8 research outputs found

    Mathematical models as research data via flexiformal theory graphs

    Get PDF
    Mathematical modeling and simulation (MMS) has now been established as an essential part of the scientific work in many disciplines. It is common to categorize the involved numerical data and to some extent the corresponding scientific software as research data. But both have their origin in mathematical models, therefore any holistic approach to research data in MMS should cover all three aspects: data, software, and models. While the problems of classifying, archiving and making accessible are largely solved for data and first frameworks and systems are emerging for software, the question of how to deal with mathematical models is completely open. In this paper we propose a solution -- to cover all aspects of mathematical models: the underlying mathematical knowledge, the equations, boundary conditions, numeric approximations, and documents in a flexi\-formal framework, which has enough structure to support the various uses of models in scientific and technology workflows. Concretely we propose to use the OMDoc/MMT framework to formalize mathematical models and show the adequacy of this approach by modeling a simple, but non-trivial model: van Roosbroeck's drift-diffusion model for one-dimensional devices. This formalization -- and future extensions -- allows us to support the modeler by e.g. flexibly composing models, visualizing Model Pathway Diagrams, and annotating model equations in documents as induced from the formalized documents by flattening. This directly solves some of the problems in treating MMS as "research data'' and opens the way towards more MKM services for models

    Higher-Order Tarski Grothendieck as a Foundation for Formal Proof

    Get PDF
    We formally introduce a foundation for computer verified proofs based on higher-order Tarski-Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists. This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory. The foundation allows the co-existence of proofs based on two major competing foundations for formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries, Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do this by defining isomorphisms between the basic concepts, including integers, functions, lists, and algebraic structures that preserve the important operations. With this we can transfer theorems proved in higher-order logic to TG set theory and vice versa. We practically show this by formally transferring Lagrange\u27s four-square theorem, Fermat 3-4, and other theorems between the foundations in the Isabelle framework

    A Distributed and Trusted Web of Formal Proofs

    Get PDF
    International audienceMost computer checked proofs are tied to the particular technology of a prover's software. While sharing results between proof assistants is a recognized and desirable goal, the current organization of theorem proving tools makes such sharing an exception instead of the rule. In this talk, I argue that we need to turn the current architecture of proof assistants and formal proofs inside-out. That is, instead of having a few mature theorem provers include within them their formally checked theorems and proofs, I propose that proof assistants should sit on the edge of a web of formal proofs and that proof assistant should be exporting their proofs so that they can exist independently of any theorem prover. While it is necessary to maintain the dependencies between definitions, theories, and theorems, no explicit library structure should be imposed on this web of formal proofs. Thus a theorem and its proofs should not necessarily be located at a particular URL or within a particular prover's library. While the world of symbolic logic and proof theory certainly allows for proofs to be seen as global and permanent objects, there is a lot of research and engineering work that is needed to make this possible. I describe some of the required research and development that must be done to achieve this goal

    Toward a formal theory for computing machines made out of whatever physics offers: extended version

    Full text link
    Approaching limitations of digital computing technologies have spurred research in neuromorphic and other unconventional approaches to computing. Here we argue that if we want to systematically engineer computing systems that are based on unconventional physical effects, we need guidance from a formal theory that is different from the symbolic-algorithmic theory of today's computer science textbooks. We propose a general strategy for developing such a theory, and within that general view, a specific approach that we call "fluent computing". In contrast to Turing, who modeled computing processes from a top-down perspective as symbolic reasoning, we adopt the scientific paradigm of physics and model physical computing systems bottom-up by formalizing what can ultimately be measured in any physical substrate. This leads to an understanding of computing as the structuring of processes, while classical models of computing systems describe the processing of structures.Comment: 76 pages. This is an extended version of a perspective article with the same title that will appear in Nature Communications soon after this manuscript goes public on arxi
    corecore