotes the TPC-W think time used in experiments to

generate the traces from which we estimate I and the MAP(2)s. In general, E[Zestim] can

differ from E[ZqnJ, e.g., if we want to explore the sensitivity of the system to different think

times we may consider models with different E[Z]qn, but the MAP(2)s are parameterized

from the same experimental trace obtained for a certain E[Zestim] i- E[Zqn]· A robust

modeling methodology could predict well the performance of the system also for E[Zqn] i-

48

E[Zestim] and we are seeking for a robust characterization of the service processes which

is insensitive to the value E[Zestim] that describes a characteristic of the arrival process

to the multi-tier system, rather than a property of the servers.

In all validations, we set E[Zqn] = 0.5s and evaluate throughput and an increase of

the number of EBs. The default think time value for the TPC-W benchmark is 7s, but

setting E[Zqn] = 7s we would need to set the number of EBs as high as 1200 to reach

heavy-load. Unfortunately, no existing numerical approach can solve the model for exact

solutions when the system has such a large number of EBs. Since in this work we are

interested in validating models with respect to their exact accuracy, we have explored

exact solutions in Section 3.2.4 by reducing the user think time to E[Zqn] = 0.5s, such

that the system becomes overloaded when the number of EBs is around 100-150. Models

with larger number of EBs should be evaluated with approximations, e.g., with the class

of performance bounds presented in [15]. In the rest of chapter, we only consider queueing

network models with E[Zqn] = 0.5s. By building the underlying Markov chain and solving

the system of linear equations, we solve the new analytic model and get the analytic results,

see [15] for a description of the Markov chain underlying a MAP queueing network.

Here, we first present validation results on the browsing mix for different values of the

measurement granularity E[Zestim]· Since measurements should not interfere with normal

server operations, we have set the monitoring window resolution of the Diagnostics tool

to a standard W = 5s, which means that hundreds of requests may be served between

the collection of two consecutive utilization samples. For instance, when the user think

time in TPC-W is set to E[Zestim] = 0.5s and the number of EBs is 50, there are on

average 465 requests completed in a monitoring window of W = 5s. A reduction of

49

the frequency of sampling makes it difficult to collect a large number of samples (e.g.,

tens of thousands), and this significantly reduces the statistical robustness of the index of

dispersion estimates. Conversely, we have found that decreasing the mean throughput of

the system by an increase of E[Zestim] can have beneficial effects on the quality of the index

of dispersion estimation without having to modify the monitoring window resolution.

Figure 3.12 compares the analytic results with the experimental measurements of the

real system for the browsing mix. A summary of the think time values used in the

two models is given in Table 3.3. In all models, we set the mean user think time to

E[Zqn] = 0.5s and vary the system loads with different EBs. To evaluate the effect of the

measurement granularity on the analytic model, we have estimated two sets of MAP(2)s

by using the measured traces from the experiments with 50 EBs and two different levels of

measurement granularity, i.e., the user think time E[Zestim] = 0.5s, and E[Zestim] = 7s,

respectively. As E[Zestim] increases, we are getting monitoring data of finer granularity,

because in the same monitoring window W a smaller number of requests is completed.

This makes the estimation of the variance of Nt in the algorithm in Figure 3.11 more

accurate as the finer granularity reveals better the nature of the service times. This is

intuitive, e.g., in the extreme case where E[Zestim] is so large that only a single request is

completed during a single monitoring window W, then our measurement corresponds to a

direct measure of the request service time and the estimation becomes optimal. Indeed, a

large increase of E[Zestim] to this level would be unrealistic because it would hide possible

slowdowns in service times that become evident only when several requests are served

simultaneously, e.g., increased memory access times in algorithms due to an increase in

size of shared data structures. For this reason, it is always advisable to increase E[Zestim]

50

such that there are some tens of requests completed in a time window W during the

experiment.

Browsing Mix

220

200 Experiment - Modei-ZO.S !!!Ill

~ 180 Modei-Z7 c:=:J
.9 160 ![?.

![?. B :!:
..,.

140 'D ![?. r!i~
:;j ..,. "'
~ 120

1-o-

~ 100
0..
f-o 80

~ ~
60
~

40 - - - -
25 75 ISO

Number ofEBs

Figure 3.12: Comparing the results for the model which fits MAPs with different E[Zestim] = 0.5s
and E[Zestim] = 7s. On each bar, the relative error with respect to the experimental data is also
reported.

Queueing Network MAP(2) Estimation

Model-Z0.5 E[Zqn] = 0.5s E[Zestim] = 0.5s

Model-Z7 E[Zqn] = 0.5s E[Zestim] = 7 S

Table 3.3: Think time values considered in the accuracy validation experiments.

In Figure 3.12, the corresponding relative prediction error, which is the ratio of the

absolute difference between the analytic result over the measured result, is shown on each

bar. The figure shows that precision increases non-negligibly when a finer granularity

of monitoring data is used. As the system becomes heavily loaded, the model with finer

granularity (i.e., E[Zestim] as high as 7s) dramatically reduces the relative prediction error

to 2.4%.

51

3.3.4 Validation of Prediction Accuracy on Different Thansaction Mixes

Figure 3.13 compares the analytical results with the experimental measurements of the

real system for the three transaction mixes. The values of the index of dispersion for

the front and the database service processes are also shown in the figure. Throughout all

experiments, the mean user think time is set to E[Zqn] = 0.5s; the MAP(2)s are obtained

from experimental data collected with E[Zestim] = 7 s.

(a) Browsing Mix- I_front=40 & l_db~308

200

~ 180

] 160
'C
g 140

§ 120

e 1oo
"" ::> 80

~ 60

Experiment --+-
,.l(·"'" .J(

.-*"''
Model K· .··

MVA ~- A~"'+"-'---·--1'X

40~~_J--~~--L-_L~

20 40 60 80 100 120 140 160

Number of EBs

(b) Shopping Mix- l_front=2 & l_db~286

200
~ 180 Experiment ---+--
§ 160 Model X
'C
g 140

§ 120
e 1oo
f--
[: 80
f-- 60

40 60 80 100 120 140 160

Number of EBs

(c) Ordering Mix- I_front~3 & l_db~98

220
-. 200 Experiment ---+--
] 180 Model X

'll 160 MVA

" ~ 140 i 120
f-- 100
[: 80
f--

60
40~~_J--~~--L-_L~

20 40 60 80 100 120 140 160

Number of EBs

Figure 3.13: Modeling results for three transaction mixes as a function of the number of EBs.

Figure 3.13 gives evidence that the new analytic model based on the index of dis-

persion achieves gains in the prediction accuracy with respect to the MVA model on all

workload mixes, showing that it is reliable also when the workloads are not bursty. In the

browsing mix, the index of dispersion enables the queueing model to effectively capture

both burstiness and bottleneck switch. The results of the proposed analytic model match

closely the experimental results for the browsing mix, while remaining robust in all other

cases.

The shopping mix presents an interesting case: as already observed in Section 3.2.4,

the MVA model performs well on the shopping mix despite the existing burstiness because,

regardless of the variation of the workload at the database server, the front server remains

the major source of congestion for the system and the model behaves similarly to a MVA

52

model (i.e., there is no bottleneck switch).

In the ordering mix, the feature of workload burstiness is almost negligible and the

phenomenon of bottleneck switch between the front and the database servers cannot be

easily observed, see Section 3.2.2. For this case, MVA yields prediction errors up to 5%.

Yet, as shown in Figure 3.13(b) and (c), our analytic model further improves MVA's

prediction accuracy. This happens because the index of dispersion I is able to capture

detailed properties of the service time process, which can not be captured by the MVA

model.

All results shown in Figure 3.13 validate the analytic model based on the index of

dispersion: its performance results are in excellent agreement with the experimental values

in the system, and it remains robust in systems with and without the feature of workload

burstiness and bottleneck switch.

3.4 Injecting Burstiness in the Arrival Process of Multi-tier

Benchmarks

In this section, we propose a robust methodology to inject burstiness into the arrival pro

cess of TPC-W. In our method, we use the index of dispersion as a simple "turnable knob"

to regulate the intensity of traffic burstiness in workload flows. Extensive research has been

carried out in recent years on mechanisms to neutralize the impact of burstiness on web

architectures. However, little research has been carried out on workload benchmarks that

emulate the phenomenon of bursty traffic and that are also easily reproducible, scalable,

and representative of real workloads. Here, we provide a new extension to the standard

53

TPC-W benchmark. This new extension enables testing and evaluation of system per

formance under reproducible and controllable bursty workloads, validation of efficiency

of the corresponding management/provisioning solution, and comparison across different

management solutions in a reproducible way.

3.4.1 Limitations of Standard TPC-W

Indeed, fluctuations of the number of jobs in TPC-W is regulated by the average user think

time E[Z], which represents the time between receiving a Web page and the following page

download request. In this dissertation, we propose to inject burstiness into the incoming

traffic by modifying the way think times are generated in the client machines. Think times

in the standard TPC-W benchmark are drawn randomly from an exponential distribution

that is identical for all clients [32]. Because of the memoryless property of the exponential

distribution, this is equivalent to imposing that clients operate independently of their past

actions. However, exponential think times are incompatible with the notion of burstiness

for several reasons:

Temporal locality: intuitively, under conditions of burstiness, arrivals from different cus

tomers cannot happen at random instants of time, but they are instead condensed in short

periods across time. Therefore, the probability of sending a request inside this period is

much larger than outside it. This behavior is inconsistent with classic distributions consid

ered in performance engineering of web architectures, such as Poisson, hyper-exponential,

Zipf, and Pareto, which all miss the ability of describing temporal locality within a process.

Variability of diffe·rent time scales: Variability within a traffic burst is a relevant charac

teristic for testing peak performance degradation. Therefore, a benchmarking model for

54

burstiness should not only create bursts of variable intensity and duration, but also cre

ate fluctuations within a burst. This implies a hierarchy of variability levels that cannot

be described by a simple exponential distribution and instead requires a more structured

arrival process.

Lack of aggregation: in the standard TPC-W, each thread on the client machines uses

a dedicated stream of random numbers, thus think times of different users are always

independent. This is representative of normal traffic, but fails in capturing the essential

property of traffic burstiness: users act in an aggregated fashion which is mostly incom

patible with independence assumptions. Here, we do not assume that users explicitly

coordinate their submission of requests. Instead, we impose a loose synchronization which

leaves large room for fluctuations within a traffic burst. Yet, this is a common problem

to many request generation techniques based on the user-equivalents approach [12].

In order to address all above points, we propose to regulate the arrival rate of requests

to the system using a class of Markov-modulated processes known as Markovian Arrival

Processes (MAPs) [67], which have the ability of providing variability at different levels as

well as temporal locality effects. Here, we depart from the traditional approach to model

increased load in the systems by simply increasing the fixed number of jobs (connections) in

the system. Instead, burstiness can occur now in a system with few or many connections

by simply handling the duration of user think time. In particular, we propose a new

module that creates a set of identical MAPs which are replicated over the different client

machines and here shared for generation of think times by all clients running on that

particular client machine. We show the fluctuation of loads in client-server systems via

this new module in our experiments, see Figures 3.20 and 3.23. We stress that this new

55

module can be added to any benchmark with a closed loop structure.

3.4.2 Using MAP to Model Traffic Bursts

A MAP can be seen as a simple mathematical model of a sequence of user think times,

for which we can accurately shape distribution and correlations between successive values.

Here, we refer the reader to Chapter 2 for the detailed properties of the MAP. Correlations

among consecutive think times are instrumental to capture periods of the time series where

think times are consecutively small and thus a burst occurs, as well as to determine the

burst duration.

We use a class of MAPs with two states only, one responsible for the generation of

"short" think times implying that users produce closely spaced arrivals, possibly resulting

in bursts, while the other is responsible for the generation of "long" think times associated

to periods of normal traffic. In the "short" state, think times are generated with mean

rate Ashort, similarly they have mean rate Azong < Ashort in the "long" state. We explain

in Section 3.4.3 how to assign values for A short and Along starting from standard TPC-W

measurements. In order to create correlation between different events, after the generation

of a new think time sample, our model has a probability Ps,s that two consecutive think

times are short and a different probability Pl,l of two consecutive think times being both

long. The probability Ps,l = 1 - Ps,s (resp., Pl,s = 1 - Pz,z) determines the frequency of

jump from the short (resp., long) state to the long (resp., short) state. Thus, the values

of Ps,s, Ps,l, Pl,s and Pl,l shape the correlations between consecutive think times and are

instrumental to determine the duration of the traffic burst, see the next subsection for

further details. Henceforth, we focus only on the independent values Pl,s and Ps,l·

56

Figure 3.14 summarizes the traffic burst model described above. Note from the pseudo

code that the problem of variability of different time scales is solved effectively in MAPs:

if the MAP is in a state i, then samples are generated by an exponential distribution

with rate >.i associated to state i. This creates fluctuations within the traffic burst. It is

also compatible with the observations in Section 3.4.1 against the exponential think times

because the probability of arrival inside the traffic burst is larger than outside it, thanks

to the state change mechanism that alters the rate of arrival from >-tong to >-short.

pl,l
ps,s

Figure 3.14: Model of traffic bursts based on regulation of think times

3.4.3 Integrating Burstiness in TPC-W

To avoid inter-machine communication and keep the modifications to TPC-W simple,

we propose to use a shared MAP process to draw think times for all users emulated on

the same client machine1 . This solves immediately the problem of independence between

requests of different users and is a paradigm change, because we no longer model in the

TPC- W benchmaTk the individual think times; instead we shape directly the behavior of

all clients.

The most complex aspect of this new approach is the parameterization of the MAP

process: how should we define the arrival stream in order to stress effectively a system?

1 0ften, TPC-W setup involves multiple client machines to generate enough user requests to load the

benchmarked system.

57

The fundamental problem is how to determine a parameterization of (Along, Ashort, Pl,s,

Ps,l) that produces a sequence of bursts in the incoming traffic. Further, this param

eterization must remain representative of a realistic (i.e., probabilistic, non DDoS-like)

scenario. Henceforth, we assume that the user gives to the modified TPC-W benchmark

the desired values of the mean think time E[Z] and of the index of dispersion I which

specifies the burstiness level. The benchmark automatically generates a parameterization

of (Along> Ashort, Pl,B> Ps,l) capable of stressing the system. We also assume that the stan

dard TPC-W benchmark has been previously run on the architecture and that the mean

service demand E[Di] of each server i has been estimated from utilization measurements,

e.g., using linear regression methods [102, 14].

The mean think time E[Z] can be parameterized as in the standard TPC-W bench

mark, i.e., E[Z] = 7 seconds, while the index of dispersion I, is the additional parameter

that can be used to tune the level of burstiness in workloads. To fully define the proper

ties of MAP think times other than the mean E[Z], our approach starts by the following

parameterization equations:

\;~art =(i:i E[Di])/ f,

Ak,;g =f max(N(i:i E[Di]), E[Z]).

(3.2)

(3.3)

Here, f 2: 1 is a free parameter, N is the maximum number of client connections considered

in the benchmarking experiment, l:i E[Di] is the minimum time taken by a request to

complete at all servers, and N(i:i E[Di]) provides an upper bound to the time required

by the system to respond to all requests. Eq.(3.2) states that, in order to create bursts,

the think times should be shorter than the time required by the system to respond to

58

requests. Thus, assuming that all N clients are simultaneously waiting to submit a new

request, one may reasonably expect that after a few multiples of ;x.-;~ort all clients have

submitted requests and the architecture has been yet unable to cope with the traffic

burst. Conversely, Eq.(3.3) defines think times that on average give to the system enough

time to cope with any request, i.e., the normal traffic regime. Note that the condition

)..k,~9 2': f E[Z] is imposed to ensure that the mean think time can be E[Z], which would

not be possible if both ;x.-;h
1
ort > Ak,~9 > E[Z] since f > 1 and in MAPs the moments

E[Z], E[Z2], ... are:

E[Zk] = k' (Pt,s ;>.. -k + Ps,t ;>.. -k) · + short + long · Pl,s Ps,l Pl,s Ps,l
(3.4)

The above formula for k = 1 implies that E[Z] has a value between ;x.-;h1ort and Ak,~9 ,

which is not compatible with ;x.-;h1ort 2': Ak,~9 2': J E[Z]. According to Eq.(3.4), the MAP

parameterization can always impose the user-defined E[Z] if

(
Ak,~9 - E[Z])

Pt,s = Ps,t E[Z] _ ;>.. -1 ,
short

(3.5)

and we use this condition in the modified TPC-W benchmark to impose the mean think

time.

In order to fix the values of Ps,l and f in the above equations, we first do a simple

search on the space (0 :::; Ps,l :::; 1, f 2': 1) where at each iteration we check the value of

the index of dispersion I and lag-1 autocorrelation coefficient p1 from the current values

of Ps,l and f. We stop searching when we find a MAP with an I that is within 1% of the

target user-specified index of dispersion and the lag-1 autocorrelation is at least Pl 2': 0.4

in or<:fer to have consistent probability of formation of bursts within short time periods.

59

We remark that the threshold 0.4 has been chosen since it is the closest round value to

the maximum autocorrelation that can be obtained by a two-state MAP. The index of

dispersion of the MAP can be evaluated at each iteration as [16, 67]:

2 (.A .A)2
J = 1 + Ps,lPl,s short - long

(Ps,l + Pl,s)(AshortPs,l + AtongPl,s)2'
(3.6)

while the lag-1 autocorrelation coefficient is computed as

1 (E[z]2)
P1 = 2(1- Pt,s- Ps,t) 1- E[Z2J _ E[ZJ2 ' (3.7)

where E[Z2] is obtained from Eq.(3.4) for k = 2. We remark that if no MAP exists with

at least p1 2': 0.4, then the benchmark should search for the MAP with largest p1 in order

to facilitate the formation of bursts which persists over several units of time.

3.4.4 Case Study: TPC-W

We exemplify the effectiveness of this new methodology by introducing a new module

into the TPC-W, a benchmark that is routinely used for capacity planning of e-commerce

systems. We define a modified TPC-W benchmark where sequences of bursts with different

intensities and durations are created.

For each transaction mix, we run a set of experiments with different number of max-

imum client connections (fixed within each experiment) ranging from 200 to 1200. As

a result, we evaluate the new methodology under various system loads with utilization

levels at the front and the database servers within the range of 12%-98% and 6%-74%,

respectively. In all experiments, the mean user think time is set to E[Z] = 7 seconds,

which is the default value for the TPC-W benchmark. We use a 2-state MAP to generate

60

the user think times as described in the previous subsection. Our experiments are done

with two different MAPs that result in the index of dispersion equal to I = 400 (mild

burstiness) and I= 4000 (severe burstiness).

For comparison, we also do experiments with the standard configuration, i.e., think

times are exponentially distributed with mean E[Z] = 7 seconds and squared coefficient

of-variation SCV = 1. All experiments run for 3 hours each, where the first 5 minutes and

the last 5 minutes are considered as warm-up and cool-down periods and thus omitted in

the measurements.

Figure 3.15 demonstrates the arrival processes to the system under the shopping mix.

The results for the browsing and the ordering mixes are qualitatively the same. In this

figure, we depict the number of arriving clients to the system (i.e., the front server) in

monitoring windows of 1 second. In the standard TPC-W experiment, there is no bursti

ness in the number of arriving clients, which remains stable around 150, see Figure 3.15(a).

When we adopt two-state MAPs in think times, bursts are generated in the arrivals as

shown by periods of continuous peak arrival rates, see Figure 3.15(b) and Figure 3.15(c).

We stress that all three arrival processes have the same mean. As the index of dispersion

increases from I= 400 to I= 4000, there are sharp bursts in the number of active clients,

consistently with our purpose to "create" bursty conditions.

Average Performance

Figure 3.16 presents the average latency for a client transaction, which is the interval from

the moment when the client sends an HTTP request to the moment when an entire HTTP

web page (including embedded objects) is retrieved. We first direct the reader's attention

(a) Non-bursty (I~ I)

300 300

250 250

200 200

150

100 100

50 50

0 0
() W ® ~ WIOOIWI®I~IW200

time(s)

(b)J~400

0 20 40 60 RO HXI 12014016018021111

time(s)

300

250

200

150

100

50

61

(c) I~ 4000

20 40 60 RO 100120140 160 IRO 200

time(s)

Figure 3.15: Arriving clients to the system (front server) for the shopping mix with (a) non
bursty (standard TPC-W), (b) I= 400, and (c) I= 4000 in user think times, where the maximum
number of client connections is set to N = 1000.

to the system performance under the standard TPC-W experiment (i.e., exponential think

times, labeled non-bursty in Figure 3.16, see all solid curves). As shown in Figure 3.16

across all workloads, average latencies increase as the maximum number of client con-

nections increases. Especially for the browsing mix, the latency becomes two orders of

magnitude larger when N is increased from 200 to 1200. This is due to the presence of

burstiness in the service times at the database server, which dramatically degrades the

overall system performance, see more details in [63]. For the shopping and the ordering

mixes, there is no burstiness in neither the front nor the database service processes, al-

though these two workload mixes are highly variable. Consequently, a large number of

clients does not deteriorate performance as severely as in the browsing mix.

When burstiness is injected into the arrival flows, the overall system performance be-

comes significantly worse for all three transaction mixes. For instance, for the shopping

and the ordering mixes, when the index of dispersion in the two-state MAP for user think

times is I = 4000 and the maximum number of client connections is beyond 600, the

average latency is increased by at least 13 times and 35 times, respectively, compared to

the non-bursty case. As the index of dispersion decreases, e.g., I = 400, the degradation

caused by burstiness on the overall system performance becomes weaker yet visible as

(a) Browsing

3500

i 3000
non-bursty -+-

1~4000 X· g 2500 1=400 ------ X
~ 2000

! 1500

~ 1000

ll 500
~

0
200 400 600 800 1000 1200

maximum client connections (N)

(b) Shopping
- 1600

i 1400 non-bursty ---+----
1~4000 ~ .::.:·· e 1200
1~400

" 1000

~ KOO

~ 600
~ 400 ,X

.@ 200
... -

---------;:;
0
200 400 600 ROO 1000

maximum client connections (N)
1200

62

(c) Ordering
- 2500 ~-~-~-~-~--,
"" non-bursty --+-
~ 2000 1=4000 ·)(··
E 1=400 --~--

~ 1500

~ 1000
~

-;:: 500

" ;:;

.:K'·"

ROO I 000 1200

maximum client connections (N)

Figure 3.16: Average latencies as a function of the number of maximum client connections N for
(a) browsing mix, (b) shopping mix, and (c) ordering mix with non-bursty and bursty of I= 4000
and 400 in the user think times.

40
30
20
10 '

(a) Browsmg

_;:.:....-2 9R

n_qn-b"ursty ~
1~4000

1~400 .

0 ._. ~~~~-~~~~~_J
0 I 234567R

cl1ent response lime (s)
9 10

100 .--- .
90 1.~04.-···
RO r-- :'
70 .. 0 45

'#. (,() :'/ .. ·
<:::::' so
"8 40 i I 25

30 : :..----
20
10 I

(b) Shoppmg

nori-bursty-
1~4000

1~400.

o~~~~~~~~~~~

0 0.5 I I 5 2 2 5 3 3.5 4 4 5 5
client response time (s)

(c) Ordenng

.-n-Qn_:.hUrsty··:______

1~000

1~400 .

3.5 4
chen\ response time (s)

Figure 3.17: CDFs of latencies for (a) browsing mix, (b) shopping mix, and (c) ordering mix
with non-bursty and bursty of I = 4000 and 400 in user think times, where N = 1000 and the
corresponding average latencies are also marked.

latencies remain at least 6 times slower. For the browsing mix, the newly injected bursti-

ness in arrivals further deteriorates average latencies. Yet, as the maximum number of

client connections reaches 1200, the system performance under I = 400 is similar to the

non-bursty case. This happens because the system is already overloaded, regardless of

burstiness.

In addition to average latency values, we also evaluate the distribution of latencies.

Figure 3.17 shows the cumulative distribution function (CDF) of the latencies of the three

transaction mixes when N = 1000. The corresponding average latencies are also marked

in the figure. With bursty arrivals, the mass of clients experience significantly worse

performance and much longer tails in the latency distributions. This essentially argues

that QoS guarantees cannot be given for significant percentiles of the workload and further

highlights the pressing need to evaluate client-server systems under bursty conditions.

Transient Performance

"' "" 0
0

i 20

(a) Non-bursty (!~I)

tJme(s)

\00

~
'-'

RO
c 60 0

~ 40
g

20

0
0

(b)\~400

\00

"' RO
"-'
0 60 0

-~ 40

5 20

0
50 \00 ISO 200 0

time(s)

Front DB

63

Figure 3.18: Shopping mix: transient utilizations at the front server and the database server for
(a) non-bursty, (b) I= 400, and (c) I= 4000 in user think times, where N = 1000.

(I) Front Server

(a) Non-bursty (J~J) (b) l ~ 400 (c) l ~ 4000

0.14
0 5 0 5

012 0.4 04
0.1

0.3 ~ 0.08 'a 0.3 ~ ., -g_ 0. 0.
0.2 0.2

0.1 0 I
1li11h n J1iTlr

20 40 60 80 100 20 40 60 80 \00 20 40 60 80 100
utilizatiOn(%) utllizatton (%) utilizatiOn(%)

(II) DB Server
(d) Non-bursty (!~I) (e) I ~400 (I) l ~ 4000

0.14
0.5 0 5

0.12 04 0.4
0 I

03 ~ 0.08 'a ~ 03
-g_ .,

a.
02

0.
02

0 I ~ 0 I
.Jb

20 40 60 80 100 20 40 60 80 \00 20 40 60 80 100
utilization(%) uttlization (%) utilizatiOn(%)

Figure 3.19: Shopping mix: PDFs of utilizations at (I) the front server and (II) the database
server for non-bursty, I= 400, and I= 4000 in user think times, where N = 1000.

Here, we examine the performance metrics including the transient CPU utilizations

of the front and the database servers, the empirical frequencies of CPU utilizations, and

the transient number of active clients in the system as given by the summation of queue

lengths at the front server and at the back-end database. The maximum number of client

connections in the system is fixed to N = 1000.

The Shopping Mix. We first present CPU utilizations of the front and the database

(a) Non-bursty (I= I)
1000 1000

800 800

600 600

400 400

200 200

0 50 I 00 150 200 250 300 350 400 450 500
Sample Sequence Number (x I 00)

(b) I= 400

50 100150200250300350400450500
Sample Sequence Number (x 100)

64

(c) I= 4000
1000 ,--,~~~~~~~~---,

800

600

400

200

0 50 100150200250300350400450500
Sample Sequence Number (x 100)

Figure 3.20: Shopping mix: transient number of active clients in the system, i.e., summation
of queue length at the front and the database servers, for (a) non-bursty, (b) I = 400, and (c)
I= 4000 in user think times, where N = 1000.

servers across time for the shopping mix. We remark that the results for the ordering mix

have qualitatively the same trends. In this workload mix, there is no burstiness in either

the front or the database service processes. Therefore, if burstiness in CPU utilizations

exists, then this must be a direct result of bursts. As shown in Figure 3.18(a), when there

are no traffic bursts, the utilization at the front server remains stable around 70% while

for the database server the utilization levels vary from 10% to 80%, due to high variability

in its service times. When bursts are generated, the phenomenon of stable utilizations at

the front server disappears. Instead, we observe very bursty CPU utilizations at the front

server, where the server remains fully utilized (i.e., 100%) for some periods, but then it

sharply drops to only 20% during other periods, see Figure 3.18(b). Meanwhile, the range

for the utilizations at the database server is further enlarged up to even 100%. As the

intensity of traffic bursts increases, the trend for the front server being either overloaded

or lightly loaded becomes more evident, see Figure 3.18(c).

Figure 3.19 illustrates the empirical frequencies (i.e., empirical PDF) of CPU utiliza-

tions at both the front server (see the first row in the figure) and the back-end database

(see the second row in the figure). If the arrival process to the system is not bursty,

then there is a large mass around 60%-80% in the distribution of utilizations at the front

65

server, which is consistent with the transient results shown in Figure 3.18(a). For the two

cases with burstiness in the arrival process, the distributions are bimodal, an effect that

is further accentuated as burstiness increases, see Figure 3.19(c) and Figure 3.19(f).

To better understand how traffic bursts are generated by using two-state MAPs in user

think times, we present the number of active clients (i.e., summation of queue lengths at

the front and the database servers) across time for the shopping mix, see Figure 3.20. This

performance metric directly indicates how many active clients are in the system waiting

for service. First, as shown in Figure 3.20(a), we cannot observe any burstiness in the

overall queue length, despite the fact that the shopping mix workload is highly variable.

When the two-state MAPs with I = 400 and I = 4000 are adopted for user think times,

the number of active clients in the system fluctuates dramatically. When I = 4000, the

system is congested with more than 700 clients for some periods, while it sharply drops

to as low as 10 clients during other periods. This exactly matches the burstiness in the

CPU utilizations of the front and the database servers.

The Browsing Mix. We now turn to investigate the browsing mix. The distinct dif

ference of this browsing versus the shopping or the ordering is that there is burstiness in

the flows which originates in the database service process. We direct the reader to [63] for

detailed discussion on this phenomenon.

In the browsing mix, even if no additional burstiness is injected into the system (i.e.,

think times are exponential), there does exist burstiness in the CPU utilizations of the

front and the database servers, see Figure 3.21(a). If there is burstiness in think times as

well, the burstiness in CPU utilizations becomes more prominent.

We depict the empirical PDF of the CPU utilizations for the browsing mix in Fig-

66

(a) Non~bursty (I~ I) (c) I= 4000

100

~ 80
"--

100 ,.,.- .. r--:· h m c 80
c 60 0 g 60

.~ 40

s 20

0
0

;; ~:' . .:

~ 40

~.:. ~ 20 11 ~ ~ ;f•

0
200 0 50 100 ISO 200 so 100 ISO 200

· i •..••
OL-~~~--~--~~~~

0 50 100 ISO
time(s) t1me(s) time(s)

Front - DB

Figure 3.21: Browsing mix: transient utilizations at the front server and the database server for
(a) non-bursty, (b) I= 400, and (c) I= 4000 in user think times, where N = 1000.

(I) Front Server

(a) Non-bursty (I~ I) (b)I~400 (c) I~ 4000
0 25 0.45 0 45

0.4 0.4
0.2 0.35 0 35

OJ 0.3

~
0 IS

~ 0.25 ~ 0 25
0.2 0 2 0 I 0.15 0.15

0 OS 0 I 0.1 ~
0 0 ~ r><ffTh, 0 OS r><T

0
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

utJiizatlOn (%) utilization(%) utilization(%)

(II) DB Server

(d) Non-bursty (I~ I) (e) I~ 400 (f) I~ 4000
0.25 0 45 0 45

04 04
02 0 35 0.35

0.15
0.3 0.3

~ 0 25 ~ 0.25 -g_ -g_ .,
0.2 Q. 0.2 0.1

0 IS
O.ISl

0.05 ~hn,_ 0.1 ~ 0.1
0 05 0.05

0 0
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

utihzanon (%) ut1hzation (%) ut1hzat10n (%)

Figure 3.22: Browsing mix: PDFs of utilizations at (I) the front server and (II) the database
server for non-bursty, I= 400, and I= 4000 in user think times, where N = 1000.

ure 3.22 for N = 1000. Different from the shopping mix, the database utilizations have

a bimodal distribution with two peaks around 8% and 100%, this is due to the database

correlated service process, see Figure 3.22(d). For the front server, although most of CPU

utilizations are still gathered around 60%-80%, the probabilities of having the front server

fully utilized (100%) and fully idle (0%) are as high as 0.16 and 0.06, respectively. When

traffic bursts are generated, CPU utilizations at the front server and the back-end database

become extreme, i.e., either very high or very low.

Figure 3.23 illustrates the number of active clients in the system across time for the

(a) Non-bursty (I= I)
1000

}
800

} 600

" 400 0 0

" 0 0
0" 200 0"

0 50 1001502002503003504004SOSOO
Sample Sequence Number (x I 00)

(b)I=400
!DOD

800

600
t,
~

400 ~
200 0"

0 SO I 00 I SO 200 2SO 300 350 400 4SO SOD
Sample Sequence Number (x I 00)

1000

800

600

400

200

67

(c) I= 4000

0 so 100 !502002503003S04004SOSOO
Sample Sequence Number (x 100)

Figure 3.23: Browsing mix: transient number of active clients in the system, i.e., summation
of queue length at the front and the database servers, for (a) non-bursty, (b) I = 400, and (c)
I = 4000 in user think times, where N = 1000.

browsing mix in the network with N = 1000. The observation of the transient number

of active clients is consistent with the transient CPU utilizations: under the non-bursty

case, the curve of the number of active clients is no longer fiat but contains a lot of spikes

caused by the burstiness in the database service process; while the additional burstiness

in the arrival process continuously increases the spikes in the number of active clients,

making the system performance erratic and extremely variable.

3.5 Chapter Summary

Today's IT and Services departments are faced with the difficult task of ensuring that

enterprise business-critical applications are always available and provide adequate perfor-

mance. Predicting and controlling the issues surrounding system performance is a difficult

and overwhelming task for IT administrators. With complexity of enterprise systems in-

creasing over time and customer requirements for QoS growing, effective models for quick

and automatic evaluation of required system resources in production systems become a

priority item on the service provider's "wish list".

In this chapter, we have presented a solution that models burstiness in the service

process of multi-tier systems. Most importantly, the model parameterization is done by

68

inferring essential process information from coarse measurements in a real system. After

giving quantitative examples of the importance of integrating burstiness in performance

models and pointing out its role relatively to the bottleneck switching phenomenon, we

show that coarse measurements can still be used to parameterize queueing models that

effectively capture burstiness and variability of the service process. The parameterized

queueing model can thus be used to closely predict performance in systems even in the

very difficult case where there is persistent bottleneck switch among the various servers.

Detailed experimentation on a multi-tier system using the TPC-W benchmark validates

that the proposed technique offers a robust solution to predict performance of systems

subject to burstiness and bottleneck switching conditions.

We have also provided a robust methodology to inject burstiness into the arrival process

of the traditional client-server benchmarks, e.g., TPC-W, that can be of great practical

use for assessing the effectiveness of mechanisms that counteract burstiness. We integrate

the methodology in the well established TPC-W benchmark. Our methodology injects

burstiness into the arrival process of the server in a controllable way using simple param

eterization. Extensive experimentation in a real testbed demonstrates the effectiveness

and robustness of the proposed methodology and further demonstrates the importance

of evaluating the system under bursty conditions as its performance decidedly worsens

as burstiness increases. The code of the proposed extensions to TPC-W benchmark are

presented in Appendix B.

Chapter 4

General Dependence-driven

Scheduling Policies

In this chapter, we leverage on the temporal dependence in service times and show how

temporal dependence can be exploited to forecast future service requirements of requests.

If the dependence structure is strong, then it is likely that a large request is followed by

another large one, that is, requests with large service demands appear clustered together.

This information can be used as an additional criterion for resource allocation.

In this chapter, we show that significant performance gains that reduce the probability

of having the system unavailable can be obtained by delaying selected requests Request

delaying in a server may yet result in slower response times at that resource, but significant

improvement is observed throughout the rest of the network, allowing delay-based schedul

ing to reduce the overall end-to-end response times. Furthermore, the lower response times

let the system sustain more customers, therefore improving its overall availability.

In this chapter, we first focus on the difficult case where workload processing is manda-

69

70

tory and work reduction techniques such as request drop cannot be applied. In Sec

tion 4.2, we propose a new delay-based scheduling policy, called SWAP. SWAP is a fully

measurement-based policy that classifies (i.e., "predicts") requests as short or long based

on the temporal dependence of the workload service process and approximates the shortest

job first (SJF) scheduling without requiring any knowledge of job service times. Then,

we develop two extensions of SWAP that infinitely delay (i.e., drop) a portion of the

workload in order to meet pre-defined quality-of-service levels, see Section 4.3.

4.1 Related Work

There is a large body of literature on scheduling policies that has been developed over

the years (see [31] and [29] and references therein). Recently, Friedman and Henderson

introduce a preemptive scheduling policy for Web servers in [31]. This new policy called

Fair Sojourn Protocol (FSP) provides both efficiency and fairness for the sojourn time

of the jobs. The Priority-based Blind Scheduling (PBS) policy approximates the existing

standard blind scheduling policies, e.g., FCFS, PS, and LAS, by tuning a single parame

ter [29]. The Generalized Processor Sharing (GPS) policy is studied in the literature [52].

For a two-class GPS system, the admission region is selected for the general Gaussian

traffic sources which contain the service processes with both long-range dependence and

short-range dependence. However, to our best knowledge, no existing policy considers the

structure of temporal locality in scheduling for systems.

Several works have investigated the idea of using measured temporal dependence in

capacity control policies for the networking. In [37], a general framework for measurement

based admission control is introduced. Admission decisions are taken by means of an

71

approximate Gaussian model of the aggregated traffic which is parameterized by the mea

sured mean, variance and correlation of the superposed flows. Similar approaches appear

frequently in the networking literature, e.g., for bandwidth allocation in VBR traffic [19],

for data communications over CDMA mediums [100], and for general self-similar multi

plexed traffic modeled as fractional Brownian motion (fBm) [95]. However, these works

differ substantially in the scope and approach of this dissertation for several reasons. First,

network flows can have highly-variable bandwidth requirements that are non-stationary

and difficult to model outside heavy traffic or asymptotic regimes; instead service in sys

tems typically shows consistent functional forms which are easier to model and can be

exploited effectively to control system load. Another important difference is that network

traffic is often modeled as a superposition of flows which share the available bandwidth

according to a discriminatory or generalized process-sharing policy; this assumption is

instead often unrealistic in systems, e.g., when the scheduling discipline is approximately

first-come first-served (FCFS). FCFS scheduling is also found in networks, e.g., in ATM

communication, but the service time distributions are here usually deterministic or Erlang,

whereas high job size variability in systems is a fundamental factor of congestion.

4.2 Delay-Based Scheduling Policy: SWAP

In this section, we introduce SWAP, a new delay-based scheduling policy that improves

performance and availability in systems with temporal dependent workloads. The basic

idea behind SWAP can be summarized as follows. Consider a system processing jobs

with a first-come first-served (FCFS) scheduling policy. Assume initially that job size

information is available to the scheduler. If we want to maximize performance given that

72

the future instants of new job arrivals are unknown, then the optimal scheduling is shortest

job first (SJF) as it is well-know from classic scheduling theory [82]. That is, if the resource

has K enqueued jobs having ordered service times Sk, 1 s; k s; K, being S1 the service

time required by the job at the head of the queue, then the total completion time C(T)

under the FCFS discipline is

C(T) = KS1 + (K- l)S2 + ... + SK,

which is immediately minimized if sk s; sk+l, i.e., when short jobs are served first.

Outside the above assumptions, SJF is not in general optimal, yet provides significant

gains with respect to simpler scheduling policies such as FCFS. The well-know problem of

SJF is that it requires information on the job service times, which in practice may not be

available. We therefore investigate how the performance of SJF could be approximated

with an online policy that does not require a priori knowledge of job duration. The

basic idea behind SWAP is to use the measured autocorrelation of the service times to

estimate this missing information. Once these reliable estimates of the job service times

are available, we delay large jobs up to a fixed number of times by putting them at the

tail of the queue. In such a way, long jobs are more likely to be served after most short

jobs have been completed. Estimated-short jobs are not delayed by SWAP.

Summarizing, the basic ideas of SWAP are as follows:

1. approximate the behavior of the SJF scheduling discipline by proper use of job

delaying;

2. estimate from the process temporal dependence, as modeled by the correlation be

tween successive service time values, the expected service times of the jobs waiting

73

in queue.

SWAP does not assume any a priori knowledge of the length of any of the enqueued

jobs. The system knows the exact service time received by a job only after the job

completes execution. Estimation of service times for the remaining jobs is based only on

the past history of the system. We also stress that we provide mechanisms to avoid job

starvation. In the next subsections we detail the implementation of the SWAP policy.

4.2.1 Forecasting Job Service Times

The effectiveness of the new proposed policy depends on the accuracy of forecasting job

service times. If prediction is done effectively, long jobs to be delayed can be accurately

identified and SWAP performs optimally.

Exploiting Service Time Variability

Our service time forecasting relies on two system aspects: service time variability and

temporal dependence of workloads. Concerning the former, we leverage on the fact that

service time distributions found in systems are typically characterized by high variance

[6, 78], therefore the discrimination between small and large service times can be performed

effectively and can be used to improve performance. In particular, SWAP uses a large-job

threshold

LT = p,- 1 (1 + k · CV), (4.1)

where p,- 1 is the mean service time at the resource, CV is the coefficient of variation of

service times, and k ~ 1 is a constant determined online. If a job service time is greater

than LT, then SWAP regards the job as "long" (also referred throughout the chapter as

74

"large"). Otherwise, SWAP classifies it as "short". Note that the policy can successfully

measure the parameters for computing LT in an online fashion, i.e., the mean 11-1 and the

coefficient of variation CV of the service times are continuously updated in SWAP using

Welford's one-pass algorithm [96].

Exploiting Temporal Dependence

Given a classification into large and short jobs, the next step to effective forecasting is to

exploit the structure of temporal dependence in order to "guess" if a job in the queue is

long or short. This is the critical information needed to approximate the behavior of SJF

scheduling. We assume that the scheduler is able to measure correctly the service times

of jobs completed by the server, which can be easily implemented in most systems. Let

T be the time instant in which a forecasting decision is needed, which in SWAP always

corresponds to the departure instant of a long job departing from the queue. Also assume

that during the period [T- Tw, T], where Tw, 0 <:=; Tw <:=; T, is an update window

monitoring past history, the system has completed n jobs with service times S1 , S2 , ... , Sn.

Given the sequence {Si}, 1 <:=; i <:=; n, our forecasting is based on the estimates of the

conditional probabilities as follows:

P[LIL]j =P[St+j :::=: LTISt :::=: LT],

P[SIL]j =P[St+j < LTISt :::=: LT] = 1 - P[LIL]j,

which are computed using the service times St E {Si} for t = 1, ... , n- j. Here j is

called the lag of the conditional probability and denotes the distance between the service

completions considered in the conditional probabilities. Given that the last completed job

75

is long, P[LIL]1 measures the fraction of times that the j-th job that had arrived after it

is also long; similarly, P[SIL]1 estimates how many times the lag-j arrival is instead short.

Using these estimates, we forecast that the lag-j arrival after the last completed job is

going to receive large service time if the following condition holds:

(4.2)

i.e., there is higher probability that the j-th arrival is going to be long than to be short.

SWAP is triggered only when the last finished job is long; therefore, since we focus on

systems with finite buffers, i.e., systems with constant population N, we only make use of

the conditional probabilities P[LIL]1, for 1 :<::: j < N.

An example that builds intuition on the tight relation between our forecasting ap

proach and temporal dependence in service times has been shown in Figure 2.1 of Chap

ter 2. This example illustrates that workloads, for which service times are independent

and no temporal locality exists, cannot be used to forecast future service requirements.

Conversely, dependent service processes found in systems are best-fit to predict future

service requirements. We exploit in SWAP this property to approximate the behavior of

SJF scheduling.

4.2.2 The Delaying Algorithm: SWAP

We now describe SWAP in detail. For presentation simplicity, we assume here that the

large threshold LT that is fundamental for forecasting is given; in the next subsection, we

present how SWAP self-adjusts LT on-the-fly, i.e., no a priori knowledge of LT is required

and SWAP becomes truly autonomic.

76

Upon the completion of a long job, the entire queue is scanned and the size of the j-th

queued job is predicted by using the conditional probabilities as described in the previous

subsection. If the j-th job is estimated as large, SWAP marks it as such. All jobs that

are marked long are delayed by moving them at the end of the queue. After all jobs in the

queue have been examined and long jobs have been delayed, SWAP admits for service the

first job in the queue. Delaying is not triggered again before completion of another long

job.

We point out that jobs are "reshuffled" in the queue based on their anticipated ser

vice times; the order of the jobs in the service process is therefore altered (attempting to

approximate SJF scheduling) and this modifies both the throughput at the queue and the

autocorrelation of the process. Concerning the latter, we point to [4] for an accurate anal

ysis of the effects of shuffling in stochastic processes that can be modeled using Markovian

methods.

SWAP does not re-forecast the length of a job whose service time has been already

forecasted to be long. This is done by recording an absolute arrival index Ai for each job.

That is, once a job has been marked as long it remains as such for all the duration of

its stay in the queue and is never forecasted as short in successive activations of SWAP;

the same property holds also for short jobs. We apply the conditional probabilities on

the sequence of jobs in the queue obtained by ordering the jobs according to the arrival

indexes only.

To avoid starvation of long jobs, we introduce the delay limit D, i.e., the maximum

number of times a single job can be delayed. When the number of times a job has been

delayed is more than D, the policy does not delay this job any longer and allows it to

77

wait for service in its current position in the queue. Figure 4.1 summarizes the above

discussion and gives the pseudocode of SWAP.

4.2.3 Self-Adjusting the Threshold LT

Now, we discuss how SWAP adjusts the threshold LT for large values, aiming at con-

trolling the strength of delaying to strike a good balance between being too aggressive

or too conservative. Intuitively, when the threshold LT is too large, the policy becomes

conservative by delaying few long jobs, the performance improvement is then negligible.

Conversely, when LT becomes too small, more jobs (even short ones) are delayed and

therefore throughput is reduced. As a result of this, performance may be improved very

little. Therefore, the choice of an appropriate large threshold LT is critical for the effec-

tiveness of SWAP.

As observed in Section 4.2.1, the computation of LT is a function of the updating

window Tw used by SWAP. We express Tw as the maximal time period in which the

system has completed exactly W requests; in the experiments presented here, we set
I

W = 100,000. The algorithm in Figure 4.2 describes how the threshold LT is dynamically

adjusted every W requests. At the end of a period of length Tw, we update LT while

keeping as upper and lower bounds for its value the 90th and the 50th percentiles of the

observed service times in Tw. Indeed, whenever specific information on the workload

processed by a system is available, these values can be increased or decreased according

to the characteristics of the workload. The threshold LT is updated by assuming that the

value of the conditional probability P[LIL]j at some large lag j is representative of the

overall tendency of the system to delay jobs.

78

In the implementation, we adjust the parameter k which defines LT = ~-t- 1 (1 + k · CV)

with step adj according to the following scheme. Let QT be the current queue-length at

the server with SWAP scheduling. We evaluate P[LIL]1 for the large lag j = lQT/2J and

if P[LIL]1 2': P[SIL]1, then SWAP is assumed to be too aggressive, since it may delay

at the next round up to l QT /2 J jobs. Here, we implicitly assume that the conditional

probabilities P[LILJ are decreasing in j which indeed is the typical case for workloads

where large service times are a minority compared to the small service times. In this case

we set k = k + adj, which reduces the number of jobs identified as long. As a result, we

can avoid half of total requests waiting in the queue to be delayed. A similar procedure is

done for the case j = l QT /10 J, where if P[LIL]1 2': P[SILJ1, we conventionally assume that

SWAP is too conservative; in this case we set k = k- adj which increases the number

of jobs estimated as long. Since delaying jobs in an aggressive way may achieve worse

performance than in a conservative way, we here set j = l QT /10 J instead of l QT /2 J to

guarantee at least 10% of queued requests to be delayed. Throughout experiments we

have always observed that the LT online algorithm does not show instability problems

and always provides effective choices of LT which lead to consistent performance gains as

discussed in the next subsection.

1. initialize:

a. maximum allowable delay limit D

b. arrival index i <-- 0

c. large threshold LT <-- J.L- 1 (1 + k · CV)

2. upon each job arriving at queue

a. i <-- i + 1

b. record that job's arrival index: Ai <-- i

c. initialize that job's predicted result as UnCheck

d. initialize that job's num. of delays d <-- 0

3. upon each job completion at queue

a. measure conditional probabilities P[LILJJ, 1 ::; j < N

b. if its service time is greater than LT

c. then trigger one round of the delaying

I. initialize j <-- 1

II. if predicted result of the j-th job is not UnCheck

then keep using its predicted result

79

else calculate the lag apart the two jobs: lag <-- j-th job's Ai - completed job's Ai

III. if P[LILJzag :2: P[SILlza 9

then set that job's predicted result as large

else set that job's predicted result as small

IV. j <-- j + 1

V. if reaching the end of the queue

then delay all large jobs with num. of delays d ::; D to the end of the queue and

increase d <-- d + 1

else, go to step 3-c-II

d. else, go to step 3

Figure 4.1: Description of SWAP.

1. initialize: k <--- 1 & adj <--- 0.5

2.set LT <---~t- 1 (1 + k · CV)

3. for each request in Tw do

a. upon each job completion at the autocorrelated server

I. compute observed conditional probabilities: P[LIL]J' for 1 :::; j < N;

II. update IL-l and CV by Welford's algorithm

III. update the mean queue length QL

b. at the end of Tw

I. if P[LILhQr/2J 2: P[SILhQr;2J, then k <--- k + adj

else if P[LILJ LQT/!OJ < P[SILJ LQT/lOJ, then k <--- k- adj

II. set maximum and minimum large thresholds:

LT _max <--- 90 percentile of observed service times

LT _min <--- 50 percentile of observed service times

III. recalculate LT <--- ~t- 1 (1 + k · CV)

IV. if LT > LTma.x, then LT <--- LTma.x

V. if LT < LTmin, then LT <--- LTmin

Figure 4.2: Description of how to self-adjust the large threshold LT.

80

81

4.2.4 Performance Evaluation of SWAP

In this subsection, we present representative case studies illustrating the effectiveness and

the robustness of SWAP. All simulations refer to a 10 million sample space and the

reported results are within 98% confidence intervals.

We use simulation to evaluate the performance improvement of S\VAP in a network

with M first-come-first-served (FCFS) servers in series. We assume that there is only one

server with temporal dependence in its service process and denote that queue as QACF·

Throughout experiments, the service process at QACF is always a two-state Markov

Modulated Poisson Process (MMPP(2)) [67] with identical distribution having mean rate

J.L = 1 and squared coefficient of variation CV2 = 20. Let PJ be the lag-j autocorrelation

coefficient. For the MMPP(2), we consider three different autocorrelation profiles:

• ACF1 : p1 = 0.47 decays to zero beyond lag j = 1400;

• A CF2 : p1 = 0.46 decays to zero beyond lag j = 240;

• ACF3: Pl = 0.45 decays to zero beyond lag j = 100.

Figure 4.3 shows the ACF for the three profiles. The other M - 1 queues, denoted as

QExp' have exponentially distributed service times with mean rate Ai, 1 :::; i < M. We

focus on the case where a constant workload of N requests circulates in the network, i.e.,

the model is a closed queueing network. Simple networks of this type are often used to

model real systems of large diffusion, e.g., multi-tier architectures [59, 92].

0 45
0.4

0.35 ;, ACFI
0.3 :\

b 0.25 :\
<(0 2 '\

O. I 5 \ \, ACF2

O I \ ··.(ACF3
005 \ ·y

0 ··--.'::·"··----------·----------------·

~OjL]~J~00~20~0~3~00~40~0~50~0-6~00~70~0~8~00~90~0~]000
lag(k)

82

Figure 4.3: The ACF of the service process that generates the autocorrelated flows in the system,
where the service times are drawn from MMPP(2)s with ACF1 , ACF2 and ACF3 , respectively.

Performance Improvement

We first simulate a network with two queues: the exponential queue Qkxp has mean

service rate >. 1 = 2; the autocorrelated queue QAcF uses the MMPP(2) described above

with autocorrelation structure A CF1 . The model population is set to N = 500, the delay

limit is D = 100. Sensitivity to the most important experiment parameters is explored

later.

We compare system capacity under SWAP as measured by the system throughput

with the throughputs observed when QAcF uses FCFS or SJF scheduling. Indeed, larger

throughput means that the system can sustain more load. Therefore, it is protected from

the degradation of sudden bursts of requests, which improves the overall availability of the

system. FCFS performance is used as baseline in comparisons. We recall that our stated

goal is to show that SWAP performance is competitive with that of SJF which would

prove that the knowledge required by SJF can be inferred effectively from the temporal

dependence of workloads.

Table 4.1 shows the mean throughput of the difference policies and the relative im-

provement with respect to FCFS. Throughput is measured at an arbitrary point of the

network, since for the topology under consideration throughput at steady state must be

83

identical everywhere [22]. The table shows that, although we are not reducing the over-

all amount of work processed by the system, both with SJF and SWAP the capacity is

significantly better than with FCFS. Noticeably, SJF and SWAP perform closely, thus

suggesting that the SWAP approximation of SJF is very effective.

FCFS SWAP SJF

TPUT 0.71 job/sec 0.92 job/sec 1.01 job/sec

% improv. baseline 29.6% 40.8%

Table 4.1: Mean system throughput (TPUT) and relative improvement over FCFS for a network
with M = 2 queues, N = 500 jobs, >11 = 2 and autocorrelation profile ACF1. SWAP achieves
a performance improvement similar to SJF, but without requiring a priori knowledge of service
times.

Further confirmation of this intuition comes from Figure 4.4(a), which shows the com-

plementary cumulative distribution function (CDDF) of the round trip times, i.e., the

probability that the round trip times experienced by individual jobs are greater than the

value on the horizontal axis. The plot shows that the largest part of job experiences the

lowest round trip times when the scheduling is SJF or SWAP. Indeed, the part of the

workload whose execution is delayed at QAcF receives increased response times, but the

number of penalized requests amounts to less than 3% of the total. We observe also in

this case that the performance of SJF and SWAP is extremely close, the only significant

difference being that in SJF a small fraction of jobs (less than 0.5%) receives much worse

round trip times than in SWAP. We attribute such difference to the unavoidable forecast-

ing errors in SWAP, which may occasionally fail in identifying jobs as long also if their

actual service requirement is large, thus resulting in a smaller CDDF tail than SJF.

Other interesting observations arise from Figures 4.4(b) and Figures 4.4(c). Figure

84

100 '"'':.::.RFs 0 5
0.45

10 04

····<:~AP 0]5

~ "- OJ

~
u 0.25

0.1 "' 0.2 -r 0.15
().{}] 0.1

F FS

~ 1i 94

96

100 ,--~-~-~-~-,

9R
SWAP-

92

90
0.05

0.001 0
10 100]000 le4 le5 le6 le7 0

RR c__~-::---~-::---~-::---~--:".
I 00 200 300 400 500 600 700 800 900 !000 0 20 40 60 1!0 100

(a)
round trip time (b) l'!l(k) (c) deloy turns

Figure 4.4: Comparative evaluation of SWAP, SJF and FCFS: (a) CCDF of round trip times,
(b) autocorrelation (ACF) of service times at QAcF, and (c) CDF of the number of times jobs are
delayed at QACF·

4.4(b) shows the autocorrelation of the service times at QAcF under the different schedul-

ing disciplines. It is immediate to observe that the temporal dependence is much less

pronounced under SJF and SWAP, thus suggesting that both techniques are able to

break the strong temporal locality of the original process. Also in this case, the results of

SJF and SWAP are very close to each other. Figure 4.4(c) shows the cumulative distribu-

tion function (CDF) of the number of times that a job is consecutively delayed at Q ACF

(here delay turns denotes the number of received delays by a job). Indeed, approximately

90% of the jobs never suffer a delay, while for the rest of the population the delay is often

much less than the limit D = 100.

Sensitivity to Device Relative Speeds

Here, we investigate the robustness of SWAP performance to changes in the experimental

parameters. We first focus on evaluating networks with varying processing speeds, i.e., we

consider the same model but vary the service rate at the exponential queue Qkxp while

keeping fixed the speed at QACF· Figure 4.5 presents the average system throughput for

three experiments, labeled Exp1, Exp2, and Exp5, where we set ,\ = 1, 2, and 5 job/sec,

respectively. As the service rate at QAcF is f-L = 1 job/sec, in Exp1 the two queues have

85

identical speed, while in both Exp2 and Exp5, QAcF is the system bottleneck and in Exp5

the relative speed at Q ACF becomes even slower. The relative capacity improvement with

respect to FCFS scheduling is marked above each bar in the figure. The interpretation of

the experimental results leads to the following observations.

0.9

g_ 0.8 l 0.7

"' 0.6
0.5

0.4

0.3

FCFS - SWAP c::::=J SJF c::::=J

Expl Exp2 Exp5

Figure 4.5: Sensitivity to service process ratio in a network with M = 2, N = 500, and A CF1 .

First, SWAP improves the system throughput across all experiments and is better for

smaller values of>.. The intuition behind this result is that as). decreases, more jobs are

enqueued at the resource Qkxp' and then delaying a job produces less overhead because a

job put in the tail of Q ACF can yet reach the head of the queue quite rapidly. Therefore,

the cost of delaying becomes negligible and the network can benefit more of the reordering

of jobs sizes.

A second important observation is that, as). increases, the SWAP performance con-

verges to that of SJF. This suggests that SWAP forecasting is very accurate since in

Exp5 almost all population in the network is queueing at QAcF and SJF sorts nearly

perfectly a large population close to N jobs according to their exact size. The fact that

SWAP achieves similar performance indicates that the same accurate ordering is obtained

if forecasting is based on temporal dependence.

As a final remark, it is interesting to observe that SWAP can be more effective than

86

hardware upgrades. For instance, the throughput under SWAP in Exp2 (white bar,

Exp2) is more than the expected throughout with FCFS in Exp5 (black bar, Exp5).

That is, under temporal dependent workloads, it can be more effective to adopt SWAP

than doubling the hardware speed of Qkxp·

We conclude the experiment showing in Figure 4.6 the CCDF of round trip times for

the previous experiments. The CCDF tail behavior observed in the previous subsection

persists for Expl, Exp2, and Exp5, where again SWAP degrades the performance of only

3% of the total number of requests.

100

10

~ "-'
~ 0.1

0.01

0.001

(a) Exponential service rate I

10 100 1000 le4 le5 le6
round tnp time

10

c
] 0 I

0 01

(b) Exponential service rate 2

FCFS
SWAP

SJF ----

0.001 L.-~~~~.w....---'-"-~~....J
10 100 1000 le4 le5 le6 le7

round trip time

(c) Exponential service rate 5
100

10

~
'§ 0 I

0.01

0.001
10 100 1000 Je4 Je5 le6 le7

round trip time

Figure 4.6: Illustrating the CCDF of round trip times in a network with M = 2, N = 500, and
ACF1 . The service rate)q of the exponential queue is equal to (a) 1, (b) 2, and (c) 5.

Sensitivity to Temporal Dependence

In order to analyze the effect of temporal dependence on policy performance, we conduct

experiments with various autocorrelation profiles at QAcF, but always keeping the same

mean and CV of the job sizes. We use three service processes with autocorrelation A CF1 ,

ACF2, and ACF3 shown in Figure 4.3.

Figure 4.7 shows the system throughput under FCFS, SWAP and SJF policies for

the same model but for different autocorrelations. In general, we expect that strong

ACF degrades overall system performance more than weak ACF, as it is clearly confirmed

by the experimental results. Yet, SWAP under the stronger ACF improves more than

87

under the weaker ACF. This is because the stronger the ACF, the higher the conditional

probabilities for having large-large pairs in the service time series and the delaying is more

aggressive. For instance, for ACF1 , we have P[LIL]j 2: P[SIL]j for all j < 69.

:; 0.9
Q.

"§; 0.8

~ 0.7

0.6

0.5

FCFS- SWAP c:::=::::J SJF c:::=::::J

ACFI ACF2 ACF3

Figure 4. 7: Sensitivity to temporal dependence in a network with M = 2, N = 500, and)q = 2,
where the relative improvement over the FCFS policy is indicated on each bar.

When the service process has the two weaker ACFs, i.e., ACF2 and ACF3, the margin

for performance improvement of SWAP and SJF is much reduced. In this case, only the

conditional probabilities with lags up to j = 30 for ACF2 and up to j = 14 for ACF3 satisfy

P[LIL]j 2: P[SIL]j' This implies that weaker ACFs make SWAP more conservative in

delaying long jobs, but SWAP still achieves performance very close to the target behavior

of SJF.

The plots in Figure 4.8 present the effect of different temporal dependence on the

tail of round trip times under SWAP. Strong temporal dependence in the service process

makes SWAP to delay long jobs more effectively, and thus helps almost 97% of requests be

served up to seven times faster than under the FCFS policy, see Figure 4.8(a). As temporal

dependence becomes weaker in Figure 4.8(b), the policy delays long jobs less aggressively

and a few requests show worse performance. That is, SWAP becomes less effective,

resulting in a longer tail of the round trip times distribution. With low autocorrelation, see

Figure 4.8(c), SWAP becomes more conservative in delaying jobs, which is reflected by a

88

small fraction of affected jobs. Consistently with the results presented in the previous case

studies, SJF gives a long tail in the distribution of round trip times across all experiments

and as the strength of ACF decreases, the tail becomes longer.

100

10

~
] 0.1

0.01

0.001

(a) ACFI

FCFS~

SWAP
SJF ····

10 100 1000 lc4 le5 lc6 lc7
round mp time

(b) ACF2
100

10

g:
] 0.1

0.01

0 001
10 100 1000 Je4 le5 ie6 le7

round tnp time

(c) ACF3

0.01

10 100 1000 le4 Je5 lc6 le7
round tnp time

Figure 4.8: Illustrating the CCDF of round trip time in a network with M = 2, N = 500, and
A1 = 2. The service process of QAcF has temporal dependence (a) ACF1, (b) ACF2, and (c)
ACF3.

Sensitivity to System Load

Now we investigate the sensitivity of SWAP to an increased number of requests in the sys-

tern. This is extremely important to understand the performance benefit of the technique

as the system reaches critical congestion. In order to evaluate how SWAP improves system

availability, we conduct experiments with three different network populations N = 500,

N = 800, and N = 1000, while keeping fixed the other parameters as the previous exper-

iments. The system throughput for these three experiments is illustrated in Figure 4.9

and the CCDFs of the round trip times experienced by individual requests are plotted

in Figure 4.10. In the experiment with the highest load N = 1000, SWAP improves

throughput by 33% compared to the baseline case and achieves performance close to the

target SJF performance. The improvement is clear also for lower loads, i.e., N = 500 and

800, but performance gains are maximal under the most congested case N = 1000.

Regarding availability, SWAP enables the system to sustain higher loads compared

89

FCFS - SWAP c::::J SJF c::::J
1.1

s 0.9

1QJ!% 38.9% p.J%

29~;
32~'] 32~

; ...
c.
.c
OJ) 0.8 "

; •:
0 .s 0.7 ;

0.6 .:

0.5
·-·-- ~-· -

Figure 4.9: Sensitivity to network population in the system with M = 2,)q = 2, and ACF1 ,

where the relative improvement over the FCFS policy is indicated on each bar.

100

10

~
~ 0.1

0 01

0.001

(a) N ~ 500

FCFS
SWAP

SIF --

I 0 100 1000 10000 le5 le6 le7
round tnp time

*]

100

10

0.1

0.01

0.001

FCFS
SWAP

SJF ----

10 100 1000 10000 le5 le6 le7
round tnp time

*' i

100

10

0.1

0 01

0.001

(c) N ~ 1000

FCFS
SWAP

SJF--

10 100 1000 10000 leS lc6 le7
round tnp t1me

Figure 4.10: Illustrating the CCDF of round trip time in a network with M = 2, .\1 = 2, ACF1 .

The network population is (a) N = 500, (b) N = 800, and (c) N = 1000.

to the FCFS policy. For instance, for N = 800 and FCFS scheduling, 80% of requests

experience round trip times less than 1146 when no delaying of jobs occurs, see the solid

curve in Figure 4.11. However, even for N = 1000 requests, the fraction of requests

having round trip times less than 1146 becomes 95% with SWAP (see the dashed curve

in Figure 4.11). That is, SWAP is able to give a remarkably better performance to most

jobs than with FCFS even if the overall population is increased by 200 requests. In this

sense, it is immediately clear that SWAP can be very effective in addressing request bursts

that threaten system availability. Overall, these results imply that SWAP dramatically

improves system availability by providing high percentiles of jobs having round trip times

less than a predefined target.

I 00 ,---.-----,-------,~--.-------,

c
4-. 10
]

FCFSN~SOO

SWAPN~IOOO ··

5000 I 0000 15000 20000 25000
round trip time

90

Figure 4.11: Illustrating the CCDF of round trip time in a network with M = 2,)q = 2, and
ACF1. The solid curve shows the results in the experiment with N = 800 under the FCFS policy
and the dashed curve presents the results in the experiment with N = 1000 under SWAP.

Sensitivity to Network Size

We investigate the sensitivity of SWAP to the network size by evaluating throughput

improvement for M = 2, 3, 4. Except for the autocorrelated queue QAcF, the remaining

M - 1 resources are queues with exponential service times. In order to evaluate the

different impact of service times that are balanced or unbalanced with respect to the

service at QAcF, we consider the rates shown in Table 4.2, see the initial part of this

subsection for related notation.

IMI QACF Qkxp Q~xp Q~xp

2 ~t=1)\j = 1 N/A N/A

3 ~t=1 -\1 = 1 -\2 = 0.25 N/A

4 f.L=1 ,\1 = 1 ,\2 = 0.25 ,\3 = 1

Table 4.2: Queue service rates in the three experiments used to study SWAP sensitivity to
different network sizes.

Figure 4.12 shows throughput improvement provided by the three scheduling disci-

plines. Note that the first experiment is different from the conditions of Table 4.1, since

here the two queues are balanced. We observe that as the number of queues in the net-

91

work increases, the relative improvement over the FCFS policy decreases. We interpret

this effect by observing that since there are more exponential servers in the network, the

temporal dependence of the successive requests at the queues are much weaker than in

the experiments considered before. That is, throughout its path, each request is served

multiple times by exponential service processes without temporal dependence and there-

fore the temporal locality effects in the network are reduced. Therefore, the reduced gain

in this experiment is rather a consequence of the more limited margin for improvements

on these network rather than a limit of SWAP. In fact, we see that also SJF improves

modestly with respect to the FCFS case.

0.9

0.8

'5 0.7

a. 0.6
~
~ 0.5

0.4

0.3

0.2
M~2

4.3%8 6%

M~3 M=4

Figure 4.12: Sensitivity to network size in a network with N = 500 and ACF1, where the relative
improvement over the FCFS policy is indicated on each bar.

We complete the analysis in this subsection with Figure 4.13 that plots the CCDF of

job round trip times for the three experiments. Consistently with the results presented in

the previous cases, SWAP only sacrifices 2-3% of requests due to delaying but achieves

better performance for most requests. The results are consistent with the properties of

SWAP observed in the previous experiments, and the results are almost indistinguishable

across the three experiments.

In summary, the extensive experimentation carried out in this subsection has revealed

that SWAP can effectively approximate the performance of SJF without the need of

(a) M~2
100 100

10 10

" "-' t
TI O.J ~ 0 I

0 OJ 0.01

{)()()) 0001
J{) 100 1000 Je4 lel lc6

round tnp time

(b)M~ 3

t
TI

100 le4 Je6 ''" round tnp t1me

100

10

O.J

0 Ol

0.001

(c)M~4

FCFS
SWAP

S!F ··

92

10 100 1000 lc4 le5
round tnptimc

Figure 4.13: Illustrating the CCDF of round trip time in a network with N = 500 and A CF1 .

The number of queues in the network is (a) M = 2, (b) M = 3, and (c) M = 4.

additional information about job service times. The sensitivity results on the various

autocorrelation (burstiness) profiles have proved that the gains are more pronounced in

presence of higher temporal dependent workloads. This suggests that SWAP is an effective

solution to increase performance in systems processing this type of workloads. Sensitivity

analysis to the number of queues in the network and system load show that the gains of

SWAP are visible in a variety of different conditions.

4.3 Autocorrelation-Guided Load Control Policy

In this section, we extend SWAP by infinitely delaying requests to control the system

load and thus improve the overall system performance. We assume that load control by

infinitely delaying (i.e., "dropping") requests is an acceptable practice for the application

under consideration. For example, the MPEG video coding schemes store the necessary

information to decode the video redundantly in multiple frames. Consequently, under

heavy load, some of the frames can be dropped, up to a certain percentage, without

compromising the overall quality of service perceived by the user. Furthermore, the quality

of service perceived by the user depends on the device that is playing the digital video.

If it is a low resolution device (such as a handheld), then the percentage of video frames

93

that can be dropped without affecting the quality of viewing is higher than if the video is

watched on a high-definition television.

The proposed load control policy is driven by autocorrelation, another form of temporal

dependence, to reduce the average durations of "slow" service periods. The duration of

slow periods can be reduced by dropping longer (relatively to other) requests from the

queue of the autocorrelated server. Note that reducing the duration associated to short

requests also reduces autocorrelation and may thus improve performance. However, the

performance impact of short jobs is typically small compared to that of long jobs and this

makes the practice of dropping small jobs less interesting than for large jobs. Our scheme

is more effective than other methods, e.g., random drop, since we effectively forecast which

jobs in the queue are long, thus become good candidates to drop.

First, we present a static load control policy, called ALoC, for the ~utocorrelation

driven .lQad £Ontrol in autonomic systems. The static version of this policy assumes no

knowledge of the length of queued jobs, but requires a priori knowledge of the autocor

relation function of the service process. Then, we present a related dynamic version,

called D_ALoC, which is truly a no knowledge policy, i.e., it does not assume any a priori

knowledge and dynamically adapts its load control parameter based on online measure

ment, policy targets, and statistical information of past workloads.

4.3.1 ACF-Guided Dropping

Dropping effectively the most harmful requests for performance depends on the prediction

accuracy of future job sizes. Henceforth, we do not assume a priori knowledge of any

job size, i.e., the system knows the size of a job only after it completes execution. The

94

aim of the prediction is as follows: if size prediction is done effectively, long jobs can be

accurately identified and removed from the queue so that the duration of the slow state

decreases, yielding an improvement of the average response times.

We now describe how we can use the autocorrelation function to predict job sizes. Let

us assume that the last served job was long, i.e., its size was greater than JL- 1 (1 + k · CV)

for a given k, and suppose that we wish to forecast the size of the j-th job in queue (the

job j = 1 is the one immediately entering service after the long job just completed). If

the service process has a positive ACF Pj, then there is similarity in size between the

completed long job and the j-th job in queue. Therefore, we cast a random number with

uniform distribution in [0, 1], if the result is less than or equal to PJ, then we assume that

the j-th job is long, otherwise it is short. That is, we assume that PJ is a measure of the

conditional probability for a job to be large given that the last served job was large. A

negative or zero PJ implies high probability that the j-th job significantly differs in size

from the long job and therefore it is likely to be forecasted as short. Since in our analysis

negative and zero autocorrelations lead to identical forecasting, we set PJ = 0 whenever

the measured lag-j autocorrelation is negative.

4.3.2 ALoC: Static Version

We propose a load control policy driven by autocorrelation that reduces the average du

rations of "slow" service periods in order to improve the overall system performance. For

the rest of this section, we assume that load control by dropping requests is an acceptable

practice for the application under consideration, as in the case, e.g., of media workloads.

For instance, selectively dropping redundant MPEG video packets does not compromise

95

the overall quality of service perceived by the end users. Furthermore, dropping a small

number of non-redundant MPEG video packets may not be noticed by the end users due

to low device resolution.

First, we present a static load control policy, called ALoe, which requires a priori

knowledge of the autocorrelation function at the server process and of a user-defined

parameter for controlling the load at the autocorrelated server. ALoe does not require a

priori knowledge of the request size. The high level idea of ALoe is as follows. After a long

job is completed, the queue is scanned to find other long jobs probabilistically, according to

their position j in the queue and the value of the corresponding autocorrelation coefficient

PJ. All jobs that have been estimated as long are then dropped from the queue; indeed, if

some jobs are known to be indispensable for the application then they can be tagged as

"undroppable" and be left in queue; we discuss this issue in Section 4.3.4.

In order to control and maintain load reduction at a minimum, we introduce a queue

length threshold Q for dropping requests, where 0 < Q / N ::; 1. Thus, ALoe starts

dropping requests only when the last completed request is long and the queue length at

the autocorrelated server is higher than Q. Therefore, if the system is under-utilized and

Q is not reached, then no request is dropped and all long requests are still served. Note

also that since the policy is triggered only after a long job is executed, the policy avoids

starvation of long jobs.

We use an example to describe ALoe. In the example, Q = 5 and there are 9 jobs

waiting in the queue as shown in Figure 4.14. Upon completion of a long job, ALoe is

triggered because the current queue length is greater than Q. ALoe starts to probabilis

tically predict the size of the ;th waiting job for j = 1, 2, ... , 9. For instance, if p1 = 0.40,

96

9 8 7 6 5 4 3 2 It : 1

11111111118~--~!~!~n~-->!
I I

queue length is 9 > QT (5)

I

5 4 J 2 I :

8!
--~~~~~~~ I

queue length is 5 = QT (5)

9 8 7 6 5 4 3 2 1t : I t9 8 7 6 5 4 3 2 I :

(b): 11111111118:---~~~!~n~--~ 8!
queue length is 9 > QT (5) 1 queue length is 6 > QT (5) 1

------------------- ' ... -----------------_I

I 0 0
kept dropped un-checked

Figure 4.14: Illustration of ALoC's operations. The most-recent served job is larger than

~(1 + k · CV) and the current queue length exceeds Q = 5. Dark bars represent requests to be kept in
the queue, light gray bars represent requests to be dropped, and blank bars represent requests yet to be
considered by the policy. Figure 4.14(a) shows one possibility that the policy stops dropping any job when

four jobs have been dropped from the queue and the current queue length reaches Q. Figure 4.14(b) shows
another possibility that the policy scans the entire waiting queue and only three jobs are estimated long
ones and dropped.

then we interpret this value as a 40% probability that the job in position 1 is similar to

the last completed job, i.e., it is a long job. We therefore cast a random number in [0, 1]

and if the result is less than or equal to 0.40, then the job in position 1 is dropped from

the queue. A similar approach can be used to estimate the job service requirement for

the j-th job in queue using the Pj autocorrelation coefficient, see light gray and dark bars

in Figure 4.14 for an example of possible outcome of the forecasting. The policy has two

stopping conditions: a first case is when enough estimated-long jobs have been dropped

from the queue, and the current queue length has been reduced to the threshold value Q,

see Figure 4.14(a). Alternatively, the policy may exhaust the waiting queue predicting

that only estimated-short jobs wait in the queue with the current queue length still ex-

ceeding Q, see Figure 4.14(b). At the end of one round, the first job waiting in the current

queue is admitted for service. ALoC is not triggered again before completion of another

97

long job.

Figure 4.15 gives the pseudo-code for ALoe, which assumes a priori knowledge of the

autocorrelation coefficients Pj, for 1 :::; j < N, of the service process, and the queue length

threshold Q. In order to specify a fully autonomic load control policy, the controller must

be able to estimate these values online. We introduce in Section 4.3.3, D_ALoe, the

dynamic version of ALoe, which is able to do online estimation of all parameters.

1. initialize variables

a. initialize the index of the ACF queue: i <-- I

b. initialize the ACF values of the service stream at queue i: P1 for all 1 ::; j ::; N

c. initialize the threshold Q <-- R · N, for a given 0 < R::; 1

2.for every job completion at queue i do

a. check if service time of current request is long and the current queue length exceeds Q

b.if yes, start dropping

I. initialize the index of jobs: j <-- 1

II. for job j, generate a random number s E [0, 1]

if s < pj then assume the job is long and drop it

else assume the job is short and keep it

Illif the current queue length reaches Q then go to step 2

else j <-- j + 1 and go to step 2-b-11

c. else, go to step 2

Figure 4.15: Description of ALoC. All input parameters are determined off-line.

98

Performance of ALoC

We use simulation to evaluate the performance of ALoC in a system described by two

first-come-first-served (FCFS) queues QexP and QACF with mean service rates A and J..L,

respectively. This simple abstraction can be used to model a simple consumer electronic

system, e.g., a personal video recorder, a game console, or a MP3 player. The observations

given here readily apply to systems with several queues. In all simulations, we use a 10

million sample space and the reported results are within 98% confidence intervals.

QAcF is the device with an autocorrelated service process, which is drawn from a

MMPP(2) with mean rate J..L = 1 and squared coefficient of variation CV2 = 20. Qexp is

evaluated in two configurations:

• Experiment 1: QexP is one order of magnitude faster than QAcF;

• Experiment 2: QexP is two orders of magnitude faster than QACF·

That is, the service times of Q EX p are exponentially distributed with mean rates A = 10

and A= 100 in Experiment 1 and Experiment 2, respectively. We remark that experiments

with varying relative speed up to three and four orders of magnitude of the two devices

yield qualitatively similar results. Differences of orders of magnitude in the service of this

entity are often encountered when the modeled resources are CPU and disks. Furthermore,

in order to qualitatively analyze the effect of autocorrelation on policy performance, we

also conduct experiments with the same three MMPPs as shown in Section 4.2.4, having

different autocorrelation profiles (i.e., ACF1, ACF2, and ACF3) at QAcF for both Exper

iment 1 and Experiment 2, but always such that they have the same mean, CV2 , and

higher moments of the job sizes.

99

Comparison with Random Dropping

To evaluate the effectiveness of ALoC, we compare it with a policy where request drop is

done randomly. The random policy continuously drops from the head of the waiting queue

with probability set as same as the overall dropping ratio of ALoC. For ALoC, we set

N = 500 and Q = 490, i.e., 98% of N. Figure 4.16 presents the average response times for

Experiment 1 and Experiment 2. The relative improvement in round trip times is marked

above each bar in the figure. Round trip times when all jobs are admitted without load

control are plotted as a baseline comparison (NoDrop bars).

Experiment 1 Experiment 2

600 ,----,-----,-------,-----, 60o,-----,-----,-------,-----,

500

·~ 400
0.

·s 300
"0
0:

2 200

100

(a) 0 ACF1

18% 15%

ACF2 ACF3

500

·~ 400
0.

·s 300
-g
2 200

100

(b) 0

NoDrop - Random c:::=:J

13% 13%

ACF1 ACF2 ACF3

ALoC c:::=:J

Figure 4.16: Average response times of ALoe for Experiment 1 and Experiment 2, with N = 500
and Q = 490 (98% of N). The drop ratios in the random and ALoe policies are 0.08, 0.10, and
0.13 for A CF1 , A CF2, and A CF3 , respectively. The numbers above bars indicate the relative
improvement over the NoDrop case.

In the two experiments, drop ratios of ALoC are equal to 0.08, 0.10, and 0.13 for

ACF1 , ACF2 , and ACF3 , respectively. Counter-intuitively, the drop ratio for strong au-

tocorrelated service process (e.g., ACFI) is lower than that for the weak one, e.g., ACF3 .

This is because with strong ACF, the prediction of long jobs becomes more accurate,

which increases the throughput of the autocorrelated queue and thus decreases the queue

length. As the result of this, the trigger condition, i.e., the queue length being beyond Q,

occurs less often. Consequently, the policy drops less jobs but improves the performance

100

more with stronger AeF.

Figure 4.16 shows that across all experiments, ALoe dramatically improves expected

response times compared to a random drop policy. Parsimonious selection of the request

to be denied service results in significant improvements when compared to the random

policy. In Experiment 1 with ACF1 , the random policy results in a response reduction

of about 35% from the baseline case. ALoe further reduces average response time by

84% relative to the baseline case. Performance trends persist for ACF2 and ACF3 , but

performance gains slightly reduce as the strength of AeF decreases. This can be explained

by the fact that forecasting becomes less effective when the autocorrelations are smaller,

and job size is thus harder to predict. Similar trends persist in Experiment 2 where ALoe

presents additional performance improvements as the speeds of the two devices differ now

by two orders of magnitude. The higher the difference in the devices speed, the better the

performance improvement of ALoe in comparison to dropping randomly.

Sensitivity to Queue Length Threshold Q

We quantify the performance effect of the pre-defined threshold Q used to trigger re

quest dropping at the Q ACF queue. We investigate the effectiveness of a choice of Q by

computing the related average drop ratio and the relative improvement of response time.

Reported statistics are only for those requests that complete work in both queues.

Figure 4.17 presents performance measures as a function of Q for Experiment 1 and

Experiment 2 by using ALoe. The population in the model is set to N = 500. Q ranges

from 100% of N, i.e., no drop since ALoe is never triggered, to 10% of N, i.e., we drop

requests when the queue length in Q ACF is equal to 50. From the figures we see that as

101

Q decreases, the drop ratio increases quickly (see Figure 4.17 (a) and (c)), but there is a

point beyond which the drop ratio stabilizes. This happens because the smaller the Q, the

larger the proportion of large jobs that are denied service at QACF· When Q gets smaller

than a certain value, the policy becomes very aggressive: most long jobs are dropped and

only few long jobs remain in the queue to be dropped. Therefore, the drop ratio stabilizes

because the queue is almost empty of long jobs. Across both experiments, the position of

the knee of the drop ratio curve depends on the strength of the autocorrelation function.

The stronger the autocorrelation, the lower the value of Q for which the knee appears.

Experiment 1
~100r-.-.-.--.--..---.~-,-. 0. 3 ,-,-,-,-,----,--,-----,------,--,

0.25

.s 0.2
1;1
~0 15
0

.a 0.1 ;

0.05

ACFJ
ACF2
ACF3 · ·

o~L_L_~~~~~_L~

500450400350300250200150100 50
(a) QT

<!)

fj 80
0.

E 6o
"0

§
8 40

"0

~ 20
8

ACFJ
ACF2 ··
ACF3 · ·

0.

§
OL-L-L_~~~_L~~~

(b)
500 450 400 350 300 250 200 !50 I 00 50

QT

Experi):J:Jent 2
~ 100 ,-;;::==========] 0.3 ,-,-.-,-,---,--,--,------,--,

0.25

.s 0.2
1;1
~ 015
8

"0 0.1 '

0.05

ACFJ
ACF2
ACF3 ·

o~L_L_~~~~~_L~

500450400350300250200150100 50
(c) QT

<!)

§ 80
0.

E 60
"0

§
8 40

"0
~ 20
0 ...

ACFJ
ACF2
ACF3 ·

0. OL-L_~~~_L~~~~

.§ 500 450 400 350 300 250 200 150 100 50
(d) QT

Figure 4.17: Average drop ratio and average response time reduction achieved by ALoC as a
function of Q for Experiment 1 and Experiment 2 with three MMPP(2) processes (i.e., ACF1 ,

ACF2, and ACF3) at QACF· N = 500.

The performance effect as a function of Q values is illustrated in Figure 4.17(b) and

Figure 4.17(d). The plots show that excellent performance improvements can be achieved

by triggering ALoC infrequently with large Q values, which also results in desirable

102

smaller drop ratios. In Figure 4.17(b) and Figure 4.17(d), a large Q equal to 490 results in

dramatic performance improvements while containing the drop ratio at a minimum across

all experiments.

For completeness, we have also conducted sensitivity analysis under different job pop-

ulations, e.g., N = 100 and N = 300. Our results can be summarized as follows. Drop

ratios and relative performance gains with different populations are qualitatively the same

as those for N = 500. Drop ratios are lower in less populated models while relative gains

in response times remain high.

Round Trip Time Distribution

We analyze the tail performance and plot in Figure 4.18 the complementary cumulative

distribution function (CCDF) of round trip times and of response times at Q EX p and

QAcF for Experiment 1 with ACF2 . Results for ACF1 and ACF3 are remarkably similar

to those reported in this figure. The figure shows that ALoC significantly improves the

tail of the response times at Q ACF and consequently the response times. The tails of

response times at Q EX p of all three policies are almost identical.

Round Trip Time Response Time at Q EXP Response Time at QAcF
100 100 100

NoDrop ~ NoDrop-
10 Random 10 10 Random

~
ALoC ·

~ ~ 1
ALoC-

"--' "--' NoDrop-
~ ~ '5
8 0.1

-o
0 I Random 8 0.1 ~

ALoC-
0.01 0 01 0 01

0 DOl
I 000 2000 3000 4000 5000 6000 0 10 20 30 40 50 60 I DOD 2000 3000 4000 5000 6000

(a) time (b) time (c) time

Figure 4.18: CCDFs of response times for Experiment 1 for the random and ALoC policies.
Service times of QAcF have ACF2, N = 500 and Q = 490. The drop ratio of both Random and
ALoC is equal to 0.10.

Figure 4.19 also depicts the ACFs in the departure process of Q ACF (i.e., arrivals to

103

Q EX p). The random policy achieves a small reduction in the autocorrelation function

compared to the original one (labeled as "NoDrop" in the figure). ALoC's ability to

selectively deny service of jobs in the queue that cause autocorrelation is shown in the

figure: the departure process curve that corresponds to this policy shows autocorrelation

that is significantly reduced.

Departure Process from QACF
0.5 .---.------.---.--.-----.

0.45
0.4

0 35 °
0.3 : · .. u 0.25 '.

<(0.2
0.15

0.1
0.05

0

NoDrop

Random
ALoC ------

-0.05 '-------'------'----'---'------'
I 100 200 300 400 500

Jag(k)

Figure 4.19: ACF of the departure process of QAcF for Experiment 1. N = 500, the autocor
relation of the service process is ACF2 , and Q = 490. The drop ratio of random and ALoC is
0.10.

4.3.3 D_ALoC: Dynamic Version

This version of the policy does not require any a priori knowledge of either autocorrelation

coefficients or queue length threshold Q. D _ALoC computes the autocorrelation coeffi-

dents online, allowing for changes in the workload characteristics over time and self-adjusts

Q such that target performance parameters are met.

For each server, D_ALoC evaluates its mean service time, its coefficient of variation,

and the autocorrelation coefficients of the service process when a job is completed at

that particular server, using a modified version of Welford's one-pass algorithm [96]. The

definition of ACF at lag j given in Eq.(2.1) can be rewritten as follows:

(4.3)

104

where f-1-l and CJ 2 are respectively mean and variance of the sequence and

E[Xt-lXt+j-l]

XtXt+j - E[Xt-lXt+j-d
+ t

E[Xt-l + Xt+j-J]

Xt + Xt+j - E[Xt-l + Xt+j-d
+ t .

If the autocorrelation coefficients in a specific server are positive, then D_ALoC deter-

mines that this server is the source of autocorrelation in the traffic flows of the entire

system. Consequently, the load reduction is triggered at that server.

1. initialize threshold Q <-- N

2. initialize the maximum allowable drop ratio D

3. for every C requests do

a. upon each job completion at queue i,

I. calculate the ACFs using Eq. (4.3): Pj for all 1 S j S N- 1

II. if the service process at queue i is autocorrelated

then drop using the same scheme of ALoC

b.at the end of an updating window of C requests

I. calculate current drop ratio d and compare with D

II. adjust Q using Eq. (4.4)

Figure 4.20: Description of D_ALoC. All policy parameters are computed on-line.

To dynamically adjust Q, we use an updating window of C requests that have been

served. In the experiments presented here C is set to 3000. The value of Q is initialized

to N. For every batch of C requests, D_ALoC compares the current request drop ratio

105

Experiment I
ACFI ACF2 ACF3

600 600 600
ALoC- ALoC- ALoC-

500 D_ALoC c:::::::J 500 D_ALoC c:::::::J 500 D_ALoC c:::::::J
·~ 400 ·~ 400 ~ 400
"- "- "-
5 300 5 300 5 300 ., -g .,
c c

2 zoo e zoo e zoo
100 100 100

0 0
00 0.06 0.08 010 0.13 0.0 0.06 0.08 0.10 0.13 00 0 06 0.08 0.10 013

(a) drop ratio (b) drop ratio (c) drop ratio

Experiment 2
ACFI ACF2 ACF3

600 600 600
ALoC- ALoC- ALoC-

500 D_ALoC c::=J 500
D_ALoC c:::::J 500 D_ALoC c:::::J

~ 400 ~ 400 ~ 400
"- "- "-
5 300 5 300 5 300

53% ., ., -g c c 58%
ezoo e zoo e zoo

100 100 100
97'Yo 97%

0
0.0 0.06 0.08 0.10 0.13 0.0 0.06 0.08 0.10 013 00 0.06 0.08 0.10 0.13

(d) drop ratio (e) drop ratio (f) drop ratio

Figure 4.21: Average response times under drop ratios of 0.0, 0.06, 0.08, 0.10, and 0.13, for
Experiment 1 and Experiment 2. Service times of QAcF are drawn from three different MMPP(2)s
(i.e., ACF1 , ACF2 , and ACF3). N = 500. The number above bar are the relative improvements
over the NoDrop case.

d with the maximum allowable drop ratio D. If the current drop ratio exceeds D, then Q

is increased to reduce the frequency of dropping requests. If the drop ratio dis below D,

then Q is reduced to drop requests more aggressively. The following equation illustrates

how Q changes by a value that is proportional to the difference between the drop ratio d

and the allowable drop ratio D:

{
Q + (N- Q) . 1do_!JD

Q= Q-(Q-o)·f-a~
if d > D

if d:;, D
(4.4)

Upon updating Q, the new threshold for the next C requests in the autocorrelated server.

Figure 4.20 gives the pseudo-code for D_ALoC.

0.1
0

(a)

~10

~
'-
'0
u
u

I

Drop Ratio~ 0.06

1000

NoDrop

ALoe
D_ALoe ·

2000 3000 4000

round trip time

Drop Ratio~ 0.10

NoDrop-

ALoe
D_ALoe ·

0.1
0

(b)

100

~10

~
'-
'0
u
u

1

Drop Ratio~ 0.08

1000

NoDrop

ALoe
D_ALoe --

2000 3000 4000

round trip time

Drop Ratio~ 0.13

NoDrop-

ALoe
D_ALoe ·

0. 1 L____;___L__.:o,.~--'-~--'~__::..___j 0.1 l_--'--'__L~~-'--~--'~__::..___j
0 1000 2000 3000 4000 0 1000 2000 3000 4000

(c) round trip time (d) round trip time

106

Figure 4.22: CCDFs of response times under drop ratios of 0.0 (i.e., no drop), 0.06, 0.08, 0.10,
and 0.13, for Experiment 1, where the service times of QAcF are drawn from ACF2. N = 500.

Performance of D _ALoC

Now, we evaluate the effectiveness of D_ALoe. The simulation environment is the same

as in Section 4.3.2. For all experiments presented here, we set the maximum allowable

drop ratio equal to 0.06, 0.08, 0.10, or 0.13. Figure 4.21 presents the average response

times as a function of drop ratio in Experiment 1 and Experiment 2 under both D_ALoe

and ALoe policies. Round trip times when all jobs are admitted are also plotted as a

baseline comparison, i.e., drop ratio is equal to 0. Here, ALoe is parameterized such

that the ideal Q is selected to achieve the pre-defined drop ratio while achieving best

performance. At the beginning of the simulation, D_ALoe initializes Q = 500 (i.e., no

drop), but it gradually changes this value such that the average drop ratios are maintained

below the corresponding pre-defined allowable drop ratio.

107

The experiments depicted in Figure 4.21 indicate that D_ALoe's performance is very

close to ALoe's. This means that D_ALoe is truly effective, especially because for each

ALoe bar in Figure 4.21, the value of Q is selected by exhaustive searching so that ALoe

achieves the best response values.

Figure 4.22 illustrates the eeDF of response times under drop ratios of 0.0 (i.e., no

drop), 0.06, 0.08, 0.10, and 0.13 for Experiment 1 with ACF2 in the service stream at

QACF· The figure clearly shows that both ALoe and D_ALoe significantly improve the

tail of response times. The tail of D_ALoe is close to that of ALoe, and the gap between

these two tails diminishes as the drop ratio increases. In summary, Figures 4.21 and 4.22

argue for D_ALoe's effectiveness and robustness with respect to different autocorrelation

strengths in the service process of QAcF, different target drop ratios, and relative speeds

of Qexp and QACF·

4.3.4 Trace Driven Evaluation

The majority of Internet-based media streaming systems can be modeled as a closed

queueing system. In such a model, the first queue represents the device which receives the

streaming media, e.g., a personal computer and other consumer electronic devices and the

second queue represents the server that has stored the media content, e.g., movies, songs

and games.

Here, we use actual traces measured at the disk level of a streaming system to evaluate

how ALoe and D_ALoe perform in a practical setting. The traces record, in high

resolution, both arrival and departure times of each request. Further details on these

traces and their representativeness can be found in [78].

108

The mean service time recorded in the trace is 1.09 ms and CV is equal to 2.47.

Figure 4.23 presents the autocorrelation function for the disk service process in this trace.

At the first queue in our model, service times are drawn from an exponential distribution

with mean service time equal to 0.01 ms, i.e., the first server is two orders of magnitude

faster to view the content than the server that reads the content from the disk. The

population N in the system is set to 200 and the sample space is equal to 1,043,259

requests. We remark that, for increased values of the population N, the autocorrelation

of disk request sizes would be the same since in queueing models the service process is

commonly assumed to be independent of N.

I SO I 00 ISO 200 2SO 300 3SO 400 4SO SOO

lag(k)

Figure 4.23: The ACF of the service times at a streaming device.

To investigate policy robustness, we add an additional restriction by marking some

requests as "undroppable". In particular, we focus on trace data where the transmitted

files are MPEG video streams. MPEG video streams compress raw frames specifically

into three kinds of pictures: (1) I(ntra-coded)-pictures, which are independent of others,

(2) P(redictive-coded)-pictures, which depend on the previous I- or P- pictures for being

displayed correctly, and (3) B(idirectionally predictive-coded)-pictures, which need the

information from the previous and the following I- or P- pictures for motion compensa-

tion [1]. !-pictures are the most important pictures and thus cannot be dropped, while a

109

limited drop of a P- or B- pictures is acceptable. We therefore investigate the effectiveness

of D_ALoe under the restriction that some requests are undroppable (i.e., !-pictures).

This variation of D_ALoe is called "Dyn-Mark".

We show response times using the actual traces as a service process of the streaming

server for random, ALoe, D_ALoe, and "Dyn-Mark" policies. Figure 4.24 plots the

average response time for the various policies when 7%, 12%, and 16% of the total requests

are dropped. Additionally, ALoe is tuned such that it achieves its best performance

for the target drop ratio. The relative performance improvement of the various policies

compared to a no drop policy is consistent with the previous results: as the drop ratio

increases, the response times significantly decrease. D_ALoe self-adjusts its configuration

parameters and achieves closely as good response times as the carefully tuned ALoe.

The restriction of dropping certain requests in Dyn-Mark results in a slight degradation in

performance improvements, but nevertheless significant gains in comparison to no drop.

NoDrop I2ZZZl Random -
ALoC c:::::::::J D_ALoC- Dyn-Mark c:::::::::J
220~~--,-------~----~--,

210
I 2oo

0 190 ;:!?. ~ ~
·B 180 ~N- ~N· ~ ~ ~..;.
p., 170 • r-"'

i m - ~:
130 111-120 LLL"---'----'---L___.."----__ --'---___ _._.LJ

0 00 007 0.12
drop ratio

0.16

Figure 4.24: Average performance response times when 0% (no dropping), 7%, 12%, and 16% of
the work in the second server (disk) is dropped. N = 200. The numbers above bars indicate the
relative improvement over the NoDrop case.

Figure 4.25 plots the tails of the response time distribution for all policies. Results are

co_nsistent with those reported in the synthetic trace, further arguing for the robustness

of D_ALoe even with drop restrictions.

(a)

Drop Ratio = 0 07

NoDrop

Random

ALoe

D_ALoe

IL_~ __ J_ __ ~_L~~~

0 200 400 600 800 I 000 1200

round tnp time (ms) (b)

Drop Ratio~ 0.12

NoDrop-

Random

ALoe

D_ALoe

Dyn-Mark - - -

\\
IL--L--~~---L~~~

0 200 400 600 800 I 000 1200

round trip time (ms) (c)

\
\.

\.
\·.

\
\
\

\

Drop Ratio ~ 0.16

NoDrop-

Random

ALoe

D_ALoe

Dyn-Mark

~\ ·,.,
·~ \ .. ,

llO

IL--L--~~---L~~~

0 200 400 600 800 I 000 1200

round tnp t1me (ms)

Figure 4.25: CCDFs of response times using the real traces. N = 200.

4.4 Chapter Summary

In this chapter, we proposed SWAP, a no-knowledge scheduling technique for increasing

the performance of systems processing temporal dependent workloads. Temporal locality

has been observed in several practical settings [78, 51, 64, 83], arguing for significant

applicability of SWAP in real systems. Using simulation, we have shown that SWAP

consistently improves performance, as quantified by the system mean throughput and by

the distribution of round-trip times experienced by requests under temporal dependent

conditions. We have shown that SWAP is able to effectively approximate SJF but without

requiring additional knowledge on job service times.

We also proposed ALoe and D _ALoe, two autonomic load control policies that

extend SWAP by selectively infinitely delaying or dropping queued requests and control

load. Using temporal dependence, both policies are able to effectively guess the future

service requirements of incoming jobs at a server and drop the load according to this

forecasting information. Using extensive simulations, we have shown that ALoe and

D_ALoe are able to reduce system response times for different workload intensities, levels

of dependence, and target drop ratios. Experiments on synthetic traces show that the

response time improvement of ALoe and D_ALoe typically varies between 50% and

111

80%. On a real trace where some requests are marked as "undroppable", both policies

are still very effective, with a response time improvement between 15% and 30%. These

results promote ALoC and D_ALoC as simple-to-implement policies for load control in

autonomic systems.

Chapter 5

Performability of Systems with

Background Jobs

Nowadays, computer systems are rarely taken off-line for maintenance. Even simple work

stations are in operation 24 hours a day, 7 days a week. Consequently, most systems

schedule necessary maintenance that intends to address system reliability and availabil

ity, as background tasks [2, 7, 62, 84] and serve them during idle times. Very often,

background activity is also associated with approaches that aim at enhancing system

performance [33, 90, 26].

Although background activity is critical to system operation, it often has lower pri

ority than foreground work, i.e., the work requested by the system users. Therefore, it

is of paramount importance for system designers to better understand the trade-offs be

tween minimizing the foreground performance degradation and maximizing completion of

background tasks so that system reliability, availability, and performance are improved in

the long-run but without compromising the short-term performance of foreground work.

112

113

While facilitating and supporting background activity in a system is a general concept [88],

its applicability differs among systems, i.e., distributed and clustered systems, storage sys

tems, and communication systems. Consequently, efforts for utilizing idle time to improve

reliability or performance are often system specific and are either based on prototyping

and measurements [26, 2, 33, 90] or analytic models [7, 62, 66, 70].

In this chapter, we propose an analytic model that addresses performance trade-offs

between foreground and background work at the disk drive level of a storage system. The

analytic model consists of an infinite Markov chain with repetitive structure. This model

captures the disk or storage system behavior under the background activity whose service

demands are similar to the foreground activity. It differs from similar models proposed

for storage systems [7] because it allows for modeling the effect of bursty arrivals, which

are the case in storage systems [76]. The solution of the proposed model is tractable and

can be solved using the well-known matrix-geometric method [49]. The model establishes

that the relative performance of foreground and background jobs is similar for either

independent or bursty arrivals. However, the saturation under bursty arrivals is very fast

(for small changes in foreground workload), which actually effects more the completion

rate of background jobs rather than the latency of the foreground ones.

5.1 Related Work

Multiple sources [33, 26, 76] indicate that computer system resources operate under bursty

arrivals and while they have periods of high utilization, they may also have long stretches

of idleness. For example, in average disk drives are only 20% utilized [76]. Given that a

system operates in low utilization, a myriad of approaches have been proposed aiming at

114

utilizing idle times to improve performance [33, 26], fault tolerance [2], and reliability [84].

The goal is to schedule performance/availability enhancing activities as low priority and

minimize their impact on user performance [26].

The motivation here stems from storage systems, where traditionally a variety of tasks,

mostly aiming at enhancing data reliability, are treated as a background activity [7]. In a

storage system, background functions that address reliability, availability, and consistency

typically include data reconstruction [62], data replication [66], disk scrubbing [84], and

WRITE verification [7]. Background jobs may also address storage performance issues

including data replication in a cluster to improve throughput or data reorganization to

minimize disk arm movement [33, 90].

Because background activity has often low priority, its service is completed only when

there is no foreground activity in the system, i.e., at the end of a busy period. Vaca

tion models have been proposed for the general performance analysis of systems where

foreground/background jobs coexist [88, 70, 70, 91, 99]. To the best of our knowledge,

vacation models that are applied in storage systems or disk drives have been considered

only in [7]. The models in [7] attempt to model a system whose arrival process is strictly

exponential and the background task results from sequential scanning of the data on a disk

or part of it. In this chapter, we explicitly model the performance effects of dependence in

the arrival process of background/foreground jobs on the disk, which has been detected in

[36, 76, 34]. We examine the effects of both variability and dependence in the arrivals. We

further assume that background and foreground jobs are drawn from the same distribution

because we are interested in the set of background activities such as WRITE verification

that have the same service demands as the user requests.

115

5.2 Storage System

In this section, we first identify the salient characteristics of IO workloads and we give an

overview of the operation of the system with foreground and background tasks.

5.2.1 Workload Parameterization

In storage systems and disk drives, the arrival process is bursty [36, 76]. Here, we look at

traces measured in different storage systems [76] that show high burstiness in the arrival

streams of requests.

Figure 5.1 presents the autocorrelation function (ACF) of the inter-arrival times of

three traces that have been collected in three different systems, each supporting an e-mail

server, a software development server, and user accounts server, respectively. These traces

consist of a few hundred thousands entries each and are measured over a period of 12 to

24 hours. As expected, for different applications the dependence structure of the arrivals

is different and it is a result of multiple factors including the architecture of the storage

system, the file system running on top of the storage system, and the I/0 path hierarchy

together with the resource managing policies at all levels of the I/0 path. Nonetheless,

independently of all these factors, all measurements show that arrivals at the storage

system exhibit some amount of autocorrelation.

The table in Figure 5.1 shows the mean and coefficient of variation (CV) for the inter

arrival times and the service times of all requests in the trace. The three traces represent

systems under different loads. Specifically, the "User Accounts" trace comes from a lightly

loaded system (only 2% utilized), while the "E-mail" and "Software Development" traces

come from systems with modest utilizations also ("E-mail' is 8% utilized and "Software

116

Development" 6% utilized). These cases of underutilized systems naturally indicate that

an opportunity exists for scheduling low priority jobs in the system and treating them

as background work. Additionally, the low utilization levels in the above measurement

traces allow to assume that the measured job response times are a close approximation

of the workload service times. Because all storage systems in Figure 5.1 consist of similar

hardware, the service process is similar across all traces and it actually has low variability,

i.e., CV values are less than 1.

E-mail

Soft. Dev.

0. 3 ,--,--,----,-----,---,-.,--,----,-----,---,
E-mail

0.25 User Accounts -
S,d\w:lt\: lkv.

:... 0.2

~0.15

00.1 c~:,·,,.,= ~~~ ~~=· ~·-~·~~ 0. 5
0

0 200 400 600 800 I 000
Lag (k)

Inter arrival times Service times

mean cv mean cv

56.93 9.01 5.59 0.75

88.06 12.38 6.34 0.84

User Aces, 246.65 3.85 6.1 0.74

Utili-

zation

8%

6%

2%

Figure 5.1: ACF of inter-arrival times of three traces, the respective mean (in ms) and CV of the
inter-arrival and service times.

We propose models of the arrival and service processes in a storage system that reflect

the characteristics of the various traces illustrated in Figure 5.1. We model the service

process via an exponential distribution with mean service time of 6 ms. For the arrival

process, we use a two-state Markovian Modulated Poisson Process (MMPP) [42, 57], see

117

Chapter 2. We parameterize three different MMPPs to model separately the three different

arrival processes of our traces. The MMPPs are labeled as "E-mail", "User Accounts",

and "Software Development" and are used as input to the analytic model that we develop

here. We stress that the MMPP models used here do not represent an exact fitting of

the traces in Figure 5.1, they only match the first two moments of the trace and provide

a range of different autocorrelation functions. Workload fitting such that the ACF is

matched exactly, is outside the scope of this dissertation. In Figure 5.2, we show the ACF

of the three MMPPs used here and their full parameterization.

0. 5 .----.---.---,-----.---,

0.4

0 o.3

~ 0.2

0.1

200 400 600 800 I 000
Lag (k)

E-mail 0.31e-5 0.69e-6 0.09 0.35e-3

Soft. Dev. 0.90e-6 0.19e-5 O.lOe-3 0.35e-1

User Aces, 0.36e-4 0.13e-5 O.lOe-1 0.49e-3

Figure 5.2: ACF of our 2-state MMPP models for the interarrival times of the three traces and
their parameterization.

5.2.2 Background Tasks in Storage Systems

There are numerous cases where storage systems and disk drives deal with background

jobs1 . One widely accepted background task is data integrity check or media scrubbing in

1 The terms "task" and "job" are used interchangeably.

118

disk drives [84]. Disk scrubbing is a periodic checking of disk media to detect unaccessible

sectors. If a sector is not accessible then it is reported up to the file system for data

recovery and it is remapped elsewhere on the disk. Another background activity in disk

drives is the RAID rebuild process [87, 62], which happens when one disk in a RAID array

fails and its data is reconstructed in a spare disk using the data in the remaining disks of

the array. Other examples of background activities include flushing of write-back caches,

prefetching, and replication [87].

Background tasks in a storage system may be periodic such as disk scrubbing, or may

span over a long period of time, such as the RAID rebuild. Yet, there are background tasks

which have the same service demands as the foreground ones. For example, disk WRITE

verification incurs one extra READ to detect any disk WRITE error. This process, known

as READ-after-WRITE, degrades disk performance substantially and is not feasible if

running in foreground, but is attractive as a low priority background activity. Nevertheless,

its successful completion is tightly related to the reliability and consistency of the data.

We model a simple storage system with one service center, where foreground jobs are

served in a first-come first-serve (FCFS) fashion. We assume that the amount of available

buffer space is always large enough to store all data associated with waiting foreground

tasks in the queue. Therefore, the above system is approximated by an infinite-buffer

queue.

Foreground jobs consist of user arrivals only. Upon completion, a foreground job may

either leave the system with probability (1 - p), or generate a new background job with

probability p, i.e., background tasks are only a portion of foreground tasks and have

service demands with the same stochastic characteristics as the foreground jobs. Think of

119

WRITE verification; only a portion of all user requests are WRITEs and they need to be

verified once they are serviced by the disk. Background tasks are served in a "best-effort"

manner: a background job will get served only if there is no foreground job waiting in

the queue, i.e., during idle periods. Consequently, background tasks will ordinarily have

longer waiting times than foreground tasks.

Neither foreground nor background tasks are preemptive, which is consistent with the

nature of work in disk drives, where the service process consist of three distinct operations,

i.e., seek to the correct disk track, position to the correct sector, and transfer data. The

"seek" portion accounts in average for 50% of the service time and is a non-preemptive

operation [46, 85]. Because of the non-preemptive nature of seeks, background activity

inevitably impacts foreground work performance: if a background task starts service, then

this precludes the existence of any foreground task in the system, but if a foreground job

arrives during the service of a background job, it will have to wait in the queue and on the

average experience longer delay than the delay it would have experienced if the system

was not serving background tasks. To minimize this effect, background tasks do not start

service immediately after the end of a foreground busy period, but after the system has

been idle for some pre-specified period of time, which we refer to as "idle wait".

Background jobs, similarly to the foreground ones, require buffer space. Because the

buffer is reserved for foreground jobs, background buffer is limited. As a result, some

of background tasks will be dropped because the buffer is full. A practical setting in

a disk drive would be to allocate 0.5-lMB of buffer space for background activity, which

corresponds to approximately 50 background jobs of average size. Throughout the chapter,

we assume a buffer that stores a maximum of 50 background jobs. We also examined buffer

120

sizes for up to 250 background jobs and the results are qualitatively same as those with

buffer size 50.

5.3 The Markov Chain

In this section, we describe a Markov chain that models the queueing system with fore

ground/background activity as described in the previous section. To simplify the definition

of the state space as well as transitions among states, we first assume exponential inter

arrival and service times with mean rates A and p,, respectively. Later, we show how the

exponential inter-arrival process is replaced by the 2-stage MMPP process. The Markov

chain of the foreground/background activity is depicted in Figure 5.3. Because foreground

jobs use an infinite buffer and the background jobs use only a finite one, the Markov chain

is infinite in one dimension only. For presentation simplicity, Figure 5.3 shows the instance

where the background buffer can store up to 2 background jobs only.

The state space is defined by a 2-tuple (x,y), where x indicates the number of back

ground tasks in the system (waiting or in service) andy indicates the number of foreground

tasks in the system (waiting or in service). There are two sets of 2-tuples in Figure 5.3:

(x, y) and (x', y). States (x, y) indicate that a foreground job is being served. States

(x', y) show that a background job is being served. The "idle wait" is represented by

states (x, 0), where x > 0 means that the background jobs wait for a time period, which

is exponentially distributed with mean 1/a, before starting.

We define levels in this Markov chain such that level j consists of the set of states S(j)

8
background job
is in service
x': #background jobs
y: # foreground jobs

8
idle waiting state
x: # background jobs

121

Figure 5.3: The Markov chain of the queueing system with infinite buffer size for foreground
tasks and a buffer size of 2 for background tasks.

defined as

sUl {(x, y) and (x', y) I

0 ::::; x ::::; j, 0 ::::; y ::::; j, x + y = j and

0::::; x' ::::; j, 0::::; y ::::; j, x' + y = j}. (5.1)

Let the maximum buffer size of the background jobs be X. Until there are X tasks in the

system, the Markov chain has a tree-like structure. Beyond that point, the background

buffer could be full and the levels of the Markov chain form a repetitive pattern. The

form of the chain is that of a Quasi-Birth-Death process (QBD) which can be solved using

matrix-analytic methods [49].

122

5.3.1 Modeling Dependence in the Arrival Process

Here, we enhance the simple Markov chain model to capture arrival streams with high

variability and various degrees of dependence in their inter-arrival structure using a 2-state

Markov Modulated Poisson Process (MMPP). Each state in the Markov chain of Figure 5.3

is now replaced by a set of sub-states, and scalars A, 11 and a are replaced by matrices F,

B, and W, respectively. An additional matrix L 0 is used to describe transitions within a

set of sub-states. Assume that D6A) and DiA) describe an A-state MMPP. Then Lo, F,

B, and W are Ax A matrices computed by the following equations.

(5.2)

where lA is an Ax A unit matrix and (D6A))(•) is equal to D6A) except that diagonal

elements are all 0. Note that the service time and the idle waiting time are exponentially

distributed in our model. However, a similar method and Kronecker products can be used

to generate the auxiliary matrices F, B, W, and L 0 when use a MMPP (or MAP) for the

service and idle waiting processes. Therefore, we construct a new Markov chain and its

corresponding infinitesimal generator Q by replacing each state in Figure 5.3 with a set

of A sub-states and use F, B, W, and Lo to describe its state transitions. The resulting

Markov chain is also a QBD process.

Figure 5.4(A) illustrates the transitions between the sub-states corresponding to states

(x, y), (x, y + 1) and (x + 11
, y) in Figure 5.3. If we do not draw the detailed state

transitions, but simply substitute A, 11 and a in Figure 5.3 with matrices F, B and W,

and add Lo to describe the local state transitions, we obtain the matrix-based transitions

in Figure 5.4(B). According to Eq.(5.2), F, B, W, and L 0 of a system with two-state

123

(x, y) (x, y+l)

(x+l',y)

0 :)Lo
0

(A) (B)

Figure 5.4: Changes in the Markov chain of Figure 5.3 when the arrival process is a 2-state
MMPP.

MMPP arrivals are computed as follows:

F=[h OJ
0 12 '

W=[a OJ
0 a '

B=[6 ~],
Lo = [! ~1

] , (5.3)

where v12, v21, lu, and l22 are the parameters of the 2-state MMPP model in Eq.(2.8). One

can easily show the equivalence of state transitions in Figure 5.4(A) and Figure 5.4(B).

The infinitesimal generator Q of this new Markov chain can be obtained from Fig-

ure 5.3. For each level i corresponding to the (i + l)th column in Figure 5.3, the stationary

124

state probabilities are given by the following vectors:

~(i) [(i) (i) ('i) (i) (i)
" 7r(O,i)' 7r(l',i-1)' 7r(l,i-1)' ... '7r(i',O)' 7r(i,O)],

for 0:::; i:::; X,

(i) (i) (i) (i) (i)
7r(i) [7r(O,i)' 7r(l',i-1)' 7r(l,i-1)' ... '1r(X',i-X)' 1r(X,i-X)]'

fori> X.

1r((i)) or 7r((il,) is a row vector of size A that corresponds to a set of sub-states under the
x,y x ,y

MMPP arrival process. Then, 1rQ = 0 and 1re = 1 where 1r = (1r(O), 1r(l), ... , 1r(X), 7r(X+l), ...).

We solve the QBD using the matrix geometric solution [49]. The state space is par-

titioned into boundary states and repetitive states. Boundary states in the QBD of Fig-

ure 5.3 are the union of all levels i for 0 :::; i :::; X. We use 1rl0l to denote the stationary

probability vector of these states, i.e., 1rl0l = (7r(0l,7r(ll, ... ,7r(Xl). Each level i fori> X

represents a repetitive set of states. Key to the matrix geometric solution is that a geo-

metric relation holds among the stationary probabilities of the repetitive states, i.e.,

(5.4)

Here the matrix R is a squared matrix of dimension equal to the cardinality of repetitive

levels, and can be computed using an iterative numerical algorithm [49]. By computing

1rl0l and 7r(X+l) as in [49] one can easily generate the entire infinite stationary probability

vector for the QBD. Thanks to the geometric relationship in Eq.(5.4), several metrics can

be computed in closed form formulas.

Let e(il be a column vector of O's with appropriate dimension except the (2i ·A+ 1)th

to the (2i · A+ A)th elements that are equal to 1, and let e(i') be another column vector

125

of O's except the ((2i- 1) ·A+ l)th to the ((2i- 1) ·A+ A)th elements that are equal to

1, for i ~ 0. Note that all the elements of e(O') are equal to 0. Both e(il and e(i') are of

size A, where A is the order of the arrival MMPP process. The average queue length of

the foreground jobs QLENFc, the completion rate (or admission rate) of the background

jobs Compsc, and the percentage of foreground jobs waiting behind background jobs

W aitPFc can be calculated as follows.

X i-1

"'"'((. ') ((i) (i))) ~ ~ ~- J * 7T'(j,i-j) + 7T'(j',i-j) e
i=l j=O

X

+ L(X + 1- i)7r(X+ll(I- R)- 2 (e(i) + eCi'l) ,

i=D

Compna
7T'(X+l)(J _ R)-1 8 (X)

1 - --x,.,-----------'---'---------

1- "'7T'(i). e -7T'(X+l)(I- R)-le(o)
~ (O,t)
i=O

WaitPpa
i=2 j=l i=l

X

1 - L(1r~;~o) + 1ri:~.o))e
i=O

5.4 Performance Evaluation Results

Here, we use the analytic model to analyze the performance of a storage system that

serves foreground and background jobs, as described in the previous section. The model

is parameterized using the E-mail and Software Development traces (see Figure 5.1). This

parameterization results in the MMPPs of Figure 5.2 which have different mean, CV, and

dependence structure, and we consider representative. The User Account trace performs

qualitatively the same as the E-mail trace because of its strong ACF structure.

126

We evaluate the general performance of the system as a function of system load. In

this section we use interchangeably the terms "load" and "utilization". Foreground load is

a function of the mean of the arrival process in the system (i.e., the mean of the MMPPs in

Figure 5.2) while background load is a function of p, i.e., the probability that a foreground

generates a background job upon its completion. We scale the mean of the two MMPPs

in Figure 5.2 to obtain different foreground utilizations. We also scale the value of p

between 0.1 and 0.9 to obtain different background loads. The mean "idle wait" time for

a background job before starting service during an idle period is equal to the mean service

time, unless otherwise stated. The background buffer size is 50.

5.4.1 Performance of Foreground Jobs

First, we report on the performance of foreground jobs. Figure 5.5 presents the average

queue length of foreground jobs, which sharply increases as a function of foreground load.

This increase is nearly insensitive to different p values, showing that foreground load

determines overall system performance. Note that for strong dependent arrivals ("E-mail"

MMPP) the saturation is reached much faster than for arrivals with weak dependence

structure ("Software Development" MMPP). We return to the question of how intensity

in the dependence structure of the arrival process affects system performance later in this

section.

Figure 5.6 shows the percentage of foreground jobs that are delayed because of back

ground jobs. As background load increases, the portion of foreground jobs that are delayed

increases, but as foreground load increases, the portion of foreground jobs that are de

layed decreases. In the worst case scenario that we present here, i.e., for p = 0.9, only

127

(a) E-mail- High ACF
1000

Gi 100 .----/l 10
0' 1

~ 0.1
0

·
01

4 6 8 10 12 14 16 18 20 °•01
0 5 10 15 20 25 30 35

Foreground utilization (%) Foreground utilization (%)

I p=O--+- p=O.l---*- p=0.3--- p=0.6-a- p=0.9---+--- I

Figure 5.5: Average queue length of foreground jobs for (a) the Email and (b) the Software Dev.
traces as a function of foreground load.

20% of foreground jobs are delayed, which shows that most foreground jobs maintain their

expected performance. The most interesting point in Figure 5.6 is that when the (total)

load increases beyond a certain point then the portion of foreground jobs that are affected

decreases dramatically, which is explained by background jobs performance in the next

subsection.

Figure 5.6: Portion of foreground jobs delayed by a background job for (a) the Email and (b)
the Software Dev. traces as a function of foreground load.

5.4.2 Performance of Background Jobs

We measure the performance of background jobs by the portion of background tasks that

complete. This metric is directly related to reliability (or long term performance benefits)

of background activity. Results are given in Figure 5. 7, which shows that as load increases,

the completion rate decreases to zero, independent of load or dependence structure. For

128

arrivals with a strong dependence structure, (i.e., of "E-mail"), this point comes sooner

than for arrivals with weak dependence structure, (i.e., the "Software Development"), see

the range of the x-axis in Figure 5. 7. Note that the completion rate of the background

activity relates to the probability of the background buffer being full, which supports the

observation that the strong dependence structure in arrivals increases the queue length of

background jobs, as illustrated in Figure 5.8.

~
~ 100

.:2 80
] 60

@" 40
8 20

~ (b) Software Dev.- Low ACF

~ 100
.:2 80
] 60
g 40

8 20

O 4 6 8 I 0 12 14 16 18 20 ~ O 0 5 I 0 15 20 25 30 35
Foreground utilization(%) Foreground utilization (%)

I p=O--+-- p=O.I-- p=0.3-- p=0.6-a- p=0.9-+--- I

Figure 5.7: Completion rate for background jobs for (a) the Email and (b) the Software Dev.
traces as a function of foreground load.

Figure 5.8 shows the average queue length of background jobs. Consistent with results

in Figure 5. 7, Figure 5.8 shows a similar qualitative behavior across the two workloads.

Quantitatively, the average queue length of the strong dependent workload is smaller than

that of the weak dependent workload because more background jobs are dropped.

(a) E-mail- High ACF

p = o.1 --+--- p = o.3 -- p = o.6 -- p = o.9 -a- 1

Figure 5.8: Average queue length of background jobs in the workloads (a) Email and (b) Software
Dev. as a function of foreground load.

129

5.4.3 Effect of "Idle Wait" Duration

An important design issue in a storage system that serves foreground and background jobs

is the length of the "idle wait" period, i.e., the time that the system operates in non-work-

conserving mode. The shorter the duration of "idle wait", the higher is the performance

degradation of foreground jobs.

In Figure 5.9, we show how the length of "idle wait" affects the average queue length

of foreground jobs under different background loads. These experiments are conducted

for the parameterization of the actual traces given in Figure 5.2. Increase in "idle wait"

does improve foreground performance, because it reduces the number of foreground jobs

delayed by serving background jobs.

~ mt=;;'' ACF J i :(J~nB?oaF
024

o5 1 1.5 2 2.5 3 °'08
o 510152025303540

Idle time intensity Idle time intensity

p = o.I --+-- p = o.3 -- p = o.6 ---- p- o.9 --s- 1

Figure 5.9: Foreground jobs average queue length for (a) the Email and (b) the Software Dev.
traces as a function of idle wait (in multiples of service time).

However, improvement of foreground performance does come due to a considerable

drop in background completion rate, as shown in Figure 5.10. For example, in the case of

"E-mail" parameterization under an "idle wait" of twice the service time and p = 0.6, the

completion rate of background jobs drops by 20% compared to the completion rate when

the idle wait is half of service time, but the foreground performance gains are as low as

6.5% (the average foreground queue lengths are 0.32 and 0.30 when idle wait is twice of

the service time and when idle wait is half of the service time, respectively). Given the

130

long-term benefits of background activity, maintaining a small "idle wait" period, close to

the average service time, is beneficial for sustaining foreground job performance and high

background completion rate.

~ (a) E-mail- High ACF ~ (b) Software Dev.- Low ACF

}l!~}l![:::=l
0 °o.5 I 1.5 2 2.5 3 0 O 0 5 10 15 20 25 30 35 40
co Idle time intensity co Idle time intensity

I p=O.l--+-- p=0.3-- p=0.6-- p=0.9 --e- I

Figure 5.10: Completion rate for background jobs in the workloads (a) Email and (b) Software
Dev. as a function of idle wait (in multiples of service time).

5.4.4 The Impact of Dependence in the Arrival Process

In this subsection, we analyze the effect that the arrival process has on a system with

background jobs. Using only the "E-mail" workload parameterization. We remark that

qualitatively similar results can be obtained using the other two workloads. we examine

the performance effects of Poisson arrivals, of an Interrupted Poisson Process (IPP) (a

process with high variability but no correlation [35]) and of two MMPP processes with

low and high dependence structure. All these processes have the same mean and CV as the

measured in the arrival process of "E-mail" trace, with the only exception of the Poisson

arrival process that maintains the same mean only. Results show that the dependence

structure of the arrival process determines the sensitivity of system performance toward

load changes, that is, the stronger the dependence structure, the higher the sensitivity

toward system load.

Figure 5.11 shows the average queue length for foreground jobs under two different

131

loads of background jobs, i.e., p equal to 0.3, and 0.9. There is a dramatic queue length

increase under autocorrelated arrivals, that is orders of magnitude higher than the queue

length increase with exponential inter-arrivals. Even at 19% foreground utilization under

the strong correlated arrivals the foreground queue length reaches 100. Such queue length

is reached only under 95% foreground utilization for the Poisson arrivals. For comparative

purposes, we plot the results using different scales on the x-axis, separated by a vertical

line. Consistent with the results in Figure 5.5, high foreground load rather than foreground

load determines overall foreground performance.

i::r A§1i:~r ~
0

·
01

0 5 10 15 20 40 60 80 100 °·01
0 5 10 15 20 40 60 80 100

Foreground utilization (%) Foreground utilization(%)

I High ACF -1-- Low ACF ~ liP -- Expo --<>-- I

Figure 5.11: Average queue length for foreground jobs for the "E-mail" workload as a function
of foreground load in the system.

In Figure 5.12, we show completion rates for background jobs as a function of fore-

ground load. There are cases when under high foreground load, there is nearly a 100%

difference in performance between exponential and correlated arrivals. The system sim-

ply saturates faster under correlated arrivals and does not have the capacity to serve

background tasks. Therefore, under correlated arrivals light background load should be

sustained to ensure acceptable background completion rates.

Finally, Figure 5.13 shows the percentage of foreground jobs delayed by background

jobs as a function of foreground load. Interestingly, the figure shows that the worst impact

on foreground jobs is contained within a limited range which is reached faster under highly

132

l~r · ~·;~1 in ~~
0 °o 5 10 15 20 40 60 801000 °o 5 10 15 20 40 60 80100
c:o Foreground utilization(%) c:o Foreground utilization(%)

I High ACF --+- Low ACF ---><-- IIP ___,._ Expo -a- I

Figure 5.12: Completion rate of background jobs for the "E-mail" workload as a function of
foreground load in the system.

correlated arrivals than independent arrivals. In a dynamically changing environment with

correlated arrivals, the system regulates itself faster to sustain foreground job performance

than under independent arrivals.

0 0
c:o (a) E-mail p = 0.3 c:o (b) E-mail p = 0.9

~lir ;;r;J ~~ir ~
~ 0

0 5 1 0 1 5 20 40 60 80 100 ~ 0
0 5 1 0 1 5 20 40 60 80 1 00

~ Foreground utilization(%) ~ Foreground utilization(%)

I High ACF --+- Low ACF -- liP ___,._ Expo -a- I

Figure 5.13: Portion of foreground jobs delayed by a background job for the "E-mail" workload
as a function of foreground load in the system.

5.5 Chapter Summary

In this chapter, we presented an analytic model for the evaluation of disk drives or storage

systems with background jobs. Because of the non-preemptive nature of work in disks (e.g.,

seeks), background work inevitably affects performance offoreground work. The proposed

model allows to evaluate the trade-offs between foreground and background activities. Our

model incorporates most important characteristics in storage systems workloads, including

burstiness and dependence in the arrival process. The model results in a Markov chain of

133

a QBD form that is solved using the matrix-geometric method.

Experiments show that, independent of workload characteristics, the non-preemptive

background jobs minimally impact performance of foreground jobs. However, sustained

foreground performance under worst case scenarios is a result of low background comple

tion rates, which suggests that background load must be kept modest to benefit system

reliability or performance in the long-term. Via sensitivity analysis of the "idle wait"

duration, we show that increasing the length of "idle wait" reduces the degradation on

foreground performance but also decreases the background completion rate. The results

suggest that it is critical to maintain a small or moderate "idle wait" period, e.g., close to

the average service time, for gaining sustained foreground job performance and high back

ground completion rate. We have also shown that under bursty arrivals, both foreground

and background performance strongly depends on system load. In particular, the back

ground completion rate becomes significantly sensitive to system load for autocorrelated

arrivals, which indicates that workload burstiness is an important factor to determine the

amount of background work in the system.

Chapter 6

Background Scheduling in Storage

Systems

In this chapter, we focus on how to utilize the idleness resource for serving background

jobs without degrading the foreground performance beyond the predefined target. Because

foreground tasks are of high priority, background tasks are served only when there are

no foreground jobs in the system, i.e., during system idle times. The non-preemptive

nature of background tasks coupled with the stochastic nature of the system makes serving

background tasks challenging if delays on foreground jobs are limited within predefined

targets. Therefore, serving background tasks must meet two conflicting goals:

1. foreground performance degradation should be contained within predefined targets;

2. background work should not be starved and its throughput should be maximized.

Efficient use of system idle times to serve background jobs is key to meet the above goals.

System specific efforts to use idle times for improving performance and availability in

the context of a specific system feature have been presented in the literature [2, 90, 41,

134

135

24, 7, 62, 70] and are usually evaluated based on prototyping, measurements, or analytic

models. Here, we define a general schedulability algorithm that determines when and for

how long the system can serve background jobs during idle times such that background

throughput is maximized and performance degradation of foreground jobs remains within

a pre-defined range. Here, we do not focus on the problem of background job scheduling.

The specific scheduling of background jobs, i.e., their service order, is outside the scope

of this work.

6.1 Related Work

Various studies have shown that in systems, periods of high utilization may be interleaved

with long stretches of idleness [53, 33, 26, 77]. A myriad of approaches have been pro

posed to best utilize idle times in order to enhance system performance, reliability, and

consistency. System idleness may be exploited locally (i.e., within the same system), or

remotely (i.e., busy systems may offload part of their work in idle ones).

Systems that serve locally both foreground and background tasks are considered as

system that serve different priority tasks [88]. However, as it becomes more common for

systems to operate 24/7, idle times offer the only time window to complete maintenance

work [33, 44, 90, 2, 84, 7]. Consequently, the general problem of idle-time scheduling has

recently regained attention [33, 24, 26] as a distinct problem within the larger and well

studied problem of priority scheduling [88].

Utilization of remote idleness is often exploited in distributed or peer-to-peer sys

tems and focuses on identifying idle remote systems to complete some work remotely.

V-system [89] and Condor [53] are examples of such systems. Other studies on utilizing

136

remote idleness are presented in [71, 56]. On the analytic side, several models have been

developed for analysis of systems where foreground/background jobs coexist, including

vacation models [70, 91, 99] and queueing models of cycle stealing [88, 71].

The main performance pitfall of scheduling background tasks during idle times relates

to cases where background jobs cannot be preempted instantaneously and foreground

performance may be significantly affected. If tasks are non-preemptive, effective scheduling

of background tasks is more challenging. [26] focuses on managing idle intervals under

a wide range of characteristics for background and foreground tasks and first defines the

notion of the preemption interval or idle wait period that delays execution of background

jobs in idle periods. This technique avoids using short idle intervals to schedule long

background jobs. Efforts to adaptively determine the amount of time that the system

should idle wait are proposed in [25, 41] for power saving in mobile devices by spinning

down their disks.

The closest to the work presented here is the one presented in [26]. In this dissertation,

we depart from previous work by presenting a methodology to maintain foreground per

formance while avoiding background starvation, by estimating the amount of work to be

completed in any idle interval, in addition to the estimation of the idle wait. Furthermore,

the estimation of the idle wait and per-interval background work is based not only on the

characteristics and performance of the foreground and background jobs, but also on the

characteristics of idle intervals. We identify when idle wait is effective and when it is not

(i.e., delay should be set to zero) based on the histogram of the observed idle times. More

importantly, we propose ways to exploit burstiness in idle times (if burstiness exists) to

best utilize pairs of long idle intervals, resulting in superior system performance.

137

6.2 Characterizing Idleness

Viewing system idleness as a resource, we first develop an understanding of the significance

of the system idle times characteristics. Our goal is to develop policies that sustain

system's foreground performance without starving background work. Via idle intervals

characterization, we aim at estimating as accurately as possible how much background

activity can be packed into an idle time period.

The stochastic characteristics of idle times are a result of the complex interaction

of arrival and service processes in the system. Instead of deriving characteristics of idle

times through analysis of the arrival and service processes, we concentrate on idle intervals

themselves, which capture the interaction of the arrival and service processes. Idle intervals

are viewed here as a separate stochastic process.

The characterization is based on two dimensions. First, variability in idle times can

provide a lot of useful information for scheduling. Second, it is critical to find out whether

there is any burstiness in the sequence of idle intervals (i.e., if the lengths of consecutive idle

times are correlated) or whether consecutive intervals are independent from one another.

6.2.1 Independent Idle Intervals

First, we focus on independent idle intervals. If the sequence of idle intervals is inde

pendent, then short past history does not determine the short future. Therefore, all

information about the idle intervals process can be extracted by its empirical distribution

function, which can be easily constructed via on-line monitoring. After computing the first

two moments of the monitored idle times sample, i.e., mean and variance, the coefficient

of variation (CV) is calculated. The CV gives an indication about the existence of tails in

138

the empirical distribution of idle times.

Figure 6.1 depicts the cumulative distribution function (CDF) of two stochastic pro-

cesses, one with low CV (left plot) and the other one with high CV (right plot). For

simplicity, the x-axis in Figure 6.1 gives values that are normalized by the mean, e.g.,

"0.5" on the x-axis corresponds to a value that is half of the mean of the empirical distri-

bution.

LowCV
100,--~~~~~~-r:==~----,

90

80

52~/o wait+ BG s 1ce t1me
cv = 0.48

-~ mean= 7.49

~
fqo;,; busy ['L:nPds dvla~c:d

I 1.5 2 2.5
normalized 1dle time

10

'o
(b)

cv =5.14

mean= 39.42

I 1.5 2 2.5
normalized idle hme

Figure 6.1: CDF of idle times with (a) low CV and (b) high CV. The x-axis gives idle times
normalized by their mean.

Observing the long tail in the right plot of Figure 6.1 is straight-forward: the CDF line

goes toward 100% with a much lower pace than the CDF of the left plot. The CDFs can

therefore provide important information about the majority of upcoming intervals. For

idle intervals with low CVs, the mean of the empirical distribution provides a good guess

about the idle interval length. For idle intervals with high CVs, there is a large percentage

of intervals that are much shorter than their mean and a small percentage of intervals

that are much longer than their mean. This useful information on the anticipated length

of future idle intervals is embedded on the CDF and proves to be tremendously useful for

efficient background scheduling, particularly in determining the idle-wait length and the

amount of background work to be scheduled in any given idle interval.

The intuition behind idle waiting relates to the relative lengths of foreground and

139

background jobs. Determining the delay parameter should depend on the length of the

background job to be scheduled and the length of inter-arrival times [26], but this is not

equally effective for idle intervals of low CV or high CV. We illustrate this via a simple

example.

Following the assumptions in [26], in a system where the expected background service

time is half of the expected idle times mean, the idle wait may also be equal to the

expected background service. If this idle-wait policy were used for the case where the idle

intervals are of low variability (see Figure 6.1, left plot), then 18% of the idle intervals

would not be utilized by background jobs. Since in a system every idle period is followed

by a busy period that starts when a foreground job arrives and finds the system idle, the

same amount (i.e., 18%) of the busy periods would not be affected by background service

either. If only one background job is scheduled after an idle wait period equal to the

average background service time (i.e., a normalized idle time of 0.5), it is expected that

34% of all idle periods (52% of idle intervals with normalized idle time = 1, minus 18%

of idle intervals with normalized idle time = 0.5, which equals to 34%) would be serving

a background job, while the next foreground job arrives (which causes undesired delays

on foreground work). A more conservative idle wait policy that waits longer than half

the mean value would affect still a sizable but smaller percentage of foreground jobs. In

contrast, if idle wait is zero and average background duration is half of the mean of idle

intervals length, then only 18% of the busy periods in the system are affected if only one

background job is served. Consequently, we conclude that no idle wait is necessary for

systems with idle intervals of low variability.

The policy of idle waiting for half of the expected value of idle times affects foreground

140

jobs very differently if idle intervals are of high variability. The high CV plot of Figure 6.1

shows that by idle waiting for a period equal to the expected background service time,

64% of all idle intervals are not used to service background jobs. If the expected length of

a background job is equal to half of the mean of the idle times and one background job is

served in one idle interval, then only 15% of busy periods are affected by the background

work. If idle intervals have high CV, then idle waiting helps exploiting the "longer"

intervals at the tail of the distribution.

The above two examples of low and high CV highlight the disadvantage of a scheduling

policy that uses a "fixed" idle waiting period as in [26]. The idle waiting period should be

adapted according to the characteristics of foreground and background service demands,

and idle times.

6.2.2 Bursty Idle Intervals

We now turn to bursty idle intervals. All discussion of the previous subsection applies here

as well. In addition, burstiness in the sequence of idle times provides extra information

which can be used for the prediction of the (short) future [33]. Burstiness in a sequence

implies that among all the observed values in the sequence, the order of their occurrence is

not random as it is in the independent case. In a sequence that is characterized as bursty,

very large (multiple times larger than the mean) or very small (multiple times smaller

than the mean) values are sampled close to one another.

Figure 2.1 in Chapter 2 shows this effect in a bursty sequence of observations. In the

independent case (see Figures 2.1 (a) and (b)), the probability of the next observation (idle

time) being small or large does not depend on the value of the current observation, as

141

expected. However, in the bursty case (see Figures 2.1 (c) and (d)) the effect is different.

Figure 2.1 (c) shows that if the current idle interval is small, then the probability to have

a small idle interval in the next 9 lags is very high. Figure 2.1 (d) equivalently shows how

the current large idle interval determines with high probability that the next observed idle

interval would be large as well. This information, in addition to the one provided by the

CDF, can be used to improve scheduling of background activity by allowing to complete

more background work (during long idle intervals) without imposing additional delays on

foreground work.

6.3 Background Scheduling Policy

Efforts on utilizing idle times to improve performance or reliability are often system specific

and are evaluated in the context of a specific feature based on prototyping and measure

ments [33, 2, 90, 41] or analytic models [7, 62, 66, 70, 71]. In addition to the above system

specific solutions, there are also efforts to evaluate the general concept of managing idle

times in a system, by viewing idleness as an additional resource [24, 26]. z.From the theo

retical perspective, the performance of systems with foreground and background jobs (also

viewed as systems with jobs of high and low priority) have been extensively analyzed via

queueing theory (see [88] and references within).

Motivated by the above storage system examples, our focus is on the general problem

of scheduling non-preemptive background jobs during system idle times. Our approach

to this problem reflects the fact that storage system idleness is expected to be highly

dependent on system workload. For example, variability and burstiness dominate workload

and idleness characteristics in general purpose servers, including web servers, and file

142

servers. On the other hand, video streaming servers are expected to work under more

deterministic workloads, and consequently the idleness reflects that characteristic. Here,

idleness is considered as an additional system resource but its management is driven by

the performance trade-off between maintaining desired levels of foreground performance

while maximizing the completions of non-preemptive background tasks.

In contrast to previous work, which sustains foreground performance by letting the

system to "idle wait" before a background job is scheduled causing sometimes background

work starvation, we propose to complement "idle waiting" with the "estimation" of the

amount of background work to be served in any given idle interval. Such an approach

does not compromise the foreground performance and avoids starvation (if any) among

background jobs by allowing background jobs to be served in as many idle intervals as

possible. The end result is that the overall system is better utilized, while foreground

performance targets are met.

We achieve such balance in the system by monitoring characteristics of foreground

and background jobs, similarly to other works in the literature that focus on the same

problem [26, 33]. In addition, we also collect measurements of the empirical distribution

of idle times. Resource management of idle times is now done in a dynamic way, using

statistical information not only on the foreground and background job demands, but also

on the idle intervals of the system. All statistical information is collected online while the

system is in operation, and is incorporated into scheduling policies.

Detailed analysis of various systems with different statistical characteristics of fore

ground/background jobs and idle times shows that the effectiveness of idle wait strongly

depends on the variability of the empirical distribution of idle times. In systems with low

143

variability of idle times, idle waiting is not effective. The opposite holds for idle times

of high variability. In both cases, the cumulative data histogram of idle times is used to

dynamically determine the length of idle wait.

In addition, we show how to take advantage of the burstiness (if any) in idle intervals

to improve background scheduling. Specifically, if burstiness in idle times exists, then

additional information on the idle intervals can be derived which allows for more accu-

rate prediction of upcoming idle interval lengths. This additional knowledge becomes

extremely effective, in particular when the background non-preemption penalty on fore

ground performance could become severe (as it is the case when background jobs are

long). Validation of our methodology using actual disk drive traces shows that monitoring

stochastic characteristics of idle times, in addition to the characteristics of foreground and

background tasks, is an effective way to manage idleness.

6.3.1 Background Activity in Independent Idle Intervals

Idle waiting is used as a technique to ensure that a desired level of foreground performance

is sustained while serving non-preemptive background work. Because idle-waiting is a

non-work conserving strategy, background jobs may suffer from starvation [26]. We avoid

background starvation by coupling idle wait with the amount of work that can effectively

complete within an idle interval. These two scheduling parameters are determined using

the foreground and background service demands as well as the distribution of idle times

themselves. We consider the following policies.

Mean-based: This policy serves as a base-line comparison [26]. When an idle interval

occurs, no background job is scheduled during a delay period which is defined as the

144

mean service time of background jobs. After the delay period elapses, the system

starts serving background jobs until a foreground job arrives.

CDF-based: Similar to mean-based, this policy starts serving background jobs after an

idle wait until a foreground job arrives. Different from the mean-based policy, the

CDF-based policy continuously monitors the empirical distribution (i.e., cumulative

histogram) of idle intervals and the mean of background service times to dynamically

calculate the idle wait time. Based on the analysis of Section 6.2, the CDF-based

policy

• does not idle wait if the idle times have low CV, and

~ estimates the idle wait based on the empirical distribution if the idle times have

high cv.

CDF jw-estimates: This policy estimates the idle wait the same way as the CDF-based

policy but is more conservative because it limits the number of background jobs to

be served in an idle interval according to the following equation:

goth percentile of idle intervals - idle wait
T---~------------~-----------

A verage background service time '
(6.1)

where 0 < T :::; 1 is a parameter that adjusts the estimated number of background

jobs assuming that the interval is large (i.e., equal to the goth percentile of idle

times). This parameter controls the performance degradation of foreground jobs.

As T increases, foreground performance degrades. T is adjusted to reflect variability

in the distribution of idle intervals, i.e., T is close to 1 under idle intervals of high

variability and less than 1 for low variable intervals.

145

In all of the above policies, if a new foreground request finds a background job in service,

it waits until that background job completes.

Simulation Environment

The three policies are evaluated via simulation of a single server queue. We assume

that there is no limit on the waiting queue capacity and the service process is FCFS.

Consistently with [26], we also assume that there are always background jobs waiting

for service. This is the case in storage systems where background media scans happen

continuously to ensure that any existing disk latent errors are detected and recovered

before the user accesses the data [8].

In the scenarios evaluated here, we aim to maintain background service transparent

from the user. It is common practice, to consider an additional 5%-10% slowdown in

performance as small enough to not be noticed by the system user. Consequently, we set

the degradation target D to 7%, i.e., the middle point in the 5%-10% range. Slowdown

of foreground jobs caused by background activity is computed as the ratio of foreground

response time when background jobs are served to foreground response time when no

background job is served.

The service times of background jobs are exponentially distributed. We expect this to

be a realistic assumption, because disk-level service times have variability (i.e., measured

via the CV) close to that of the exponential distribution [77]. The background service

times are adjusted so that two different systems are simulated: (a) one system where

both foreground and background jobs have the same mean service time (dubbed also as

"short foreground" ~"short background" system) and (b) one system where the average

146

background service time is 7 times longer than the average foreground service time (dubbed

also as "short foreground" -"long background"). We remark that the results with other

background service time ranges are qualitatively the same.

We first use synthetic workloads to quantitatively evaluate the policies under controlled

systems with different levels of variability or burstiness. In Section 6.3.3, two real disk

level traces are used for evaluation. In these synthetic workloads, foreground interarrival

times are drawn from an Erlang distribution, resulting in idle intervals of low variability.

Drawing foreground interarrival times from an Lognormal distribution results in a system

with high variability in its idle intervals. For both systems, the mean interarrival times

are adjusted such that we evaluate system utilizations due to foreground jobs only, equal

to 10%, 30%, and 70%, representing a system under low, medium, and high foreground

load, respectively. All simulations are done with a 1 million sample space of foreground

jobs and results are reported with 98% confidence intervals.

Idle Intervals with Low Variability

Results of the experiments with low variability in idle intervals are given in Figure 6.2.

The first row of graphs corresponds to the system with "short foreground - short back

ground" jobs, and the second row corresponds to the system with "short foreground - long

background" jobs. Four performance metrics are presented: (a) the number of completed

background jobs in millions (first column), (b) the overall system utilization (second col

umn), (c) the background-caused slowdown of foreground jobs (third column), and (d) the

foreground response times (fourth column). The last two metrics capture, respectively,

the relative and the absolute background-caused degradation in foreground performance.

10 30 70 10
FG-only utdtzatJon(%)

n
30

(I) low CV, BG~FG (short BG)

l
70

" 16

14

~!2

i I

~OR
06

0'
02

10

I 07

30

FG-only uttltzalton(%) FG-only utilizutwn(%)

(II) low CV, BG~7FG (long BG)

,

70

147

35 ,---,-------,---,------,

30

25

20

IS

10

10

n l
]0 10

FG-only uttltzation(%)

14 ,--------,-----,----,-----, ' 100

90

RO
7 12

~ 80

5

3

2

I nl l
10 10 70 10 10 70 10

FG-nnly utthzatwn('Vo) FG-only utJIJZatlon(%)

Mean-based - CDF-based =

107

lB hi
10

FG-nnly utthzahon(%)

h'
10

E 10

~ 60

~ 5(

~ 40
[::230

J

lO
II

0

J

CDF/w-estimates ~

n• nl]
Ill 10 10

FG-only ulilizatinn(%)

Figure 6.2: Overall system performance measured by number of completed background jobs in
millions, overall system utilization, slowdown of the foreground jobs attributed to background
activity (the horizontal line corresponds to 7% slowdown), and the absolute foreground response
time. The idle intervals are independent and with low variability. Three foreground system uti
lizations are evaluated, i.e., 10%, 30%, and 70%. Foreground utilization is controlled by changing
the foreground arrival rate and fixing its service time. The first row of graphs shows the case when
the background jobs are "short", i.e., as long as foreground jobs, and the second row shows the
case when the background jobs are "long", i.e., 7 times longer than foreground jobs.

Successful policies should increase the system utilization while the slowdown of foreground

jobs is kept up to the pre-defined target of 7%. Results shown in Figure 6.2 can be sum-

marized as follows:

• The mean- based and the CDF-based policies are very aggressive in the number

of background jobs that they serve (first column), which results in high system

utilization (second column). However, the penalty on foreground jobs is significant

(third and fourth column). Note that because there is always an infinite supply

of background jobs, if the system serves background jobs as much as possible till

foreground jobs arrive, then the overall system utilization reaches 100%.

• The CDF jw-estimates policy consistently meets the performance target of fore-

148

ground jobs, across both experiments with short and long background jobs. This

is due to the parameter T in Eq.(6.1), which determines how many background

jobs to serve such that the effect on foreground performance is contained within the

pre-determined limits.

• Under low foreground-only utilizations (i.e., 10%) there is more room to exploit

idle times and serve large quantities of background jobs while limiting the effect

on foreground slowdown. For example, with CDF /w-estimates, the overall system

utilization for short background jobs increases to 35% from the initial 10% and 2.3

million background jobs are completed which is about 10 times and 46 times more

than the completed background jobs when the foreground-only utilization is 30%

and 70%, respectively.

• As foreground utilization in the system increases, the relative impact of background

activity on foreground jobs reduces. The reason is that response times of foreground

jobs are already dominated by waiting in the queue due to the high foreground

load. As a result, waiting because of background work is not as noticeable. In

low utilizations, foreground response time is dominated by the service time rather

than the waiting time in the queue. Any background-caused delay is immediately

observed because it may be the only wait that the foreground jobs experience. As

a result, background work can be scheduled effectively even when the foreground

system utilization is high.

o There is a significant difference in relative policy performance if background jobs

are short or long. First, the mean-based policy performs poorly under long back-

149

ground jobs. This is because in the case of low variability in the idle times and

high utilization, most idle times are short, i.e., shorter than service times of long

background jobs. If the idle wait is equal to the average background service time,

then the majority of idle intervals are not used for servicing any background activity.

Note that the number of long background tasks completed under the mean-based

policy is only 1000 for a foreground utilization of 30% and none for a foreground

utilization of 70%. By self-adjusting Tin Eq.(6.1), the CDF/w-estimates policy

remains flexible, avoids background work starvation, and maintains the foreground

performance targets. For example, even under the case of long background jobs and

medium or high utilization, the respective numbers of background jobs completed

are 7000 for a foreground utilization of 30% and 1000 for a foreground utilization of

70%.

• As expected, absolute foreground response time (shown in column four of Figure 6.2)

increases with foreground utilization, even if the delays due to background jobs are

limited. In this chapter, the focus is to achieve foreground performance targets

measured by slowdown (a relative measure) rather than response time (an absolute

measure). If the latter were the case, and foreground performance under 70% uti

lization would be the performance target, then all three policies meet that target if

the foreground utilization is 10% or 30%.

For idle intervals with low variability, the three policies use idle intervals differently.

The mean-based policy "consumes" the beginning of an idle interval via the idle wait and

background jobs are served at the end of the interval. The CDF-based does not wait

10 ·-.so

C.V. ~5.14
mean~ 39.42

0 0, 0.5 1 15 2.5
norrnahzed idle time

150

Figure 6.3: Relation between the slope of the CDF and the length of idle wait when the distri
bution has high CV

idle and serves background jobs as long as there is no waiting foreground job, utilizing

the system 100%. The CDF /w-estimates policy schedules background activity at the

beginning of the idle interval and not at the end (as the mean-based one) by estimating

the number of background jobs to be served in any idle intervaL This proves to be effective

and strikes a good balance between the performances of foreground and background jobs.

Idle Intervals with High Variability

If the idle intervals have high variability, then policies that worked well under low variabil-

ity conditions cease to be effective. The long tail of the distribution of idle times suggests

that delaying background jobs is promising as now only long idle intervals are used for

background jobs. No jobs are scheduled in idle intervals that are too short to fit a single

background job.

Determining the length of idle wait is done dynamically by constructing on-line the

cumulative histogram of idle times. The idle wait is defined by the CDF as the point in

the histogram where the sharp increasing portion of the body ends and the slow increasing

part of the tail starts (see Figure 6.3).

10

1.2

lo.s
6
5o.6
E
9..,Q4
0

'" 02

10

2:

30 70
FG--only utlltzatwn('Vn)

~

0 0

30 70
FG--on]y uhh71ll10n(%)

10

n
30

(I) high CV, BCFFG (shon BG)

70

g

1.6

14

1.2

I

]0.8

~0.6
04

0.2

10

I 07

30
FG-only ulllization(%) FG-only uttlizat10n(%)

(II) high CV, 8Go7fG (long BG)

100,-,----,-------,----,

n
10 30 70

FG-only utthzat10n(%)

35

~ 2.5

l' 2

~15

0 5

1.07

\0
FG-onlv utiltzatton(%)

70

151

200,----,---,-----,---,

160

~
~120

~80
2

200
§
~150

~100
2

FG-only uttlizatmn(%)

10 30 70
FG-onl~· utJ]JZ!ltiOn(%)

Mean-based iiiiiiiiiiii CDF-based = CDF/w-estimates c:::::::::J

Figure 6.4: Overall system performance measured by number of completed background jobs in
millions, overall system utilization, slowdown of the foreground jobs attributed to background
activity (the horizontal line corresponds to 7% slowdown), and the absolute foreground response
time. The idle intervals are independent and with high variability. Three foreground system
utilizations are evaluated, i.e., 10%, 30%, and 70%. Foreground utilization is controlled by changing
the foreground arrival rate and fixing its service time. The first row of graphs shows the case when
the background jobs are "short", i.e., as long as foreground jobs, and the second row shows the
case when the background jobs are "long", i.e., 7 times longer than foreground jobs.

Changes in the histogram shape are detected by inspecting the slope of both portions

of the CDF curve. When the slope decreases to a predefined angle, e.g., 30 degrees in

this case, then the desired point that separates the body from the tail of the histogram, is

found. The number of jobs to be served in each interval is then computed using Eq.(6.1).

The predefined slope angle that determines the separation point between the body

and the tail of the histogram, defines how aggressive the usage of idle intervals is, i.e., the

higher the slope, the smaller the idle wait. In order to contain the slowdown of foreground

jobs to a minimum, the angle should be set such that the CDF's slope is small and the

usage of idle times is conservative.

Figure 6.4 shows the results for two experiments: short foreground-short background

152

(first row) and short foreground-long background (second row) under different utilization

levels of systems with foreground jobs only. Similar to Figure 6.2, the following metrics

are reported: the number of completed background jobs in millions, the overall system

utilization, the relative slowdown in response time of the foreground jobs, and the absolute

foreground response time. The performance target of foreground job slowdown remains

7% in these experiments also.

The figure illustrates that the high variability of the idle time distributions offers

better opportunities to take advantage of idle intervals. Especially for the first experiment

with short background jobs, system utilization significantly increases. Results from these

experiments are summarized as follows:

• The mean-based policy, because of short idle waits, utilizes the system best but at the

expense of higher delays for foreground jobs. For long background jobs, foreground

jobs experience slowdown as much as 3.75 for low utilization and 2.5 for medium

utilization (see third column in Figure 6.4-(II)).

• The CDF /w-estimates policy is always below or right at the 7% slowdown target

(see dotted line in the third column) at the expense of scheduling less background

jobs and lower utilization levels (see first and second columns of Figure 6.4).

• The system can be utilized as much as 100% with minimal performance degradation

of foreground jobs when background jobs are short and the foreground utilization is

high (e.g., 70% foreground utilization bars in Figure 6.4-(I)). The CDF /w-estimates

policy becomes aggressive here by selecting a higher slope and by estimating the

number of background jobs to be served using T = 1 in Eq. (6.1) (see rightmost set

153

of bars in the plots of Figure 6.4-(I)).

• Recall, that for idle intervals with low variability, for medium and high utilization

and long background jobs (see first plot in Figure 6.2-(II)), the mean-based policy is

not able to serve any background jobs at all. Under highly variable idle times, the

result is different (see first plot in Figure 6.4-(II)). This is due to the existence of

some very long idle times that enable completion of long background jobs even for

long idle wait.

If idle intervals have high CV, then the mean-based, the CDF-based, and the CDF /w

estimates policies (different from the case of idle times with low CV) operate similarly,

i.e., they all idle wait in the beginning of an interval and utilize its end. For medium

to high utilization and short background jobs, the CDF-based and the CDF /w-estimates

policies estimate an idle wait that is similar to the static one used by the mean-based

policy. For long background job, the number of estimated background jobs to be served

in an idle interval for the CDF /w-estimates policy is high, similar to the number of other

two policies that are oblivious of such estimation.

The results presented here show that there are cases where the usage of idle times can

be aggressive without affecting the performance of foreground jobs. If the background

jobs are equal to or even shorter than foreground ones, then a foreground slowdown is not

large, especially under high foreground utilization. Thus, under these cases, estimating

the number of background jobs to serve is not necessary - it is enough to just wait for

only a short period of time and serve background jobs till a foreground job arrives.

It may first appear counter-intuitive that high foreground utilization provides a good

opportunity to serve short background jobs and reach nearly 100% system utilization with

154

minimal impact on foreground performance. Although the same observation exists for low

variable idle intervals, the results are more pronounced if idle times have high variability.

It is the tail of the idle time distribution that can be exploited to serve large quantities

of short background jobs, with insignificant additional delay on the already slow response

time of foreground jobs.

The following summarizes a comparison of the results in Figures 6.2 and 6.4.

• The number of completed background job decreases faster as foreground utilization

increases for low variability than high variability idle times (first column in each

figure).

• Overall system utilization is better under high variable than low variable idle times

(second column in each figure).

• Foreground slowdowns are higher under low variable than high variable idle times

(third column in each figure), because foreground response times (fourth column in

each figure) are smaller (and more sensitive to additional delays) under low variable

than high variable idle times.

Tail of the Response Time Distribution for Foreground Jobs

We have shown that the CDF /w-estimates policy consistently maintains foreground slow

down less than 7% while serving as many background jobs as possible. The figures of

the two previous subsections present average slowdowns of foreground jobs. Here, the

distribution of foreground response times is also presented and allows to study the tails of

response times of foreground jobs.

155

In order to focus on the tail in the distribution, Figure 6.5 depicts the complementary

cumulative distribution function (CCDF) of the response time distribution for foreground

jobs only, and for foreground utilization levels equal to 30%. Here we only compare the

tails of foreground response time distributions with and without background jobs under the

CDF /w-estimates policy because their two average foreground response times are similar

(with at most 7% difference). Comparisons with other policies that yield significantly

higher response times are irrelevant.

Figure 6.5 shows that the impact on the tail of the response time distribution is

caused by the length of the background job. For short background jobs, irrespectively of

the variability of idle intervals, the foreground response time distribution with background

jobs follows the distribution of the foreground response time without background jobs. The

slight difference in average foreground response times exists throughout the distribution.

Short background jobs, in general, delay the foreground jobs for a short period of time

only. In this case, there are many background jobs that are scheduled, so there is a large

portion of foreground jobs that are slightly delayed.

In the case of long background jobs, the behavior is different. Although, the CDF /w

estimates policy schedules only a few large background jobs to contain delays to a few

foreground jobs only (less than 2% of all foreground jobs), the tail of the foreground

response time distribution is much longer than when no background jobs are served. The

long tail is a result of the significant delays caused to foreground jobs by long background

ones.

10

;2
"-'
'6
<)
<)

0.1

001
0

Utilization 30%: low CV -short BG

noBG

withBG

20 40 \00 120
foreground response t1me

Utilization 30%. high CV- short BG
1 00 .-------.-------,-,---,--,--.-,

noBG -
\0

WlthBG

"" "-'
~ .,
<)
<)

01

0·01 o '-----'20--4-'--0----'6-0--'-80--1 0'--0~120

foreground response t1me

0.1

\00

10

Utilization 30%: low CV -long BG

noBG

withBG ·

foreground response t1me

Utihzat1on 30% h1gh CV -long BG

no BG -

~
WlthBG

]
0.1

0. 0 I L-.L___LL-L---l-,-,-'--.L_--'--'"-'-_j
0 50 \00 \50 200 250 300 350 400 450

foreground response time

156

Figure 6.5: Tail of the foreground response time in the presence of or not of background activity
when the idle intervals are independent. The dashed lines in the graph correspond to results for
the CDF-w /estimates policy. Utilization of the system under only foreground activity is 30%.

6.3.2 Background Activity in Bursty Idle Intervals

The policies presented in the previous subsection are based on the cumulative histogram

of the empirical distribution of idle times. Here, the focus is on idle intervals that, in

addition to being highly variable, are also bursty. Section 6.2.2 presents analysis of bursty

processes and shows that if burstiness exists then it is possible to predict the near future

based on the recent past. If a sequence of observations is positively bursty, then this

implies that long observations (i.e., several times larger than the mean) are clustered

together in the sequence and that short ones (i.e., several time smaller than the mean)

are also clustered together. This property can be used to manage system idleness more

efficiently by exploiting long intervals aggressively.

To detect burstiness in idle times, a similar structure as the one depicted in Figure 2.1

is constructed on-line. First, observations of idle times are classified as small or large.

157

The value to partition the range of idle times in "small" and "large" is (CV + 1) ·mean.

Then, every pairs of idle times is classified in the appropriate category, i.e., (small,small),

(large,small), (small,large), or (large,large), and the corresponding probability is calcu-

lated online. Pairs do not include consecutive observations only, but also those that are

separated by up to 9 observations (lags) apart, which is a measure of the burst length.

Once these conditional probabilities are constructed, they are used to predict more ac-

curately whether the next idle interval is short or long. The CDF /w-estimates policy is

augmented into the Bursty+CDF /w-estimates policy as follows:

• if the current interval belongs to the "large" category, then the next interval is

predicted to be "large" with probability p. Note that the probability for occurrence

of (large,large) pair is not equal to 1, which implies the existence of mis-predicted

"large" intervals. The probability p used in this policy is just to control the number

of miss-predicted "large" intervals.

• if the next idle interval is predicted to be "large", instead of using Eq. (6.1) to estimate

the number of background jobs to be served in that interval, the following equation

is used:

T. (CV + 1) ·mean- idle wait
Average background service time'

(6.2)

which implies that the length of the incoming idle interval is at least the "large"

value (CV + 1) ·mean.

Exploiting the long intervals in a bursty sequence allows to increase overall system

utilization, because during those intervals the policy has the opportunity to be aggressive

158

without affecting foreground jobs. Benefits are different for short and long background

jobs:

for short background jobs: stringent foreground slowdowns are achieved without radically

reducing the number of completed background jobs,

for long background jobs: a given amount of background work can now be completed

with less degradation on foreground performance, resulting in shorter tails in their

response times.

BG = FG (short BG)

4.5 ,-----,-------.-----,----,

4
?
~ 35

'§ 3

2.2.5

1 2

aiU
I

CDF/w-estimates =
bursty+CDF/w-estimates =

0.5 L----'---
1.4 3.4 5.1

slowdown in FG response time (%)

25.----.------,-----,----,

~ 20

" 0
.lil 15
~
.§ 10

~
~ 5

CDF/w-estimates
bursty+CDF/w-estimates =

1.4 3.4 5.1
slowdown in FG response time(%)

Figure 6.6: Number of completed background jobs and overall system utilization when under
bursty idle intervals. Three different foreground slowdowns are considered, i.e., 1.4%, 3.4% and
5.1 %. The more stringent requirements on foreground slowdown the higher the relative improve
ment between the CDF /w-estimates and Bursty+CDF /w-estimates.

Experiments in this subsection assume that the interarrival and service processes

of foreground jobs are drawn from an MMPP distribution. The service times of back-

ground jobs are exponentially distributed. The results in idle times with probability of

(small,small), (small,large), (large,small), and (large,large) pairs are shown in Figure 2.1.

Evaluation of improvements due to the use of conditional probabilities in the CDF jw-

estimates policy, is done via two sets of experiments: one with short and the other with

long background jobs.

159

Figure 6.6 presents the number of completed background jobs and the overall sys

tem utilization as a function of foreground slowdown, when short background jobs are

served. There are more background jobs completed with Bursty+CDF /w-estimates than

with CDF /w-estimates. The relative performance gap between the two policies increases

as foreground slowdown decreases. If the requirements on foreground slowdown are re

laxed, then the difference between the two policies diminishes. In general, overall system

utilization improves with Bursty+CDF /w-estimates.

In a system that serves long background jobs, background jobs are chosen to be 300

times longer than the foreground service times, on the average. An example of such

scenario is when disks spin-down to conserve power. Spinning them back-up and ready

for work is orders of magnitude larger than serving a single request. This extreme case

is difficult to address - scheduling a background job in the wrong interval may have a

tremendous impact on the tails of foreground jobs.

Figure 6. 7 presents the foreground job slowdowns for the CDF /w-estimates and the

Bursty+CDF /w-estimates policies when background jobs are large. The dotted horizontal

line represents the performance target of 7% average slowdown for foreground jobs. The

Bursty+CDF /w-estimates policy attempts to detect pairs of long idle intervals and utilize

them by serving the background jobs because then the probability to affect foreground is

low. We select three levels of completed background work, which are (1) High: with 7455

completed background jobs, the background work is more than two times the foreground

work; (2) Medium: with 1816 completed background jobs where the background work is

more than half of the foreground work; and (3) Low: with 1252 completed background

jobs, here the background work is only a third of foreground work. These three levels are

BG = JOOFG (very long BG)

(a) Foreground Slowdown
2.2 ,-----,----,-----,----,

1.8

1.6

1.4

1.2
II.

0.8

0.6

CDF/w-estimates
ursty+CDF/w-estimates =

1.07 ..

c... ... ""· ..

0.4 '--'----'----"---''---__. __ __,____,

10

high medium low
completed BG work

(c) Completed BG Work: Medium

noBG

CDF/w-estimates

Bursty+CDF/w-estimates ···-

(b) Completed BG Work: High
I 00 ,---,----,-,---,-----,--,---,-,

10

0.1

noBG

CDF/w-estimates ··

Bursty+CDF/w-estimates ----

0 20 40 60 80 100 120 140
foreground response time

(d) Completed BG Work: Low
I 00 ,---,----,-,---,-----,--,----,--,

10
noBG

CDF/w-estimates

Bursty+CDF/w-estimates ----

0.1 0.1

0 W ~ W W IOOIWI~ 0 W ~ W W !OOIWI~
foreground response time foreground response time

160

Figure 6. 7: System performance under background jobs when the idle intervals are bursty. Three
different settings are considered that yield three different numbers of completed background jobs
and foreground slowdowns. Plot (a) gives the foreground slowdown for each level of background
completions and plots (b)-(d) give the respective CCDFs in foreground response time distribution.

a result of different values of the parameter T used in Eq.(6.1).

Figure 6.7 shows the foreground job slowdown for each of three level of completed

background work. For high, medium, and small amounts of completed background work,

the foreground slowdown under CDF /w-estimates is, respectively 110%, 40% and 17%.

The Bursty+CDF /w-estimates policy reaches foreground slowdowns of 12%, 9% and 2%,

respectively.

Experiments in Section 6.3.1 showed that the long background jobs change the tail

of the foreground response time distribution. The tail of the foreground response time

distribution under the large background jobs is also given in Figure 6.7 with the plots

of the CCDFs of the foreground response times. The figure also plots the CCDFs of

161

foreground jobs with no background activity (labeled "no BG") as a baseline comparison.

When there is no background activity, the tail of the foreground response time is not long,

e.g., only 0.05% of foreground jobs have response time larger than 52. Only 1% of jobs

have response time larger than 10 when service time is 1 on the average.

The CDF /w-estimates policy, being oblivious to burstiness, affects significantly both

average foreground response time as well as its distribution tail. For example, when

the completed background work is high, 0.05% of foreground jobs have response time

larger than 150, making the tail almost 3 times longer from the cases when there is no

background activity. As the amount of completed background work decreases, the tail of

the foreground response time distribution shortens and approaches the baseline tail.

Figure 6.7 also plots the tail of the foreground response time distribution under the

Bursty+CDF /w-estimates policy. This policy utilizes mostly large idle intervals while the

CDF /w-estimates policy is oblivious to them. Therefore, the number of delayed foreground

jobs by long background jobs under Bursty+CDF /w-estimates policy reduces. As a result,

not only the slowdown of foreground work is substantially smaller than that under CDF /w

estimates, but also the tail of the foreground response time distribution is close to the

baseline tail.

The results presented in this subsection show that if idle intervals are bursty (i.e.,

the series of idle intervals contains information on the order of observations) then one

can predict the occurrences of long idle intervals, which in turn can be used to efficiently

schedule large quantities of background work without affecting foreground jobs.

162

Trace Mean Mean Uti! Mean cv Burty

Arrival Service (%) Idle Idle

T1 62.64 5.50 8.3 190.08 6.41 No

T2 252.29 5.50 2.2 731.34 3.90 Yes

Table 6.1: Overall characteristics of traces used in this evaluation. The measurement unit isms.

6.3.3 Case Study: Disk Drives

We validate the results of the high variance case in Section 6.3.1 and of the burstiness

case in Section 6.3.2 using traces that are measured in actual storage systems. Traces

used in this subsection are measured at different disks of a 40-disk storage system of an

in-the-field e-mail server. The traces record, in micro seconds, both arrival and departure

times for each foreground request in the system and allow for exact computation of idle

and busy times at the disk level of the system where the traces were measured. The main

statistical characteristics of the traces relevant for background work scheduling are given

in Table 6.1.

The main observation from statistics in Table 6.1 is the substantial difference between

the mean of foreground interarrival times and the mean length of idle intervals. Results

in Table 6.1 further confirm that neither the foreground arrival or service process can

provide enough information for background scheduling, instead one should focus on idle

times. Therefore, instead of using foreground arrivals to guide idle time management (as

in [26]), we suggest to monitor and estimate idle time characteristics and use them to

guide background scheduling in idle times.

Both traces, that we have selected, have highly variable idle times and can be used

to validate the results of Section 6.3.1, which deals with scheduling background work in

~ 0.8

{j 0.6
.D

[0.4

0.2

0

(a) Tl: high cv & low acf

II I I II I • I
I 2 3 4 5 6 7 8 9

lag (k)
(large,small) =

~0.8

{j 0 6
.D

[oA
0.2

0

(b) T2: high cv & high acf

I I I I I I I I
I 2 3 4 5 6 7 8 9

(large,large)-
lag (k)

Figure 6.8: Probabilities of (large,small) and (large,large) pairs for traces Tl and T2.

163

highly variable idle times. We also identify if any of the two traces has idle interval lengths

that are bursty. Figure 6.8 gives the probability of pairs of "large" idle intervals of up

to 9 observations (lags) apart. The maximum probability of pairs of long idle intervals

is only 0.2 for trace T1 and about 0.5 for trace T2. Consequently, T1 is viewed as a

trace with very weak dependency structure (i.e., the sequence of observations are nearly

independent). Trace T2 has much stronger dependence among the observations. Although

the probability of (long, long) pairs is not as high as for the synthetic trace in Section 6.3.2.

Trace T2 is clearly a trace with bursty idle intervals. Trace T1 is used to validate the

results of Section 6.3.1 and trace T2 is used to validate results of Section 6.3.2.

We do not deal with identifying why idle intervals are bursty or not, although the fact

that burstiness exists in many processes associated with disk drives [77] implies also idle

time burstiness. As shown by the results for trace T2 in Figure 6.8, burstiness in idle times

exist and taking it into consideration for managing idle time utilization as in Section 6.3.2

yields realistic benefits.

In the experiments with T1, all three policies are evaluated, i.e., mean-based, CDF-

based, and CDF /w-estimates. The mean background service time is chosen to be 5 ms,

50 ms and 300 ms, representing the cases of short, medium, and long background jobs,

164

respectively, when compared to the mean foreground service time of 5.5 ms. These service

times of background jobs are all exponentially distributed. Similar demands of disk back-

ground activities are write verification (short), moving large chunks of data (medium), and

flushing the write cache (long). More details on such storage system background tasks

can be found in [33].

50.--.-------.------,---.
<6 45
640
-c 35
0
~ 30

0 25
~ 20 * 15 c. 10
§ 5
<.) 0

short medium long
mean BG service time

2.5

~ 2
0

~15
0

-;;; I

0.5

0
short medium long

mean BG service time

Mean-based - CDF-based = CDF/w-estimates =
Figure 6.9: Number of completed BG jobs and foreground slowdown for trace Tl. Three back
ground service demands are chosen that correspond to short, medium, and long background jobs.

Figure 6.9 plots experimental results for trace Tl. The CDF jw-estimates policy, con-

sistently with results in Section 6.3.1, outperforms the other two policies when it meets

foreground performance requirements. In the experiments with T2, background service

time is set to be 300 ms. Experiments are conducted only with long background jobs and

not short ones, because with this set of experiments, the emphasis is on exploiting bursti-

ness of idle times to schedule the most challenging long background jobs. Consistently

with the results in Section 6.3.2, benefits are higher for long rather than short background

jobs. Here only the CDF /w-estimates and the Bursty-CDF /w-estimates policies are eval-

uated (as in Section 6.3.2). Figure 6.10 presents average slowdown of foreground jobs

for three levels of completed background work, i.e., high (83,998 jobs), medium (47,702

jobs), and low (23,322 jobs). By exploiting burstiness, both average foreground slowdown

and the tail of the foreground response time distribution are improved. These trace-based

experiments confirm our analysis in previous subsections using synthetic workloads.

L6

14

~12
0

~ I
0

o;;;OB

06

04

(a) Foreground Slowdown

CDF/w-estimates-
ursty+CDF/w-estimates c=J

L07
1-

-:-
F'

~-

high medmm low
completed BG work

(c) Completed BG Work· Medium

100.----.----,----.----.

0 50

noBG-

CDF/w-estimates

100 150
foreground response time

200

(b) Completed BG Work High

100.----,----,----.----.

0 50 100 150 200
foreground response t1me

(d) Completed BG Work Low

100,----,----,----,----,

50

noBG-

CDF/w-estJmates

100 150
foreground response t1me

200

165

Figure 6.10: Average slowdown of foreground jobs and the tail of response time distribution for
three levels of completed background work, for trace T2.

6.4 Application: Enhancing Data Availability

In this section, we evaluate the impact that the idle time management policies have on

performance of background activities that are scheduled to improve data reliability when

they are constraint by the degradation on foreground performance. Such idle time manage-

ment is in the same spirit as the techniques proposed in the previous section, where idle

times stochastic characteristics (i.e., variability and burstiness) guide background work

scheduling.

The trend of disk failure in storage systems with a large disk drive population has been

166

observed and analyzed in recent works [72]. Upon a single disk failure, storage systems are

designed to restore the lost data using redundant information. During data restoration,

the storage system operates with reduced redundancy and any additional failure causes

data loss. Although a second entire disk failure during this period is less likely, data loss

may occur even if a few disk sectors are not accessible. Disk sector errors, often related

to localized media failures, are more frequent than entire disk failures and are known as

"latent sector errors" because they are detected only when the affected area on the disk

is accessed and not when they truly occur [86, 9, 27].

In general, there are two prevalent strategies for protecting data from latent sector

errors: disk scrubbing is an error detection technique that aims at detecting latent sector

errors via background media scan and befor·e the affected data is accessed by the user or

before any other disk failure [84], and Intra-disk data redundancy is used as an error recov

ery technique by adding parity for sets (segments) of sectors within the same disk [23, 45]

which is effective in multiple- and single-disk storage systems. However, scrubbing could

cause delays to the foreground work because disk operations such as seeks are not preemp

tive. Multiple redundancy levels and intra-disk parity do impose additional work in the

storage system when data is modified (i.e., during WRITE operations) because the parity

need to be updated. Consecutively, both scrubbing and intra-disk parity updates can

operate as system background processes, because if the execution of this additional work

competes with regular user traffic, it may cause additional undesired delays. Therefore,

in this section, we use the "body-based", the "tail-based", and the "tail+bursty" policies

(see Section 6.3 for the detailed description) to schedule scrubbing and intra-disk parity

updates as background activities.

167

6.4.1 Background: MTTDL estimation

Latent sector errors rather than total disk failures cause loss of data but not necessary

result in storage system failure. Consequently, an important reliability metric for storage

systems is the Mean-Time-To-Data-Loss (MTTDL). Approximate models for the MTTDL

as a function of various system parameters are given in [9]. Here, we calculate MTTDL

of systems with scrubbing and intra-disk data redundancy using the same models as in

[9]. For details on the models, we direct the interested reader in [9]. Here, we only

provide a quick overview as follows. The model defines MTTDL in terms of the following

parameters:

MV, M L: mean inter arrival time of visible and latent disk errors, respectively,

M RV, M RL: mean recovery time from visible and latent errors, respectively,

MDL: mean detection time of latent sector errors,

a: errors temporal locality parameter,

f3xy, errors spatial locality parameters, where consecutive errors X and Y are either

visible (i.e., type V) or latent (i.e., type L).

If no scrubbing is initiated, then MTTDL is given by the following equation:

1 /3vv MRV f3Lv MRV 1
MTTDL;:;:; ~ MV 2 + ~ MV ·ML + ML

(6.3)

168

If scrubbing is performed then the above equation accounts for the average time it takes

to detect the error via scrubbing (i.e., MDL) and recover from it (i.e., MRL) as follows:

1 f3vv MRV f3Lv MRV
MTTDL ~ ak2 M£2 + ak M£2 + (6.4)

f3vL+k(3LL MDL+MRL

ak

where k is defined in [9] ask= ML/MV. The parameter values for Eqs.(6.3) and (6.4)

used in [9] and in the following subsections are given in Table 6.2.

MV ML MRV

120,000 hrs 84,972 hrs 1.4 hrs

k a,(3vv,f3Lv,f3vL f3LL

1.41 1 0

Table 6.2: Parameters used for MTTDL estimation.

6.4.2 Trace Characteristics and Simulations

All policies presented here are evaluated via trace driven simulations. All simulations are

driven by disk drive traces, see [77] for a detailed description of the statistical character-

istics of the selected ones. We selected three disk traces that were measured in a personal

video recording device (PVR), a software development server, and an e-mail server, which

we refer throughout this section by T3, T4, T5, respectively. Table 6.3 gives a summary

of the overall characteristics such as request mean interarrival time, request mean service

time, utilization, as well as the mean and the coefficient of variation (CV) of idle intervals

in the trace.

169

Trace Mean Mean Uti! Mean cv Burty

Arrival Service (%) Idle Idle

T3 62.85 10.68 17.4 91.98 0.98 No

T4 96.72 4.20 4.2 236.08 6.41 No

T5 252.29 5.59 2.2 760.84 3.79 Yes

Table 6.3: Overall characteristics of traces used in our evaluation. The measurement unit is ms.

The focus of this section is the evaluation of two background activities. Scrubbing is an

infinite background process because upon completion of one entire disk scan, commonly a

new one starts. The parity updates depend on the WRITE user traffic and are considered

a finite background process. Table 6.4 gives the specific parameters of scrubbing and

intra-disk parity update used in our simulations.

Scrubbing Intra-disk Parity Update

Tra Short BG Short BG Short BG Read BG Write BG Write

-ce Number Mean Service Number Mean Service Mean Service Portion (%)

T3 100,000 6.0 2 10.0 5.0 40

T4 100,000 6.0 2 10.0 5.0 1; 10; 50; 90

T5 100,000 6.0 2 10.0 5.0 50

Table 6.4: Background activities characteristics. The unit of measurement is ms.

Scrubbing is abstracted as a long background job that is preemptive at the level of

a single disk request. Hence, it is assumed that an entire scan of a 40GB disk, i.e., one

completed scrubbing, requires 100,000 disk lOs each scanning approximately 1000 sectors.

Assuming disk capacities of 40GB might be conservative given that modern disk drives

reach capacities of up to 500GB. Nonetheless, the analysis presented in this section still

170

holds for larger disks as well. One single disk scan request as part of the scrubbing job

is assumed to take in average as much time as a READ disk request. In our simulation,

this is drawn from an exponential distribution with mean 6 ms (similarly to the mean

service time of traces in Table 6.3). The time to serve 100,000 disk lOs as part of a single

scrubbing corresponds the average scrubbing time.

Parity updates are abstracted as short background jobs. To update the parity of a

segment of sectors, the following steps are taken. First the entire set of sectors should

be read, then the parity must be calculated, and finally the new parity is written on the

disk. Therefore, each parity update consists of one READ (assumed to take in average 10

ms) and one WRITE (assumed to take in average 5 ms), both exponentially distributed.

The preemption level of parity updates is at the disk request level. If a parity update is

preempted after the READ, then the system maintains no memory of the work done and

the update has to restart again during another idle period. Parity updates are served in

a first-come-first-served (FCFS) fashion.

Scrubbing and intra-disk parity update processes are scheduled using the three policies

outlined in the beginning of this section. All three policies degrade the performance of

user traffic up to 7% (this is a pre-set system parameter) by restricting the amount of

background jobs served. Their efficiency regarding the performance of timely completion of

background tasks (i.e., scrubbing or parity updates) depends on the variability of idle times

in traces T3, T4, and T5. The following sections further elaborate on policy sensitivity

with respect to idle time variability.

171

6.4.3 Infinite Background Activities: Scrubbing

Background media scans can be abstracted as an infinite background process that detects

any possible media errors on disk drives and thus prevents any data loss caused by the

latent sector errors. As a preventive feature, scrubbing is completed in background and

can be conducted by the storage system or the disk drive itself. Based on the system

specifications described in Section 6.4.2, we evaluate the effectiveness of scrubbing aiming

at degrading performance of user traffic by at most 7%.

Table 6.5 presents the number of completed media scans, their average scrubbing time,

and the overall system utilization for the three traces of Table 6.3, when the body and the

tail of idle times are utilized. Consistently with results reported in Section 6.3, for lowly

variable idle times (i.e., trace T3) utilizing the body rather than the tail of idle times

results in faster scrubbing and better overall system utilization. In particular, scrubbing

under the body-based policy is twice faster than under the tail-based policy (see first row

of Table 6.5). For T4 that has highly variable idle times, the tail-based rather than the

body-based policy yields faster scrubbing and better system utilization (i.e., at least an

order of magnitude difference, see second row of Table 6.5). Finally, if idle times are in

addition bursty (i.e., trace T5), then utilizing the tail of idle times and predicting long

idle periods performs better than utilizing only the tail of idle times. Utilizing burstiness

to benefit scrubbing scheduling results in a five-fold improvement in mean scrubbing time.

The body-based policy is not evaluated for T5 because the results of T4 establish that tail

rather than body of idle times should be utilized if idle times have high CV.

In addition to the average performance presented in Table 6.5, we also evaluate the

distribution of scrubbing time. The distribution is built with a sample space of completed

172

Tra Policy Completed Mean Scrubbing System

-ce Scrubbing Time (s) Uti! (%)

T3 body 6 3,617.8 33.1

tail 4 6,484.7 26.8

T4 body 4 11,519.6 9.7

tail 63 726.4 83.1

T5 tail 20 4,476.3 14.3

tail+ bursty 94 972.9 62.6

Table 6.5: Scrubbing performance for traces T3, T4, and T5 under body-based, tail-based, and
tail+bursty-based idle time managing policies.

(a) T3: low CV (b) T4 high CV (c) TS: high CV & bursty

100 100 100
90 90 90
80 i 80 80
70 70 70

~ 60 ~ 60 g 60
50 ~

50 ' so '- '-
"" 40 'E 40 'E 40 " body-based - body-based - tail-based -

30 30 30
20 tail-based ..

20 :
tail-based

20 tail+ bursty-based

10 ---;--'
10' 10

0 0 0
0 0 5 10 15 20 25 30 35 40 0 I 2 3 4 5 6 7 8 9 10

scrubbing time (1000s) scrubbing rime (1000s) scrubbing time (1000s)

Figure 6.11: CDF of scrubbing time distribution for traces (a) T3, (b) T4, and (c) T5.

scrubbing as large as 500 by replaying the traces several times. Figure 6.11 shows the

cumulative distribution function (CDF) of scrubbing time for traces T3, T4, and T5. For

all three traces, the best performing scheduling policy for scrubbing identified in Table 6.5

achieves the shortest scrubbing distribution tail. However, the differences between the

scrubbing scheduling policies are more drastic when it comes to the distributions than the

average values. For example, for trace T3 (see Figure 6.ll(a)), almost 100% of scrubbings

have scrubbing times less than 3831.9 seconds under the body-based policy while a twice

larger scrubbing time is achieved only for 1.4% of scrubbings under the tail-based policy.

173

Similarly for trace T4 (see Figure 6.ll(b)), the tail of scrubbing time under the tail-based

policy is about 7.5 times shorter than under the body-based policy. Exploiting burstiness

with the tail+bursty-based policy, as shown in Figure 6.11(c), further reduces the tail of

scrubbing time distribution.

The goal of scrubbing as a preventive background feature is to improve the MTTDL.

The average time of scrubbing, given in Table 6.5, allows for MTTDL calculation when

scrubbing is not running and when it is running, using Eqs.(6.3) and (6.4), respectively.

The mean detection time of sector errors (MDL) in Eq.(6.4) is set to be equal to 0.5 x

average scrubbing time. Moreover, compared to detection times, the recovery times of

latent sector errors are insignificant (i.e., MRL « MDL). We thus assume MRL ~ 0 in

Eq.(6.4). Table 6.6 gives the improvements in MTTDL when scrubbing is running over the

case when it is not running. The overall improvement of MTTDL because of scrubbing is 4

orders of magnitude. The differences in the MTTDL improvement between the scheduling

policies that are used to manage the idle times are between 20% and 40%.

T3 T4 T5

body tail body tail tail tail+bursty

4 3 3 5 4 5

x104 x104 x104 x104 x104 x104

Table 6.6: MTTDL improvement via scrubbing.

6.4.4 Finite Background Activities: Intra-disk Parity Update

Intra-disk data redundancy requires maintaining updated parity that becomes dirty if

the corresponding data is modified [23, 45]. This extra amount of work required to

174

maintain updated parity consists of an extra READ and an extra WRITE for each user

issued WRITE. Completing this work instantaneously upon completion of each user-issued

WRITE is called instantaneous parity (IP) update. Naturally, IP causes degradation in

user performance but provides the highest level of data reliability.

Here, we show that it is possible to complete the parity updates as a background job

scheduled in idle intervals in a timely fashion while keeping user performance slowdown

less than a predefined target. In the experiments presented here acceptable user slowdown

is set to 7% only. Delays in parity updates reduce the effect of intra-disk parity on data

reliability. We quantify how delayed intra-disk parity affects data reliability for the three

idle scheduling techniques.

We present results for traces T3 and T4. Traces T4 and T5 yield similar results

because both have high variability in idle times and because for the finite work generated

by parity updates exploiting burstiness does not yield any further improvement. The

following three metrics are monitored: (a) the ratio of completed parity updates to the

total trace WRITE traffic, (b) the average time of parity updates which is the time interval

between the completion of a user-issued WRITE operation and the update of the parity,

and (c) the overall (foreground+ background) system utilization.

Parity Updates under Trace T3

Table 6.7 gives the parity update results under the body-based and tail-based idle time

scheduling policies. Trace T3 has nearly 40% user WRITEs. Different from the behavior

under infinite background activities, the tail-based rather than the body-based idle time

scheduling performs best overall. Most importantly, the tail-based policy updates parities

175

Policy Completed Ratio (%) Mean Update Time (ms) System Util (%)

body 38.6 180,629.0 24.7

tail 41.6 3,321.0 22.9

Table 6. 7: Parity update performance for trace T3 (low variability).

almost by two orders of magnitude faster than the body-based policy. Quick parity update

times are particularly desirable because the average parity update time is the metric that

affects data reliability. Note that system utilization is higher under the body-based than

under the tail-based policy. Under the body-based policy, there are more cases where a

user request preempts a parity update, which unfortunately results in wasted work. Under

the tail-based policy, only long idle intervals are used to update the finite parities which

results in only few of them being preempted by user traffic.

Figure 6.12 shows the distribution of the parity update times. While about 68% of

parity updates under the body-based policy are faster than under the tail-based policy,

the tail of parity update times is longer than under the tail-based policy, which dominates

the average parity update time and causes a two orders of magnitude advantage for the

average tail-based performance.

100
90
80
70

~ 60

4- 50
'0

40 <.>

30
20
)0

0
0.01

body-based -
tail-based

0 l JO JOO !000 !0000

parity update time (s)

Figure 6.12: CDF of parity updates time for trace T3 (low variability).

176

Because parity updates are postponed in idle periods, some user WRITEs may find

dirty parity in their corresponding parity segment. Updating parity when multiple WRITEs

have occurred in the parity segment is more prone to errors than when only one WRITE

has been completed. Table 6.8 gives the probabilities that by the time a parity is updated,

the corresponding parity segment has been overwritten up to five times by the user. Al-

though the metric depends on parity update times, it also depends on the spatial locality

of the user WRITE workload. Trace T3 does have this characteristic. Results in the table

show that the majority of parity updates (approximately 75%) for both policies occur

when the segment has been written at most twice.

Trace Policy User Issued WRITEs

1 2 3 4 5

T3 body 0.65 0.16 0.04 0.10 0.01

tail 0.44 0.29 0.09 0.12 0.02

Table 6.8: Probabilities of user WRITES in trace T3 (low variability) that find dirty parity.

70.-~----~----~-,

c 60
0 50
~
v 40
1;J
§. 30

0
[

body-based tail-S taii-L

1%(5,000)-

200000

6
";150000
.§
~100000
0.
0

{ 50000

body-based tail-S

10%(50,000) =

~
0
0

i
E
!;l 2
~ I

0 u.-=LL--~LL--LSLU
tail_L body-based tail-S taii-L

50% (250,000) - 90% (450,000) =

Figure 6.13: Performance of parity updates for trace T4 (high variability) and four different user
WRITE traffic, i.e., 1%, 10%, 50% and 90% (numbers in parenthesis indicate the absolute number
of user WRITEs).

177

Parity Updates under Trace T4

User issued WRITE traffic in T4 represents only 1% of the total requests. To experi

ment with traces with more WRITE traffic, we generate three additional traces that have

10%, 50%, and 90% WRITEs, respectively. These traces are generated based on T4, by

probabilistically selecting an entry in the trace to be a READ or a WRITE.

Figure 6.13 presents parity update performance for trace T4 (and its variants) using

the body-based and tail-based policies to schedule work in idle times. Figure 6.13 shows

two different performances for the tail-based policy (marked in the plots as "tail-S" and

"tail-L"). Although both tail-based policies utilize the tail of the idle times, under "tail-S"

the idle wait is (approximately 40%) shorter than under "tail-1''.

Because T4 has highly variable idle times, the tail-based policy outperforms the body

based one. For example, the body-based policy performs at least two to three times

worse than the tail-based policy with respect to the total number of completed parity

updates and the average parity update time. The differences in performance between the

body-based and the tail-based policies increase as the amount of parity updates increases.

Among the tail-based policies, "tail-1" achieves better update time while "tail-S" achieves

better number of completed updates. Note, two tail-based policies perform exactly same

when the amount of parity updates is small (cases with 1% WRITES). Timely updates

are critical for MTTDL, we elaborate more on this later in this subsection.

The overall system utilization in Figure 6.13 is not as high as the 80% utilization level

under scrubbing in Table 6.5 because parity updates represent a finite amount of work.

Similarly to the results of trace T3, if the amount of parity updates is small (cases with

1% and 10% WRITEs), then the body-based policy utilizes the system more than the

178

tail-based policy because of the preempted updates. As the amount of parity updates

increases, the effect of this phenomenon diminishes.

(a) _1% (5,000) (b) 10% (50,000)
100 100
90 90
80 80
70 70

;? 60 l 60
"-' 50 50 ~ ~

"8 40
"0

40 body-based -
u

30 30
20 tail-based

20
10 10

0
0.1 10 100 1000 10000 0.01 0.1 10 100 1000 I e+4 I e+5

parity update time (s) parity update time (s)

(c) 50% (250,000) (d) 90% (450,000)
100 100
90 90
80 80
70 70 body-based -

;? 60 ~ 60 tail I
"-' 50 "-' 50 tail2 ------'- ~ "8 40 u 40

30 30
20 20
10 10

0.1 10 100 1000 le+041e+05 0.1 10 100 1000 I e+041 e+05

parity update time (s) parity update time (s)

Figure 6.14: CDF of parity update time for trace T4 (high variability) and four different user
WRITE traffic, i.e., 1%, 10%, 50% and 90% (numbers in parenthesis indicate the absolute number
of user WRITEs).

Figure 6.14 plots the CDFs of parity update times for all four variants of trace T4.

Consistently with results in Figure 6.13, under the body-based policy, the distribution

has longer tail than under the tail-based policy. The "tail-1" variant has the shortest

tail indicating that the best average performance comes from the policy that results in a

shorter tail of update times. The "tail-1" variant has also the longest idle waiting, which

indicates that it uses the smallest number of idle intervals among all policies evaluated

and has to wait for the very long intervals to arrive. Nevertheless, it results in the shortest

average and distribution tail for update times. As parity updates increase in number, the

differences in the distribution of update times between "tail-S" and "tail-1" decrease.

179

Table 6.9 presents the probabilities that by the time a parity update occurs, up to

five user WRITEs have modified the parity segment for all four variants of trace T4. As

the portion of user WRITEs increases in the trace, the probability of one user WRITE

updates decreases. The body-based policy results are consistently worse than the results

under the tail-based policies. In the best case (i.e., 1% WRITEs) 100% of parity updates

happen when the parity segment has been modified at most twice for both policies.

Trace Policy User Issued WRITEs

1 2 3 4 5

T4 body 0.98 0.02 N/A N/A N/A

(1%) tail 0.99 0.01 N/A N/A N/A

T4 body 0.75 0.17 0.05 0.01 0.01

(10%) tail 0.85 0.12 0.02 0.006 0.001

T4 body 0.53 0.22 0.10 0.05 0.03

(50%) tail 0.65 0.22 0.07 0.03 0.01

T4 body 0.46 0.21 0.11 0.06 0.04

(90%) tail 0.59 0.24 0.08 0.03 0.02

Table 6.9: Probabilities of user WRITES in trace T4 (high variability) that find dirty parity.

MTTDL in Data Redundant Drives

The estimation of MTTDL for disks with intra disk redundancy is based on Eq.(6.3). As

suming that latent sector errors are spatially and temporally correlated, the improvement

in the mean interarrival time of latent sector errors is 0.48 x 102 [23], or equivalently,

180

M £(2) = 0.48 x 102 · M £(1), where M £(1) represents the mean inter arrival time of latent

errors if there is no intra-disk data redundancy, and M £(2) represents the mean interarrival

time of latent errors if there is intra-disk data redundancy.

If instantaneous parity (IP) is supported (i.e., parity updates occur without delay),

then MTTDL is calculated using Eq.(6.3) and M £(2) is used in place of ML, i.e.,

MTTDL = MTTDLM£(2)·

If parity updates are delayed, then Eq.(6.3) is modified as follows:

MTTDL ::::o p·MTTDLM£(1) (6.5)

+(1- p) · MTTDLM£(2),

where p represents the probability that the parity is dirty and MTT D L M £(1) is computed

using Eq.(6.3) and value M £(1) is used forM L. We assume that if the parity is dirty then

latent errors arrive in intervals of M £(1) and that if parity is updated, then errors arrive

in intervals of M £(2). We approximate p as the portion of the disk with dirty parity as

follows:

p :::::0

QLupdate · LengthParity segment
CapacitY Disk

RTupdate · AUpdate · LengthParity segment
CapacitY Disk

(6.6)

where RTupdate is the average parity update time, >-update is the arrival rate of parity

updates and LengthParity segment is the number of sectors in each parity segment. The

181

performance of the policy to schedule background processes during idle intervals deter

mines RTupdate and consequently affects the MTTDL.

Assuming that the disk capacity is 40GB, the relative MTTDL improvement is es

timated for parity updates for trace T3 and the four variants of trace T4. Results are

given in Table 6.10. The improvement attributed to intra-disk parity are only one or

der of magnitude - recall that those attributed to scrubbing are as high as four orders

of magnitude. The important result of Table 6.10 is that there is almost no difference

between the MTTDL improvement achieved via instantaneous parity (IP) updates and

the delayed parity updates evaluated in this subsection, which strongly argues in favor of

delayed intra-disk parity.

Policy T3 T4

1% 10% 50% 90%

body 48.1 48.4 46.6 38.6 35.1

tail-S 48.4 48.4 48.3 48.2 48.2

tail-L N/A 48.4 48.4 48.3 48.3

IP 48.4 48.4 48.4 48.4 48.4

Table 6.10: MTTDL improvement via intra-disk data redundancy.

6.4.5 Multi-feature Case: Scrubbing and Intra-disk Parity

Scrubbing and intra-disk parity can be used simultaneously to improve MTTDL. In this

subsection, we evaluate performance of these two features when running concurrently

in idle times, dubbed as "scrubbing+parity". Because both features run in background

182

without any buffer requirement, their queue capacity is assumed to be infinite. Recall

that scrubbing generates infinite work while parity updates require finite work. Here, we

evaluate a scenario when parity updates have higher priority than scrubbing. This means

that scrubbing is scheduled only if there is no parity update waiting. As in previous

sections, the performance degradation of user traffic is kept below the preset 7% threshold.

Results for Trace T4

(a) Scrubbing (b) Intra-disk Parity
900000 ,-----,------------,-------, 90000 ,------,---------.------,

800000
¥700000
";;' 600000
5 sooooo
gf 400000
2 300000
::l

t;; 200000
100000

0
scrubbing tail-based

¥80000
";;' 70000
.5 60000
; 50000
.g_ 40000

~ 30000
§ 20000
c. 10000

0
merged tail-based parity update tail-based merged tail-based

I% (5,000) ;;;;;;a;;;; 10% (50,000) =
50% (250,000) -90% (450,000) =

Figure 6.15: Average (a) scrubbing and (b) parity update times when running individually and
together.

Initially, we present results for T4. As for this trace, both scrubbing and parity updates

individually perform better using the tail-based policy, Figures 6.15(a) and (b) give the

average scrubbing and parity update times under this policy. For comparison, in each plot

the results of only disk scrubbing and only intra-disk parity are also included. For the

case of scrubbing, all variants of trace T4 perform the same because scrubbing is workload

independent.

Although scrubbing has lower priority than intra-disk parity update, enabling it con-

currently with parity updates does not affect its performance considerably (i.e., only 10%

in the worst case). Similarly, parity updates see minimal change in their performance

183

because they are processes of higher priority than scrubbing. The only exception is the

case with the smallest amount of parity updates (i.e., 1% user WRITEs). As discussed

in Section 6.4.4, the effect of parity updates in user traffic performance is almost zero for

this case and parity update times are the smallest. However, adding the infinite scrubbing

work degrades parity update performance by as much as 3 times.

Figure 6.16 shows overall system utilization, which is dominated by the work done for

scrubbing. Because the work related to parity updates is small, its completion barely adds

to the system utilization. It is scrubbing with its infinite amount of work that keeps the

system continuously utilized.

90

80

~ 70

" 60 0

1%(5,000)- ~

10% (50,000) = f-
50% (250,000) -
90% (450,000) =

·g
50 ~

'§ 40
E 30

* 20 ~
10

0 .-------mil
scrubbing parity update merged

tail-based tail-based tail-based

Figure 6.16: Overall system utilization under scrubbing and parity updates when they run indi
vidually and together.

Results for Trace T3

Here we present results for trace T3 which is characterized by idle periods with low vari-

ability. For this trace, scrubbing performs better using the body-based policy while parity

updates are done more efficiently using the tail-based policy. Thus, in addition to the

body-based and the tail-based policies for the combined background work, we also evalu-

ate another scheduling policy which schedules scrubbing work via the body-based policy

1.6e+07 r-

1.4e+07

g 1.2e+07

·~ le+07
g)' 8e+06
:E 6e+06
.0
~ 4e+06

2e+06

(a) Scrubbing

'---7098
merged

scrubbmg =

-

-l ·l 0 --
body-based tail-based body+tail-based

184

(b) Intra-disk Parity
40000

g 35000
180629

" 30000
§ 25000 188213

" 1;j 20000 med;ed-"0
"- 15000 parity up ate = " 0 10000 ·~
"- 5000

0
body-based tail-based body+tail-based

Figure 6.17: Average time for (a) an entire scrubbing, (b) parity updates for trace T3 (low
variability). The body+tail policy schedules scrubbing via the body-based policy and parity
updates via the tail-based policy

and parity-updates via the tail-based policy. This policy is dubbed "body+tail-based"

policy.

Figure 6.17(a) presents the average time for a complete scrubbing when run individu-

ally (and together) with parity updates. If the body-based policy is used to schedule both

types of background jobs, performance degradation on scrubbing is significant. With the

· body+tail-based variation, each background activity (i.e., scrubbing or parity update) is

scheduled using the policy under which it performs best when running individually. Parity

updates, because they have higher priority than scrubbing, are not penalized as much as

scrubbing (see Figure 6.17(b)). Furthermore, parity updates perform significantly bet-

ter if they are scheduled using the tail-based policy, independently of how scrubbing is

scheduled.

Figure 6.18 presents system utilization for trace T3. Results are in agreement with

those shown in Figure 6.17, the body+tail-based policy utilizes best the entire system

providing room for both scrubbing and parity updates to perform similar to their best

individual performance.

35

:? 30

" 25
0
·~

20 ,.g
'5 15
E
~ 10
1:;-

0
body-based tail-based body+tail-based

merged - scrubbing = parity update =

Figure 6.18: Overall system utilization

MTTDL in Data Redundant Drives

185

We use Eq.(6.5) to estimate the MTTDL improvement when both scrubbing and intra-

disk parity are enabled. Differently from the MTTDL estimation in Section 6.4.4, the

MTTDLM£(1) and MTTDLM£(2) in Eq.(6.5) are computed using Eq.(6.4). The average

time for a complete disk scrubbing when it runs concurrently with parity updates is used

in Eq.(6.4) to estimate both MTTDLM£(1) and MTTDLM£(2), i.e., ML(I) is set to half

of average scrubbing time and M L(2) = 0.48 x 102 · M L(l). Also assuming MRL :::::: 0. The

parameter pin Eq.(6.5) is estimated using Eq.(6.6) and the average parity update time

when it runs concurrently with scrubbing. Results are presented in Table 6.11. For trace

T3 and four variants of trace T4, the MTTDL improvement attributed to scrubbing and

intra-disk parity are as high as 7 and 8 orders of magnitude, respectively. Consistently with

the results shown in Figure 6.17, the body+tail-based policy achieves better improvement

in the MTTDL than both the body-based and the tail-based policies.

186

Policy T3 T4

1% 10% 50% 90%

body 1.8 N/A N/A N/A N/A

xl07

tail 6.3 1.12 1.09 1.07 1.04

xl07 x108 xl08 xl08 x108

body+ 7.1 N/A N/A N/A N/A

tail x107

Table 6.11: MTTDL improvement via scrubbing and intra-disk parity.

6.5 Background Schedulability Algorithm

In this section, we define a general schedulability framework to determine when and for how

long the system can serve background jobs during idle times. This framework is generic

yet adaptable to system dynamics and it works consistently well under a broad variety

of system conditions and background demands, dealing effectively with the challenging

problem of prescribed solutions that cannot possibly apply in every environment.

6.5.1 Algorithmic Framework

The target of this framework is to determine the length of the idle wait period I and the

length of a background busy period T within an idle interval. As a result, the schedulability

of background work is determined from the pair of parameters I and T, as depicted in

Figure 6.19.

Depending on the length of the idle intervals and the amount of background work

187

(a) time

(b) llllllllllllllllllr,·~~~~~~~~~ time

FG Idle Time W

(c) ~I •b;~ 11111111111111111111 l-'---------;=-oo.--=--~·1111111111111111111 ti~e
FG Idle Time

[J]]]] FG Busy D FG Idle Time ~ BG Busy ll!ll FG delay

Figure 6.19: Three cases of idleness utilization: (a) no BG job are served in an idle interval
shorter than /; (b) BG jobs are served and FG jobs are delayed in an idle interval longer than I
and shorter than (I+ T); (c) BG jobs are served without delaying FG ones for idle intervals longer
than (I+ T).

served, foreground jobs may get delayed. We therefore classify the idle intervals into three

categories:

(a) Idle intervals that do not serve any background jobs because they are shorter than

I (see Figure 6.19(a));

(b) Idle intervals that serve background jobs, but experience a foreground arrival during

the execution of background work, because their length is between I and (I+ T). In this

situation, the background job that is in service continues its service to completion, but

the system stops serving additional background jobs even if T has not elapsed yet (see

Figure 6.19(b));

(c) Idle intervals that serve background jobs forT units of time and do not experience

any foreground arrival in the meantime, because they are longer than (I+ T). After

serving background work for T units of time, the system remains idle without serving

additional background work until a foreground job arrives (see Figure 6.19(c)).

188

Among all idle intervals, those of the (b) category are of imminent importance, because

they can cause foreground performance degradation. As our goal is to contain foreground

delays within targets, we especially focus on this case.

Data Structure and Parameters

The framework that we propose here determines the (I, T) pair using the length of idle

intervals that are obtained via system monitoring. The empirical distribution of idle

intervals is maintained in the form of a cumulative data histogram (CDH) which consists

of a compact list of (tj, Cj) pairs. The finite list of the CDH (tj, Cj) pairs indexed by the

histogram bin j, where tj is the smallest length of idle intervals falling on the ;th histogram

bin, and Cj is the corresponding empirical cumulative probability of occurrence Cj =

Pr(idleinterval <= tj)· The empirical distribution of idle times incorporates foreground

workload demands into the decision making without including complex processes, such as

the foreground arrival and service processes.

Additional metrics necessary to determine the (I, T) pair are also obtained via system

monitoring and include:

- 5BG, the average service demands of background jobs,

- RTFG, the average foreground response time without background jobs, which is

estimated by monitoring the response times of foreground jobs that are in the busy periods

without any background-caused delay, i.e., the proceeding idle interval falls in the (a) and

(c) categories of idle intervals (see Figure 6.19), and

- W, the average wait time that the foreground requests experience due to the execution

of background jobs, which is estimated by recording the time a foreground job arrives in

189

a system idle of foreground jobs and the time it actually gets service (see Figure 6.19(b)).

The only user level input in our framework is the degradation target D in foreground

performance. Yet, we stress that D may not be explicitly provided as a user input. For

example, the user input may be in the form of the required amount of background work to

be completed. In that case, we find the (I, T) pair that satisfies the user input, i.e., com

pletes the required background work, with the smallest possible foreground degradation

target D.

The algorithmic framework first estimates the portion of idle intervals that delay fore

ground requests, i.e., the idle intervals that fall into the (b) category (see Figure 6.19).

This portion of idle intervals is denoted by E and its estimation is central to our algorith

mic framework. Once E is estimated, the (I, T) pair is derived based on the histogram of

idle interval lengths.

Estimation of E

We define E to be the portion of idle intervals that are utilized by background work which

delays foreground jobs. Once a foreground job is delayed with the amount of time W, the

entire set of foreground jobs belonging in the same foreground busy period will be delayed

by the same amount W. If we assume that all foreground busy periods have the same

number of foreground jobs, then E approximates the probability that a foreground job

experiences a background-caused delay. Hence, the average response time of foreground

jobs RT would be the expected foreground-only response time RTFG, plus the average

additional delay W attributed to the background work, which occurs only E percent of

190

the time,

RT = RTFG + E · W. (6.7)

Our goal here is to express E via the monitored system metrics RTFG, W, and the

degradation target D. We relate D with the expected foreground response time RT and

the average foreground-only response time RTFG as follows:

RT- RTFG
D = --=R=-=T=-F""Gr;---

Combining Eq.(6.7) with Eq.(6.8), we get

RTFG + E · W - RTFG E · W
D- ---- RTFG - RTFG,

which can be re-written to express E as

D · RTFG
E=--w--

(6.8)

(6.9)

(6.10)

Because we use the degradation target D in foreground performance in Eq.(6.10),

the estimated E ensures that the background-caused delay does not exceed D and does

not violate foreground performance targets. The estimation of E is critical, because it

represents the mapping of the user input Don to our main data structure, i.e., the CDH

of idle interval lengths, and facilitates the estimation of the (I, T) pair. The accuracy of

E depends on the accuracy of the monitored values for RTFG and W. In our evaluation,

we show that even if we use average monitored estimates, the final output is consistently

satisfactory.

191

Estimation of (I, T)

We use the parameter E estimated via Eq.(6.10) and the histogram (CDH) of idle times

to derive the (I, T) pair. For this, we scan the sorted list of the CDH (t1, C1) pairs, for

intervals of length E. In practice, there may not exist an interval with exact length E.

and Eisa small number (e.g., 0.05). Each such (t1, tj) pair represents one choice for (I, T),

which we index by i and denote as (Ji = tj, Ti = tj- t1). See Figure 6.20 for a high level

depiction. The result of the entire scanning process is a set of (h Ti) pairs.

),----------------------------.
c.···································--------------] !E
CJ - --------·--·---

::r:: CJ·
0
u

0
lj tj· tj

~ I, T;

I,

idle time

T,

Figure 6.20: Transition from E to (h Ti) in a cumulative data histogram. Any interval of length
E in the y-axis is mapped uniquely onto an interval in the x-axis described by the pair (I;, Ti).
Because E defines multiple intervals in they-axis (between 0 and 1), multiple (h T;) pairs exist.

Avoiding background starvation If in the set of all (h Ti) pairs there is no interval Ti

which is at least sBG long, then no background job can be served and background jobs

may experience starvation. To avoid starvation, we substitute E with a larger E' value

and estimate a new set of (h Ti) pairs for E' such that at least one of the new Ti ~ sBG.

To prevent a<;lditional delays in foreground performance after substituting E with E',

the background jobs are served with probability E / E' in any eligible idle interval (i.e.,

192

interval longer than the idle wait Ii)· The transition from E to E' is conservative with

small increments (e.g., 0.05) in order to delimit foreground degradation and maintain it

as close to its degradation target D as possible.

Selecting among the (h Ti) pairs Because every (h Ti) pair is chosen such that only E

percent of idle intervals delay foreground jobs, the foreground performance target is met

by any of the (Ii, Ti) pairs. The final (I, T) pair is selected such that as much as possible

outstanding background work is served as soon as possible.

Every (h Ti) can serve in average Bi amount of background work measured in units

of time. Note that measuring work in units of time or number of jobs is qualitatively

equivalent, because one is derived from the other using only the average background

service time S 80 . We estimate Bi as follows:

rT,jS 80 l
Bi = T,. Pr(idle > (I.;+ Ti)) + L r. 5 30

. (Cr- Cr_J), (6.11)
·r=l

where Pr(idle > (Ii + Ti)) is the probability that an idle interval is greater than (Ii + Ti)

and Co is the probability that an idle interval is less than h Idle intervals longer than

(Ii+Ti) can serve Ti background work. Thus, the first term in Eq.(6.11) gives the amount

of background work completed in these idle intervals. The second summation term gives

the amount of background work completed in idle intervals longer than Ii but shorter than

(Ii + Ti)· In such idle intervals, less than Ti background work will be served. Figure 6.21

demonstrates the estimation of the background work to be completed in these idle intervals.

The rth subinterval of length S 80 has probability Cr- Cr-l and serves r. S80 background

work, see Figure 6.21. An idle interval shorter than Ii does not serve any background work,

thus it is not represented in Eq.(6.11).

1,-.---------~----------------,
C 3 __ _J~r_(_i_d)~_~_S':_~L! ________ ~----~
Cz · ·

CI

, SBG .
~

QL-~----~----~--~----------~

idle time I
~~-------T; ______ .._

193

Figure 6.21: Estimation of the BG work B; that completes during idle intervals if (I;, T;) is the
schedulability pair.

Each (Ii, Ti) is augmented by the corresponding Bi and the selection of the final (I, T)

is done according to the type and amount of background work available in the system.

Estimating the amount of available background work B is system/feature dependent.

Media scans may run continuously [8] and the amount of work associated to them is

infinite, i.e., B = oo.

Unlike background media scans, the work associated with the majority of background

features in storage systems depends on the foreground workload. For example, WRITE

verification [79] and parity updates [23], generate background work that depends linearly

on the amount of WRITE foreground traffic. In these cases, the monitored foreground

traffic is used to estimate the amount of background work. For example, if an average of

M WRITEs arrive in every foreground busy period, then the amount of background work

associated with WRITE verification, where for each foreground WRITE, a background

READ is generated, is B = M · sBG in average. Also, the amount of background work

associated with parity updates, where for each foreground WRITE, a background READ

and a background WRITE are generated, is B = 2M · SBG.

Once B is estimated, the final pair (I, T) is selected such that I is the smallest among

194

all possible (h T;) pairs, where B; > B. The condition to select the shortest idle wait I;

enables the fastest possible background response time. If B = oo, then the final (I, T) is

the one with the maximum estimated B;.

6.5.2 Analysis and Evaluation

We develop a trace-driven discrete event simulation model for the evaluation. Because

the focus of the methodology is to determine when to start and stop serving background

jobs, our simulation aims at correctly modeling the interaction between foreground and

background busy periods rather than the specifics of scheduling each job inside a busy

period.

In our evaluation, we use a set of disk-level traces measured in a number of personal

and enterprise-level systems. We experimented with the entire set of traces, but to keep

the presentation concise, we present here detailed results on traces T3 and T6, which we

considered challenging and representative. Table 6.12 summarizes the main characteristics

of these two traces. Trace T3 is selected because it is the trace with the highest utilization

and idle intervals with low variability. Trace T6 is selected because it has the highest

utilization among traces with high variability in idle intervals. We also note that there is

significant burstiness in the idle times of T6.

Trace Mean Mean Uti! Mean cv Bursty

Arrival Service (%) Idle Idle

T3 62.85 10.68 17.4 91.98 ms 0.98 No

T6 69.20 5.74 8.3 30.68 ms 6.16 Yes

Table 6.12: Overall characteristics of traces used in our evaluation. The measurement unit isms.

195

Figure 6.22 gives the empirical cumulative data histograms (CDHs) of idle interval

lengths for traces T3 and T6. The tail of the distribution of the idle interval lengths for

T6 is longer than for T3, which implies that trace T6 has many short idle intervals and

some very long ones, while in trace T3 most idle intervals are of similar lengths.

0.8

::r:: 0.6
Cl
u 0.4

0.2

0
0 400

T3 (low CV) -
T6 (high CV) ·

800 1200
Idle Period Length (ms)

Figure 6.22: CDH of idle times for traces T3 and T6.

We evaluate the performance of our methodology under different amount of background

work. Specifically, we experiment with background work that is 10%, 40%, and 90% of

the foreground work, as well as the extreme case of having "infinite" background work in

the system. While foreground busy and idle periods are determined by the traces, in our

model we set the service time of background jobs to be exponentially distributed with a

mean of 6.0 ms, which is similar to the mean service time of foreground jobs in trace T3.

Same as in the previous sections, the acceptable slowdown of foreground jobs due to

background jobs is set to 7%. We have conducted experiments with various values of

D and results are qualitatively similar to those reported here. The metrics of interests

are: (a) the average relative delay of foreground jobs due to background work, defined as

(RT- RTF0)jRTF0 , and (b) the number of completed background jobs.

196

System Performance

Table 6.13 shows the results for the four levels of background work. We observe that

in most scenarios the relative foreground delay is well below the degradation target D.

Under trace T6, the system serves significantly more background jobs than under trace

T3, because the utilization of trace T3 is twice as high as the utilization of trace T6.

If the background work is infinite, then the results in Table 6.13 show that trace T3 can

accommodate background work that is twice as much as the foreground one and that trace

T6 accommodates as much as six times more background work than foreground one.

Trace BG Target FG Delay Completed BG

. Work (Target D=7%) Reqs. Work

10% 1.4% 3,861 10%

T3 40% 2.0% 15,514 40%

90% 3.9% 34,953 90%

infinite 7.0% 74,234 190%

10% 3.2% 132,362 10%

T6 40% 6.8% 528,287 40%

90% 4.7% 1,190,208 90%

infinite 3.9% 7,862,813 610%

Table 6.13: FG delay, completed BG requests, and completed BG work relative to the incoming
FG work.

0 5 10 15 20 25 30 35 40

I (ms)

(d) Completed BG Work

< 1.8xFG 20

0 5 10 15 20 25 30 35 40 50

I (ms)

II. BG Work= 40% ofFG
(b) FG Delay

' 2-4%
'/

o (1=8,T=27)

<2%

100

90

0 3 5 10 15 20 25 30 35 40 50

I (ms)

(e) Completed BG Work

....,
.m;; 3
:¥:• ~

0 3 5 10 15 20 25 30 35 40 50

I (ms)

197

Figure 6.23: Trace T3. FG delay and completed BG work for any (I, T) pair. Diamond shapes
mark our solution. Square and circle shapes mark common practices.

Optimality of the (I, T) Pair

To evaluate the effectiveness of our methodology in utilizing idleness, we perform a state

space exploration, i.e., estimating the foreground and background performance for any

(I, T) pairs. Figures 6.23 and 6.24 give the results of the state space exploration analysis

for traces T3 and T6, respectively. We evaluate the cases of infinite background work in

the first column, and background work that is 40% of the arriving foreground work in

the second column. The first row in Figures 6.23 and 6.24 shows the background-caused

delay on foreground performance and the second row presents the completed background

work. In each plot, we mark the pair generated by our approach with a diamond. For

198

comparison with common practices [26], we also mark with a square the results for the pair

(I = 0, T = oo), i.e., no idle wait, and with a circle the results for the pair (I = 6, T = oo),

i.e., fixed idle wait equal to the average background service demand.

I. Infinite BG Work
(a) FG Delay

5 15 115 147 165 215 315 365 465

I (ms)

(d) Completed BG Work

0 5 15 115 147 165 215 315 365

I (ms)

II. BG Work= 40% ofFG
(b) FG Delay

2000

1000

500

200

100 -I

60 3
60

~

40

20

=-.-~~~~---+7
0 5 10 1il 30 60 90 120 150 200

I (ms)

(e) Completed BG Work

0 5 10 14 30 60 90 120 150 200

I (ms)

Figure 6.24: Trace T6. FG delay and completed-BG work for any (I, T) pair. Diamond shapes
mark our solution. Square and circle shapes mark common practices.

Figures 6.23 and 6.24 clearly indicate that the pairs representing common practices

provide a fixed solution independent of the effect they have on foreground or background

performance (see the fixed position of the circle and square shapes in all plots). The pair

(I = 0, T = oo) significantly degrades foreground performance, by more than 10% for both

traces, and confirms that idle wait is necessary in scheduling background work. With an

idle wait equal to the average background service demand, the pair (I = 6, T = oo) keeps

the background-caused delays low for several scenarios, in particular for trace T3 with low

199

variability in idle periods. However, it fails to meet performance targets if the amount of

background work is large (e.g., the infinite case) or if idle intervals are variable (e.g., trace

T6).

Figures 6.23 and Figures 6.24 indicate that there is a set of pairs (I, T) that would

satisfy the degradation target D = 7%. For example, plots (a) and (d) in Figure 6.23,

indicate that the idle wait I should be at least 5 ms and the length of background busy

period T should be at most 40 ms. However, having T shorter than 25-30 ms or I larger

than 20 ms would result in reduced levels of completed background work.

The pair (I, T) estimated using our methodology is consistently among the ideal choices

that strike a good balance between the completed background work and foreground per

formance. Our results confirm that it is necessary not only to idle wait but also to limit

the amount of background work completed in every idle interval (i.e., have T < oo) to

sustain foreground performance at desired levels. Furthermore, controlling foreground per

formance by only changing the idle wait length I (as in common practices) would result

in background work starvation.

6.6 Chapter Summary

In this chapter, we proposed some new schemes to efficiently schedule non-preemptive

background jobs during idle intervals, such that two conflicting goals are met: (1) degrade

foreground performance by no more than a predefined target, and (2) avoid background

work starvation. We show that monitoring the stochastic characteristics of idle times is

important, which allows us to incorporate accurately the complex interaction between

the arrival and service processes of foreground traffic. We also identify burstiness as a

200

source of additional information to improve idle time utilization. The analysis shows that

if burstiness exists in the observed idle interval lengths, then it can be used to predict the

near future. Predicting that the next idle interval is long given that the current interval is

also long is of particular interest, because scheduling of background jobs can become more

aggressive. As a result, more background work completes with less delays in foreground

jobs and tremendously shorter tails in the foreground response time distribution.

The proposed background scheduling schemes are exploited to evaluate the perfor

mance of two data loss prevention techniques, i.e., disk scrubbing and intra-disk data

redundancy. Scrubbing (representing infinite amount of background work) and parity

updates related to intra-disk redundancy (representing finite amount of background work)

can even be scheduled simultaneously and still meet user performance targets. Each of

the evaluated background features improves data reliability by orders of magnitude. The

enhancement on data reliability when both background activities are scheduled in the

system is higher than the linear combination of their individual benefits.

Chapter 7

Conclusions and Future Work

The main contribution of this dissertation is on the design of effective systems using the

knowledge of burstiness in workloads. The new techniques and tools that are developed

in this dissertation are summarized as follows.

• For performance prediction, we have developed new effective and robust capacity

planning methods that model burstiness in the arrival and/or service process of

multi-tier enterprise systems.

• For general scheduling, we have designed two new scheduling policies for systems

with bursty workloads, which can achieve good estimates of service times of upcom

ing requests and improve system performance by selectively delaying requests.

• For idleness management, we have proposed a model to evaluate the performance

trade-offs of foreground and background work under bursty arrivals and develop new

background scheduling algorithms to determine the schedulability of background

work during idle times in storage systems.

201

202

We have shown that burstiness is extremely important in performance models and system

design, as it has a dramatic impact on system performance. The focus of this dissertation

focus is on the development and the design of new techniques and tools for performance

prediction, scheduling, and resource allocation that leverage on knowledge about the future

workload that can be derived if burstiness exists.

We develop a new capacity planning model to capture burstiness in the service pro

cess of multi-tier enterprise systems. Using the index of dispersion together with other

measurements that reflect the estimated mean and the 95th percentile of service times,

a Markov-modulated process is derived that captures well both burstiness and variability

of the service process. The model parameterization is done by inferring essential process

information from inexact and limited measurements in a real system. Experimental re

sults demonstrate that this parameterized model can accurately predict performance in

systems even in the very difficult case where there is persistent bottleneck switch among

various servers.

This dissertation also proposes a simple and robust approach that injects burstiness

into the arrival process of the TPC-W benchmark. The revised TPC-W benchmark can

thus be practically used for assessing the effectiveness of mechanisms that counteract

burstiness. This new approach incorporates different intensities of burstiness into the

arrival flows via the index of dispersion. Detailed experimentation in a real testbed proves

the effectiveness and robustness of the proposed approach.

This dissertation also exploits the knowledge of burstiness in scheduling, another im

portant component in system design. We illustrate that the information of the future

workload, e.g., service demands of upcoming requests, can be derived from its burstiness

203

profile. By taking advantage of this derived information, two new measurement-based

scheduling policies, called SWAP and ALoe, are designed to maintain high availability

by delaying those requests that contribute to burstiness. Using simulations, we show that

SWAP consistently improves performance and availability compared to the first-come

first-served (FeFS) scheduling and is able to effectively approximate the shortest job first

(SJF) scheduling. We also show that ALoe, as an extension of SWAP, adaptively con

trols system load to meet pre-defined quality-of-service levels and significantly improves

system performance by infinitely delaying (i.e., denying service) only a small fraction of

requests.

For storage systems, the completion of background work is critical for system oper

ation. Yet, scheduling non-preemptive background jobs should not degrade foreground

performance more than predefined targets. This dissertation presents a new background

scheduling scheme which can determine when and for how long idle times can be used for

serving background jobs, without violating predefined performance targets of foreground

jobs. We also show that burstiness in idle times provides additional information to im

prove idle time utilization with less degradation on foreground performance. An extensive

set of trace-driven simulation results proves that our approach is effective and robust in

a wide range of system conditions. Furthermore, we demonstrate that this new approach

can successfully schedule two maintenance features, namely disk scrubbing and intra-disk

data redundancy, without affecting foreground task performance, while improving system

reliability.

204

7.1 Future Work

There are several extensions to the results presented in this dissertation that are subject

of future work.

• Resource Allocation Mechanisms: Supporting service level agreement (SLA)

guarantees for bursty arrivals is a challenging task for resource allocation mecha

nisms, as they should understand and tune system parameters under bursty traffic

scenarios. Burstiness may impact in an unexpected way the performance of different

resource allocation mechanisms, e.g., the Session-based admission control (SBAC)

mechanism [18]. We will improve SBAC via considering burstiness in both arrival

streams and service demands and consequently counteracting its performance effect.

We expect that the new version of SBAC can prevent the overload conditions and

support the SLAs guarantees under bursty workload conditions. We will also design

a new resource allocation algorithm for autonomic system management when there

is burstiness in the arrival stream. By online monitoring the arrival flows and mea

suring the corresponding index of dispersion, the algorithm autonomically detects

the burst of client requests and then appropriately allocates system resources based

on this information. For instance, if a burst of arrivals is detected, then the system

may add more servers at the front tier for providing adequate service for all requests.

Also, the system may shut off some servers for energy conservation when less client

requests are coming during the next monitoring period. We expect that this new

algorithm can not only support the SLAs guarantees but also save power, especially

in the case of bursty arrivals.

205

• Refined Background Job Scheduling Schemes: The scheduling schemes for

background jobs bases its scheduling decisions on the empirical distribution of idle

times, as well as on the mean of service times of background jobs. However, we

have observed in the preliminary simulations that the effectiveness of the scheme

diminishes quickly when the service times of background jobs are not exponentially

distributed. This indicates that monitoring the mean of background jobs is not

enough. One future direction on background scheduling is to improve the algorithm

accuracy by exploring how to incorporate more statistical characteristics (i.e., not

only the mean) of the service process of background jobs. Another possible direction

for future work on background scheduling scheme is to extend the current one to

support a wider range of background work. In this dissertation, the background

tasks are treated strictly with lower priority than foreground ones. For example,

background media scans [84] are always of lower priority. However, background

activities in storage systems [33] may not always have lower priority than foreground

ones. Examples of such background activities include disk cache flushing and RAID

rebuild. Such activities can be deferred in background, but not indefinitely, i.e.,

there is a deadline associated with their completion. For example, flushing the disk

cache is commonly a background activity, but it puts foreground jobs on wait if the

cache is full and must be flushed right away. We will work to refine the background

scheduling schemes to account for the above conditions.

• Intelligent Power /Energy Management: Efficient and intelligent power con

trol is one of the most crucial but challenging research issues in computer systems.

For example, reducing energy consumption is an important issue for a data center.

206

However, the storage subsystem, among the various components of a data center,

consumes significant amounts of energy. Even worse, the fraction of energy consump

tion tends to increase as storage requirements rise. We will deploy the background

job scheduling scheme to evaluate in-depth specific system architectures and fea

tures, e.g., effectively power-off disks in a storage system with the goal of reducing

power I energy consumption. In storage systems, a tradeoff exists between disk en

ergy conservation and performance penalty because it is not instantaneous to bring

a disk up to the active mode when a new request arrives and thus causes some

amount of delay on the upcoming requests. Multi-level controls in the idle mode,

such as not engaging disk heads or spinning down disks, may conserve more disk

energy at the cost of more performance penalties on disk requests. Consequently, we

will develop intelligent power control techniques to select an optimal idle mode level,

aiming at well balancing the tradeoff between disk energy conservation and perfor

mance penalty. In addition, this dissertation has found that idle times in enterprise

storage systems are sometimes bursty. Therefore, we will also use the knowledge of

burstiness, as well as the distribution of idle times, to predict the length of the future

idle intervals. If the upcoming idle interval is predicted as long, then the disks in

the data center can be sent to low-power mode immediately, aiming at saving more

power I energy.

Appendix A

MAP (2) Generation

In order to better understand how the 2-state Markovian Arrival Process (MAP(2)) works,

we provide the following pseudo code to generate a sample of nt values {X1 , X2, ... , Xn,

... , Xnt} from a MAP(2) parameterized by the tuple (/12, l21, lu, l22, l12, v12, v21), as

shown in Figure 2.4 of Chapter 2.

function: MAP_sample(112, l21, lu, l22, l12, v12, v21, nt)

!.initialize active state S_a and inactive state S_i

a.S_a = "1";

b.S_i = "2";

2.generate a sample for n = 1, 2, ... , nt

a.Xn = 0;

b.calculate the transition probabilities

I. P1 = ls_aS_a/(ls_aS_a + ls_aS_i + Vs_aS_i);

II. P2 = ls_aS_i/(ls_as_a + ls_aS.:i + vs_aS_i);

III. P3 = vs_as_;/(ls_aS_a + ls_aS_i + vs_aS_i);

207

c. r =random number in [0, 1];

d.if transitions only signify real events, i.e., r < Pl

I. Xn += sample from exponential distribution with rate ls_aS_a;

II. go to Step 2.; //does signify a real event

e. else if transitions signify real events and change states, i.e., r < p2

I. set S_a to the previous S_i;

II. set S_i to the previous S_a;

III. Xn += sample from exponential distribution with rate ls_aS_i;

IV. go to Step 2.; //does signify a real event

f. else if transitions only change states, i.e., r > P2

I. set S_a to the previous S_i;

II. set S_i to the previous S_a;

Ill. Xn += sample from exponential distribution with rate vs_aS_i;

IV. go to Step 2.c.; //does not signify any real event

208

Appendix B

Revised TPC-W Benchmark

We exemplify the effectiveness of the new methodology (see Chapter 3) by introducing a

new module into the TPC-W, a benchmark that is routinely used for capacity planning of

e-commerce systems. This new module uses a shared Markovian Arrival Process (MAP)

to draw think times for all users emulated on the same client machine, and hence injects

burstiness into the arrival flows of the system. The modified code of TPC-W and related

scripts are as follows.

B.l www_map.m

A MATLAB script that generates a 2-state MAP for user think times. Note that in order

to run this script, we refer the reader to download the MAP Queueing Network Toolbox

at http://www.cs.wm.edu/-ningfang/tpcw_codes/.

function MAPZ=www_map(Z,I,N)

% MAPZ=www_map(Z,I,N) -generate a 2-state MAP for user think time

%

209

http://www.cs.wm.edu/~ningfang/tpcw_codes/

% Input:

% Z: the mean user think time, e.g., 7 seconds

% I: the index of dispersion

% N: the maximum number of emulated browers

%

% Output:

% MAPZ: a 2-state MAP for user think time

%

% Examples:

% - www_map(7,4000,1200)

%% MAPs for the service process at the front server

FS_D0=[-127.9035 27.0132

78.2006 -633.9898];

FS_D1=[100.8902 0

0 555.7892];

MAPFS={FS_DO,FS_D1};

%% MAPs for the service process at the dababase server

DB_D0=[-74.0 50.7

328.7 -6550.2];

DB_D1=[23.3 0

0 6221. 5] ;

210

MAPDB={DB_DO,DB_D1};

%%for two-tier system

meanFS=map_mean(MAPFS)+map_mean(MAPDB);

F=1.0001;

ACF=O;

threshold= 0.4;

while ACF<threshold

%/~ean long think time

Tflushout=max([F*Z,F*N*meanFS]);

%/~ean short think time

Tflushin=meanFS/F;

DO=diag([-1/Tflushout,-1/Tflushin]);

%%probability of jump from short state to long state

p2=0.01;

%%probability of jump from long state to short state

p1=-p2*(Tflushout-Z)/(Tflushin-Z);

P=[1-p1,p1;p2,1-p2]; D1=-DO*P;

MAPZ={DO,D1};

MAXITER=1000;

211

end

end

while (MAXITER>O && abs(map_idc(MAPZ)-I)>0.01*I)

MAXITER = MAXITER- 1;

end

if map_idc(MAPZ)>I

%%real I is larger than the target I,

%%increase p2 to be in long state more frequently

p2=p2/rand;

p1=-p2*(Tflushout-Z)/(Tflushin-Z);

P=[1-p1,p1;p2,1-p2]; D1=-DO*P;

MAPZ={DO,D1};

elseif map_idc(MAPZ)<I

%/,real I is smaller than the target I

%%derease p2 to be in long state less frequently

end

p2=p2*rand;

p1=-p2*(Tflushout-Z)/(Tflushin-Z);

P=[1-p1,p1;p2,1-p2]; D1=-DO*P;

MAPZ={DO , D 1} ;

I=map_idc(MAPZ);

ACF=map_acf(MAPZ,1);

F=F*2;

212

213

B.2 rbe.MMPP.java

A new java file that generate random numbers following the Markov-Modulated Poisson

Process (MMPP(2)) distribution.

package rbe;

import java.net.*;

import java.io.*;

import java.util.Random;

import java.util.Date;

import java.util.Vector;

public class MMPP {

I*********************

* Each state in MMPP

*********************I

class STATE {

double

double[]

mean; II mean service time

p; II transmission probabilities

p[i*#states+j] is the probability of

transmission from this state to state j

in D_i *I

Random rand_ind; II rand stream index of service time

Random rand_trans; II rand stream index of state transmission

http://java.net.*

double during; // during time in this state

public STATE() {

mean = 0.0;

rand ind = null;

rand_trans = null;

}

during = 0.0;

p = null;

} //class States

STATE[] states; II

int numState; II

int numBulk; II

int curr_ind; II

double mean; II

states

number

number

index

mean

in

of

of

of

double svar; II \sum (x_i

int number; II number of

final double INF 999999999;

II Constructor of MMPP

BMAP

states

bulk arrivals

current state

- mean)

intervals generated

II rand: rand seed for random to be used in this object

public MMPP(Random rand){

214

initialization(rand);

}

public MMPP () {

}

Random rand= new Random();

initialization(rand);

II Initialize the MMPP

II Get DO and 01

void initialization(Random rand) {

int i, j, k;

try{

numState = 2;

numBulk = 1;

112-state MAP with Z=7sec,I=4000

double [] [] [] D =

{{{-0.03443249765465439, 0},

{0, -192.8605531916577}},

{{0.03439111976070266,

{0.07354649281846881,

};

0.00004137789395173437},

192.7870066988392}}

states new STATE[numState];

215

for (i = 0; i < numState; i++) {

}

states[i]=new STATE();

states[i] .mean = 0.0;

states[i] .rand_ind =new Random(rand.nextLong());

states[i] .rand_trans =new Random(rand.nextLong());

states[i] .during= 0.0;

states[i] .p =new double[(numBulk+1) * numState];

for (j = 0; j < numBulk + 1; j++) {

for (i = 0; i < numState; i++) {

for (k = 0; k < numState; k++) {

states[i] .p[j*numState+k] = D[j] [i] [k];

if (states[i] .p[j*numState+k] < 0.0)

216

states[i] .p[j*numState+k] 0.0; //diagonal in DO

states[i] .mean+= states[i] .p[j*numState+k];

} // k

} // i

} // j

for (j = 0; j < numBulk + 1; j++) {

for (i = 0; i < numState; i++) {

for (k = 0; k < numState; k++) {

if (states [i] .mean == 0)

states[i] .p[j*numState+k] 0;

else

states[i] .p[j*numState+k]

states [i] .p [j*numState+k] I states [i] .mean;

if (j*numState+k > 0)

states[i] .p[j*numState+k] +=

states [i] .p [j*numState+k-1];

} II k

} II i

} I I j

} catch (java.lang.Exception ex) {

}

System.out.println("Error in initialize MMPP");

ex.printStackTrace();

} II initialization()

I***

* Generate interarrival time for BMAP

* Retruns the number which follows BMAP distribution

***I

public synchronized double gen_interval()

{

double interval 0.0;

double theo_mean 0.0;

217

218

double prob;

int i, bulk;

theo_mean = states[curr_ind] .mean;

if (theo_mean < 0.000001)

states[curr_ind] .during= INF;

else

states[curr_ind] .during

Expo(1/theo_mean, states[curr_ind] .rand_ind);

interval += states[curr_ind] .during;

if (interval == INF)

return interval;

//find the next state based on prob

prob = states[curr_ind] .rand_trans.nextDouble();

for (i = 0; i < numState*(numBulk+1); i++)

if (prob <= states[curr_ind] .p[i]) break;

bulk= i I numState;

i i % numState;

curr ind i·
'

if (bulk == 0) I /instate transition,

interval+= gen_interval();

return interval;

} // get_interval()

219

!***

* Returns a random number from an exponential distribution

**!

private double Expo(double m, Random rand)

{

return (-m * Math.log(1.0- rand.nextDouble()));

}

B.3 r be. RBE.java

TPC-W Remote Browser Emulator. In this java file, a new function is added to draw a

new user think time from an MMPP(2) distribution.

!**

* Returns a MMPP(2) distributed positive real number

**!

public final long MMPP2(MMPP mmpp, long min, double lMin,

long max, double lMax)

{

return((long) mmpp.gen_interval());

}

220

B.4 rbe.EB.java

TPC-W Emulated Browsers. In this java file, the user think times are generated by an

MMPP(2) distribution instead of an exponential distribution.

//define a MMPP(2) used to generate think times

public static MMPP mmpp_tt =new MMPP();

//comment the original function negExp

//generate user think times from an exponential distrribution

//long r = rbe.negExp(rand, 7000L, 0.36788, 70000L, 4.54e-5, 7000.0);

//generate user think times from an MMPP(2) distrribution

long r = 1000*rbe.MMPP2(mmpp_tt, 7000L, 0.36788, 70000L, 4.54e-5);

Bibliography

[1] ISO /lEG 13818: Generic coding of moving pictures and associated audio (MP EG-
2).

[2] M. ABD-EL-MALEK, G. R. GANGER, G. R. GOODSON, M. K. REITER, AND J. J.
WYLIE. Lazy verification in fault-tolerant distributed storage systems. In Proc. of
IEEE Symposium on Reliable Distributed Systems (SRDS), pages 179-190, 2005.

[3] V. ALMEIDA, M. ARLITT, AND J. ROLlA. Analyzing a web-based system's perfor
mance measures at multiple time scaless. ACM Perf. Eval. Rev., 30(2):3-9, 2002.

[4] A. T. ANDERSEN AND B. F. NIELSEN. On the statistical implications of certain
random permutations in Markovian Arrival Processes (MAPs) and second-order
self-similar processes. Perf. Eval., 41 (2-3):67-82, 2000.

[5] M. F. ARLITT AND T. JIN. Workload characterization of the 1998 world cup web
site. Technical Report HPL-1999-35R1, HP Labs, 1999.

[6] M. F. ARLITT AND C. L. WILLIAMSON. Web server workload characterization: The
search for invariants. In Proc. of ACM Conference on Measurements and Modeling
of Computer Systems (SIGMETRICS), pages 126-137, 1996.

[7] E. BACHMAT AND J. SCHINDLER. Analysis of methods for scheduling low priority
disk drive tasks. In Proc. of ACM Conference on Measurements and Modeling of
Computer Systems (SIGMETRICS), pages 55-65, 2002.

[8] L. N. BAIRAVASUNDARAM, G. R. GOODSON, S. PASUPATHY, AND J. SCHINDLER.
An analysis of latent sector errors in disk drives. In Proc. of A CM Conference on
Measurements and Modeling of Compute-r Systems (SIGMETRICS), pages 289-300,
2007.

[9] M. BAKER, M. SHAH, D. S. H. ROSENTHAL, M. ROUSSOPOULOS, P. MANIATIS,
T. J. GIULI, AND P. BuNG ALE. A fresh look at the reliability of long-term digital
storage. In Proc. of European Systems Conference (EuroSys), pages 221-234, 2006.

[10] G. BALBO AND G. SERAZZI. Asymptotic analysis of multiclass closed queueing
networks: Common bottlenecks. Perf. Eval., 26(1):51-72, 1996.

[11] G. BANGA AND P. DRUSCHEL. Measuring the capacity of a web server under
realistic loads. World Wide Web, 2(1-2):69-83, 1999.

221

222

[12] P. BARFORD AND M. CROVELLA. Generating representative web workloads for
network and server performance evaluation. ACM Perf. Eval. Rev., 26(1):151-160,
1998.

[13] J. BERAN. Statistics for long-memory processes. Chapman & Hall, New York, 1994.

[14] G. CASALE, P. CREMONESI, AND R. TURRIN. Robust workload estimation in
queueing network performance models. In Proc. of Euromicro Conference on Par
allel, Distributed and Network-Based Pmcessing (PDP), pages 183-187, 2008.

[15] G. CASALE, N. MI, AND E.SMIRNI. Bound analysis of closed queueing networks
with workload burstiness. In Proc. of ACM Conference on Measurements and Mod
eling of Computer Systems (SIGMETRICS), pages 13-24, 2008.

[16] G. CASALE, E.Z. ZHANG, AND E. SMIRNI. Characterization of moments and
autocorrelation in MAPs. ACM Perf. Eval. Rev., 35(1):27-29, 2007.

[17] G. CASALE, E.Z. ZHANG, AND E. SMIRNI. Interarrival times char-
acterization and fitting for markovian traffic analysis. Technical Re
port WM-CS-2008-02, College of William and Mary, 2008. Available at
http: j jwww .wm.ed uj computersciencejtechreport /2008 /WM-CS-2008-02. pdf.

[18] L. CHERKASOVA AND P. PHAAL. Session based admission control: a mechanism
for peak load management of commercial web sites. IEEE Trans. on Computers,
51 (6) :669-685, 2002.

[19] H. W. CHU, D. H. K. TSANG, AND T. YANG. Bandwidth allocation for VBR video
traffic in ATM networks. In Proc. of IEEE International Conference on Computer
Communications and Networks (ICC), pages 612-615, 1995.

[20] D. R. Cox AND P. A. W. LEWIS. The Statistical Analysis of Series of Events.
John Wiley and Sons, New York, 1966.

[21] M. CROVELLA AND A. BESTRAVOS. Self-similarity in word wide web traffic: evi
dence and possible causes. IEEE/ACM Trans. on Networking, 5(6):835-846, 1997.

[22] P. J. DENNING AND J. P. BUZEN. The operational analysis of queueing network
models. ACM Computing Surveys, 10(3):225-261, 1978.

[23] A. DHOLAKIA, E. ELEFTHERIOU, X. Y. Hu, I. ILIADIS, J. MENON, AND K. K.
RAO. Analysis of a new intra-disk redundancy scheme for high-reliability RAID
storage systems in the presence of unrecoverable errors. ACM Perf. Eval. Rev.,
34(1) :373-37 4, 2006.

[24] J. R. DOUCEUR AND W. J. BOLOSKY. Progress-based regulation of low-importance
processes. In Proc. of A CM Symposium on Operating Systems Principles (SOSP),
pages 247-260, 1999.

[25] F. DOUGLIS, P. KRISHNAN, AND B. N. BERSHAD. Adaptive disk spin-down policies
for mobile computers. In Proc. of USENIX Symposium on Mobile and Location
Independent Computing, pages 121-137, 1995.

http://www.wm.edu/computerscience/techreport/2008/WM-CS-2008-02.pdf

223

[26] L. EGGERT AND J. D. ToucH. Idletime scheduling with preemption intervals. In
Proc. of ACM Symposium on Operating Systems Principles (SOSP), pages 249-262,
2005.

[27] J. G. ELERATH AND M. PECHT. Enhanced reliability modeling of raid storage sys
tems. In Proc. of the International Conference on Dependable Systems and Networks
(DSN), pages 175-184, 2007.

[28] H. FENG, Z. LIU, C. H. XIA, AND L. ZHANG. Load shedding and distributed
resource control of stream processing networks. Perf. Eval., 64(9-12):1102-1120,
2007.

[29] H. FENG, V. MISRA, AND D. RUBENSTEIN. PBS: a unified priority-based scheduler.
In Proc. of ACM Conference on Measurements and Modeling of Computer Systems
(SIGMETRICS), pages 203-214, 2007.

[30] H. W. FERNG AND J. F. CHANG. Connection-wise end-to-end performance analysis
of queueing networks with MMPP inputs. Perf. Eval., 43(1):39-62, 2001.

[31] E. J. FRIEDMAN AND S. G. HENDERSON. Fairness and efficiency in web server
protocols. In Pmc. of ACM Conference on Measurements and Modeling of Computer
Systems (SIGMETRICS), pages 229-237, 2003.

[32] D. F. GARCIA AND J. GARCIA. TPC-W e-commerce benchmark evaluation. IEEE
Computer, pages 42-48, 2003.

[33] R. GOLDING, P. BOSCH, C. STAELIN, T. SULLIVAN, AND J. WILKES. Idleness is
not sloth. In Pmc. of USENIX Technical Conference, pages 201-222, 1995.

[34] M. E. GOMEZ AND V. SANTONJA. On the impact of workload burstiness on disk
performance. Workload characterization of emerging computer applications, pages
181-201, Kluwer Academic Publishers, 2001.

[35] D. GREEN. Departure Processes from MAP/PH/1 Queues. PhD thesis, Department
of Applied Mathematics, University of Adelaide, 1999.

[36] S. D. GRIBBLE, G. S. MANKU, D. S. ROSELLI, E. A. BREWER, T. J. GIBSON,
AND E. L. MILLER. Self-similarity in file systems. In Proc. of ACM Conference on
Measurements and Modeling of Computer Systems (SIGMETRICS), pages 141-150,
1998.

[37] M. GROSSGLAUSER AND D. N.C. TSE. A framework for robust measurement-based
admission control. IEEE/ACM Trans. Networking, 7(3):293-309, 1999.

[38] R. GusELLA. Characterizing the variability of arrival processes with indexes of
dispersion. IEEE Journal on Selected Areas in Communications, 19(2):203-211,
1991.

[39] M. HARCHOL-BALTER AND A. B. DOWNEY. Exploiting process lifetime distribu
tions for dynamic load balancing. ACM Trans. on Computer Systems, 15(3):253-285,
1997.

224

[40] A. HEINDL. Traffic-Based Decomposition of General Queueing Networks with Cor
related Input Processes. Ph.D. Thesis, Shaker Verlag, Aachen, 2001.

[41] D.P. HELMBOLD, D. D. E. LONG, T. L. SCONYERS, AND B. SHERROD. Adaptive
disk spin-down for mobile computers. Mobile Networks and Applications, 5(4):285-
297, 2000.

[42] D. HEYMAN AND D. LUCANTONI. Modeling multiple IP traffic streams with rate
limits. IEEE/ACM Trans. on Networking, 11(6):948-958, 2001.

[43] A. HORVATH, G. ROZSA, AND M. TELEK. A MAP fitting method to approximate
real traffic behaviour. In Proc. of the IFIP Workshop on Performance Modelling
and Evaluation of ATM 8 IP Networks, pages 32/1-12, 2000.

[44] H. HUANG, W. HUNG, AND K. G. SHIN. Fs2: dynamic data replication in free
disk space for improving disk performance and energy consumption. In Proc. of the
A CM Symposium on Operating Systems Principles (SOSP), pages 263-276, 2005.

[45] G. F. HUGHES AND J. F. MURRAY. Reliability and security of RAID storage
systems and D2D archives using SATA disk drives. ACM Trans. on Storage, 1(1):95-
107, 2005.

[46] D. M. JACOBSON AND J. WILKES. Disk scheduling algorithms based on rotational
position. Technical Report HPL-CSP-91-7rev1, HP Laboratories, 1991.

[47] K. KANT, V. TEWARY, AND R. IYER. An internet traffic generator for server
architecture evaluation. In Proc. Workshop Computer Architecture Evaluation Using
Commercial Workloads, 2001.

[48] D. KRISHNAMURTHY, J. ROLlA, AND S. MAJUMDAR. A synthetic workload gener
ation technique for stress testing session-based systems. IEEE Trans. on Software
Engineering, 32(11):868-882, 2006.

[49] G. LA TOUCHE AND V. RAMASWAMI. Introduction to Matrix Analytic Methods in
Stochastic Modeling. SIAM, Philadelphia PA, 1999. ASA-SIAM Series on Statistics
and Applied Probability.

[50] E. D. LAZOWSKA, J. ZAHORJAN, G. S. GRAHAM, AND K. C. SEVCIK. Quantitative
System Performance. Prentice-Hall, 1984.

[51] H. LI AND M. MuSKULUS. Analysis and modeling of job arrivals in a production
grid. ACM Perf. Eval. Rev., 34(4):59-70, 2007.

[52] P. LIESHOUT, M. MANDJES, AND S. BORST. GPS scheduling: selection of optimal
weights and comparison with strict priorities. ACM Perf. Eval. Rev., 34(1):75-86,
2006.

[53] M. J. LITZKOW, M. LIVNY, AND M. W. MUTKA. Condor- a hunter of idle work
stations. In Proc. of International Conference of DistTibuted Computing Systems
(ICDCS), pages 104-111, 1988.

225

[54] Z. LIU, N. NICLAUSSE, AND CjALPA-VILLANUEVA. Traffic model and performance
evaluation of web servers. Perf. Eval., 46(2-3):77-100, 2001.

[55] Z. LIU, L. WYNTER, C. H. XIA, AND F. ZHANG. Parameter inference of queueing
models for it systems using end-to-end measurements. Perf. Eval., 63(1):36-60,
2006.

[56] V. M. Lo, D. ZAPPALA, D. ZHOU, Y. LIU, AND S. ZHAO. Cluster computing
on the fly: P2P scheduling of idle cycles in the internet. In Fmc. of the IEEE
International Conference on Peer-to-Peer Systems (IPTPS), pages 227-236, 2004.

[57] D. M. LUCANTONI. The BMAP /G/1 queue: A tutorial. Models and Techniques for
Performance Evaluation of Computer and Communication Systems, pages 330-358.
Springer-Verlag, 1993.

[58] D. MENASCE, V. ALMEIDA, R. REID!, F. PELEGRINELLI, R. FONESCA, AND
W. MEIRA JR. In search of invariants in e-business workloads. In Fmc. of ACM
Conference Electronic Commerce, pages 56-65, 2000.

[59] D. A. MENASCE AND V. A. F. ALMEIDA. Capacity Planning for Web Performance:
Metrics, Models, and Methods. Prentice Hall, 1998.

[60] D. A. MENASCE AND V. A. F. ALMEIDA. Scaling forE-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice-Hall, Inc., 2000.

[61] D. A. MENASCE, V. A. F. ALMEIDA, AND L. W. DOWDY. Capacity planning and
performance modeling: from mainframes to client-server systems. Prentice-Hall,
Inc., 1994.

[62] A. MERCHANT AND P. S. Yu. An analytic model of reconstruction time in mirrored
disks. Perf. Eval., 20(1-3):115-129, 1994.

[63] N. MI, G. CASALE, L. CHERKASOVA, AND E. SMIRNI. Burstiness in multi-tier
applications: Symptoms, causes, and new models. In Fmc. of ACM/IFIP /USENIX
International Middleware Conference (Middleware), 2008. The prelimilary paper
appeared in the HotMetrics 2008 Workshop.

[64] N. MI, Q. ZHANG, A. RISKA, E. SMIRNI, AND E. RIEDEL. Performance impacts of
autocorrelated flows in multi-tiered systems. Perf. Eval., 64(9-12):1082-1101, 2007.

[65] D. MOSBERGER AND T. JIN. httperf: A tool for measuring web server performance.
In Fmc. of Workshop Internet Server Performance, pages 59-67, 1998.

[66] R. R. MUNTZ AND J. C. S. LUI. Performance analysis of disk arrays under failures.
In Fmc. of International Conference on Very Large Databases (VLDB), pages 162-
173, 1990.

[67] M. F. NEUTS. Structured Stochastic Matrices of M/G/1 Type and Their Applica
tions. Marcel Dekker, New York, 1989.

226

[68] M. F. NEUTS. Algorithmic Probability: A Collection of Problems. Chapman and
Hall, 1995.

[69] B. F. NIELSEN. Modelling long-range dependent and heavy-tailed phenomena by
matrix analytic methods. Advances in Algorithmic Methods for Stochastic Models,
pages 265-278. Notable Publications, 2000.

[70] Z. NIU, T. SHU, ANDY. TAKAHASHI. A vacation queue with setup and close-down
times and batch markovian arrival processes. Perf. Eval., 54(3):225-248, 2003.

[71] T. OsoGAMI, M. HARCHOL-BALTER, AND A. SCHELLER-WOLF. Analysis of cycle
stealing with switching times and thresholds. Perf. Eval., 61(4):347-369, 2005.

[72] E. PINHEIRO, W.D. WEBER, AND L. A. BARROSO. Failure trends in a large disk
drive population. In Proc. of USENIX Conference on File and Storage Technologies
(FAST), pages 17-28, 2007.

[73] S. RANJAN, J. ROLlA, H. Fu, AND E. KNIGHTLY. Qos-driven server migration for
internet data center. In Proc. of International Workshop Quality of Service(IWQoS),
pages 3-12, 2002.

[74] M. REISER. Mean-value analysis and convolution method for queue-dependent
servers in closed queueing networks. Perf. Eval., 1:7-18, 1981.

[75] M. REISER AND S. S. LAVENBERG. Mean-value analysis of closed multichain queue
ing networks. Journal of the ACM, 27(2):312-322, 1980.

[76] A. RISKA AND E. RIEDEL. Analysis of disk-level traces. Technical Report SEA
ARCH-2004-02, Seagate Research, 2004.

[77] A. RISKA AND E. RIEDEL. Disk drive level workload characterization. In Proc. of
the USENIX Annual Technical Conference, pages 97-103, 2006.

[78] A. RISKA AND E. RIEDEL. Long-range dependence at the disk drive level. In Proc.
of Conference on Quantitative Evaluation of Systems (QEST), pages 41-50, 2006.

[79] A. RISKA AND E. RIEDEL. Idle Read After Write- IRAW. In Proc. of the USENIX
Annual Technical Conference, pages 43-56, 2008.

[80] T. G. ROBERTAZZI. Computer Networks and Systems. Springer, 2000.

[81] J. ROLlA AND V. VETLAND. Correlating resource demand information with arm
data for application services. In Proc. of the International Workshop on Software
and Performance (WOSP), pages 219-230, 1998.

[82] L. SCHRAGE. A proof of the optimality of the shortest remaining processing time
discipline. Operations Research, 16:687-690, 1968.

[83] B. SCHROEDER AND G. A. GIBSON. Understanding disk failure rates: What does
an mttf of 1,000,000 hours mean to you? ACM Trans. Storage, 3(3):8, 2007.

227

[84] T. J. E. SCHWARZ, Q. XIN, E. L. MILLER, D. D. E. LONG, A. HOSPODOR, AND
S. N G. Disk scrubbing in large archival storage systems. In Proc. of the International
Symposium on Modeling and Simulation of Computer and Communications Systems
(MASCOTS), pages 409-418, 2004.

[85] M. SELTZER, P. CHEN, AND J. OSTERHOUT. Disk scheduling revisited. In Proc.
of the USENIXTechnical Conference, pages 313-323, 1990.

[86] S. SHAH AND J. G. ELERATH. Reliability analysis of disk drive failure mechanism.
In Proc. of Annual Reliability and Maintainability Symposium, pages 226-231, 2005.

[87] M. SIVATHANU, v. PRABHAKARAN, A. c. ARPACI-DUSSEAU, AND R. H. ARPACI
DUSSEAU. Improving Storage System Availability with D-GRAID. In Proc. of the
USENIX Symposium on File and Storage Technologies (FAST), pages 15-30, 2004.

[88] H. TAKAGI. Queuing Analysis Volume 1: Vacations and Priority Systems. North
Holland, New York, 1991.

[89] M. M. THEIMER, K. A. LANTZ, AND D. R. CHERITON. Preemptable remote
execution facilities for the v-system. In Proc. of ACM Symposium on Operating
Systems Principles (SOSP), pages 2-12, 1985.

[90] E. THERESKA, J. SCHINDLER, J. BUCY, B. SALMON, C. R. LUMB, AND G. R.
GANGER. A framework for building unobtrusive disk maintenance applications. In
Proc. of the USENIX Symposium on File and Storage Technologies (FAST), pages
213-226, 2004.

[91] A. THOMASIAN AND V. F. NICOLA. Performance evaluation of a threshold policy
for scheduling readers and writers. IEEE Trans. on Computers, 42(1) :83-98, 1993.

[92] B. URGAONKAR, G. PACIFIC!, P.J. SHENOY, M. SPREITZER, AND A. TANTAWI.
An analytical model for multi-tier internet services and its applications. In Proc. of
ACM Conference on Measurements and Modeling of Computer Systems (SIGMET
RICS), pages 291-302, 2005.

[93] B. URGAONKAR, P. SHENOY, A. CHANDRA, AND P. GOYAL. Dynamic provision
ing of multi-tier internet applications. In Proc. of the International Conference on
Automatic Computing(ICAC), pages 217-228, 2005.

[94] D. VILLELA, P. PRADHAN, AND D. RUBENSTEIN. Provisioning servers in the
application tier for e-commerce systems. ACM Trans. Interet Technology, 7(1):7,
2007.

[95] J. L. WANG AND A. ERRAMILLI. A connection admission control algorithm for self
similar traffic. In Proc. of IEEE Global Telecommunications Conference (GLOBE
COM), pages 1623-1628, 1999.

[96] B. P. WELFORD. Note on a method for calculating corrected sums of squares and
products. Technometrics, 4:419-420, 1962.

228

[97] M. WELSH, D. E. CULLER, AND E. A. BREWER. An architecture for well
conditioned, scalable internet services. In Proc. of the A CM symposium on Operating
systems principles (SOSP), pages 23Q-243, 2001.

[98] WWW.MERCURY.COMjusjPRODUCTS/DIAGNOSTICS. Mercury Diagnostics.

[99] E. Xu AND A. S. ALFA. A vacation model for the non-saturated readers and writers
system with a threshold policy. Perf. Eval., 50(4) :233-244, 2002.

[100] J. ZHANG, M. Hu, AND N. SHROFF. Bursty data over cdma: Mai selfsimilarity,
rate control, and admission control. In Proc. of Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM), 2002.

[101] Q. ZHANG, L. CHERKASOVA, G. MATHEWS, w. GREENE, AND E. SMIRNJ. R
capriccio: A capacity planning and anomaly detection tool for enterprise services
with live workloads. In Proc. of A CM/IFIP /USENIX International Middleware
Conference (Middleware), pages 244-265, 2007.

[102] Q. ZHANG, L. CHERKASOVA, AND E. SMJRNJ. A regression-based analytic model
for dynamic resource provisioning of multi-tier applications. In Proc. of the Inter
national Conference on Automatic Computing(ICAC), pages 27, 2007.

http://www.mercury.com/us/products/diagnostics

229

VITA

Ningfang Mi

Ningfang Mi received her B.S. degree in Computer Science from Nanjing University, China,

in 2000, and her M.S. degree in Computer Science from the University of Texas at Dallas,

in 2004. She has been a Ph.D. candidate of Computer Science at the College of William

and Mary since 2005. Her research interests include storage systems, multi-tiered systems,

performance evaluation, energy /power management, web characterization, data analysis,

system modeling, and scheduling/load balancing.

	Dependence-driven techniques in system design
	Recommended Citation

	ProQuest Dissertations

