

Edinburgh Research Explorer

Specification refinements: calculi, tools, and applications

Citation for published version:
Codescu, M, Mossakowski, T, Sannella, D & Tarlecki, A 2017, 'Specification refinements: calculi, tools, and
applications' Science of Computer Programming, vol. 144, pp. 1-49. DOI: 10.1016/j.scico.2017.04.005

Digital Object Identifier (DOI):
10.1016/j.scico.2017.04.005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Science of Computer Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 09. May. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/196573536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.scico.2017.04.005
https://www.research.ed.ac.uk/portal/en/publications/specification-refinements-calculi-tools-and-applications(2b728715-7478-42b9-9d9e-9d277a870dd1).html

Specification refinements: calculi, tools, and applications

Mihai Codescua, Till Mossakowskib, Donald Sannellac, Andrzej Tarleckid

aFree University of Bozen-Bolzano, Italy
bFaculty of Computer Science, Otto-von-Guericke University of Magdeburg, Germany

cLaboratory for Foundations of Computer Science, University of Edinburgh, United Kingdom
dInstitute of Informatics, University of Warsaw, Poland

Abstract

We propose and study a framework for systematic development of software systems (or models) from their formal
specifications. We introduce a language for formal development by refinement and decomposition, as an extension
to CASL. We complement it with a notion of refinement tree and present proof calculi for checking correctness of
refinements as well as their consistency. Both calculi have been implemented in the Heterogeneous Tool Set (Hets),
and have been integrated with other tools like model finders and conservativity checkers.

Keywords: algebraic specifications, refinement, architectural specifications, consistency

Contents

1 Introduction 2

2 Refinements in CASL 3
2.1 A Brief Summary of Institution-Independent Specifications in CASL 3
2.2 Architectural Specifications: Motivation . 5
2.3 CASL Architectural Specifications . 5
2.4 Refinements . 8
2.5 Examples and Methodology . 13

3 Foundations 15

4 Semantics of CASL Refinements 19
4.1 Semantics of CASL Structured Specifications . 19
4.2 Semantics of Unit Specifications . 19
4.3 Semantics of Architectural Specifications . 20
4.4 Static Semantics of Refinements . 22
4.5 Model Semantics of Refinements . 25

5 Calculi for Refinements 28
5.1 Proof Calculus for Architectural Specifications . 29
5.2 Unit Imports in CASL . 35
5.3 Proof Calculus for Refinements . 36
5.4 Completeness of the Proof Calculus . 40
5.5 Checking Consistency of Refinements . 43

Email addresses: Mihai.Codescu@unibz.it (Mihai Codescu), till@iks.cs.ovgu.de (Till Mossakowski), dts@inf.ed.ac.uk
(Donald Sannella), tarlecki@mimuw.edu.pl (Andrzej Tarlecki)

Preprint submitted to Elsevier April 18, 2017

6 Tool Support 44
6.1 The Heterogeneous Tool Set . 44
6.2 Refinement Trees . 45

7 Remarks on Programs in CASL 49

8 Conclusions, Related and Future Work 51

Appendix A Proofs 54

Appendix B The Specification of the Steam Boiler Control System
To be included in the electronic version only 60

1. Introduction

The standard development paradigm of algebraic specification [2, 3] postulates that development begins with a
formal requirements specification, capturing a software project’s informal requirements, that fixes only expected
properties of the system to be built but ideally says nothing about implementation issues. This is followed by a
number of refinement steps [4] that fix more and more details of the design, until a specification is obtained that is
detailed enough that its conversion into a program is relatively straightforward.

Consider the task of providing an implementation (or finding a model) for a specification SP. The classical theory
of refinement [2, 3] provides the means for decomposing this task into a sequence of refinement steps:

SP∼∼∼> SP1 ∼∼∼> . . .∼∼∼> SPn ∼∼∼> P

Here, SP1, . . . , SPn are intermediate specifications and P is a final specification that directly yields an implementation
or a model description.

Actually, this picture is too simple in practice: for complex software systems, it is necessary to reduce complexity
by introducing branching points in the chain of refinement steps, such that a specification is decomposed into smaller
components. The components will then themselves be further refined, possibly independently, e.g. by different de-
velopers, and possibly by further decomposing their specifications. CASL architectural specifications [5, 6] have been
designed for this purpose, based on the insight that structuring of implementations is different from structuring of
specifications [7, 8]. However, CASL architectural specifications only specify branching points in the chain of re-
finements, and not refinements themselves. In this work, we extend CASL with a refinement language that adds the
means to formalize whole developments in the form of refinement trees, like the one in the diagram below. Using our
language, developments such as the one represented in this tree can be formally specified and verified for correctness.

SP ∼∼∼>



SP1 ∼∼∼> P1
...

SPn ∼∼∼>


SPn1 ∼∼∼>

{
SPn11 ∼∼∼> Pn11

· · ·

SPnm ∼∼∼> Pnm

This approach is not only applicable for formal software development, where the leaves of the tree are programs,
but also for finding models of larger logical theories. We propose using refinement trees as a way for managing this
task. The leaves of the trees are then small theories whose consistency can be proved using an automated model finder.
Once models for these are given, a model for the entire theory may be constructed using the refinement tree. One
contribution of our work is that the refinement trees make informal pictures such as the one above formal on the basis
of the refinement language.

We design a language for expressing refinements and branching of formal developments, which is detailed in
Sect. 2. It extends CASL architectural specifications for expressing branching as in [9, 6]. We illustrate the language
using an example application from [9], based on a challenge problem from [10]. The semantics of this language is
based on the notion of institution, which is recalled in Sect. 3. Section 4 introduces the semantics of refinements

2

and their parts. It contains the central contribution of the paper, together with section 5 that introduces various proof
calculi. In Sect. 5.1, we contribute a new constructive proof calculus for architectural specifications, covering the
whole language for the first time. Section 5.2 provides treatment of unit imports, a known source of increase in com-
plexity of verification of architectural specifications. Section 5.3 gives a proof calculus for refinements. This calculus
rephrases the proof calculus for architectural specifications and extends it to a more general setting. Completeness
of this calculus is proved in Sect. 5.4. Section 5.5 provides a calculus for consistency of refinements. Section 6 in-
troduces refinement trees. Moreover, we describe the implementation of the calculus in the Heterogeneous Tool Set
Hets [11, 12] which also integrates model finders and other tools. Section 7 deals with the leaves of refinement trees
and how to refine them into real programs. Section 8 concludes the paper.

This work builds on and considerably extends [13] and [14]; in particular, we cover both shared subcomponents
and refinements of unit specifications with imports as mentioned in the conclusion of [13] and we study completeness
of the proof calculus for refinements, mentioned in [14] as future work. Its contribution to the CASL development
framework can be summarized as follows:

• a new proof calculus for architectural specifications (CASL already had one). The novelty of the new proof
calculus is that it is constructive (i.e. it computes a specification instead of merely checking correctness) and
that it covers the whole language in contrast to the original proof calculus (reducing the difficult case of units
with imports to use of a simpler construction);

• a refinement language and its semantics;

• proof calculi for correctness and consistency of refinements;

• soundness and completeness results for the proof calculi;

• a notion of refinement trees;

• implementation of refinement trees and proof calculi in Hets.

2. Refinements in CASL

We will introduce a language for refinements that extends the CASL specification language, which we recall first.

2.1. A Brief Summary of Institution-Independent Specifications in CASL

The Common Algebraic Specification Language CASL [6] has been designed by the Common Framework Initiative
for Algebraic Specification and Development [1] with the goal to unify the many previous algebraic specification
languages and to provide a standard language for the specification and development of modular software systems.
CASL has been designed to consist of orthogonal layers:

1. basic specifications provide means for writing relatively small, “flat” specifications;
2. structured specifications allow large specifications to be organized in a modular way;
3. architectural specifications [5] describe, in contrast to the previous layer, the structure of the implementation

of a software system;
4. libraries of specifications allow storage and retrieval of named specifications.

The orthogonality of the layers means that the syntax and semantics of each layer are independent of those of
the others. In particular, this allows one to replace the logic used in the layer of CASL basic specifications with a
completely different logic without having to modify the other layers. This is achieved in a mathematically sound way
by using institutions [15] (see Sect. 3 below), which formalize a model-oriented view of the notion of logical system.
Institutions abstract from the details of sentences (logical formulas) and models, and the notion of satisfaction of a
sentence in a model. All this is indexed by signatures, i.e. by the user-defined vocabularies of non-logical (domain-
specific) symbols.

Institutions also feature signature morphisms, which capture the concepts of change of notation and enlargement of
context. They play an important role for constructing structured and architectural specifications as well as refinements.

3

SPEC ::= (Σ, E) | SPEC and SPEC | SPEC with σ | SPEC hide σ | SPEC-NAME

Figure 1: CASL structured specifications (generic specifications omitted).

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

SPEC-DEFN ::= spec SPEC-NAME = SPEC

VIEW-DEFN ::= view VIEW-NAME : SPEC-NAME to SPEC-NAME = σ
ARCH-SPEC-DEFN ::= arch spec ARCH-SPEC-NAME = ASP

UNIT-SPEC-DEFN ::= unit spec UNIT-SPEC-NAME = USP

Figure 2: CASL Libraries.

Signature morphisms map signatures in a way that allows sentences over the source signature to be translated to
sentences over the target signature. Thus, if ϕ is a Σ1-sentence and σ : Σ1 → Σ2 is a signature morphism, then σ(ϕ)
is a Σ2-sentence. Moreover, if M is a Σ2-model, then it can be reduced to a Σ1-model M|σ, called the σ-reduct of
M. Satisfaction of sentences in models is subject to the satisfaction condition, which captures the idea that truth is
invariant under change of notation and enlargement of context.

The simplest form of specifications are basic specifications. A basic specification (Σ, E) essentially consists of a
signature Σ plus some set E of sentences over this signature, in a given institution. Working with basic specifications
is only suitable for specifications of fairly small size. For practical situations, when large systems are to be specified,
they would become very difficult to understand and use effectively. We may also want to re-use parts of specifications.
Therefore, algebraic specification languages like CASL provide support for structuring specifications. Syntax and
semantics of these structured specifications can be formulated over an arbitrary but fixed institution. (The same holds
for architectural specifications, refinements and specification libraries.)

In Fig. 1, we present the syntax we use for a number of specification-building operations over an arbitrary in-
stitution. They are the subset of CASL structuring mechanisms that are used in our examples. Two specification can
be combined using and, resulting in a conjunctive combination of the constraints expressed by the individual spec-
ifications. A specification SPEC can be renamed along a signature morphism σ using SPEC with σ, resulting in a
specification over the target signature of the signature morphism. Finally, a specification SPEC can be restricted to an
export interface using SPEC hide σ, where σ is the inclusion of the export interface signature into that of SPEC.

A semantics of structured specifications will be given in Sect. 4. For now, let us just note that a structured specifi-
cation SP denotes a signature (written Sig(SP)) and a class of models over that signature. The exact nature of syntax
and semantics of structured specifications may vary and is not essential for the study of architectural specifications
and refinements.

The simplest form of refinement is model class inclusion between structured specifications, possibly with a change
of signature: if SP1, SP2 are structured specifications and σ : Sig(SP1) → Sig(SP2) is a signature morphism, we say
that SP1 refines along σ to SP2, denoted SP1

σ
∼∼∼> SP2, if for each model of SP2, its reduct along σ is a model of SP1.

If σ is the identity, it can be omitted. CASL already allows such refinements to be postulated using views: if SP1 and
SP2 are structured specifications, then view V : SP1 to SP2 = σ requires each model of SP2 reduced along σ to be a
model of SP1. If this holds, then σ : SP1 → SP2 is called a specification morphism. Two specifications are equivalent
if they have the same signatures and the same model classes.

A CASL document consists of a library definition. A library definition is a list of definitions of named specifications
and views. The names of the specifications and views must be distinct and visibility is linear. Fig. 2 gives the grammar
of library definitions. Architectural specifications (ASP) and unit specifications (USP) will be covered in the next
sections. The Distributed Ontology, Model and Specification Language (DOL), a standard of the Object Management
Group (OMG) [16]1, uses a similar syntax to the one in Figs. 1 and 2.

1See http://www.omg.org/spec/DOL/ and http://www.dol-omg.org.

4

http://www.omg.org/spec/DOL/
http://www.dol-omg.org

2.2. Architectural Specifications: Motivation

Architectural specifications in CASL [5] have been introduced as means of providing structure for the implemen-
tation of a software system. Each architectural specification names a number of components and gives a linking
procedure which describes how to combine implementations of these components to obtain an implementation of the
overall system. (By contrast, the models of structured specifications are monolithic and have no more structure than
models of basic specifications.) The internals of each component are not available other than via the specification of
the component. This means that components can be implemented independently of each other, and we can replace
the implementation of a component with a new one without having to modify other implementations — all we need
to do is to re-link the implementations of the components as described by the linking procedure of the architectural
specification.

SP ∼∼∼> κ


UN1 : USP1

...
UNn : USPn

Figure 3: Refinement introducing branching
via a linking procedure κ.

To put this more formally, in Fig. 3:

• SP is the initial specification (say, of some system),

• UN1, . . .UNn are units (i.e. named models) with their specifications
USP1, . . . ,USPn,

• κ is the linking procedure involving the units, i.e. a function taking
models Ai of USPi, i = 1, . . . , n to a model κ(A1, . . . , An) over the
signature of SP, and

• the refinement relation is denoted ∼∼∼> , expressing that the model given
by κ(A1, . . . , An) is indeed a model of SP.

Intuitively, the refinement is correct if for any models Ai of USPi, i = 1, . . . , n, κ(A1, . . . , An) is a model of SP.
When this is indeed the case, then we can replace a model A j of USP j with another model A′j of USP j and re-link
the models A1, . . . , A′j, . . . An as prescribed by κ to get a realization of SP, without having to modify the models
A1, . . . , A j−1, A j+1, . . . , An in any way.

To a software engineer, CASL architectural specifications appear to be similar to UML component diagrams: they
share the goal of decomposing the task of implementing a software system into smaller subtasks, that are developed
independently and can be flexibly redeployed. The specification of a unit in an architectural specification defines the
behavior of the unit, similarly as required and provided interfaces do for components in UML component diagrams.

2.3. CASL Architectural Specifications

A definition of a named CASL architectural specification corresponding to the right-hand side of the refinement in
in Fig. 3 is written:

arch spec ASP NAME =

units
UN1 : USP1;
. . .
UNn : USPn;

result UE

where UE is a unit expression describing the linking procedure κ and possibly involving the units UN1, . . . , UNn. Units
are combined in unit expressions with operations like renaming, hiding, and amalgamation, see Fig. 4. We require that
common symbols of unit expressions must be interpreted in the same way. Architectural specifications are defined for
an arbitrary institution, and are thus independent of the underlying formalism used for basic specifications, as well
as of that used for structured specifications. Thus, unit specifications USP of (non-generic) units are just structured
specifications (of models, where models provide the semantics of units).

The picture is slightly more general: units may be generic, in which case they correspond to partial functions
taking (tuples of) models to models. The result model is required to preserve the parameter models (persistency),
with the intuition that the implementation of the parameters must be kept and not be re-implemented, and the function

5

ASP ::= ARCH-SPEC-NAME | units UDD1; . . . ; UDDn〈; 〉 result UE
UDD ::= UDEFN | UDECL

UDECL ::= A : USP 〈given UT1, . . . , UTn〉

USP ::= SPEC | SPEC1 × · · · × SPECn → SPEC | arch spec ASP
UDEFN ::= A = UE

UE ::= UT | λ A1 : SPEC1, . . . , An : SPECn • UT

UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ→ Σ′ |

UT hide σ : Σ→ Σ′ | local UDEFN1 . . . UDEFNn within UT

FIT ::= UT | UT fit σ : Σ→ Σ′

Figure 4: Syntax of CASL architectural specifications.

is only defined on compatible models, meaning that the implementation of the parameters must coincide on their
common symbols. Unit expressions may also involve applications of generic units.

Units can be specified with unit specifications. A unit specification USP is either an ordinary structured specifi-
cation USP = SP of a non-generic unit, or the specification USP = SP1 × · · · × SPn → SP of a generic unit, with a
list of parameter specifications and a result specification. A generic unit satisfies such a unit specification if it takes as
arguments models of the parameter specifications SP1 × · · · × SPn and returns a model of the result specification SP.
A unit specification can be named by writing

unit spec USP NAME = USP

Figure 4 presents the complete syntax of architectural specifications in CASL. Here, A, A1, . . . , An stand for com-
ponent names, Σ and Σ′ denote signatures and σ denotes a signature morphism. The syntax can be briefly explained
as follows: an architectural specification ASP consists of a list of unit declarations UDECL, with an optional list of
imported units (marked as optional with 〈. . .〉) for each unit declaration, and unit definitions UDEFN—where decla-
rations assign unit specifications USP to unit names and definitions assign unit expressions UE to unit names—and
a result unit expression formed with the units declared and defined. Unit declarations and definitions are separated
by semicolons, with the last separator before the keyword result being optional. Unit expressions are used to give
definitions for generic units, while unit terms define non-generic units. When the result unit of an architectural spec-
ification is generic, the system is “open”, requiring some parameters to provide an implementation. In the case of
fitting arguments, an omitted signature morphism σ is assumed to be the identity.

In the following sections, we restrict CASL architectural specifications by omitting unit imports. They will be
discussed separately in Sect. 5.2.

Example 2.1. The task of providing an implementation of the integer, string and boolean datatypes can be decom-
posed into implementing each of the datatypes separately and then putting together the obtained realizations:

arch spec Types =

units N : Int;
S : String;
B : Bool;
R = N and S and B

result R

The architectural specification Types declares three units, N, S and B, one for each of the integer, string and boolean
datatype, and then defines a unit as the union of N, S and B. The union is a unit term. If the implementation of another
datatype, say floats, should be provided from outside the architectural specification Types, we could make use of a
unit expression: R = lambda X: Float . N and S and B and X.

Example 2.2. We will illustrate the CASL architectural and refinement languages using an industrial case study: the
specification of a steam boiler control system for controlling the water level in a steam boiler. The problem has been
formulated in [10] as a benchmark for specification languages; [9] gives a complete solution using CASL, including

6

architectural design and refinement of components. However, the refinement steps were presented there in an informal
way. The refinement language introduced in Sect. 2.4 below makes it possible to formally write down the refinement
steps using CASL refinements.

The specifications involved can be briefly explained as follows.2 Components of the system communicate with
each other using messages, some of which include values, such as the identifier of a pump, the water level, or the
output of steam. The specification Value provides a very abstract notion of these values, and only assumes that values
extend natural numbers and are equipped with some loosely specified operations and predicates. This specification
acts as a parameter of the entire design. Preliminary gathers the messages in the system, both sent and received,
and also defines a series of constants characterizing the steam boiler. Sbcs State introduces observers for the system
states, while Sbcs Analysis extends this to an analysis of the messages received, failure detection and computation
of messages to be sent. Finally, Steam Boiler Control System specifies the initial state and the reachability relation
between states. We record the requirement that the system is open in the models for Value using the unit specification:

unit spec Sbcs Open = Value→ Steam Boiler Control System

The initial design for the architecture of the system is recorded in the following architectural specification:

arch spec Arch Sbcs =

units
P : Value→ Preliminary;
S : Preliminary→ Sbcs State;
A : Sbcs State→ Sbcs Analysis;
C : Sbcs Analysis→ Steam Boiler Control System

result λ V : Value • C [A [S [P [V]]]]

Here, the units P, S, A and C are all generic units. Moreover, the components are combined in the way prescribed
in the result unit of Arch Sbcs: for any model of Value, the linking procedure given by the result unit term is required
to provide a model of the entire system.

A component in a UML component diagram is a modular unit that is replaceable within its environment. It may
have required and provided interfaces and its internals are otherwise inaccessible. Components can be flexibly reused
by ‘wiring’ them together. The intention is to be able to re-deploy a component independently. A UML component
diagram can be written as a CASL architectural specification using the following correspondences:

Component diagrams Architectural specifications
component unit
required interface argument specification
provided interface result specification
delegation connector to required interface lambda unit expression
delegation connector to provided interface result unit expression
assembly connector unit term in an application

We assume a purely hierarchical design, with no mutual dependencies between units, and thus only a pair of required
and provided interfaces exists for each connection.

Figure 5 presents an example of a UML component diagram. The CASL architectural specification obtained by
applying the rules above to it is:

arch spec Store =

units Product : OrderableItem;
Customer : Account→ Person;
Order : OrderableItem × Person→ OrderEntry

result λ X : Account • Order [Product] [Customer [X]]
end

2The complete specification of the SBCS example can be found under https://ontohub.org/hets-lib/UserManual/Sbcs.casl.

7

https://ontohub.org/hets-lib/UserManual/Sbcs.casl

:Order

OrderableItem

OrderEntry

«delegate»

OrderEntry

Store

Person

Account

:Product

:Customer

OrderableItem

Person

Account

«delegate»

Figure 5: A UML component diagram

Furthermore, we can connect a unit A whose specification is Account with a unit S whose specification is Store
using unit application S [A].

With CASL architectural specifications as introduced so far, we can specify individual branching points of a formal
development. Moreover, views provide a rudimentary way of expressing refinement. However, this does not suffice
for all purposes. First, views formalize only refinement between non-generic unit specifications. Then, there is no
way to record that a structured specification is refined to an architectural specification. Finally, while the specification
of a unit in an architectural specification ASP can itself be an architectural specification, describing how the respective
component of ASP is further decomposed into sub-components, the drawback is that this decision must already be
recorded at the time of writing ASP. This means that the whole development process should be captured within a
single architectural specification, without the possibility of refining the specifications of the components in a later
step. Therefore, we now complement architectural specifications with a refinement language, which allows the user
to formalize complete developments as refinement trees, which we formally introduce in Sect. 6.

2.4. Refinements
Our refinement language covers three kinds of refinements: refinement of unit specifications to unit specifications,

called simple refinements; refinement of unit specifications to architectural specifications, called branching refine-
ments; and refinement of named components of an architectural specification, called component refinements.

The intuition behind the three kinds of refinement can be easily understood using a graphical representation of
refinement trees. The refinement language for CASL provides means for specifying refinement trees which are con-
structed using three types of building blocks, corresponding to these three kinds of refinement. Refinement trees
(introduced formally in Sect. 6.2) provide a visual representation of the development process as follows:3

S Simple refinement steps give rise to the first type of links in refinement trees: the refinement of a specification SP
to another specification SP’ along σ is represented as a tree with two nodes, one labeled with the name of SP
and the other with the name of SP’ with an edge between the two nodes, which we write using a double arrow
to denote a refinement:

SP
σ +3 SP’

To save space, we sometimes write refinements horizontally instead of vertically. The arrow indicates which
direction is “down”.

3We will use the notations S, B and C for the three types of refinement throughout the rest of the paper in informal or intuitive explanations of
formal results.

8

B Branching refinements introduce architectural decompositions. An architectural specification ASP NAME with n
units UN1, . . . UNn with specifications SPR1, . . . , SPRn, can be represented as a refinement tree as follows. In
the simplest case, all SPRi are unit specifications and then the refinement tree of ASP NAME is

ASP NAME

%%��yy
UN1 UN2 UNn

where the simple arrows denote decomposition. In the general case, SPRi are branching refinements with
refinement trees T1, . . . ,Tn. The refinement tree of ASP NAME introduces a new root node, labeled with
ASP NAME, and connects this node with the roots of each of T1, . . . ,Tn by a decomposition link, and moreover
the label of the root of Ti becomes UNi for each i = 1, . . . , n. Note that the result unit term of an architectural
specification is not represented in its refinement tree.

C Component refinements are forests of named refinement trees. They are used to further refine the leaves of a refine-
ment tree. For a component refinement that contains refinements SPRi for the units UNi, with i = 1, . . . , k, its
refinement tree is the forest consisting of the refinement trees T1, . . . ,Tk of SPR1, . . . , SPRk, labeled respectively
with UN1, . . . ,UNk. It can be the case that for some i = 1, . . . , k, Ti is itself a forest of named refinement trees.
In the example below, we have a forest of three refinement trees for UN1, UN2 and UN3, where in turn the
refinement tree for UN3 is again a forest of two refinement trees for UN’1 and UN’2, respectively.:

UN1 UN2 UN3

SP1

σ

��

ASP NAME

%%��yy

UN’1 UN’2

UN’1 UN’2 UN’3 SP’1

τ

��

ASP NAME’

%%��yy
SP2 SP’2 UN”1 UN”2 UN”3

A component refinement is only meaningful if we know that the names of the trees are component names occur-
ring in an architectural specification that we want to further refine as described by the component refinement.

Moreover, such blocks can be combined using composition of refinements, which corresponds to putting together
subtrees that match at the connection points. To make this intuitive notion formal, we will have to clarify how
connection points are identified (see Sect. 6.2) and what it means for the connection points to match. The latter will
be done by the proof calculus for refinements that we introduce in Sect. 5.3.

We now introduce the syntax of the refinement language and illustrate it with some examples from [13]. Moreover,
in the examples we will also show the refinement tree for each refinement. Simple refinement is written USP refined
via σ to USP′, where USP and USP′ are generic unit specifications of the form SP1 × . . .× SPn → SP and SP1 × . . .×
SPn → SP′ respectively and σ : Sig(SP) → Sig(SP′). When via σ is omitted, σ is assumed to be the identity. This
also covers the case of non-generic unit specifications by taking n = 0. We make the simplifying assumption that the
parameter specifications of generic unit specifications do not change under refinement. This allows us to freely use
the reduct notation U′|σ for generic units U′ ∈ Unit(USP′) as well; in this case, the notation denotes the unit function
obtained by reducing the result w.r.t. σ after applying U′. In practice, this restriction is not troublesome, since we
can always write an architectural specification that adjusts the parameter specifications as required, as we will show
below. We can then express correctness of a simple refinement USP refined via σ to USP′ as

U′|σ ∈ Unit(USP) for each unit U′ ∈ Unit(USP′)

and denote this by USP
σ
∼∼∼> USP′. If USP and USP′ are non-generic, we can express the refinement USP refined

via σ to USP′ equivalently as view V : USP to USP′ = σ. Therefore, simple refinements can be regarded as a
generalization of views to the generic case.

9

Two refinements can be combined to form a chain of refinements, which captures the situation USP
σ
∼∼∼> USP′

τ
∼∼∼>

USP′′. We write this USP refined via σ to USP′ refined via τ to USP′′, or using named refinements as one of the
three equivalent constructions C1, C2 or C3 below:

refinement R = USP refined via σ to USP′

refinement R’ = USP′ refined via τ to USP′′

refinement C1 = USP refined via σ to R’
refinement C2 = USP refined via σ to USP′ then R’
refinement C3 = R then R’

where the last two alternatives make use of an operation of composition of refinements, using the keyword then. The
semantic rules, which will be presented in Sect. 4, determine which compositions are legal.

Example 2.3. We start with a loose specification of monoids:

spec Monoid =

sort Elem
ops 0 : Elem;

+ : Elem × Elem→ Elem, assoc, unit 0

Then natural numbers are specified with the usual Peano axioms, addition is defined, and finally the successor is
hidden:

spec NatWithSuc =

free type Nat ::= 0 | suc(Nat) %% CASL shorthand for Peano axioms
op + : Nat × Nat→ Nat, unit 0
∀ x, y : Nat • x + suc (y) = suc(x + y)

spec Nat = NatWithSuc hide suc

We can record that natural numbers with addition form a monoid as follows:
refinement R1 = Monoid refined via Elem 7→ Nat to Nat Monoid

Elem 7→Nat +3 Nat

Natural numbers are further implemented as lists of binary digits, constructed by two postfix operations 0 and
1. + is addition, and + + is addition with carry bit.

spec NatBin =

generated type Bin ::= 0 | 1 | 0(Bin) | 1(Bin)
ops + , ++ : Bin × Bin→ Bin
∀ x, y : Bin
• 0 0 = 0
• 0 1 = 1
• ¬ 0 = 1
• x 0 = y 0⇒ x = y
• ¬ x 0 = y 1
• x 1 = y 1⇒ x = y
• 0 + 0 = 0
• 0 ++ 0 = 1

• x 0 + y 0 = (x + y) 0
• x 0 ++ y 0 = (x + y) 1
• x 0 + y 1 = (x + y) 1
• x 0 ++ y 1 = (x ++ y) 0
• x 1 + y 0 = (x + y) 1
• x 1 ++ y 0 = (x ++ y) 0
• x 1 + y 1 = (x ++ y) 0
• x 1 ++ y 1 = (x ++ y) 1

We obtain a new refinement:
refinement R2 = Nat refined via Nat 7→ Bin to NatBin Nat

Nat 7→Bin +3 NatBin
which can be composed with the first one:

refinement R3 = R1 then R2
Monoid

Elem 7→Nat +3 Nat
Nat 7→Bin +3 NatBin

As a next step, we can introduce branching by refining to an architectural specification:

10

refinement R = USP refined via σ to arch spec ASP

The original architectural language (as in [6]) already permits that the specification of a component unit of an archi-
tectural specification is itself an architectural specification. This means that we are allowed to record decisions in
an architectural specification regarding the design of a component. Since the new refinement language provides a
more expressive language for such design decisions, it is natural to allow unit declarations to make full use of it, by
generalizing the specifications of units to arbitrary refinements:

refinement R = USP refined via σ to USP′

arch spec ASP NAME = {

units U : R
. . . }

This means that we require the developer of the component U to provide a realization of USP′, which, as recorded by
the refinement R, is known to be an acceptable realization of USP along σ.

Example 2.4. Suppose that we want to implement not only Nat, but NatWithSuc, i.e. also the successor function.
Now, while the presence of the successor function enables an easy specification of the natural numbers, it may be a
little distracting in achieving an efficient implementation. So we can help the implementor and impose (via a CASL

architectural specification) that the natural numbers should be implemented with addition, and the successor function
should only be implemented afterwards, in terms of addition:

arch spec Addition First =

units
N : Nat;
F : Nat→ NatWithSuc

result F[N]

ADDITION FIRST

&&xx
N F

We thus have chosen to split the implementation of NatWithSuc into two independent subtasks: the implementation
of Nat, and the implementation of a generic program, that given any Nat-model will realise the successor function
on top of it. The generic program is then applied once to the implementation N of Nat. We can record this design
decision as:

refinement R4 = NatWithSuc refined to
arch spec Addition First

NatWithSuc +3 ADDITION FIRST

&&xx
N F

If we want to record at this point that we have also made the design decision to implement Nat with NatBin, we
can write a refinement directly after the specification of the unit in question:

arch spec Addition First Ref =

units
N : Nat refined via Nat 7→ Bin to NatBin ;
F : Nat→ NatWithSuc

result F[N]

ADDITION FIRST REF

''vv
N

Nat 7→Bin

��

F

NatBin

These two constructions give us the second kind of refinements, branching refinements. In a bottom-up approach
to system development by stepwise refinement, one combines previously developed units, possibly reused from an
existing library, into a new system. The specification of each unit has been previously refined, and this information is
made available when making the combination. If a system has units A 1, . . ., A n and their specifications have been
refined as captured by the refinements R 1, . . ., R n, it remains to combine the units into an architectural specification:

11

arch spec ASP NAME =

units
A 1 : R 1;
. . .
A n : R n

result UE

that is, finding a linking procedure UE involving A 1, . . ., A n. The refinements R 1, . . ., R n can be arbitrarily
complex.

Finally, we also allow the (named) components of architectural specifications to be further refined using component
refinements, which are written {UN i to SPRi}i∈J , where J is a set of indices and for each i ∈ J , UN i stands for a
unit name and SPRi for a refinement. This expresses that for each i ∈ J , the component with the name UN i of the
architectural specification at hand is further refined to SPRi. Component refinement is typically used in the context of
a composition of the form

refinement R = arch spec ASP NAME then {UN i to SPRi}

which specifies that the component with the name UN i of ASP NAME is further refined to SPRi. The semantic rules,
which will be introduced in Sect. 4, prevent the specification of a unit in an architectural specification from being a
component refinement; that is, only simple or branching refinements are allowed here.

From a practical perspective, component refinements can be explained as follows. In a top-down approach to
system development, one would start by decomposing the task of providing an implementation for the requirement
specification SP into smaller subtasks and record this decision with an architectural specification ASP NAME:

arch spec ASP NAME =

units
A 1 : USP 1;
. . .
A n : USP n

result UE

where UE is a unit expression involving A 1, . . ., A n. This is followed by decomposing the specifications of the units
into architectural specifications ASP 1, . . ., ASP n. This is recorded as follows:

refinement R = ASP NAME then {A 1 to arch spec ASP 1, . . ., A n to arch spec ASP n }

A further decomposition of the units B 1, . . ., B k of ASP i, for an index i ∈ {1, . . . n}, can be recorded in the same
way, using composition of refinements:

refinement R’ = R then {A i to {B 1 to arch spec ASP’ 1, . . ., B k to arch spec ASP’ k }}

Example 2.5. We can now record the decision of implementing the component N of Addition First with NatBin in
a later step, as a component refinement:

refinement RComp = {N to R2}
refinement R5 = R4 then RComp

N

Nat
Nat 7→Bin +3 NatBin

NatWithSuc

��
ADDITION FIRST

&&ww
N

Nat 7→Bin

��

F

NatBin

Using a component refinement, R5 avoids the construction of Addition First Ref, which has been obtained from
Addition First by syntactic substitution. This shows that component refinements increase the possibilities of re-using
existing refinements.

12

LIB-ITEM ::= . . . | REF-SPEC-DEFN
REF-SPEC-DEFN ::= refinement REF-SPEC-NAME = SPR

SPR := USP | arch spec ASP | SPR then SPR |

USP refined 〈via σ〉 to SPR | {A1 to SPR1, . . . , An to SPRn}

UDECL ::= A : SPR | A : USP given UT1, . . . , UTn

USP ::= SPEC | SPEC1 × · · · × SPECn → SPEC | arch spec ASP

Figure 6: Syntax of the CASL refinement language.

The complete syntax for CASL refinements is presented in Fig. 6, where A, A1, . . . , An stand for unit names and σ
for a signature morphism. We eliminate architectural specifications as an alternative of unit specifications, since we
make them available as a particular case of refinements. The syntax of CASL architectural specifications (introduced
in Fig. 4) is modified for unit declarations and unit specifications as indicated in Fig. 6 and is otherwise subsumed
without change by the syntax of CASL refinements.

2.5. Examples and Methodology

Example 2.6. We write the initial refinement of the steam boiler system (Example 2.2) as

refinement Ref Sbcs = Sbcs Open refined to
arch spec Arch Sbcs

SBCS OPEN +3 ARCH SBCS

!! &&xx }}
P S A C

We proceed with refining individual units. The specifications of C and S in Arch Sbcs above do not require
further architectural decomposition. The specification of S, recorded in the unit specification State Abstr, can be
refined by providing an implementation of states as a record of all observable values. This is done in Sbcs State Impl,
assuming an implementation of Preliminary; we record this development in the unit specification Unit Sbcs State.4

The refinement of S is then written in State Ref5
unit spec State Abstr =

Preliminary→ Sbcs State
unit spec Unit Sbcs State =

Preliminary→ Sbcs State Impl
refinement State Ref =

State Abstr refined to Unit Sbcs State

STATE ABSTR +3 UNIT SBCS STATE

For the units A and P, we proceed with designing their architecture. This is recorded in the architectural specifi-
cations Arch Analysis6 and Arch Preliminary 7:

arch spec Arch Analysis =

units
FD : Sbcs State→ Failure Detection;
PR : Failure Detection→ PU Prediction;
ME : PU Prediction→Mode Evolution[PU Prediction];
MTS : Mode Evolution[PU Prediction]→ Sbcs Analysis
result λ S : Sbcs State •MTS [ME [PR [FD [S]]]]

ARCH ANALYSIS

zz ��vv %%
FD PR ME MTS

4See https://spechub.org/casl/hets-lib/UserManual/Sbcs.casl for Sbcs State Impl and other specifications in the steam boiler
system example that are referred to here.

5 This can be equivalently written refinement State Ref’ = Preliminary→ Sbcs State refined to Preliminary→ Sbcs State Impl.
6The specification Mode Evolution is generic, and is instantiated with the actual parameter PU Prediction. Although the syntax is similar, the

concepts of (applications of) generic units and generic specifications are different, see [3].
7Since two of the units of Arch Preliminary have imports, its refinement tree is actually slightly different than the one we show here. This will

be clarified in Sect. 5.2 and the correct refinement (sub)tree is presented in Fig. 20.

13

https://spechub.org/casl/hets-lib/UserManual/Sbcs.casl

arch spec Arch Preliminary =

units
SET : {sort Elem} × Nat→ Set[sort Elem];
B : Basics;
MS : Messages Sent given B;
MR : Value→Messages Received given B;
CST : Value→ Sbcs Constants

result λ V : Value
• SET [MS fit Elem 7→ S Message] [V]

and SET [MR [V] fit Elem 7→ R Message] [V]
and CST [V]

ARCH PRELIMINARY

yy %%��vv))
SET B MS MR CST

We can now record the component refinement:

refinement Ref Sbcs’ = Ref Sbcs then
{P to arch spec Arch Preliminary, S to StateRef,
A to arch spec Arch Analysis}

The refinement tree of the component refinement following then is:

P S A

ARCH ANALYSIS

zz ��vv %%

STATE ABSTR

��

ARCH PRELIMINARY

yy %%��vv))
FD PR ME MTS UNIT SBCS STATE SET B MS MR CST

The refinement tree of REF SBCS’ consists of the first five levels of the tree in Fig. 20 in Sect. 6.2.
Moreover, the components FD and PR of Arch Analysis are further refined (the architectural specifications

Arch Failure Detection and Arch Prediction are omitted here,8:

refinement Ref Sbcs” =

Ref Sbcs’
then {A to
{FD to arch spec Arch Failure Detection,
PR to arch spec Arch Prediction }}

The refinement tree of Ref Sbcs” is shown in Fig. 20. For the component refinement following then we have the
following tree:

A

FD PR

Arch Failure Detection

�� %% ((xxuutt

Arch Prediction

{{ �� ## ''
MTSF PF PCF SF LF PU SE SLP PP PCP

8See https://spechub.org/casl/hets-lib/UserManual/Sbcs.casl.

14

https://spechub.org/casl/hets-lib/UserManual/Sbcs.casl

Remark 2.1. The grammar of the refinement language, presented in Fig. 6, allows combinations between refinements
whose refinement trees do not match, for example:

refinement R = arch spec ASP NAME then USP

The static and model semantics rules for refinements that we will introduce in Sect. 4 will reject such refinements
as ill-formed.

3. Foundations

We now introduce the mathematical background that is needed for making the language syntax introduced in
Sect. 2 precise and for developing a mathematical semantics for it. As already introduced, the central notion is that
of institution, introduced by Goguen and Burstall [15] in order to capture the notion of logical system formally and
abstractly. An institution will provide syntax and semantics for basic specifications, while the syntax and semantics of
structured and architectural specifications as well as refinements can be defined over an arbitrary but fixed institution.
Thus, the notion of institution is the central abstraction barrier for separating the different language layers and making
them orthogonal.

We assume that the reader is familiar with the basic notions of category theory. Our notations largely follow [17],
with the exception of composition of morphisms in a category, which we write in diagrammatic order using “;”.

Definition 3.1. An institution I = (Sig,Sen,Mod, |=) consists of 9:

• a category Sig of signatures,

• a functor Sen : Sig → Set, giving for each signature Σ a set of sentences Sen(Σ), and for each signature
morphism σ : Σ → Σ′, a sentence translation map Sen(σ) : Sen(Σ) → Sen(Σ′), where we may write Sen(σ)(e)
as σ(e),

• a functor Mod : Sigop → Cat giving for each signature Σ a category of models Mod(Σ) and for each signature
morphism σ : Σ → Σ′, a reduct functor Mod(σ) : Mod(Σ′) → Mod(Σ), where we may write Mod(σ)(M′) as
M′|σ;

• a binary relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ), for each signature Σ, called the satisfaction relation

such that the following satisfaction condition holds:

M′|σ |=Σ e ⇐⇒ M′ |=Σ′ σ(e)

for each signature morphism σ : Σ→ Σ′ , Σ-sentence e and Σ′-model M′.

Example 3.1. [15] First-order Logic. In the institution FOL= of (unsorted) first-order logic with equality, signatures
are first-order signatures, consisting of sets of function symbols with arities and of predicate symbols with arities.
Signature morphisms map symbols so that arities are preserved. Models are first-order structures with non-empty
universes and sentences are closed first-order formulas. Sentence translation means replacement of symbols by their
translations. Model reduct reassembles the model’s components according to the signature morphism. Satisfaction is
the usual satisfaction of a first-order sentence in a first-order structure.

Example 3.2. [15] Multi-sorted first-order logic. In the institution MSFOL= of multi-sorted first-order logic with
equality, signatures consist of a set of sorts and sets of sorted function and predicate symbols, meaning that for a
function symbol f with n arguments, we give the sorts s1, . . . , sn of the arguments and the sort s of the result (written
f : s1 ∗ s2 ∗ . . . ∗ sn → s), and for a predicate symbols p with n argument we give the sorts s1, . . . , sn of the arguments

9As usual, Set is the category having all small sets as objects and functions as arrows and Cat is the category of categories and functors (strictly
speaking, a so-called quasicategory, which is a category that lives in a higher set-theoretic universe).

15

(written p : s1 ∗ s2 ∗ . . . ∗ sn). Signature morphisms map sorts to sorts, function symbols to function symbols and
predicate symbols to predicate symbols such that the sorts of the arguments and result (for function symbols) are
preserved: if σ : Σ → Σ′ is a signature morphism and f : s1 ∗ s2 ∗ . . . ∗ sn → s is a function symbol in Σ, then its
image under σ, denoted σ(f), must have argument and result sorts σ(s1) ∗σ(s2) ∗ . . . ∗σ(sn)→ σ(s) and similarly for
predicate symbols. Models interpret sorts as non-empty sets (carriers), function symbols as functions and predicate
symbols as predicates on the sets given by their argument sorts. Sentences are formed from terms: if ti is a term of
sort si, for i = 1, . . . , n, and f : s1 ∗ s2 ∗ . . . ∗ sn → s is a function symbol, then f (t1, . . . , tn) is a term of sort s. Then
sentences are closed multi-sorted first-order formulas, defined inductively as follows:

• the atomic formulas are applications of predicate symbols to a list of terms of appropriate sorts and equalities
between terms of the same sort;

• if X is a sorted set of variables and Φ,Φ1,Φ2 are formulas, then ¬Φ, Φ1∧Φ2, Φ1∨Φ2, Φ1 =⇒ Φ2, Φ1 ⇐⇒ Φ2,
∀X • Φ and ∃X • Φ are formulas.

Sentence translation, model reduct and satisfaction of formulas in models are similar to the case of first-order
logic.

Example 3.3. [6] Multi-sorted first order logic with sort generation constraints. This logic extendsMSFOL= with a
new kind of sentences, sort generation constraints. A sort generation constraint over a signature Σ is a triple (S ′, F′, σ′)
such that σ′ : Σ′ → Σ and S ′ and F′ are sets of, respectively, sort and function symbols of Σ′. Sort generation
constraints are translated along a signature morphism ϕ : Σ → Σ′′ by composing the morphism σ′ in their third
component with ϕ. A sort generation constraint (S ′, F′, σ′) holds in a model M if the carriers of M|σ′ of the sorts in
S ′ are generated by function symbols in F′, which means that for every sort s′ ∈ S ′ and each a ∈ (M|σ′)s′ , there must
exist a Σ′-term t with function symbols only from F′ and variables of sorts not in S ′ and a variable assignment ρ into
M|σ′ such that the interpretation of t in M|σ′ under ρ is a. Thus, the sorts specified in a sort generation constraint have
no elements that cannot be reached via the constructors specified in F′. This is the so-called ”no junk” principle. In
CASL a sort generation constraint appears as a generated type declaration. CASL also has free type declarations, that
require moreover that the ranges of the constructors of the same sort are disjoint (this is called ”no confusion”).

The CASL logic [6] adds subsorting and partiality to multi-sorted first order logic with sort generation constraints.
Since we do not use these in our examples, we refrain from giving the details here. Many other logics, including
propositional, higher-order, modal, temporal and Hoare logics can be presented as institutions. For more examples of
institutions see [18, 3].

The signatures of many institutions come naturally equipped with a notion of subsignature, hence signature inclu-
sion, and a well-defined way of forming a union of signatures. These concepts can be captured in a categorical setting
using inclusion systems [19]. However, we will work with a slightly different version of this notion:

Definition 3.2. An inclusive category is a category with a broad subcategory10 which is a partially ordered class with
a least element (denoted ∅), non-empty products (denoted ∩) and finite coproducts (denoted ∪), such that for each
pair of objects A, B, the following is a pushout in the category:

A ∩ B� _

��

� � // A� _

��
B �
� // A ∪ B

For any objects A and B of an inclusive category, we write A ⊆ B if there is an inclusion from A to B; the unique
such inclusion will then be denoted by ιA⊆B : A ↪→ B, or simply A ↪→ B.

A functor between two inclusive categories is inclusive if it takes inclusions in the source category to inclusions
in the target category.

10That is, with the same objects as the original category.

16

Definition 3.3. An institution I = (Sig,Sen,Mod, |=) is inclusive11 if

• Sig is an inclusive category,

• Sen is inclusive and preserves intersections.12

Moreover, we asume that reducts w.r.t. signature inclusions are surjective on objects. 13

The least object in the category of signatures will be referred to as the empty signature; indeed, in typical signature
categories it is empty. In inclusive institutions, if Σ1 ⊆ Σ2 via an inclusion ι : Σ1 ↪→ Σ2 and M ∈ Mod(Σ2), we write
M|Σ1 for M|ι. Note that Sen(ι) : Sen(Σ1) → Sen(Σ2) is the usual set-theoretic inclusion, hence its application may be
omitted.

The institutions presented above can be equipped with the obvious inclusion system on their signatures and models,
and then become inclusive institutions.

Definition 3.4. (adapted from [21]) A category with coherent pushouts of inclusions is an inclusive category with two

partial operators that define for a morphism m : A→ B and an inclusion A �
� ∆ // X an object B(∆) that includes B

and a morphism m(∆) : X → B(∆) such that the diagram on the left below is a pushout.

A

m

��

� � ∆ // X

m(∆)
��

X
m(∆) //

f

��

B(∆)
m(f)

{{
B �
� // B(∆) X′

m(∆′) // B(∆′)

A
?�

∆

OO

/ �

∆′
??

m
// B
?�

OO

Q1

cc

In that case, given an arrow f : X → X′ such that ∆; f = ∆′ we write m(f) for the universal arrow from B(∆) to B(∆′)
induced by the pushout as in the diagram on the right above.

The coherence requires that pushouts of inclusions commute with identities and compositions, as in [21]:

• when m = idA, A(∆) = X and idA(∆) = idX

• when ∆ = idA, B(idA) = B and m(idA) = m

• (m; n)(∆) = m(∆); n(∆′) and C(∆) = C(∆′)

• m(∆; ∆′) = (m(∆))(∆′) and B(∆; ∆′) = (B(∆))(∆′)

where the equations between morphisms imply those between their codomains and the diagrams for the two last items
are as below

Y

m(∆;∆′)
))

(m(∆))(∆′)

55(B(∆))(∆′) = B(∆; ∆′)

X

(m;n)(∆)

$$

m(∆)
// B(∆)

n(∆′)
// C(∆) = C(∆′) X

?�

∆′

OO

mX
// B(∆)
?�

OO

A m
//?�

∆

OO

B n
//?�

∆′

OO

C
?�

OO

A m
//?�

∆

OO

B
?�

OO

11Even though we use the same term as in [20], since the overall idea is the same, on one hand, some of our assumptions here are weaker than
in [20], and on the other hand, we require a bit more structure on the category of signatures.

12That is, for any non-empty family of signatures S ⊆ |Sig|, Sen(
⋂
S) =

⋂
Σ∈S Sen(Σ).

13The semantics of DOL requires also that each model category of I is inclusive, and reduct functors are inclusive. This condition is not needed
in our context and we have omitted it.

17

This allows us to speak about the selected pushout of a span where an arrow is an inclusion. In the case of the
CASL logic, [6] presents a set-theoretical construction of the selected pushout.14

Let C be a weakly inclusive category. We say that C has differences, if there is a binary operation \ on objects,
such that for each pair of objects A, B, A \ B is the largest object that is included in A and its intersection with B is the
empty object.

Definition 3.5. In an inclusive category C, let σ1 : Σ1 → Σ′1 and σ2 : Σ2 → Σ′2 be two arrows. We define their union
σ1 ∪ σ2 as the universal arrow from Σ1 ∪ Σ2 to Σ′1 ∪ Σ′2 induced by the pushout as below, if the outer diagram is a
cocone:

Σ1
σ1 //� q

""

Σ′1 � q

""
Σ1 ∩ Σ2

-

<<

� q

""

Σ1 ∪ Σ2
σ1∪σ2 // Σ′1 ∪ Σ′2

Σ2
σ2 //

-

<<

Σ′2

-

<<

The union of the two arrows is defined only if the outer diagram is a cocone. Intuitively, this condition ensures
that σ1 and σ2 agree on Σ1 ∩ Σ2.

This is generalized to finite unions of signature morphisms in the expected way.
We are going to make use of the following notions in an arbitrary inclusive institution I. A diagram D is a functor

from a small category to the category of signatures of I. In the following, let D be a diagram. The objects and
the morphisms of its source category are referred to as its nodes and its edges, respectively. A family of models
M = {Mp}p∈Nodes(D) indexed by the nodes of D is compatible with D if for each node p of D, Mp ∈ Mod(D(p)) and
for each edge e : p → q, Mp = Mq|D(e). A sink η on a subset K of nodes consists of a signature Σ together with a
family of morphisms {ηp : D(p) → Σ}p∈K . We say that D ensures amalgamability along η = (Σ, {ηp : D(p) → Σ}p∈K)
if for every model family M compatible with D there is a unique model M ∈ Mod(Σ) such that for all p ∈ K,
M|ηp = Mp. If such a model M exists (without necessarily being unique) then D ensures weak amalgamability
along η. Moreover, if K consists of all nodes of D and for each edge i : p → q in D we have that ηp = D(i); ηq, η
is called a (weakly) amalgamable cocone for D. Given a family of signatures {Σi}i=1,...,n and a family of Σi-models
M = {Mi ∈Mod(Σi)}i=1,...,n, we defineM1 ⊕ · · · ⊕Mn = {M ∈Mod(Σ1 ∪ · · · ∪ Σn) | M|Σi ∈ Mi, i ∈ 1, . . . , n}.

For an inclusive institution I, a presentation is a pair (Σ, E) where Σ is a signature and E is a set of Σ-sentences. For
a set E of Σ-sentences, ModΣ(E) denotes the class of all Σ-models satisfying E. If E1 and E2 are sets of Σ-sentences,
we say that E2 is a logical consequence of E1, denoted E1 |= E2, if for each model M of E1, M is also a model of E2.
A presentation morphism σ : (Σ1, E1) → (Σ2, E2) is a signature morphism σ : Σ1 → Σ2 such that E2 |= σ(E1). We
obtain thus a new institution, which we denote Ipres, having as its category of signatures the category of I-presentations
and their morphisms, as sentences over a presentation (Σ, E) simply all Σ-sentences, and Mod(Σ, E) = ModΣ(E); the
satisfaction relation is the same as in I. Presentations provide the simplest form of specifications, and they provide the
formalization of basic specifications.

CASL uses symbol maps as a convenient way of writing down signature morphisms. Instead of having to write down
for each element of the signature its corresponding image along the signature morphism, the user can provide a partial
mapping between the symbols of the source and target signatures. The mapping may either determine unambiguously
a signature morphism, which is then used in the specification, or, ambiguously, several signature morphisms, in which
case an error is generated (and the user is expected to provide more detail about the mapping). Here we write signature
morphisms directly instead of introducing symbol maps.

Remark 3.1. We also assume that there exists a sound proof calculus for proving refinements of structured spec-
ifications or, equivalently, correctness of views; possible choices include the calculi defined in [3, 23, 24] and the
formalism of development graphs [25]. See also the discussion in Sect. 6.

14This works for the institutions with qualified symbols defined in [22] too.

18

4. Semantics of CASL Refinements

Before we come to the semantics of refinements, we first need to discuss the semantics of both structured and
architectural specifications. Note that CASL has model-theoretic semantics: a CASL specification denotes a signature
(determined by the static semantics) and a class of models over that signature (determined by the model semantics).
This applies to all specifications, at each layer of CASL.

4.1. Semantics of CASL Structured Specifications
The signature of a structured specification SP will be given by the rules of the static semantics for proving judge-

ments of the form ` SP � Σ, where Σ is a signature, and then we sometimes write Sig(SP) for Σ. Similarly, the class
of models of SP will be given by the rules of the model semantics, with judgements of the form ` SP ⇒ M, where
M is a class of Σ-models, and then we sometimes write Mod(SP) forM. A structured specification SP is consistent
if its model class Mod(SP) is non-empty.

• Basic specifications: Given a signature Σ and a set E of Σ-sentences, (Σ, E) is a structured specification such
that:

` (Σ, E) � Σ ` (Σ, E)⇒ModΣ(E)

• Union:

` SP1 � Σ1
` SP2 � Σ2

` SP1 and SP2 � Σ1 ∪ Σ2

` SP1 ⇒M1
` SP2 ⇒M2

` SP1 and SP2 ⇒ {M ∈Mod(Σ1 ∪ Σ2) | M|ιΣi⊆Σ1∪Σ2
∈ Mi, i = 1, 2}

• Translation:
` SP � Σ

σ : Σ→ Σ′

` SP with σ� Σ′

` SP⇒M

` SP with σ⇒ {M′ ∈Mod(Σ′) | M′|σ ∈ M}

• Hiding:
` SP′ � Σ′

σ : Σ→ Σ′

` SP′ hide σ� Σ

` SP′ ⇒M

` SP′ hide σ⇒ {M′|σ | M′ ∈ M}

4.2. Semantics of Unit Specifications
As discussed in Sect. 2.2, architectural specifications involve the specification of units. Units may be models or

generic units mapping models to models. Specifications of units consist of parameter and result specifications, indicat-
ing the properties assumed about the arguments and the properties guaranteed of the result. Formally, if SP1, . . . , SPn,
SP are structured specifications, then USP = SP1, . . . , SPn → SP is a unit specification. Unit signatures consist of a
sequence of signatures for the arguments and a signature that extends their union for the result. For non-generic units
(n = 0) this reduces to a single signature. The signature of a unit specification is determined as follows:

` SP1 � Σ1
. . .

` SPn � Σn

` SP � Σ

Σ extends Σ1 ∪ · · · ∪ Σn

` USP � Σ1, · · · ,Σn → Σ

where Σ1, · · · ,Σn → Σ, the signature of USP, is typically denoted by UΣ. Given a unit signature UΣ = Σ1, · · · ,Σn →

Σ, a UΣ-model, called a unit, is a partial function F mapping compatible models over Σ1, . . . ,Σn to Σ-models, in such
a way that the arguments are protected, i.e. for each 〈M1, . . . ,Mn〉 ∈ dom(F) we have that F(〈M1, . . . ,Mn〉)|Σi = Mi

for i = 1, . . . , n. Models over Σ1, . . . ,Σn are compatible if they can be amalgamated to a model over Σ1 ∪ . . . ∪ Σn.

19

The class of all UΣ-models is denoted Unit(UΣ). The semantics of a unit specification USP = SP1, . . . , SPn → SP is
given by the following rule:

` USP � UΣ

` SP1 ⇒M1
· · ·

` SPn ⇒Mn

M0 =M1 ⊕ · · · ⊕Mn

` SP⇒M

` USP⇒ {F ∈ Unit(UΣ) | for all M ∈ M0,M = 〈M|Σ1 , . . . ,M|Σn〉 ∈ dom(F) and F(M) ∈ M}

When n = 0 (no parameters), unit signatures are plain signatures and (non-generic) units are just models of the
corresponding signature. We denote the model class of USP as defined in the model semantics by Unit(USP). A unit
specification is consistent if Unit(USP) is non-empty.

4.3. Semantics of Architectural Specifications

Γs ` UDD1 . . . UDDn � Cs

Γs,Cs ` RESULT UNIT� UΣ

Γs ` units UDD1 . . . UDDn result UE� (Cs,UΣ)

Γs ` UDD1 . . . UDDn � Cs

Γs,Γm ` UDD1 . . . UDDn ⇒ C
Γs,Γm,Cs,C ` RESULT UNIT⇒ UEv

Γs,Γm ` units UDD1 . . . UDDn result UE� {(E,UEv(E)) | E ∈ C}

Figure 7: Basic static and model semantics for basic architectural specifications.

We briefly recall in a slightly simplified form the semantics of architectural specifications (see [6, 5] for details).
An architectural signature AΣ = (Cs,UΣ) consists of a unit signature UΣ for the result unit together with a static
context Cs which is a map assigning unit signatures to the names of component units.

Starting with the initial empty static context C∅s , the static semantics for declarations and definitions adds to it
the signature of each new unit and the static semantics for unit terms and expressions does the type-checking in
the current static context (see the rules in Fig. 7). The rules of the static semantics have judgements of the form
Γs ` ASP � AΣ where AΣ is an architectural signature and Γs is the global static environment, keeping track of
the signatures of the named structured specifications. The model semantics is assumed to be applied only after a
successful application of the basic static semantics. It produces a class of architectural modelsAM over the resulting
architectural signature, where an architectural model over an architectural signature AΣ consists of a result unit UEv(E)
over the result unit signature and a collection E of units over the signatures given in the static context, which is called
a unit environment. The rules of the model semantics have judgements of the form Γs,Γm ` ASP ⇒ AM with AM
being an architectural model and Γm being the global model environment, keeping track of the model class of the
named structured specifications.

Figure 8 gives the basic static semantics and model semantics for unit declarations. Unit declarations and defini-
tions denote a set C of unit environments. We write C∅ for the empty set of unit environments. Unit terms and unit
expressions denote unit evaluators UEv which, given a unit environment (that records the units for the unit names
that can appear in the term) deliver a unit (over the signature given by the static semantics). See Figs. 9 and 10 for
the semantics of typical unit term constructs. If we only want to state that the static semantics is successful for an
architectural specification ASP, we write ` ASP��. An architectural specification ASP is consistent if the classAM
of its architectural models is non-empty.

Figure 9 presents the basic static semantics and model semantics for unit amalgamation. The static semantics
states that the signature of the amalgamation of two units is the union of the signatures of the units. The model
semantics first analyses the two unit expressions T1 and T2 in a unit context C, obtaining the unit evaluators UEv1 and
UEv2 respectively. Then the rule checks whether for each pair of models M1 and M2 resulting from the evaluation
of T1 and T2, respectively, in the same unit environment E, their amalgamation M1 ⊕ M2 is defined, and if that is the

20

Γs ` UNIT SPEC� Σ

UN < dom(Cs)
Γs,Cs ` UN : UNIT SPEC� {UN 7→ Σ}

Γs ` UNIT SPEC� Σ1, . . . ,Σn → Σ

UN < dom(Cs)
Γs,Cs ` UN : UNIT SPEC� {UN 7→ Σ1, . . . ,Σn → Σ}

` UNIT SPEC⇒U

Γs,Γm,Cs,C ` UN : UNIT SPEC� C∅[UN/U]

Figure 8: Simplified basic static and model semantics for unit declarations.

Cs ` T1 � Σ1
Cs ` T2 � Σ2
Σ = Σ1 ∪ Σ2

Cs ` T1 and T2 � Σ

C ` T1 ⇒ UEv1
C ` T2 ⇒ UEv2

for each E ∈ C, there is a unique M ∈Mod(Σ) such that
M|Σ1 = UEv1(E) and M|Σ2 = UEv2(E) (?)

UEv = {E 7→ M | E ∈ C,M|Σi = UEvi(E), for i = 1, 2}
C ` T1 and T2 ⇒ UEv

Figure 9: Basic static and model semantics for unit amalgamation

case, the result of evaluating T1 and T2 in this unit environment is the amalgamation of these corresponding models.
Similarly, Fig. 10 presents the basic static semantics and model semantics for unit application, simplified to the case
of units with just one argument. The static semantics produces the signature of the term T and returns as signature of
F[T] the selected pushout Σ(∆) of the span (σ,∆), where ∆ is the unit signature of F stored in the context Cs. In the
general case of units with multiple arguments, the signature is obtained with the following definition.

Cs(F) = ∆ : Σ ↪→ Σ′

Cs ` T � ΣA

σ : Σ→ ΣA

(ιΣA⊆Σ′(∆), σ(∆),Σ′(∆)) is the pushout of (∆, σ)
Cs ` F[T fit σ] � Σ′(∆)

C ` T ⇒ UEv
for each E ∈ C,UEv(E)|σ ∈ dom(E(F)) (�)

for each E ∈ C, there is a unique M ∈Mod(Σ′(∆))
such that

M|ιΣA⊆Σ′ (∆)
= UEv(E) and M|σ(∆) = E(F)(UEv(E)|σ) (?)

UEvR = {E 7→ M | E ∈ C,M|ιΣA⊆Σ′ (∆)
= UEv(E),

M|σ(∆) = E(F)(UEv(E)|σ)}
C ` F[T fit σ]⇒ UEvR

Figure 10: Basic static and model semantics for unit application

Definition 4.1. Let F be a generic unit with the unit signature Σ1, . . . ,Σn → Σ, and let F[T1 fit σ1] . . . [Tn fit σn] be
a unit term involving F. Let ΣA

i be the signature of the unit term Ti, for i = 1, . . . n. Let ΣF be the union of all Σi and
ΣA the union of all ΣA

i . Let ∆ : ΣF → Σ be the inclusion of ΣF into Σ. Let σ : ΣF → ΣA be the union of the fitting
morphisms σi : Σi → ΣA

i . Let (Σ(∆), σ(∆), ιΣA⊆Σ(∆)) be the selected pushout for (σ,∆):

ΣA � � // Σ(∆)

ΣF

σ

OO

� �

∆
// Σ

σ(∆)

OO

21

Then the signature of the term F[T1 fit σ1] . . . [Tn fit σn] is Σ(∆).

The model semantics first analyzes the argument T in a unit context C recording the constraints on and dependen-
cies between previously introduced units and gives a unit evaluator UEv. Then, provided that (�) the actual parameter
fits the domain and (?) the models UEv(E) and E(F)(UEv(E)|σ) can be amalgamated to a ΣR-model M, the result unit
evaluator UEvR gives the amalgamation M for each unit environment E ∈ C. The condition (�) will be discharged
with the proof calculus for architectural specifications in Sect. 5.1.

Typically one would expect conditions of type (?) to be discarded statically. For this purpose, an extended static
semantics was introduced in [26], where the dependencies between units are tracked with the help of a diagram of
signatures. The idea is that we can now verify that the interpretation of two symbols is the same by looking for a
“common origin” in the diagram, i.e. a symbol which is mapped via some paths to both of them. The assumption
that generic units are interpreted as functions on compatible models requires that a generic unit yields the same result
when applied to the same arguments. However, the extended static semantics is sound and complete only w.r.t. a
generative semantics. This semantics has the characteristic that applying a generic unit multiple times to the same
arguments yields results that do not “share”. For a non-generative (= applicative) semantics, the calculus is only
sound. If all generic units are applied at most once, the generative and the applicative semantics coincide. We denote
by ` ASP ⇒g AM the generative model semantics of architectural specifications. See Sect. III.5.6.6 and IV.5.2.1 of
[6] for more motivation and discussion on generative vs. non-generative semantics of architectural specifications. In
the following we may refer to the class of models to which a unit term of an architectural specification may evaluate
as the class of models of that unit term.

4.4. Static Semantics of Refinements
For the static semantics of refinements, we introduce refinement signatures, denoted RΣ.

Definition 4.2. A refinement signature has the following form:

RΣ ::= (UΣ, BΣ) | {UN i 7→ RΣi}i∈J

BΣ ::= UΣ | {UN i 7→ BΣi}i∈J

This means that a refinement signature RΣ can be either:

S/B a branching refinement signature (UΣ, BΣ) (which also cover signatures for simple refinements) consisting of a
unit signature UΣ and a branching signature BΣ, which can itself be either

S a unit signature UΣ′, and in this case RΣ is a simple refinement signature, or

B a map {UN i 7→ BΣi}i∈J called a branching static context and denoted BstC, assigning branching signatures
to unit names.

The intuition is that a unit refinement signature stores the signatures of a unit before and after refinement,
and a branching signature generalizes this to the case when a unit specification is refined to an architectural
specification, so that branching is introduced by storing the signatures of all components in a map where they
can be retrieved by the corresponding component’s name.

C a component refinement signature {UN i 7→ RΣi}i∈J , storing the refinement signature of each component to be
refined in the case of component refinements. When all RΣi, i ∈ J , are branching refinement signatures
(UΣi, BΣi), we refer to the component refinement signature {UN i 7→ RΣi}i∈J as a refined-unit static context,
denoted RstC, which can then be naturally coerced to a static context π1(RstC) = {UN i 7→ UΣi}i∈J as well to a
branching static context π2(RstC) = {UN i 7→ BΣi}i∈J .

Example 4.1. The signature of R1 in Example 2.3 is the simple refinement signature (Sig(Monoid),Sig(Nat)). The
signature of R4 in Example 2.4 is the branching refinement signature (Sig(NatWithSuc), {N 7→ Sig(Nat), F 7→
Sig(Nat) → Sig(NatWithSuc)}). The signature of RComp in Example 2.5 is {N 7→ (Sig(Nat),Sig(NatBin))}. As-
suming we would also want to refine the component F of Addition First Ref using some refinement R’, we could
record this in a component refinement:

22

refinement RefComp’ = { N to R2, F to R’}

and the signature of RefComp’ is then {N 7→ (Sig(Nat),Sig(NatBin)), F 7→ Sig(R’)}.

The rules for static semantics of refinements that we give later make use of an auxiliary composition operation
between refinement signatures. Intuitively, it can be explained as checking that at each connection point between the
two refinement trees, the corresponding unit signatures match. Moreover, the signatures for these connection points
are forgotten, and only the “outer” signatures are kept.

Definition 4.3. Given refinement signatures RΣ1 and RΣ2, their composition RΣ1 ; RΣ2 is defined inductively on the
form of the first argument:

S;S/S;B RΣ1 = (UΣ,UΣ′): then RΣ1 ; RΣ2 is defined only if RΣ2 is a branching refinement signature of the form
(UΣ′, BΣ′′). Then RΣ1 ; RΣ2 = (UΣ, BΣ′′).

B;C RΣ1 = (UΣ,BstC′): then RΣ1 ; RΣ2 is defined only if RΣ2 is a component refinement signature that matches
BstC′, i.e., dom(RΣ2) ⊆ dom(BstC′) and for each UN ∈ dom(RΣ2),

• either BstC′(UN) is a unit signature and then RΣ2(UN) = (UΣ′, BΣ′′) with UΣ′ = BstC′(UN), or

• BstC′(UN) is a branching static context and then RΣ2(UN) matches BstC′(UN),

Then RΣ1 ; RΣ2 = (UΣ,BstC′[RΣ2]), where given any branching static context BstC′ and component refinement
signature RΣ2 that matches BstC′, BstC′[RΣ2] modifies BstC′ on each UN ∈ dom(RΣ2) as follows:

• if BstC′(UN) is a unit signature then BstC′[RΣ2](UN) = BΣ′′ where RΣ2(UN) = (BstC′(UN), BΣ′′),

• if BstC′(UN) is a branching static context then
BstC′[RΣ2](UN) = BstC′(UN)[RΣ2(UN)].

C;C RΣ1 is a component refinement signature: then RΣ1 ; RΣ2 is defined only if RΣ2 is a component refinement
signature too, and moreover, for all UN ∈ dom(RΣ1) ∩ dom(RΣ2), RΣUN = RΣ1(UN) ; RΣ2(UN) is defined.
Then RΣ1 ; RΣ2 is the component refinement signature with dom(RΣ1 ; RΣ2) = dom(RΣ1) ∪ dom(RΣ2) that on
UN ∈ dom(RΣ1) \ dom(RΣ2) coincides with RΣ1, on UN ∈ dom(RΣ2) \ dom(RΣ1) coincides with RΣ2 and on
UN ∈ dom(RΣ1) ∩ dom(RΣ2) is by definition RΣUN .

Example 4.2. With the specifications in Example 2.3, we can compose the signature (Sig(Monoid),Sig(Nat)) of R1
with the signature (Sig(Nat),Sig(NatBin)) of R2 using the case S;S/S;B and we obtain (Sig(Monoid),Sig(NatBin)).
The branching refinement signature (Sig(NatWithSuc), {N 7→ Sig(Nat), F 7→ Sig(Nat) → Sig(NatWithSuc)}) of
Addition First can be composed with the component refinement signature {N 7→ (Sig(Nat),Sig(NatBin))} of RComp
using the case B;C and the result is (Sig(NatWithSuc), {N 7→ Sig(NatBin), F 7→ Sig(Nat) → Sig(NatWithSuc)}).
For the case C;C, we consider the following refinement:

refinement CompRef1 = {A to R4}

refinement CompRef2 = {A to {N to R2}}

refinement RefComposition = CompRef1 then CompRef2

where CompRef1 states that a component named A of an architectural specification should be refined as described
by R4 and CompRef2 states that the unit N of the component A should be refined as described by R2. The signature
of CompRef1 is the component refinement signature {A 7→ (Sig(NatWithSuc), {N 7→ Sig(Nat), F 7→ Sig(Nat) →
Sig(NatWithSuc)})} and the signature of CompRef2 is {A 7→ {N 7→ (Sig(Nat),Sig(NatBin))}}. The signature of
RefComposition is then {A 7→ (Sig(NatWithSuc), {N 7→ Sig(NatBin), F 7→ Sig(Nat)→ Sig(NatWithSuc)})}.

23

` USP � UΣ

` USP qua SPR� (UΣ,UΣ)

` USP � UΣ

UΣ = (Σ1, . . . ,Σn → Σ)
σ : Σ→ Σ′

` SPR � (UΣ′, BΣ′)
UΣ′ = (Σ1, . . . ,Σn → Σ′)

` USP refined via σ to SPR � (UΣ, BΣ′)

` ASP � (UΣ,RstC)
` arch spec ASP � (UΣ, π2(RstC))

` SPR1 � RΣ1
` SPR2 � RΣ2

RΣ = RΣ1 ; RΣ2

` SPR1 then SPR2 � RΣ

UN1, . . . ,UNn are distinct
` SPRi � RΣi, i = 1, . . . , k

` {UN1 to SPR1, . . . ,UNk to SPRk}� {UN1 7→ RΣ1, . . . ,UNk 7→ RΣk}

Figure 11: Static semantics of CASL refinements

The rules for static semantics of refinements are presented in Fig. 11. The general format of the judgements is
` SPR�RΣ, and the result of the analysis is a refinement signature RΣ. When we only want to state that the rules apply
successfully and the result is not important, we will denote this ` SPR�� . We have a rule for each alternative form of
refinement (see non-terminal SPR in Fig. 6) and derivations are built inductively on the structure of the refinement. The
first rule requires some explanation: unit specifications are a particular case of refinement, so we introduce a rule that
takes the unit signature UΣ of the unit specification USP and returns as result of the analysis of the unit specification
regarded as a refinement specification (this is marked by USP qua SPR) the pair (UΣ,UΣ). In the second rule, if σ is
omitted, it is assumed to be the identity signature morphism. The form of judgements and further rules for architectural
specifications incorporate a number of necessary changes to the semantics of architectural specifications as originally
given in [6], Sect. III.5. This is because now the specifications of the units are either simple or branching refinements
(note that the syntax of unit declarations, as introduced in Fig. 4, has been extended in the refinement language, see
Fig. 6), and we thus derive a refined-unit static context RstC for the units of an architectural specification, as we
illustrate here with the rule for the static semantics of unit declarations:

Γs ` SPR � RΣ

UN < Dom(RstC)
Γs,RstC ` UN : SPR � {UN 7→ RΣ}

Note that here, as in the case of plain architectural static semantics, we build for each declared unit UN a refined-unit
static context that maps UN to the refinement signature RΣ of its specification SPR. The rule for unit declarations and
definitions unites this refined-unit static context with the one built using the previous declarations and definitions and
uses the result of the union to analyze the declarations and definitions following the declaration of UN. Comparing
with the old rule of the plain architectural language in Fig. 8, notice that we now use a refined-unit static context
instead of a static context. We can coerce RstC to a static context using the projection to the first component π1 where
required by the rest of plain architectural static semantics. For example, the rule for unit expressions uses judgements
of the form Γs,Cs ` UE � UΣ and we can apply them in our new setting using Γs, π1(RstC) ` UE � UΣ. For unit
definitions, we do not want to allow the defined unit to be further refined, and we use the ⊥ sign to mark that:

Γs, π1(RstC) ` UE � UΣ

UN < Dom(RstC)
Γs,RstC ` UN = UE � {UN 7→ (UΣ,⊥)}

24

This ensures that the composition (defined below) of a branching refinement signature with a component refinement
signature having the name of a defined unit in its domain is illegal. The needed extension of the notion of refinement
signature to signatures with ⊥ in the second component (for unit definitions) is straightforward. Since it is needed
only for the special purpose of preventing further composition, we have chosen to not include it in the definition of
refinement signatures (Def. 4.2), thereby reducing the number of cases to be analyzed. The other rules in the static
semantics of architectural specifications can be modified in a similar way; since this is rather obvious, using the
projection π1, we will not present this in detail here. The signature of the result unit expression of the architectural
specification is then paired with the projection on the second component of the refined-unit static context to obtain a
branching signature which is then given as result of the analysis. Finally, the complexity of the rule for refinement
composition is hidden in the definition of composition of refinement signatures.

4.5. Model Semantics of Refinements
For the model semantics of refinements, we first introduce the notion of constructor implementation [27, 3].

Constructors are simply partial functions taking models to models, of the form κ : Mod(Σ) → Mod(Σ′). An example
of such a constructor is already provided by the model reduct along a signature morphism σ : Σ → Σ′, which takes
any Σ′-model M′ to its Σ-reduct M′|σ.

Definition 4.4. [27] Let SP, SP′ be specifications such that ` SP � Σ and ` SP′ � Σ′ and let κ : Mod(Σ′)→ Mod(Σ)
be a constructor. We say that SP′ is a constructor implementation of SP along κ, denoted SP

κ
∼∼∼> SP′, if for all

M′ ∈Mod(SP′), M′ ∈ dom(κ) and κ(M′) ∈Mod(SP).

Simple refinements along a signature morphism σ : Σ → Σ′ correspond to constructors where the function κ is
given by the action of Mod(σ) on objects.

To capture branchings, we need n-ary constructors of the form κ : Mod(Σ1)× . . .×Mod(Σn)→Mod(Σ), which are
partial functions mapping compatible models over Σ1, . . . ,Σn to Σ-models, where the compatibility requirement means
that the arguments can be amalgamated to a model of the union of signatures Σ1, . . . ,Σn. An implementation is now
correct if given Σi-specifications SPi, for i = 1, . . . , n, any tuple of compatible models M1, . . . ,Mn of SP1, . . . , SPn,
respectively, are in the domain of κ and κ(M1, . . . ,Mn) is a model of the specification SP which we want to refine to
SP1, . . . , SPn. These constructors are specified using branching specification refinements.

Constructors then provide an intuitive notion of refinement model. This is easiest to see in the case of unary
constructors, for refinements of type S: if SP

κ
∼∼∼> SP′, we denote by G the graph of κ restricted to Mod(SP′), that

is, pairs of the form (M′, κ(M′)), where M′ ∈ Mod(SP′). We then take the inverse relation G−1 to obtain on the
first component models over Sig(SP) and on the second component models over Sig(SP′), thus matching the order
of models with the order of their unit signatures in the corresponding refinement signature. This generalizes to n-
ary constructors to cover branching refinement and to families of constructors, which will be models of component
refinement specifications. Overall, this leads us to the following formal definition.

Definition 4.5. Given a refinement signature RΣ, an RΣ-refinement relation, usually denoted R, is a class of RΣ-
assignments, usually denoted R, which can themselves be:

S/B branching assignments: for RΣ = (UΣ, BΣ′), these are pairs (U,BM′), where (1) U is a unit over the unit
signature UΣ and (2) BM′ is a branching model over the branching signature BΣ′, i.e (2.1) a unit over BΣ′

when BΣ′ is a unit signature (in which case the branching assignment is a unit assignment), or (2.2) a branching
environment BE′ that fits BΣ′ when BΣ′ is a branching static context. Branching environments are (finite)
maps assigning branching models to unit names, with the obvious requirements to ensure compatibility with
the branching signatures indicated in the corresponding branching static context. Moreover, we require that
whenever two branching assignments (U,BM) and (U′,BM) are in R then U = U′ (so that the corresponding
constructor is a function, which in general is partial).

C component assignments: for RΣ = {UN i 7→ RΣi}i∈J , these are (finite) maps {UN i 7→ Ri}i∈J from unit names to
assignments over the respective refinement signatures. When RΣ is a refined-unit static context (and so each Ri,
i ∈ J , is a branching assignment) we refer to RE = {UN i 7→ (Ui,BMi)}i∈J as a refined-unit environment. Any
such refined-unit environment can be naturally coerced to a unit environment π1(RE) = {UN i 7→ Ui}i∈J of the
plain CASL semantics, as well as to a branching environment π2(RE) = {UN i 7→ BMi}i∈J .

25

Example 4.3. We illustrate the concept of refinement relation using the specifications in Example 2.3. The signature
of R1 is (Sig(Monoid),Sig(Nat) and a refinement relation over this signature is {(N |σ,N) | N ∈ Mod(Nat)} where
σ : Sig(Monoid) → Sig(Nat) is the unique signature morphism taking the sort Elem to Nat. Note that the class
{(M,N) | M ∈ Mod(Monoid),N ∈ Mod(Nat)} is not a refinement relation, as it contains for each model N ∈

Mod(Nat) pairs (M,N) and (M′,N) with M and M′ being two different models of Monoid.
Let T be the term model of NatWithSuc and T ′ its reduct to the signature of Nat. The function γ mapping

T ′ to T is a unit in Unit(Nat → NatWithSuc). A branching assignment over the branching refinement signature
(Sig(NatWithSuc), {N 7→ Sig(Nat), F 7→ Sig(Nat)→ Sig(NatWithSuc)}) is then (T, {N 7→ T ′, F 7→ γ}).

A component assignment over the signature {N 7→ (Sig(Nat),Sig(NatBin))} of RComp is {N 7→ {(B|σ′ , B) | B ∈
Mod(NatBin)}} where σ′ : Sig(Nat)→ Sig(NatBin) is the signature morphism mapping the sort Nat to Bin, which is
the identity on the operations.

Similarly to the static semantics, we define an auxiliary partial operation to compose refinement relations. The
intuition is that at each refinement step we further restrict the domain of a constructor by composition, thus narrowing
the class of acceptable realizations, which is the image of the constructor.

S;S/S;B The intuition here is that the image I of the second constructor should be in the domain of the first constructor.
The composition has then the domain of the second constructor as its domain and the restriction of the image
of the first constructor to the image of I along the constructor as its image.

B;C The intuition here is that if we take a branching environment BE in the domain of R1 and replace, for each unit
UN in the domain of the second constructorR2, the unit BE(UN) with a unit delivered by the second constructor,
we get a new branching environment BE[R2] which should still be in the domain of R1. For each such unit name
UN the domain of the composition is now determined by the domain of R2(UN).

C;C Here, we require that for each unit name UN in the domains of R1 and R2, the image of R2(UN) should be in
the domain of R1(UN). This might require several recursive applications of the definition, until R1(UN) is no
longer a component refinement, which means we have navigated through the tree of the first refinement until
we reached a leaf. We can then apply one of the two rules above to obtain the modified domain and range of
the composition for UN.

Definition 4.6. Given two refinement relations R1,R2 over refinement signatures RΣ1,RΣ2, respectively, such that the
composition RΣ = RΣ1 ; RΣ2 is defined, the composition R1 ;R2 is defined as a refinement relation over RΣ as follows:

S;S/S;B RΣ1 = (UΣ,UΣ′), RΣ2 = (UΣ′, BΣ′′): then R1 ;R2 is defined only if for all (U′,BM′′) ∈ R2 we have
(U,U′) ∈ R1 for some U. Then

R1 ;R2 = {(U, BM′′) | (U,U′) ∈ R1, (U′, BM′′) ∈ R2 for some U′}

B;C RΣ1 = (UΣ, BΣ) and RΣ2 is a component refinement signature that matches BΣ: then R1 ;R2 is defined only if
for each (U,BE) in R1 and each R2 ∈ R2 there exists U′ ∈ Unit(UΣ) such that (U′,BE[R2]) ∈ R1, where BE[R2]
modifies BE on each UN ∈ dom(R2) as follows:

• if BstC′(UN) is a unit signature then BE[R2](UN) = U′′, where R2(UN) = (U′′,BE′′);

• if BstC′(UN) is a branching static context then we put
BE[R2](UN) = BE(UN)[R2(UN)].

Then
R1;R2 = {(U′,BE〈R2〉) | (U,BE) ∈ R1,R2 ∈ R2}

where U′ is determined by the requirement that (U′,BE[R2]) should be in R1 and BE〈R2〉 modifies BE on each
UN ∈ dom(R2) as follows:

26

• if BstC′(UN) is a unit signature then BE〈R2〉(UN) = BE′′ where R2(UN) = (U′′,BE′′);

• if BstC′(UN) is a branching static context then we put
BE〈R2〉(UN) = BE(UN)〈R2(UN)〉.

C;C RΣ1 and RΣ2 are component refinement signatures such that for all UN ∈ dom(RΣ1) ∩ dom(RΣ2), RΣUN =

RΣ1(UN) ; RΣ2(UN); then R1;R2 is defined iff R2 matches R1, which means that for each R1 ∈ R1 and for each
R2 ∈ R2 we have that for each UN ∈ dom(R1) ∩ dom(R2):

• if R2(UN) = (U′,BM), there exists (U,U′) ∈ R1(UN), where R1(UN) = {R(UN) | R ∈ R1},

• if R2(UN) is a component assignment,

– if R1(UN) = (U,BE) then there exists (U′,BE[R2(UN)]) ∈ R1(UN), where BE[R2(UN)] is defined as
in the second case of the main definition,

– if R1(UN) is a component assignment, then R2(UN) matches R1(UN).

When defined, R1 ;R2 is the class of all assignments R1〈R2〉 where R1 ∈ R1, R2 ∈ R2 and we define R1〈R2〉 as
the assignment with dom(R1〈R2〉) = dom(R1)∪ dom(R2) that on UN ∈ dom(R1) \ dom(R2) coincides with R1, on
UN ∈ dom(R2) \ dom(R1) coincides with R2, and on UN ∈ dom(R1) ∩ dom(R2)

• if RΣ1(UN) is a unit refinement signature, and R2(UN) = (U′,BM′′), then by the matching condition there
must exist (U,U′) ∈ R1(UN). The uniqueness of U is ensured by the definition of assignments. Then
R1〈R2〉(UN) = (U,BM′′);

• if RΣ1(UN) is a branching refinement signature, and R1(UN) = (U,BE), then we define R1〈R2〉(UN) =

(U′,BE〈R2(UN)〉) where U′ is uniquely determined by the matching condition, which in this case means
that BE[R2(UN)] is still in the domain of the constructor given by R1(UN), and BE〈R2(UN)〉 is as defined
in the second case of the main definition;

• if RΣ1(UN) is a component refinement signature, then R1〈R2〉(UN) = R1(UN)〈R2(UN)〉.

The model semantics of refinements is presented in Fig. 12. The judgements are now of the form ` SPR ⇒ R,
where SPR is a refinement and R is a refinement relation and they are derived by induction on the structure of the
refinements, using the rules determined by the form of the refinement concerned. Again, we need to modify the model
semantics for architectural specifications as given in [6], Sect. III.5. We build a class of refined-unit environments RE
for the units of an architectural specification that we can coerce to a unit environment using the projection to the first
component π1. Then, the result unit expression is analysed using the rules of the plain architectural model semantics
of the form Γs,Γm,Cs,C ` UE ⇒ U in our new setting using Γs,Γm, π1(RstC), π1(RE) ` UE ⇒ U, where RstC is
obtained with the rules of the static semantics. Finally, the result of the analysis of the architectural specification is
the class of all (U, π2(RE)).

Using the model semantics of refinements, we can now define:

Definition 4.7. A refinement SPR is consistent if its denotation R is a non-empty class of assignments.

Remark 4.1 (Refinement of arbitrary unit types). Given unit specifications SP→ SP′ and SP1 → SP′1 with a specifi-
cation morphism σ : SP1 → SP, the following is a correct specification refinement:15

unit spec USP = SP→ SP′

unit spec USP′ = SP1 → SP′1
refinement R = USP refined via τ to arch spec {

units F : USP′

result lambda X : SP • F [X fit σ]}

15We assume that all symbols shared between SP′1 and SP originate in SP1, as imposed by CASL rules for application of generic units. In
particular, if the pushout is amalgamable (as is always the case in so-called semi-exact institutions), then static correctness of the application of F
is ensured.

27

` USP⇒U
` USP qua SPR⇒ {(U,U) | U ∈ U}

` USP⇒U σ : Σ→ Σ′ ` SPR⇒ R
U′|σ ∈ U, for all (U′,BM′′) ∈ R
R′ = {(U′|σ,BM′′) | (U′,BM′′) ∈ R}
` USP refined via σ to SPR⇒ R′

` ASP⇒ AM
` arch spec ASP⇒ {(U, π2(RE)) | (U,RE) ∈ AM}

` SPR1 ⇒ R1 · · · ` SPRn ⇒ Rn

` {UN1 to SPR1, . . . ,UNn to SPRn}⇒ {R | dom(R) = {UN1, . . . ,UNn},
R(UN1) ∈ R1, . . . ,R(UNn) ∈ Rn}

` SPR1 ⇒ R1 ` SPR2 ⇒ R2 R = R1 ;R2

` SPR1 then SPR2 ⇒ R

Figure 12: Model semantics of CASL refinements

where τ is a specification morphism from SP′ to the specification SP′1 ⊕ SP in the following diagram:

SP1
θ //

σ

��

SP′1

σ′

��
SP

$$

θ′ // SP′1 ⊕ SP

SP′

τ

OO

where the square is the selected pushout of the diagram formed by the signatures of the specifications and SP′1 ⊕ SP is
the specification {SP′1 with σ′} and {SP with θ′}.

5. Calculi for Refinements

An important motivation for formalizing the development process using CASL architectural specifications and re-
finements is that one can then formally prove correctness of the entire development. In [6], Sect. IV:5, a proof calculus
for verification of architectural specifications was introduced as an algorithm for checking whether the resulting units
of an architectural specification satisfy a given unit specification. In order to simplify presentation, in [6] the architec-
tural language was restricted as in Fig. 13; however, it is rather straightforward to generalize the proof calculus to the
whole architectural language, with the notable exception of unit imports.

In the following we will start by presenting a new proof calculus for architectural specifications, in Sect. 5.1. The
motivation for introducing another proof calculus is that it covers the entire architectural language, including unit
imports in a natural and easy way, as we will show in Sect. 5.2, and it can be more easily generalized in the context
of the refinement language, where the specifications of units of an architectural specifications can be refinements. We
present this generalization in Sect. 5.3. In Sect. 5.4 we discuss completeness of the proof calculus for refinements and
in Sect. 5.5 we introduce a calculus for checking consistency of refinements.

28

ASP ::= S | units UDD1 . . . UDDn result UE
UDD ::= UDEFN | UDECL

UDECL ::= UN : USP 〈given UT1, . . . , UTn〉

USP ::= SPEC | SPEC1 × · · · × SPECn → SPEC | arch spec ASP
UDEFN ::= A = UT UE

UE ::= UT | λ A1 : SPEC1, . . . , An : SPECn • UT

UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ→ Σ′ |

UT hide σ : Σ→ Σ′ | local UDEFN1 . . . UDEFNn within UT

FIT ::= UT | UT fit σ : Σ→ Σ′

Figure 13: Restricted CASL architectural language as in [6].

5.1. Proof Calculus for Architectural Specifications
We first recall the existing calculus of [6] and begin by introducing a number of auxiliary concepts. A context

Γ is a diagram in the signature category of the given institution I, whose nodes are additionally labeled by sets of
specifications, which in the calculus will be either empty or singleton sets. We will write A :Σ SP to denote that a
node A of a context is labeled with the signature Σ and the set SP of Σ-specifications. We use A : Σ to denote that the
signature of the node A is Σ. Finally, we use σ : A→ B to denote an edge between the nodes A : Σ1 and B : Σ2 labeled
with σ : Σ1 → Σ2. Thus, we can regard contexts as sets of such declarations of labeled nodes and edges. Given a
context Γ and a family of modelsM = {Mp}p∈Nodes(Γ) indexed by the nodes of Γ, we say thatM is compatible with Γ

if for each A :Σ SP in Γ, MA is a Σ-model such that MA ∈Mod(SP), for each SP ∈ SP, and MA = MB|σ for each edge
σ : A → B. A generic context Γgen is a finite set of declarations of the form A :Σ→Σ′ SP → SP′, where Σ → Σ′ is the
unit signature of SP→ SP′.

The proof calculus of [6] is then given in Figs. 14 and 15, together with the general format of the judgements (in
the box preceding the rules for each judgement). The main judgement is of the form ` ASP :: USP, where ASP is an
architectural specification over an institution I and USP is a given unit specification. ` ASP :: USP asserts that each
result unit that can be built following the architectural specification ASP satisfies the unit specification USP.

The proof calculus can be regarded as having two components. The first one is a constructive component, building
a context Γ to keep track of the dependencies between units as well a generic context Γgen to store the generic units.
This is done with the rules for unit declarations UDECL and unit terms UT in the proof calculus below. The second
component is deductive and it uses the contexts Γ and Γgen built with the constructive component to check whether
models of a unit expression satisfy a given unit specification USP. This component contains the rules for architectural
specifications ASP and unit expression UE in the proof calculus below. For simplicity, we have chosen to express
the arising proof obligations only semantically; [6] provides means to express them syntactically, using specifications
assigned to the nodes in Γ, and with a further calculus to discharge them.

The theorem below states that the proof calculus is successful for a given unit specification if and only if the
architectural specification is correct w.r.t. the generative model semantics and the units produced with it satisfy the
unit specification. It follows easily from a result in [6].

Theorem 5.1. Let ASP be an architectural specification such that ` ASP � � and no generic unit declaration of ASP
is inconsistent. For each unit specification USP we have that ` ASP :: USP if and only if ` ASP ⇒g AM for some
AM such that for all (U,BM) ∈ AM, U ∈ Unit[USP].

We show that the second assumption of Thm. 5.1 is indeed necessary.

Example 5.1. Let us consider the following specifications:

spec Consts =

sort s
ops a,b : s

spec EqConsts = Consts
then
• a = b

29

` ASP :: USP
(deductive)

` UDECL1 :: Γ1
gen,Γ

1

...
` UDECLn :: Γn

gen,Γ
n⋃

i=1,...,n Γi
gen,
⋃

i=1,...,n Γi ` UE :: USP

` units UDECL1 . . .UDECLn result UE :: USP

` UDECL :: Γgen,Γ
(constructive)

` A : SP :: ∅, {A :Sig[SP] {SP} } ` A : SP→ SP′ :: {A :Sig[SP]→Sig[SP′] SP→ SP′}, ∅

Γgen,Γ ` UE :: USP
(deductive)

Γgen,Γ ` UT :: Γ′, A
for anyM compatible with Γ′, MA ∈Mod(SP)

Γgen,Γ ` UT qua UE :: SP

Sig[SP1] = Sig[SP] = Σ

SP and SP1 are equivalent
Γgen,Γ ∪ {A :Σ {SP}} ` UT :: Γ′, B

B : Sig[SP2] in Γ′

for anyM compatible with Γ′, MB ∈Mod(SP2)
Γgen,Γ ` λA : SP • UT :: SP1 → SP2

Figure 14: Proof calculus for CASL architectural specifications (continued in Fig. 15).

spec DiffConsts = Consts
then
• ¬ (a = b)

arch spec ASP NAME =

units
U : EqConsts;
F : DiffConsts→ EqConsts;

result F[U]

The unit specification DiffConsts → EqConsts is inconsistent, because the extension is obviously non-conserva-
tive: we cannot construct a model in which the interpretation of the constants a and b are equal from a model where
they are different in such a way that the argument model is preserved. Therefore, ASP NAME denotes the empty
class of models. Hence, the right hand-side of the equivalence in Thm. 5.1 holds for any unit specification USP over
the signature of Consts. However, according to the rule for unit applications, F[U] is correct only if for any family of
modelsM compatible with the diagram of ASP NAME, MU is a model of DiffConsts. For any such familyM we
have however by construction of the diagram of ASP NAME that MU is a model of EqConsts, which cannot be at the
same time a model of DiffConsts. Therefore the left hand-side of the equivalence is false for any unit specification

30

Γgen,Γ ` UT :: Γ′, A
(constructive)

Γgen,Γ ` A :: Γ, A

A :Σ f→Σr SP→ SPr in Γgen

Γgen,Γ ` UT :: Γa, Aa

for anyM compatible with Γa, MAa ∈Mod(SP f)
(Σ(∆), σ(∆), ι) is the selected pushout of (σ, ιΣ f⊆Σr)

A f , Ar, B < dom(Γa)

Γgen,Γ ` A [UT fit σ : Σ f → Σa] :: Γa ∪ {A f :Σ f {SP}, σ : A f → Aa,
Ar :Σr {SPr}, ιΣ f⊆Σr : A f → Ar, B :Σ(∆) ∅, ι : Aa → B, σ(∆) : Ar → B}, B

Γgen,Γ ` UT1 :: Γ1, A1

Γgen,Γ ` UT2 :: Γ2, A2

A1 : Σ1 in Γ1
A2 : Σ2 in Γ2

dom(Γ1) ∩ dom(Γ2) = dom(Γ)
B < dom(Γ1) ∪ dom(Γ2)

Γgen,Γ ` UT1 and UT2 ::
Γ1 ∪ Γ2∪

{B :Σ1∪Σ2 ∅, ιΣ1⊆Σ1∪Σ2 : A1 → B, ιΣ2⊆Σ1∪Σ2 : A2 → B}, B

Γgen,Γ ` UT :: Γ′, A
B < dom(Γ′)
σ : Σ→ Σ′

Γgen,Γ ` UT with σ ::
Γ′ ∪ {B :Σ′ ∅, σ : A→ B}, B

Γgen,Γ ` UT :: Γ′, A
B < dom(Γ′)
σ : Σ→ Σ′

Γgen,Γ ` UT hide σ ::
Γ′ ∪ {B :Σ ∅, σ : B→ A}, B

Γgen,Γ ` UT :: Γ′, B
B : Σ in Γ′

A < dom(Γ′)
Γgen,Γ

′ ∪ {A :Σ ∅, idΣ : A→ B} ` UT ′ :: Γ′′, E
D < dom(Γ′′)

Γgen,Γ ` local A = UT within UT ′ ::
Γ′′[D/A], E[D/A]

Figure 15: Rules for unit terms.

USP. This shows that the requirement that generic units be consistent is needed in Thm. 5.1.

In the context of the entire architectural language, we modify the proof calculus such that it becomes fully
constructive. Instead of checking that the units produced following an architectural specification ASP satisfy a
given unit specification USP, we define the specification SASP(UE) of the result unit expression UE of ASP in-
ductively on the structure of UE. Clearly, the specification of a unit term given by a declared unit name can
be read off from the declaration. If a unit term is translated, then its specification is translated as well, that is,
SASP(UT with σ) = SASP(UT) with σ. Similarly for hiding. A complication arises when determining the unit
specification of a unit amalgamation or unit application. The naı̈ve solution, to define SASP(UT1 and UT2) to be
SASP(UT1) and SASP(UT2), does not work. We illustrate this with an example.

Example 5.2. Let us consider the following architectural specification:

31

arch spec ASP NAME =

units
UN : sort s;
UT = (UN with s 7→ t) and (UN with s 7→ u)

result UT
end

Then SASP NAME(UN) = (sort s; ∅). The naı̈ve definition of SASP NAME(UT) would be (sorts t, u; ∅). Now a model of
ASP NAME is a pair (U,BM) where BM(UN) is a model of (sort s; ∅) and BM(UT) interprets both the sort t and the
sort u as BM(UN)s. This requirement is not recorded in (sorts t, u; ∅); hence, this specification is too weak. In order
to express that sorts t and u must be interpreted in the same way, we need to look at the following diagram:

s s 7→t //

s 7→u

��

t

��
u // t, u

t,u 7→s
ηUT
// s

Now {(sorts t, u; ∅) and (sort s, ∅)} hide t, u 7→ s is the desired specification; it requires that sorts t and u are
interpreted in the same way.

In general, we will need to keep track of the dependencies between symbols, using a weakly amalgamable cocone
of the diagram of the unit term. The existence of the latter is ensured by a successful run of the extended static
semantics. This is captured by the following definition:

Definition 5.1. Let ASP be an architectural specification and let Γ denote the context constructed by the rules of the
proof calculus to track dependencies between units. For each unit term UT of ASP, we denote by DUT the sub-diagram
of Γ corresponding to the node of UT.16 Then we define Samalg(UT) = (Σ, ∅) hide ηA where A is the node of the unit
term UT in DUT and η = (Σ, {ηX}X∈dom(DUT)) is a weakly amalgamable cocone for DUT .

We make use of an auxiliary structure for storing the specifications of the units declared and defined in an archi-
tectural specification.

Definition 5.2. A verification context is a finite map Γv assigning unit specifications to unit names. We denote the
empty verification context by Γ∅v .

The specification of a unit expression is then defined relative to a verification context.

Definition 5.3. Let Γv be a verification context and UE be a unit expression. Then the specification of UE w.r.t. Γv,
denoted SΓv (UE), is defined as follows:

• if UE is a unit term UT, then SΓv (UT) is defined inductively:

– if UT is a unit name, then SΓv (UT) = SP where Γv(UT) = SP;

– if SΓv (UT) = SP, then SΓv (UT with σ) = SP with σ;

– if SΓv (UT) = SP, then SΓv (UT hide σ) = SP hide σ;

– if UT = UT1 and UT2 and SΓv (UTi) = SPi for i = 1, 2 then SΓv (UT) =

SP1 and SP2 and Samalg(UT);

– if UT = F[UT1 fit σ1] . . . [UTn fit σn], where Γv(F) = SP1 × · · · × SPn → SP and for i = 1, . . . , n, the
verification condition SPi with σi ∼∼∼>SΓv (UTi) holds, then SΓv (UT) = {SP with σ} and SΓv (UT1) with ι1; ι
and . . . and SΓv (UTn) with ιn; ι and Samalg(UT), where the application is done as in the diagram below,
with Σi = Sig[SPi] Σa

i = Sig[UTi], Σ f = ∪i=1,...,nΣi, Σr = Sig[SP], Σa = ∪i=1,...,nΣa
i , ∆ and ι and all ιi are

inclusions, σ = ∪i=1,...,nσi : Σ f → Σa, and (Σa(∆), ι, σ(∆)) is the selected pushout of (∆, σ) (see Def. 4.1) :

16This can be understood as restricting the declarations and definitions of the units of ASP to those involved in UT . Then, DUT is the context
built by rules of the proof calculus for the restricted architectural specification.

32

Σa
i
� � ιi // Σa

� � ι // Σa(∆)

Σi

σi

OO

� � // Σ f
� �

∆
//

σ

OO

Σr

σ(∆)

OO

– SΓv (local UDEFN within UT) = SΓ′v (UT), where Γ′v extends Γv according to UDEFN in the obvious way.

• if UE is a lambda expression λX : SP. UT, then SΓv (UE) = SP→ SΓ′v (UT), where Γ′v extends Γv with X : SP.

If Γv has been built from all the units declared and defined in an architectural specification ASP, we may denote the
specification of a unit expression UE by SASP(UE) instead of SΓv (UE). Moreover, we denote by SASP the specification
of the result unit expression in ASP.

If ` UT � ΣUT and no non-generic unit is used more than once in UT , directly or indirectly via unit definitions, we
have that Samalg(UT) = ΣUT hide idΣUT . This allows us to omit Samalg(UT) from SASP NAME(UT) in such cases.

In general, the specification of a unit term does not give an exact axiomatization of the class of models of the unit
term. The reason is that non-generativity of CASL architectural semantics cannot always be captured by a structured
specification, and this becomes visible when the unit term involves more than one application of the same generic
unit, as we can see from Example 5.3 below. However, we will use SΓv (UT) as an approximation, since models of the
unit term are also models of this specification.

Example 5.3. [28] Consider the following architectural specification:

arch spec ASP NAME =

units
A : {sort s};
F : {sort s} → {sort s; op a : s};
G : {sort s} → {sort s; op a : s};
H : {sort s; op a : s } → {sort s; ops a, b : s };
B = F [A];
C = G [A]

result H [B] and {H [C] with a 7→ a′, b 7→ b′}
end

The specification SASP NAME of the result unit term of ASP NAME is {sort s; ops a, b, a′, b′ : s}. However, if M is
a model of SASP NAME such that Ma = Ma′ , the non-generative semantics imposes that applying H twice (with B and
C as arguments, respectively) to the same model yields the same result, and therefore Mb and Mb′ must also be equal.
However, a = a′ =⇒ b = b′ is not a consequence of SASP NAME, which is in this case only an over-approximation of
the model class of the result unit term of ASP NAME.

We are now ready to introduce a new calculus for correctness of architectural specifications, that we refer to as
constructive, given in Fig. 16. The judgements of the calculus are of the form ` ASP ::c USP, where USP is now con-
structed by the rules of the calculus. Therefore, the only verification conditions of this calculus are those introduced
in the definition of the specification of a unit expression. It is also no longer necessary to carry dependencies between
units in a diagram labeled with specifications. Instead, the calculus builds a verification context for the units declared
or defined, and this verification context is then used to construct the specification of the result unit expression of the
architectural specification being verified. The rule for unit declarations takes into account the fact that the specifica-
tion USP of a unit can itself be an architectural specification. The result of applying the calculus to USP is a unit
specification USP′, which can be either USP if USP was already a unit specification (last rule of the calculus) or the
specification of the result unit of USP if USP is an architectural specification. We moreover use the context of outer
declarations of definitions when verifying the architectural specification USP′. Thus we can de-sugar unit imports
into architectural specifications using units declared outside their scope, see Sect. 5.2.

In the sequel we will use the following framework.

33

Γ∅v ` ASP ::c USP
` arch spec ASP ::c USP

Γ ` UDD1 ::c Γ1
...

Γn−1 ` UDDn ::c Γn

Γ ` units UDD1 . . .UDDn result UE ::c SΓn (UE)

Γ ` UDECL ::c Γ′

Γ ` UDECL qua UDD ::c Γ′
Γ ` UDEFN ::c Γ′

Γ ` UDEFN qua UDD ::c Γ′

Γ ` USP ::c USP′

Γ ` UN : USP ::c Γ ∪ {UN 7→ USP′} Γ ` UN = UE ::c Γ ∪ {UN 7→ SΓ(UE)}

Γ ` SP1 × . . . × SPn → SP ::c SP1 × . . . × SPn → SP

Figure 16: Proof calculus for CASL architectural specifications.

Framework 5.1. ASP is an architectural specification such that ` ASP � � and no generic unit specification in ASP
is inconsistent.

If an architectural specification ASP is of the form units UDD1 . . .UDDn result UE, we write ` UDD+ :: Γgen,Γ if
` UDDi :: Γi

gen,Γ
i for i = 1, . . . , n, Γgen =

⋃
i=1,...,n Γi

gen and Γ =
⋃

i=1,...,n Γi. Similarly, we write Γ0 ` UDD+ ::c Γ if
Γ0 ` UDDi ::c Γi for i = 1, . . . , n and Γ = Γn.

To be able to compare the two calculi, Thm. 5.1 needs to be generalized to the whole architectural language. For
now, unit imports are excluded—these will be covered in Sect. 5.2. This means we have to treat unit definitions and
generalise from single parameter to multi-parameter units. This is rather straightforward. The constructive and the
deductive versions of the proof calculus are then related by the following result.

Theorem 5.2. Under the requirements of Framework 5.1, ` ASP ::c USP implies ` ASP :: USP.

Together with Thm. 5.1, we get the following immediate result.

Theorem 5.3. [Soundness] Under the requirements of Framework 5.1, if ` ASP ::c USP, we have that ` ASP ⇒g

AM and U ∈ Unit(USP) for all (U,BM) ∈ AM.

For the implication in the other direction, we need to strengthen the framework, because the specification of the
unit term merely approximates its model class:

Framework 5.2. ASP is an architectural specification such that ` ASP � �, no generic unit specification in ASP is
inconsistent, no generic unit is applied more than once, and the specification of each non-generic unit which is not
used (directly or indirectly) in the result unit expression is consistent.

Let us first notice that in some cases, if ASP is an architectural specification with result unit expression UE, the
model class of SASP(UE) and the class of models to which UE may evaluate coincide. Let therefore ProjRes take any
model of ASP to the interpretation of UE in this model.

Theorem 5.4. Under the requirements of Framework 5.2, if ` ASP ::c USP then ProjRes(Mod(ASP)) = Mod(USP).

Theorem 5.5. Under the requirements of Framework 5.2, if ` ASP :: USP for some USP, then ` ASP ::c USP′ where
USP′ = SASP is the specification of the result unit expression UE of ASP and moreover USP∼∼∼>USP′.

34

We can now combine the results that we have obtained so far. Therefore, Thm. 5.1 needs to be generalized
to the whole architectural language. For now, unit imports are excluded—these will be covered in Sect. 5.2. This
means we have to treat unit definitions and generalise from single parameter to multi-parameter units. This is rather
straightforward. We then get the following result.

Theorem 5.6. [Completeness] Under the requirements of Framework 5.2, if ` ASP⇒g AM for someAM such that
for all (U,BM) ∈ AM, U ∈ Unit[USP] for some USP then ` ASP ::c USP′, where USP′ = SASP is the specification
of the result unit expression UE of ASP and moreover USP∼∼∼>USP′.

5.2. Unit Imports in CASL

Recall that so far we have restricted the architectural language to a variant without unit imports. In the full CASL

architectural language, a unit may have several imports, as in the following example.

Example 5.4. Let us consider the following architectural specification with unit imports:
arch spec ASP NAME =

units M1: SP1
· · ·

Mn : SPn;
UN : SP→ SP′ given M1 , · · · , Mn

. . .
result . . .

This can be equivalently expressed using an anonymous architectural specification with a single component which is
a generic unit that is applied just in the result unit expression:

arch spec ASP NAME =

units M1 : SP1
· · ·

Mn : SPn;
UN : arch spec {

units F : SP1 × · · · × SPn × SP→ SP′

result lambda X : SP • F [M1]· · · [Mn] [X]};
. . .

result . . .

In general, an imported unit term may be arbitrarily complex and therefore its specification may not be available
directly. To cover this general case, we can make use of the constructive nature of our new calculus to obtain the
specification of a unit term in an architectural specification, as introduced in Def. 5.3. Note that this would not have
been possible in the context of the old architectural calculus for refinements, as the specification of a unit term in an
architectural specification was not defined. A declaration UN : SP given UT in a verification context Γv, resulting from
the analysis of previous declarations, can be written as UN : arch spec {units F : SΓv (UT) → SP; result F[UT]}.
As discussed already—see Example 5.3 and the paragraph preceding it—the specification of a unit term provides in
general only an over-approximation of the class of models of the unit term.17 Therefore, the equivalence between the
two ways of writing down the specification of UN (with imports and with generic units applied once, respectively)
is precise only up to this approximation. With this in mind, we can use the results of [29] that modify the rules of
the semantics of CASL architectural specifications in such a way that one is allowed to replace units with imports
with an equivalent construction using anonymous architectural specifications, as in the example above: [29] makes
the units M1, . . .Mn visible in the anonymous architectural specification of UN and also corrects the rule for lambda
expressions to keep track of the units used in its unit term. This makes the two syntactic constructions semantically

17An alternative idea would be to add a specification to the unit term as an annotation.

35

equivalent. As a result, we can introduce imports in the architectural language without having to add new semantic
rules, as they are now just a notational variant for a construction that is already supported in the language, and thus
this modification does not imply any new condition on the soundness and completeness results for the architectural
proof calculus.

We now come to the task of refining units with imports. Given that imports are now only a convenient way for
writing down an anonymous architectural specification, we simply need to refine the implicit generic unit introduced
in the equivalent syntactic construction, as we illustrate below.

Example 5.5. The refinement signature of ASP NAME from Example 5.4 is a branching refinement signature
(UΣ,BstC), with BstC(UN) being itself a branching static unit context mapping F to its unit signature. Notice that
when using the first syntactic construction, the unit name F is not in scope and therefore we cannot refine the compo-
nent UN of ASP NAME as:

refinement R = arch spec ASP NAME then {UN to {F to R’}}

However, the construction of the anonymous architectural specification of UN ensures that it will always have only
one unit and therefore we want to allow:

refinement R = arch spec ASP NAME then {UN to R’}

when the signature of UN is a branching static unit context with a single unit name in the domain and the signature of
that unit name matches the source signature of R’. This would require that in the composition of refinement signatures,
we simply transform the refinement signature RΣ′ of R’ into a component refinement signature mapping the name of
the generated generic unit (in our case F) to RΣ′ before updating the signature of UN in BstC, and thus the name F is
not made visible to the user. The rule in the model semantics is similar.

We therefore extend the composition of refinement signatures (Def. 4.3) with a new case:

• RΣ1 = (UΣ,BstC) with only one unit name UN in the domain of BstC and the composition RΣ′ of BstC(UN)
with RΣ2 is defined. In this case, RΣ1; RΣ2 = (UΣ,BstC[{UN 7→ RΣ′}]).

Similarly, the composition of refinement relations (Def. 4.6) must be extended to a new case as well:

• RΣ1 = (UΣ,BstC′) and BstC′ has only UN in the domain, and
RΣ′ = BstC′(UN); RΣ2 is defined. In this case, R1 ;R2 is defined as R1 ; {UN 7→ R2}

This does not introduce any ambiguities between units written at different nesting levels in the same architec-
tural specification, as they have different refinement signatures: if we have a unit declaration of the form UN :
arch spec {units UN : SP; . . .}, the signature of the inner declaration of UN is a simple refinement signature, while
the signature of the outer declaration of UN is a branching refinement signature.

5.3. Proof Calculus for Refinements

The proof calculus for architectural specifications checks that result units satisfy a unit specification (given or
constructed). We now introduce its counterpart for specifications of refinements, tailored according to the three kinds
of refinements we consider. This allows us to express the proof calculus rule for compositions of refinements in a
more concise manner.

Definition 5.4. Let RΣ be a refinement signature. A refinement specification S over RΣ is defined as follows:

S/B if RΣ = (UΣ, BΣ), then S takes the form (USP,BSP), where ` USP � UΣ and BSP is a branching specification,
which is in turn either a unit specification USP′ such that ` USP′ � UΣ′ when BΣ = UΣ′ , or a map SPM
such that dom(SPM) = dom(BstC) and SPM(X) is a branching specification over BstC(X), for each X ∈
dom(BstC), when BΣ = BstC;

C if RΣ = {UN i 7→ RΣi}i∈J , then S takes the form {UN i 7→ S i}i∈J , where S i is a refinement specification over RΣi.

36

The intuitive idea is that if a refinement specifies a constructor κ : Mod(Σ)→Mod(Σ′), a refinement specification
(USP′,USP) consists of two unit specifications USP and USP′ with ` USP � Σ and ` USP′ � Σ′ such that dom(κ) =

Mod(USP) and cod(κ) ⊆ Mod(USP′). The latter two conditions are captured by Def. 5.6 below. This generalizes to
n-ary constructors and to families of constructors in the obvious way. We denote the empty map by SPM∅.

Again, the proof calculus rules rely on a composition operation for refinement specifications.

Definition 5.5. Let RΣ1 and RΣ2 be two refinement signatures such that RΣ1; RΣ2 is defined and let S i be a refinement
specification over RΣi for i = 1, 2. The composition S 1; S 2 is defined inductively as follows:

S;S/S;B if S 1 = (USP1,USP2), then S 2 = (USP3,BSP) and S 1; S 2 = (USP1,BSP), provided that USP2 ∼∼∼>USP3.

B;C if S 1 = (USP1,SPM1) then S 2 must be of the form {UN i 7→ S i}i∈J . We define S 1; S 2 = (USP1,SPM1[S 2]),
where SPM[S] modifies SPM for A ∈ dom(S) as follows:

• if SPM(A) is a unit specification USP, then S (A) must be of the form (USP′,BSP′). Then SPM[S](A) =

BSP′, provided that USP∼∼∼>USP′.

• if SPM(A) = SPM′, then S (A) must be of the form {UN′j 7→ S ′j} j∈J ′ . Then SPM[S](A) = SPM′[S (A)].

C;C if S 1 = {UN i 7→ S i}i∈J , then S 1; S 2 is defined only if S 2 = {UN′j 7→ S j} j∈J ′ . Then S 1; S 2 modifies the ill-defined
union of S 1 and S 2 by putting (S 1; S 2)(A) = S 1(A); S 2(A) for A ∈ dom(S 1) ∩ dom(S 2).

The constructive proof calculus for architectural specifications is extended to the level of refinements as in Fig. 17.
The judgments of the proof calculus for refinements are of the form ` SPR ::c S , where SPR is a refinement and S
is a refinement specification and the calculus is defined inductively on the structure of the refinements. A simple
refinement USP refined via σ to SPR is correct if SPR is itself correct and its refinement specification is (USP′,BSP)
and moreover the crucial verification condition USP

σ
∼∼∼> USP′, stated semantically here, holds. Other verification

conditions appear as side-conditions of the definition of composition of refinement specification, in the rule for com-
position of refinements. We also complete the architectural proof calculus, as introduced in Fig. 16, as specifications
of units are now simple or branching refinements. The idea is that for each unit declaration UN i : SPRi of an archi-
tectural specification ASP, we define Γv(UNi) = USPi if ` SPRi ::c (USPi,BSPi), where Γv is the verification context
of ASP. This would suffice for the verification of ASP with the architectural calculus. Furthermore, we need to set
SPM(UNi) = BSPi in the refinement specification SPM of ASP, to be able to check correctness of further refinements
of the units UN i.

Definition 5.6. Let RΣ be a refinement signature, S be a refinement specification over RΣ and R be a refinement
relation over RΣ. We define the satisfaction of a refinement specification by a refinement relation, denoted R |= S ,
inductively as follows:

S if RΣ = (UΣ,UΣ′), then S = (USP,USP′) and R ⊆ Unit(UΣ) × Unit(UΣ′). Then R |= S iff R ⊆ Unit(USP) ×
Unit(USP′) and moreover, for each U′ ∈ Unit(USP′) there is a U ∈ Unit(USP) such that (U,U′) ∈ R;

B if RΣ = (UΣ,BstC), then S = (USP,SPM) andR ⊆ {(U,BM)|U ∈ Unit(UΣ),BM is a branching model over BstC}.
Then R |= S iff for all (U,BM) ∈ R, U ∈ Unit(USP) and for A ∈ dom(SPM) we have that BM(A) |= SPM(A)
(SPM and BM have the same domain), and moreover for each branching model BM of SPM there is a unit U
such that (U,BM) ∈ R;

C if RΣ = {UN i 7→ RΣi}i∈J , then S = {UN i → S i}i∈J and R = {UN i → Ri}i∈J . Then R |= S iff Ri |= S i for all i ∈ J .

The following result states that if a statically well-formed refinement SPR can be proven correct w.r.t. a refinement
specification S using the proof calculus for refinements, then SPR has a denotation according to the model semantics
and moreover the refinement relation thus obtained satisfies S .

37

` USP ::c (USP,USP)

` SPR ::c (USP′,BSP)
USP

σ
∼∼∼> USP′

` USP refined via σ to SPR ::c (USP,BSP)

` SPR1 ::c S 1
` SPR2 ::c S 2
S = S 1; S 2

` SPR1 then SPR2 ::c S

for each i ∈ J ` SPRi ::c S i

` {UN i to SPRi}i∈J ::c {UN i → S i}i∈J

Γ∅v ,SPM∅ ` ASP ::c (USP,SPM)
` arch spec ASP ::c (USP,SPM)

Γ,SPM ` UDD1 ::c (Γ1,SPM1)
...

Γn−1,SPMn−1 ` UDDn ::c (Γn,SPM)
Γ ` units UDD1 . . .UDDn result UE ::c (SΓn (UE),SPM)

Γ,SPM ` UDECL ::c (Γ′,SPM′)
Γ,SPM ` UDECL qua UDD ::c (Γ′,SPM′)

Γ ` UDEFN ::c Γ′

Γ,SPM ` UDEFN qua UDD ::c (Γ′,SPM)

Γ ` SPR ::c (USP,BSP)
Γ,SPM ` UN : SPR ::c (Γ ∪ {UN 7→ USP},SPM∪ {UN 7→ BSP}) Γ ` UN = UE ::c Γ ∪ {UN 7→ SΓ(UE)}

Figure 17: Proof calculus for CASL refinements.

Theorem 5.7. [Soundness] Under the requirements of Framework 5.1, let SPR be a refinement such that ` SPR��.
If ` SPR ::c S , then ` SPR⇒ R for some refinement relation R and moreover R |= S .

Example 5.6. We illustrate how the proof calculus for the CASL refinement language applies to the specifications in
Examples 2.3–2.5.

For the unit specifications Monoid, NatWithSuc, Nat and NatBin, the refinement specification is of the form
(USP,USP), where USP is in each case the name of the unit specification.

For R1, we use the proof calculus rule for simple refinements (second rule in Fig. 17), which means that we check

that Monoid
Elem7→Nat
∼∼∼> Nat. Since addition of natural numbers is associative and 0 is the unit for addition, the refinement

condition holds and the refinement R1 is correct. The refinement specification of R1 is (Monoid,Nat).

For R2, we use again the proof calculus rule for simple refinements and check that Nat
Nat7→Bin
∼∼∼> NatBin. The

refinement specification of R2 is (Nat,NatBin).
For R3, we need to compose the refinement specifications (Monoid,Nat) and (Nat,NatBin). The verification

condition Nat∼∼∼>Nat holds trivially and thus the composition of R1 and R2 is correct, with the resulting refinement
specification (Monoid,NatBin).

For Addition First, we first replace the imports with generic units (see Sect. 5.2):

arch spec Addition First =

units N : Nat;
M :arch spec {

units F :Nat→ NatWithSuc
result F[N]}

result M

and the refinement specification of Addition First is (NatWithSuc, {N 7→ Nat,M 7→ {F 7→ Nat→ NatWithSuc}}).

38

Correctness of R4 is immediate because the condition NatWithSuc∼∼∼>NatWithSuc holds trivially and R4 has the
same refinement specification as Addition First.

Finally for R5, the refinement specification of RComp (which is the same specification as the one following then)
is {N 7→ (Nat,NatBin)} and we need to check that it composes with the refinement specification of R4, which we
denote by V4. Indeed, N is in the domain of the branching specification B on the second component of V4 and
B(N) = Nat; thus, the verification condition Nat∼∼∼>Nat again holds immediately. The refinement specification of R5
becomes (NatWithSuc, {N 7→ NatBin,M 7→ {F 7→ Nat→ NatWithSuc}}).

Example 5.7. We now present how the proof calculus applies in the case of the refinements in Example 2.6.
For Ref Sbcs, the second rule in Fig. 17 must be applied (note that σ is the identity). This amounts to checking

correctness of Arch Sbcs and proving that

Sbcs Open∼∼∼>SArch Sbcs(UE)

where UE = λV : Value • C[A[S[P[V]]]].
Since Arch Sbcs contains only unit declarations, each unit is assigned its declared specification and SArch Sbcs(UE)

is obtained as follows:

• UE is a lambda expression, so SArch Sbcs(UE) = Value→ SP, where SP = SArch Sbcs(C[A[S[P[V]]]];

• since V : Value and P : Value → Preliminary, the verification condition for the unit application P[V] is
Value∼∼∼>Value which holds trivially. The specification of P[V] is Preliminary (because Value is included in
Preliminary);

• the other units are similar, and the last specification obtained is Steam Boiler Control System.

We thus obtain SArch Sbcs(UE) = Value→ Steam Boiler Control System, and since this is precisely Sbcs Open,
the refinement Ref Sbcs is correct. The refinement specification of Ref Sbcs is (Sbcs Open,SPM) where SPM(P) =

Value → Preliminary, SPM(S) = Preliminary → Sbcs State, SPM(A) = Sbcs State → Sbcs Analysis and
SPM(C) = Sbcs Analysis→ Steam Boiler Control System.

For Ref Sbcs’, the third rule in Fig. 17 is applied. We have just checked correctness of Ref Sbcs and obtained its
refinement specification (Sbcs Open,SPM). Therefore, we only have to check correctness of the component refine-
ment following then and that the refinement specification obtained, which will be a map SPM′, can be composed
with (Sbcs Open,SPM).

With the fourth rule in Fig. 17, we must check correctness of the refinement specification of each of the components
P, S and A.

For the unit S, we must check correctness of State Ref, which amounts to proving that models of Sbcs State Impl
are indeed models of Sbcs State. The refinement specification obtained is (State Abstr,Unit Sbcs State). Note that
the correctness proof is non-trivial in this case and needs to use a proof calculus for structured specifications, see
Remark 3.1 at the end of Sect. 3.

For the unit P, we must check that Arch Preliminary is correct. The verification conditions for the two anonymous
architectural specifications obtained for MS and MR (as in Sect. 5.2) hold trivially, and we get SArch Preliminary(MS) =

Messages Sent and SArch Preliminary(MR) = Value → Messages Received. The specification of the result unit expres-
sion (call it UE′) of Arch Preliminary is of the form Value→ SP′ where SP′ is the specification of the unit term (call
it UT) of the lambda expression. By definition, because UT is a unit amalgamation, SP′ is the union of the specifica-
tions of the terms SET [MS fit Elem 7→ S Message][V], SET [MR[V] fit Elem 7→ R Message][V] and CST [V] with
the specification Samalg(UT).

For the first term, the verification conditions are

Messages Sent |= {sort Elem} with Elem 7→ S Message

and Value∼∼∼>Value. Both hold immediately and the specification of the term is

(Set[sort Elem] with Elem 7→ S Message) and Messages Sent

39

For the second term, we similarly obtain the specification

(Set[sort Elem] with Elem 7→ R Message) and Messages Received

For the third term, notice that V : Value and the condition Value∼∼∼>Value holds immediately. Because the specifica-
tion Sbcs Constants extends Value, the specification obtained is just Sbcs Constants.

Finally, for the unit A, we need to check correctness of the architectural specification Arch Analysis. This does
not bring anything new to the cases discussed before and therefore we omit a detailed presentation.

We must then check that the refinement specifications (Sbcs Open,SPM) and SPM′ compose. Notice that the
domain of SPM′ is included in the domain of SPM. For the unit S, the verification condition is immediate and
the corresponding specification of S is updated to Unit Sbcs State. For the unit A, the verification condition holds
by noticing that Preliminary is equivalent to the specification SP′ obtained in the specification of the result unit
of Arch Preliminary. SPM is then updated in A to the map taking each of the units of Arch Preliminary to its
specification.

5.4. Completeness of the Proof Calculus
Recall that the intuition behind Def. 5.6 is that we check that a refinement specifies a constructor κ : Mod(Σ) →

Mod(Σ′) that takes any model U of some Σ-specification USP to a model κ(U) of some Σ′-specification USP′.
While we ensure that the constructor should be total on Mod(USP), the definition does not require that the con-
structor should be surjective on Mod(USP′). In particular, there can be another Σ′-specification USP′′ that provides
a more precise description of κ(Mod(USP)). This is obvious in the case of simple refinements: if the refinement
R = USP refined via σ to USP′ is correct, we have that ` R ⇒ R where R = {(U |σ,U)|U ∈ Unit(USP′)}. Then
the models produced by the constructor associated with R are not necessarily all USP-models, but generally only
(USP′ hide σ)-models.

An architectural specification defines a construction that appears in a top-down development process, when a given
requirement specification is implemented by a number of specifications and these specifications act like an interface
between the components of the architectural specification. In particular, this introduces an abstraction barrier between
a given requirement specification and its refinement. The implementation of the units of an architectural specification
can be changed (as long as they respect their specifications) while keeping the possibility of assembling the units to
produce a system satisfying the given requirement specification.

The calculus that we introduced in the previous section respects this abstraction barrier. However, this comes at a
certain price: Example 5.8 below shows that in some cases, we can prove a refinement correct only if we exploit the
properties induced by a certain implementation we have chosen during development of the system. Using information
about the choice of implementation gives a more precise description of the image of a constructor. But this of course
breaks the abstraction barrier mentioned above. In the example, we have to make use of a particular choice for a
refinement of such a component when proving correctness of the entire development.

Hence, we cannot expect to prove completeness of the calculus introduced above, because it respects the abstrac-
tion barrier. In the following we will introduce an enhanced proof calculus that can be proven complete and hence
necessarily breaks the abstraction barrier.

Example 5.8. Let us consider the following specifications:

spec Sig = sort s
ops a, b : s

spec Eq = Sig then { • a = b }

refinement Incl = Sig refined to Eq

arch spec ASP NAME = units M : Sig result M

refinement ASP Eq = arch spec ASP NAME then {M to Incl}

refinement Ref Eq = Eq refined to ASP Eq

40

Here the tree of ASP NAME (in the sense of Sects. 2.4 and 6.2) “grows” in both directions: first the branch corre-
sponding to the unit M is extended via the refinement ASP Eq, then the tree of ASP Eq “grows” towards the root, via
the refinement Ref Eq.

We have that ` ASP NAME ::c (Sig, {M 7→ Sig}) and ` {M to Incl} ::c {M 7→ (Sig,Eq)}. Thus, ` ASP Eq ::c
(Sig, {M 7→ Eq}) and the verification condition of Ref Eq is Eq∼∼∼>Sig, which obviously does not hold. This is due
to the fact that when proving the correctness of the entire development, we do not make use of the fact that M has
been further refined: in the specification of ASP Eq we have only modified the specification of the component M.
However, this induces a restriction on the domain of the associated constructor, and the codomain gets restricted as
well. This change is not captured in the definition of composition of refinement specifications.

The enhanced calculus will enable us to capture such further refinements. We can simplify the task of keeping
track of the changes introduced by these further refinements by expressing every refinement as equivalent architectural
specification(s), in the sense that their models are in a one-to-one correspondence, as we will see below. We have seen
that for any architectural specification ASP, SASP captures exactly (under some conditions) the models produced
by the architectural specification. The idea is that rather than defining SASP as a specification, we define it as a
specification expression involving the specifications of the units involved. The expression is then evaluated when
proving a refinement and composition of refinements induces substitution of the specification of the refined unit with
the expression associated to the refinement we compose with. This gives a dynamic nature to the verification process:
at each moment, the specifications provide only a snapshot of the model classes involved, and they can be further
restricted by composition.

Example 5.9. Let us again assume that the refinement R = USP refined via σ to USP′ is correct, and then we have
that ` R⇒ R where R = {(U |σ,U) | U ∈ Unit(USP′)}.

The same constructor as the one specified by R, namely Mod(σ) : Unit(USP′) → (Unit(USP′) hide σ), can be
equivalently specified by the architectural specification

arch spec ASP NAME =

units UN : USP′

result UN hide σ

Given that ` ASP NAME ⇒ {(U |σ, {UN 7→ U}) | U ∈ Unit(USP′)}, we get a one-to-one correspondence between
the model class of R on one hand, consisting of all assignments (U |σ,U), with U ∈ Unit(USP′), and the model class of
ASP NAME on the other hand, consisting of all (U |σ, {UN 7→ U}), with U ∈ Unit(USP′). In general, whenever such
a correspondence can be set up, we will say that the models of R and ASP NAME correspond up to unit names.

In the case of component refinements, the refinement of each component needs to be replaced by an equivalent
architectural specification. We define then enhanced verification specificationsVS:

VS ::= ASP | {UN i 7→ VSi}i∈J

where ASP is an architectural specification, and we call enhanced verification specifications of the form {UN i 7→

VSi}i∈J enhanced verification maps. The idea is that ifVS is the enhanced verification specification of a refinement
SPR,VS specifies the constructor(s) induced by SPR. Moreover, we define a partial operation of composition between
enhanced verification specifications, denotedVS1;VS2, as follows:

S;S/S;B ifVS1 = ASP1 such that ASP1 has no branching18 andVS2 is also an architectural specification ASP2, then
VS1;VS2 replaces the specification of the leaf in ASP1 with ASP2;

B;C if VS1 = ASP1 and VS2 is an enhanced verification map, then VS1;VS2 is defined iff for each UN ∈

dom(VS2), UN is in dom(VS1) such that:

18This means that the architectural specification has just one unit, and the specification of that unit can be an architectural specification only if it
has one component itself, and so on, until a leaf is reached when the specification of the current unit is a unit specification.

41

arch spec ASP = units UN : USP result UN
` USP ::e ASP

` SPR′ ::e ASP′

USP
σ
∼∼∼> SASP′

arch spec ASP = units UN : arch spec ASP′ result (UN hide σ)
` USP refined via σ to SPR′ ::e ASP

` SPRi ::e ASPi

arch spec ASP′ = ASP[{UN i/arch spec ASPi}i=1,...,n]
` ASP = units {UN i : SPRi}i=1,...,n result UE ::e ASP′

` SPRi ::e VSi

` {UN i to SPRi}i∈J ::e {UN i toVSi}i∈J

` SPR1 ::e VS1
` SPR2 ::e VS2
VS = VS1;VS2

` SPR1 then SPR2 ::e VS

Figure 18: Enhanced calculus for refinements.

• if the specification of UN in ASP1 is a unit specification USP, then VS2(UN) must be an architectural
specification ASP2 and USP∼∼∼>SASP2 . Then we update the specification of UN in ASP1 to ASP2;

• if the specification of UN in ASP1 is an architectural specification ASP′, then VS2(UN) must be an
enhanced verification map VS′ such that ASP′;VS′ is defined. Then we update the specification of
UN in ASP to ASP′;VS′;

C;C ifVS1 is an enhanced verification map, thenVS2 must be an enhanced verification map as well and we define
VS1;VS2 by modifying the ill-defined union of VS1 and VS2, for each unit name UN in the intersection of
the domains ofVS1 andVS2, by takingVS1;VS2(UN) = VS1(UN);VS2(UN).

Models of enhanced verification specifications are obvious generalizations of models of architectural specifica-
tions: if an enhanced verification specificationVS is an architectural specification ASP, then the model ofVS is just
the architectural modelAM such that ` ASP⇒ AM, while ifVS is an enhanced verification map {UN i 7→ VSi}i∈J

andMi is a model forVSi, for each i ∈ J , then {UN i 7→ Mi}i∈J is a model forVS. By a slight abuse of notation, we
denote the models of enhanced verification specifications also by AM, as in the case of architectural specifications,
and we write ` VS ⇒ AM to denote thatAM is the model ofVS.

An enhanced proof calculus for refinements is presented in Fig. 18, with judgements of the form ` SPR ::e VS,
where SPR is a refinement andVS is an enhanced verification specification. In the rule for architectural specifications,
ASP[{UN i/arch spec ASPi}i=1,...,n] denotes the architectural specification obtained from an architectural specification
ASP with unit declarations UN i : SPRi, i = 1, . . . , n, by replacing the specification of each declared unit UN i with an
architectural specification ASPi and keeping all unit definitions as in ASP.

Theorem 5.8. [Soundness of the enhanced calculus] Let SPR be a refinement such that ` SPR � � and the re-
quirements of Framework 5.1 hold for all architectural specifications that appear in SPR. If ` SPR ::e VS for some
enhanced verification specificationVS, then ` SPR⇒ R for some refinement relation R, and ` VS ⇒ AM for some
AM such that R andAM correspond up to unit names.

Theorem 5.9. [Completeness of the enhanced calculus] Let SPR be a refinement such that ` SPR � � and the
assumptions of Framework 5.2 hold for all architectural specifications appearing in SPR. If ` SPR ⇒ R then `
SPR ::e VS for some enhanced verification specificationVS and ` VS ⇒ AM for someAM such that R andAM
correspond up to unit names.

42

` cons(USP)
` cons(USP qua SPR)

` cons(SPR)
` cons(USP refined via σ to SPR)

` cons(SPR) for each UN : SPR in ASP

` cons(ASP)
` cons(SPRi), i ∈ J

` cons({UN i to SPRi}i∈J)

SPR1 contains branchings
` cons(SPR1)
` cons(SPR2)

` cons(SPR1 then SPR2)

SPR1 does not contain branchings
` cons(SPR2)

` cons(SPR1 then SPR2)

Figure 19: Consistency calculus for refinements.

5.5. Checking Consistency of Refinements

Consistency of a refinement is an important property, because an inconsistent refinement is useless from a software
development perspective: it cannot be refined to a program. Hence, detection of consistency should happen at an early
stage of the development, before more refinement steps are added. We introduce a calculus for checking whether a
refinement SPR is consistent, that is, if ` SPR ⇒ R, then R is non-empty. This notion is also useful beyond software
development: in [30], we have successfully applied this calculus to verify the consistency of the upper ontology
Dolce. Dolce is too large for contemporary model finders. Instead of hand-crafting a large and specific model, we
have shown the consistency of Dolce using a refinement to an architectural specification, and showing its consistency.
This has the advantage of giving a modular model for Dolce that can be changed at various local places (i.e. leaves of
the refinement tree) without affecting the possibility to assemble (via the semantics of architectural specifications) a
global model of Dolce.

The proof calculus for refinements relies on an obvious observation made already in [27] that constructors preserve
consistency. Intuitively, a refinement is consistent if its target is consistent, and an architectural specification is
consistent if all its unit specifications are consistent. This makes it clear that our calculus (for checking consistency of
the leaves of the refinement tree) must eventually be based on a calculus for the consistency of unit specifications. We
assume this to be given, with judgements of the form ` cons(USP) capturing consistency of a unit specification USP.
Checking consistency of non-generic unit specifications amounts to checking consistency of structured specifications;
a calculus for this has been introduced in [31] (this is in turn based on an institution-specific calculus for consistency
of basic specifications). Checking consistency of generic unit specification amounts to checking conservativity of
extensions of structured specifications; for the case of first-order logic and CASL basic specifications, a sound but
necessarily incomplete calculus has been developed in [32].

The consistency calculus for refinements is given by the rules in Fig. 19. For checking consistency of compositions
SPR1 then SPR2, if SPR1 contains a branching, it does not suffice to check consistency of SPR2 (which must be a
component refinement), because some component of SPR1 outside the domain of SPR2 might be inconsistent. On the
other hand, if SPR1 does not contain branchings and the composition SPR1; SPR2 is checked to be correct by the proof
calculus for refinements, the verification condition ensures that the units produced with the second refinement are in
the domain of the first refinement, and thus the first refinement cannot be inconsistent unless the second one is.

Theorem 5.10. [Soundness] If the requirements of Framework 5.1 hold, and if the calculi for checking consistency
of structured specifications and conservativity of extensions are sound, then the calculus for checking consistency of
refinements is sound as well. That is, if ` SPR ::c � and ` cons(SPR), then the denotation of SPR is a non-empty
refinement relation.

Completeness holds again only if the specification of each unit term does not approximate, but exactly captures,
the model class of the unit term.

43

Theorem 5.11. [Completeness] If the requirements of Framework 5.2 hold, and if the calculi for checking consistency
of structured specifications and conservativity of extensions are complete, then the calculus for checking consistency
of refinements is complete as well. That is, if ` SPR ::c � and SPR is non-empty, then ` cons(SPR).

6. Tool Support

6.1. The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets) [12, 11] is an open source software tool providing a general framework for
formal methods integration and proof management. Hets is currently available for Linux and Mac OS X from the
Hets home page http://hets.eu.

Hets currently supports about 25 institutions, with varying degrees of support. Each institution can be used for
the basic layer of specifications (see Sect. 2.1). On top of that, Hets supports libraries of structured and architectural
specifications and specification refinements. Intuitively, one can think of Hets as a motherboard where different
expansion cards can be plugged in, the expansion cards here being individual logics with their analysis and proof
tools. The Hets motherboard already has a number of expansion cards plugged in (e.g., first-order logic with theorem
provers like SPASS [33], Vampire [34], higher-order logic with theorem provers Leo-II [35] and Isabelle [36], OWL
2 with provers Fact and Pellet, and more, as well as model finders). Hence, a variety of tools is available, without the
need to hard-wire each tool to the logic at hand.

Hets naturally extends CASL structured specifications to heterogeneous specifications: heterogeneity is achieved
by parameterizing Hets with a graph of logics and their translations, where logics are formalized as institutions and
translations between them as institution comorphisms [37]. The graph is flattened using the so-called Grothendieck
construction [38, 39] that again gives rise to an institution. This institution can be plugged into the layer of basic
specifications, which means that the theory developed in this paper can also be applied to heterogeneous specifications,
with support by Hets. The heterogenous language thus obtained is called HetCASL, which has been further extended
to the Distributed Ontology, Model and Specification Language (DOL) [16], a standard of the OMG.19 DOL can
express relations among theories20 such as logical consequence, conservative extension, views, and refinement21.
DOL is also capable of expressing such relations between theories written in different logics, as well as translations of
theories along logic translations. A DOL file usually imports files written in specific logics. Therefore, besides DOL
and HetCASL, Hets supports a number of other input languages directly, such as TPTP, Common Logic, OWL 2 and
(part of) UML.

From an implementation perspective, Hets consists of logic-specific tools for the parsing and static analysis of
basic logical theories written in the different logics involved, as well as a logic-independent parsing and static analysis
tool for structured theories and theory relations. The latter of course needs to call the logic-specific tools whenever
a basic logical theory is encountered. Hets uses the formalism of heterogeneous development graphs [25] for struc-
tured theorem proving and proof management. A development graph consists of a set of nodes, corresponding to
parts of structured specifications, and a set of arrows, called definition links, indicating the dependency between the
specification fragments involved. In addition to definition links, theorem links serve to postulate relations between
theories. Note that due to the possibility of sharing, the graph structure provides better scalability to industrial-sized
developments than the traditional proof calculi for refinement among term-based structured specifications [3, 23, 24].

Based on this support for the layer of structured specifications, we have extended Hets to fully support the archi-
tectural and refinement language developed in this paper: refinements can be parsed and statically analysed, and the
calculus for correctness of refinements introduced in Sect. 5.3 has been implemented, using development graphs to
represent proof obligations for individual refinement steps.

19See http://www.omg.org/spec/DOL/ and http://www.dol-omg.org.
20Actually, DOL widens the perspective from specifications to models (in the sense of model-driven engineering, which is different from our use

of “model” in the sense of model theory in this paper) and ontologies, all of which can thought of as logical theories for our purposes. Hence, we
will now use the term “theory” to express this more general perspective.

21Currently, architectural specifications and branching refinements are not part of DOL, because these were still under development when DOL
was standardized. Still, Hets supports them when analyzing DOL documents.

44

http://hets.eu
http://www.omg.org/spec/DOL/
http://www.dol-omg.org

Example 6.1. A refinement between two unstructured specifications USP and USP′, written refinement R = USP
refined via σ to USP′, is represented as a development graph with two nodes, one for USP and one for USP′, and
a theorem link from the node of USP to the node of USP′ labeled with σ. The proof obligation introduced by the
theorem link can be discharged using the development graph proof calculus [40], which transforms theorem links into
local proof goals at the level of nodes, to be discharged using logic-specific provers.

If USP and USP′ are structured, the development graph will be more complex, as the structure of the two spec-
ifications will be represented. For example, assuming that both USP and USP′ extend an unstructured specification
USP0, the development graph will consist of three nodes, one for each specification involved, and three links, two
definition links from USP0 to USP and USP′, respectively, and one theorem link from USP to USP′.

Hets’ implementation of the consistency calculus relies heavily on refinement trees, an auxiliary concept for
refinements that we introduce below.

6.2. Refinement Trees
The concept of refinement tree has already been introduced informally in Sect. 2.4. We now give a formal def-

inition. Refinement trees provide a way of visualising the structure of the development, allowing navigation along
the tree of the development and offering information about the individual nodes. Moreover, in Hets, they behave as
access points to the logical properties of architectural specifications and refinements. Refinement trees complement
development graphs22, which represent the import structure of the specifications involved and can be used for dis-
charging proof obligations, including those introduced by simple refinement steps. The structure of the development,
as captured by refinement trees, may be orthogonal to the specification structure (see [3]).

While intuitively clear, refinement trees have a slightly involved formalization. This is because they are built in a
stepwise manner and must be combined in the way prescribed by the refinements: composition of refinements gives
rise to composition of refinement trees, and we need a mechanism to keep track of the branches and nodes to retrieve
the appropriate connection points between trees. Moreover, in the case of branching refinement we obtain a tree with
branching and in the case of component refinement we obtain a (sub)tree for each component, to be later connected
with the tree of the component that is further refined.

Example 6.2. Figure 20 presents the refinement tree of the specifications in Example 2.6. Single arrows denote
components, while double arrows denote refinements. Ref Sbcs’ refines the specifications of the components P, S and
A. The subtree corresponding to S displayed in the figure is the result of composition of refinement subtrees (a notion
that we introduce below), as will be explained in Example 6.5. In the case of Ref Sbcs”, we first build the trees of the
architectural specifications Arch Failure Detection and Arch Prediction. These trees must then be connected with
the refinement tree of Ref SBCS at the nodes corresponding to the units FD and PR, and therefore we must be able to
identify these nodes.

Remark 6.1. Note that there is an arrow from the nodes of MS and MR to a node without a label. Recall from
Example 2.6 that these units import B. As we explained in Sect. 5.2, this gives rise to anonymous architectural
specifications, each containing just one generic unit with a generated name. The refinement tree of this architectural
specification has just one branch from the root to a node corresponding to this generic unit, and since we do not want
to introduce the generated name into the scope, we do not add it as a label in the refinement tree. The rules introduced
in Sect. 5.2 ensure that this node can be further refined.

The example shows that refinement trees should consist of a collection of trees (such that we can represent compo-
nent refinements), and that trees can grow not only at the leaves, but also at the root, with old roots becoming subtrees.
This leads to the following definition.

Definition 6.1. A refinement tree RT is

• a tree with

– nodes labelled with names and unit specifications and

22We keep the original terminology, but a more appropriate name for development graphs in this context would be specification graphs.

45

Figure 20: The refinement tree of the steam boiler control system.

– directed edges between nodes n1, n2 of the tree, that can be either

1. refinement links n1 ⇒ n2 (to denote refinement steps) or
2. component links n1 → n2 (to denote architectural decomposition).

or

• a forest of named trees as above.

Example 6.3. In both situations described in Example 6.1, the refinement tree of R has two nodes, one for USP and
one for USP′, and a refinement link between them.

We need to define an auxiliary structure to keep track of the roots, leaves and nodes of the branching decom-
positions; this will make it possible to compose refinement trees. We stress that this information is only needed
for book-keeping during the construction of refinement trees; it can be dispensed with when looking at a completed
refinement tree. Let us define refinement tree pointers in a refinement tree RT as either

S simple refinement pointers of the form (n1, n2) where n1 and n2 are nodes in RT , with the intuition that the first
node is the root and the second node is the leaf of a path through the tree,23

B branching refinement pointers of the form (n, f), where n is a node and f is a map assigning refinement tree pointers
to unit names, or

23Notice that the two nodes can coincide.

46

C component refinement pointers which are maps assigning refinement tree pointers to unit names.

Example 6.4. We will use the names of the specifications and of the units of architectural specifications in their
refinement tree pointers. With this convention in mind, we present some refinement tree pointers for the specifications
in Examples 2.3–2.5:

• The pointer of the specification Monoid is (Monoid, Monoid): the refinement tree consists of just one node,
which is at the same time the root and the leaf.

• The pointer of R1 is (Monoid, Nat): the refinement tree consists of just one edge, with Monoid at the root and
Nat at the leaf. Similarly the pointer of R2 is (Nat, NatBin).

• The pointer of Addition First is (Addition First, {F 7→ (F,F),N 7→ (N,N)}): the root of the tree corresponds
to the result unit of Addition First, and we must keep track of the subtrees of the two components. In the case
of both F and N, the subtrees consist just of one node.

• The pointer of RComp is {N 7→ (Nat,NatBin)}: we assign to N the pointer of R2.

We introduce a series of notations and operations on refinement trees. We denote the empty tree by RT ∅. If RT
is a refinement tree, RT [USP] is obtained by adding to it a new isolated node n labelled with USP. For refinement
trees RT 1, . . . ,RT k, RT [n1 → RT 1, . . . ,RT k] denotes the tree obtained by inserting component links from the node
n1 of RT to the roots of each of the argument trees. Moreover, refinement trees can be composed as defined below.

Definition 6.2. Given two refinement trees RT 1 with pointer p1 and RT 2 with pointer p2 we denote by (RT , p) the
composition RT 1;p1,p2 RT 2, which extends the union of RT 1 and RT 2 as follows:

S;S if p1 is a simple refinement pointer (n1, n2) and p2 is a simple refinement pointer (m1,m2), then RT is obtained
by adding a refinement link from n2 to the successor of the node m1 along the path (m1,m2) in RT 2. The pointer
p is then (n1,m2).

S;B if p1 is a simple refinement pointer (n1, n2) and p2 is a branching refinement pointer (m1, f), then RT is obtained
by adding a refinement link from n2 to m1. The pointer p is (n1, f).

B;C if p1 is a branching refinement pointer (n1, f1) and p2 is a component refinement pointer f2, then RT is obtained
by forming for each X in dom(f2) the composition of the subtree designated by f1(X) with the tree designated
by f2(X), yielding a pointer pX for each X in dom(f2). The pointer p is then (n1, f1[f2]), where f1[f2] updates
the value of X in f1 with the pointer pX .

C;C if p1 is a component refinement pointer f1 and p2 is a component refinement pointer p2, then RT is obtained by
forming for each X in dom(f2) the composition of the subtree designated by f1(X) with the tree designated by
f2(X), yielding a pointer pX for each X in dom(f2). The pointer p is then f1[f2].

The composition is undefined otherwise.

Refinement trees will be constructed for correct refinements, in parallel with the verification process. To ease
understanding, we have separated the parts that build the refinement trees, as presented in Fig. 21. In particular,
the verification calculus will require that corresponding nodes match when making the composition, and thus such
requirements can be omitted when forming the composition of refinement trees, as we will only compose refinement
trees that match.

Example 6.5. We illustrate the definition of composition of refinement trees with the help of Examples 2.3–2.5. We
use the names of the specifications and of the units of architectural specifications to identify nodes in the refinement
trees and therefore the names also appear in pointers. The refinement trees and the results of their compositions are
presented in Fig. 22.

47

(n,RT) = RT ∅[USP]
` USP ::c RT , (n, n)

` USP ::c RT 1, p1
` SPR ::c RT 2, p2

(RT , p) = RT 1;p1,p2 RT 2

` USP refined via σ to SPR ::c RT , p

` SPRi ::c RT i, pi

UE is the result unit of ASP
(n,RT ′) = RT ∅[SΓ(UE)]

RT = RT ′[n→ RT 1, . . . ,RT k]
p = (n, {UNi → pi}i=1,...,k)
` ASP ::c RT , p

for each i ∈ J
` SPRi ::c RT i, pi

RT = ∪i∈JRT i

p = {UNi 7→ pi}i∈J

` {UN i to SPRi}i∈J ::c RT , p

` SPR1 ::c RT 1, p1
` SPR2 ::c RT 2, p2

(RT , p) = RT 1;p1,p2 RT 2

` SPR1 then SPR2 ::c RT , p

Figure 21: Construction of refinement trees.

First, refinements R1 and R2 are composed in R3 to form a chain; this is case S;S of the definition of composition
of refinement trees (Def. 6.2). The pointer p1 of R1 is (Monoid,Nat) and the pointer p2 of R2 is (Nat,NatBin). The
pointer of the result of their composition is (Monoid,NatBin).

The refinement tree of R4 is obtained by composing the tree of the unit specification NatWithSuc with a single
node and with pointer q1 = (NatWithS uc,NatWithS uc) with the tree of the architectural specification Addition First
(case S;B). The pointer of the latter tree is q2 = (Addition First, {F 7→ (F, F),N 7→ (N,N)}). After composition, the
pointer q3 is (NatWithS uc, {F 7→ (F, F),N 7→ (N,N)}).

Finally, the tree of R5 is obtained by composing the tree obtained at the previous step, with pointer q3, with the
set containing the tree of R2 with pointer q4 = {N 7→ (Nat,NatBin)}. The pointer of the result is (NatWithS uc, {F 7→
(F, F),N 7→ (N,NatBin)}) (case B;C).

Another example for case B;C is provided by the component S of the steam boiler control system (Example 2.6).
The refinement subtree of S in the tree of Arch Sbcs consists of one node labeled S, and thus its pointer is (S,S). This
tree is composed with the refinement tree of StateRef, which is (State Abstr,Unit Sbcs State), and the result is (S,
Unit Sbcs State).

We can obtain an example for case C;C by writing the refinement of the components in Example 2.6 equivalently,
but in a different way:

refinement R = {

P to arch spec Arch Preliminary, S to StateRef,
A to arch spec Arch Analysis }
then {
A to {FD to arch spec Arch Failure Detection,

PR to arch spec Arch Prediction }}

and the resulting refinement tree is a forest with three trees: one for P, consisting of the subtree with the root in
Arch Preliminary in Fig. 20, one for A, consisting of the subtree with the root in Arch Analysis in Fig. 20, and one
for S, consisting of the tree of StateRef, explained in the last example of the previous case.

Refinement trees prove useful for making consistency checks with Hets. Checking consistency has been added as
a context menu option for nodes in refinement trees: in the case of architectural specifications, the branching points
in refinement trees provide the appropriate representation. Selecting “Check consistency” leads to introducing con-
sistency obligations in the development graph of the specification: nodes corresponding to non-generic units carry
consistency proof obligations, while morphisms corresponding to theory extensions of generic units carry conserva-
tivity obligations. If the node is a branching point, consistency is checked recursively for all components. If an edge
in the refinement tree is a refinement link, it suffices to check consistency of the target of the edge, assuming that
the refinements are already verified. Hets can be further employed for discarding these obligations, by making use

48

Monoid

��
◦

Nat

��
=

Monoid

��
Nat NatBin Nat

��
NatBin

NatWithSuc ◦ Addition First

yy %%

= NatWithSuc

��
N F Addition First

yy %%
N F

NatWithSuc

��

N NatWithSuc

��
Addition First

yy %%

◦ Nat

��

= Addition First

xx %%
N F NatBin N

��

F

NatBin

Figure 22: Composition of refinement trees.

of the model finders available in the tool, e.g. Isabelle-refute [41], Darwin [42], or SPASS [33], and also the
conservativity checker of [32].

7. Remarks on Programs in CASL

One problem with the approach described so far is that the constructors provided by specification morphisms and
architectural specifications in CASL do not suffice for implementing specifications. In a sense, these constructors only
provide means to combine or modify existing program units—but there is no way to build program units from scratch.
That is, CASL lacks a notion of program.

An obvious way out of this situation is to add more operations on units that can be used for unit terms or unit
expressions in architectural specifications. Concerning construction of datatypes, one could add a simple version of
freely generated datatypes (modeled by the institution independent notion of so-called free extension [43, 3]), giving a
model of a datatype that is determined uniquely up to isomorphism, and that corresponds to an algebraic datatype in a
functional programming language. For the construction of operations on top of these datatypes, one could use reducts
along derived signature morphisms. Derived signature morphisms may map an operation to a term or to a recursive
definition by means of equations, like function definitions in a functional programming language. See [3, Chap. 4] for
a more detailed account of this approach.

Note that this approach is necessarily no longer institution-independent. The details of the kind of free extensions
that actually correspond to datatypes in a programming language depend both on the institution and the programming
language at hand. The same remark applies to the definition of derived signature morphisms.

An alternative is to approximate the institution-independent essence of programs by considering monomorphic
specifications. A generic unit specification is monomorphic if the result specification is a monomorphic extension of
the argument specifications. This means that it specifies a construction uniquely up to isomorphism. For non-generic

49

CASL ML Haskell
non-generic unit structure module
generic unit functor multi-parameter type class in a

module
monomorphic unit specification
with free types and recursive def-
initions

structure with datatypes and re-
cursive definitions

module with datatypes and re-
cursive definitions

unit application functor application type class instantiation
unit amalgamation combination of structures combination of modules
unit hiding restriction to subsignature hiding
unit renaming redefinition redefinition
architectural specification structure/functor using other

structures/functors
module using other modules

Figure 23: Unit term constructs in ML and Haskell

units, this means a unit that is specified uniquely up to isomorphism. Ultimately, monomorphic unit specifications
need to be translated to (parameterized) programs in some programming language. As above, this process obviously
depends on both the institution and the programming language in question. The difference is that the specification
language itself remains institution independent, since the translation to a programming language is not part of the
specification language.

In some cases it is possible to perform the translation automatically, for unit specifications that obey certain
syntactic restrictions. For functional programming languages such as Haskell and ML, one would require that all sorts
are given as free types, and all functions are defined by means of recursive equations in such a way that termination is
provable.24 The translation of a parameterized program then provides a construction that is unique, not only unique up
to isomorphism. See [44] for details, and [45] for a translation of a subset of CASL to OCaml. Using free extensions,
it is also possible to capture partial recursive functions, see [45, 44]. Moreover, with Haskell (and its type class Eq)
as target language, generated types with explicitly given equality can also be used. For ML and Haskell, there is also
a direct correspondence at the level of CASL unit terms, see Fig. 23.

For other programming languages, the translation between monomorphic specifications and programs might be
much less straightforward. In general, it may be necessary to translate manually, and prove that the resulting program
is a correct realization of the specification. There may also be a mismatch between the constructs that are available
for combining modules in the programming language and the constructs that CASL provides for combining unit terms.
Then, one possibility would be to view unit terms in architectural specifications as prescriptions for the composition
and transformation of the component units, and carry these out manually using the constructs that the programming
language provides. (This may be automated by devising operations on program texts corresponding to unit term
constructs.) Alternatively, one might take the target programming language into account in the refinement process and
simply avoid in unit terms any use of the constructs that have no counterpart in the programming language at hand.

With this approach, the use of a parameterized program κ in a constructor implementation SP
κ
∼∼∼> SP′ is expressed

as

arch spec
unit κ : { SP’→ SP } refined to USP
result λ X : SP’ • κ[X]

where USP is a monomorphic specification of κ from which the corresponding parameterized program may be ob-
tained directly. Such a constructor may also be used in the context of another refinement. For example, the refinement

SP
κ
∼∼∼> SP′

κ′

∼∼∼> SP′′

24In case of non-termination, the (partial) function is not specified uniquely. Consider e.g. the specification ∀x. f (x) = f (x).

50

is expressed as
refinement R5 =

SP refined to
arch spec

units κ : { SP’→ SP } refined to USP
A’ : SP’ refined to

arch spec
units κ′ : { SP”→ SP’ } refined to USP’

A” : SP”
result κ′[A”]

result κ[A’]
where USP and USP’ are monomorphic specifications of κ and κ′, respectively.

8. Conclusions, Related and Future Work

The issue of refinement has been discussed in many specification frameworks, starting with [46] and [47], and
some frameworks provide methods for proving correctness of refinements. But this is normally regarded as a “meta-
level” issue and specification languages have typically not included syntactic constructs for formally stating such
refinement relationships between specifications that are analogous to those presented here for CASL. A notable excep-
tion is Specware [48], where specifications (and implementations) are structured using specification diagrams, and
refinements correspond to specification morphisms for which syntax is provided. This, together with features for
expanding specification diagrams, provides sufficient expressive power to capture our branching refinements. A dif-
ference is that Specware does not include a distinction between structured specifications and CASL-like architectural
specifications, and refinements are required to preserve specification structure. This is quite a severe restriction (see
[8, 3]), which is overcome by our framework.

We have introduced a language for refinements, together with its semantics, a (sound and complete) proof calculus
for proving refinements, another one for checking their consistency, and a notion of refinement tree. We stress that all
this is given here in an institution-independent way; that is, it applies to any logic that satisfies very mild conditions.

Moreover, we also support refinement trees in practice: we have implemented them in the Heterogeneous Tool Set
Hets, so that browsing through and inspection of complex formal developments becomes possible. Note that the proof
calculus for architectural specifications of [6] was given for a restricted version of the language; we here extended it
to the whole language in a way that is substantially simplified by the transformation of units with imports into generic
units. We have also introduced and implemented a sound and complete calculus for consistency of refinements and
architectural specifications, which has already been applied for proving the consistency of the upper ontology Dolce
in a modular way.

Future work includes extending the language to support behavioural refinement, corresponding to abstractor im-
plementations in [27]. Often, a refined specification does not satisfy the initial requirements literally, but only up
to some sort of behavioural equivalence: for example, if stacks are implemented as arrays-with-pointer, then two
arrays-with-pointer differing only in their “junk” entries (that is, those that are “above” the pointer) exhibit the same
behaviour in terms of the stack operations, and hence correspond to the same abstract stack. This can be taken into
account by re-interpreting unit specifications to include models that are behaviourally equivalent to literal models, see
[49, 50]; then specification refinements as considered here become behavioural [3, 24].

Another useful addition would be amalgamability checks for logics other than CASL in the logic graph of Hets,
thus enabling a complete treatment of architectural specifications in those logics.

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading of the paper and suggesting a number of improvements.
This work has been partially supported by the German Research Council (DFG) under grant Mo-971/2 “Logic Atlas and Integration
(LATIN)” (MC, TM) and by the (Polish) National Science Centre, grant 2013/11/B/ST6/01381 (AT).

51

References

[1] CoFI, The Common Framework Initiative for algebraic specification and development, electronic archives, Notes and Documents accessible
from http://www.cofi.info/ (2009).

[2] E. Astesiano, H.-J. Kreowski, B. Krieg-Brückner, Algebraic Foundations of Systems Specification, Springer, 1999.
[3] D. Sannella, A. Tarlecki, Foundations of algebraic specification and formal software development, EATCS Monographs in Theoretical Com-

puter Science, Springer, 2012.
[4] N. Wirth, Program development by stepwise refinement, Commun. ACM 14 (4) (1971) 221–227.
[5] M. Bidoit, D. Sannella, A. Tarlecki, Architectural specifications in CASL, Formal Aspects of Computing 13 (2002) 252–273.
[6] P. D. Mosses (Ed.), Casl Reference Manual, LNCS 2960 (IFIP Series), Springer, 2004.
[7] J. Fitzgerald, C. Jones, Modularizing the formal description of a database system, in: Proc. VDM’90 Conference, Vol. 428 of Lecture Notes

in Computer Science, Springer, 1990, pp. 189–210.
[8] D. Sannella, S. Sokołowski, A. Tarlecki, Toward formal development of programs from algebraic specifications: Parameterisation revisited,

Acta Informatica 29 (8) (1992) 689–736.
[9] M. Bidoit, P. D. Mosses, Casl User Manual, LNCS 2900 (IFIP Series), Springer, 2004.

[10] J.-R. Abrial, E. Börger, H. Langmaack (Eds.), Formal Methods for Industrial Applications, Specifying and Programming the Steam Boiler
Control, Vol. 1165 of Lecture Notes in Computer Science, Springer, 1996.

[11] T. Mossakowski, Heterogeneous specification and the Heterogeneous Tool Set, Habilitation thesis, University of Bremen (2005).
[12] T. Mossakowski, C. Maeder, K. Lüttich, The Heterogeneous Tool Set, in: TACAS 2007, Vol. 4424 of LNCS, Springer, 2007, pp. 519–522.
[13] T. Mossakowski, D. Sannella, A. Tarlecki, A simple refinement language for Casl, in: J. L. Fiadeiro (Ed.), WADT 2004, Vol. 3423 of Lecture

Notes in Computer Science, Springer, 2005, pp. 162–185.
[14] M. Codescu, T. Mossakowski, Refinement trees: calculi, tools and applications, in: A. Corradini, B. Klin (Eds.), Algebra and Coalgebra in

Computer Science, CALCO’11, Vol. 6859 of Lecture Notes in Computer Science, Springer, 2011, pp. 145–160.
[15] J. A. Goguen, R. M. Burstall, Institutions: abstract model theory for specification and programming, Journal of the ACM 39 (1992) 95–146.
[16] T. Mossakowski, M. Codescu, F. Neuhaus, O. Kutz, The Distributed Ontology, modeling and specification Language - DOL, in: A. Koslow,

A. Buchsbaum (Eds.), The Road to Universal Logic, Vol. 2, Birkhäuser, 2015, pp. 489–520.
[17] J. Adámek, H. Herrlich, G. Strecker, Abstract and Concrete Categories, Wiley, New York, 1990.
[18] R. Diaconescu, Institution-independent Model Theory, Birkhäuser Basel, 2008.
[19] R. Diaconescu, J. Goguen, P. Stefaneas, Logical support for modularisation, in: Proc. 2nd Workshop on Logical Environments, CUP, New

York, 1993, pp. 83–130.
[20] J. A. Goguen, G. Roşu, Composing hidden information modules over inclusive institutions, in: O. Owe, S. Krogdahl, T. Lyche (Eds.), From

Object-Orientation to Formal Methods, Essays in Memory of Ole-Johan Dahl, Vol. 2635 of Lecture Notes in Computer Science, Springer,
2004, pp. 96–123.

[21] F. Rabe, How to identify, translate and combine logics?, Journal of Logic and Computation.
[22] T. Mossakowski, Specification in an arbitrary institution with symbols, in: C. Choppy, D. Bert, P. Mosses (Eds.), Recent Trends in Alge-

braic Development Techniques, 14th International Workshop, WADT’99, Bonas, France, Vol. 1827 of Lecture Notes in Computer Science,
Springer, 2000, pp. 252–270.

[23] T. Borzyszkowski, Logical systems for structured specifications, Theoretical Computer Science 286 (2002) 197–245.
[24] M. Bidoit, M. Cengarle, R. Hennicker, Proof systems for structured specifications and their refinements, in: E. Astesiano, H.-J. Kreowski,

B. Krieg-Brückner (Eds.), Algebraic Foundations of Systems Specification, Springer, 1999, pp. 385 – 433.
[25] T. Mossakowski, S. Autexier, D. Hutter, Development graphs – proof management for structured specifications, Journal of Logic and Alge-

braic Programming 67 (1-2) (2006) 114–145.
[26] L. Schröder, T. Mossakowski, P. Hoffman, B. Klin, A. Tarlecki, Semantics of architectural specifications in CASL, in: Fundamental Ap-

proaches to Software Engineering, Vol. 2029 of Lecture Notes in Computer Science, Springer, 2001, pp. 253–268.
[27] D. Sannella, A. Tarlecki, Toward formal development of programs from algebraic specifications: Implementations revisited, Acta Inf. 25

(1988) 233–281.
[28] P. Hoffman, Architectural specifications and their verification, Ph.D. thesis, Warsaw University (2005).
[29] M. Codescu, Lambda expressions in CASL architectural specifications, in: T. Mossakowski, H.-J. Kreowski (Eds.), Recent Trends in Alge-

braic Development Techniques, 20th International Workshop, WADT 2010, Vol. 7137 of Lecture Notes in Computer Science, Springer, 2011,
pp. 98–117.

[30] O. Kutz, T. Mossakowski, A modular consistency proof for Dolce, in: W. Burgard, D. Roth (Eds.), Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence and the Twenty-Third Innovative Applications of Artificial Intelligence Conference, AAAI Press; Menlo
Park, CA, 2011, pp. 227–234.

[31] M. Roggenbach, L. Schröder, Towards trustworthy specifications I: Consistency checks, in: M. Cerioli, G. Reggio (Eds.), Recent Trends in
Algebraic Specification Techniques, 15th International Workshop, WADT 2001, Vol. 2267 of Lecture Notes in Computer Science, Springer,
2001, pp. 305 – 327.

[32] M. Codescu, T. Mossakowski, C. Maeder, Checking conservativity with Hets, in: R. Heckel, S. Milius (Eds.), CALCO 2013, Vol. 8089 of
Lecture Notes in Computer Science, Springer, 2013, pp. 315–321.

[33] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobalt, D. Topic, SPASS version 2.0, in: A. Voronkov (Ed.), Automated Deduction,
CADE-18, Vol. 2392 of Lecture Notes in Computer Science, Springer, 2002, pp. 275–279.

[34] A. Riazanov, A. Voronkov, The design and implementation of VAMPIRE, AI Communications 15 (2-3) (2002) 91–110.
[35] C. Benzmüller, L. C. Paulson, F. Theiss, A. Fietzke, Leo-II - a cooperative automatic theorem prover for classical higher-order logic (system

description), in: A. Armando, P. Baumgartner, G. Dowek (Eds.), IJCAR, Vol. 5195 of Lecture Notes in Computer Science, Springer, 2008,
pp. 162–170.

52

http://www.cofi.info/

[36] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL — A proof assistant for higher-order logic, Vol. 2283 of Lecture Notes in Computer
Science, Springer, 2002.

[37] J. A. Goguen, G. Roşu, Institution morphisms, Formal Aspects of Computing 13 (3-5) (2002) 274–307.
[38] R. Diaconescu, Grothendieck institutions, Applied Categorical Structures 10 (2002) 383–402.
[39] T. Mossakowski, Comorphism-based Grothendieck logics, in: K. Diks, W. Rytter (Eds.), Mathematical Foundations of Computer Science,

Vol. 2420 of Lecture Notes in Computer Science, Springer, 2002, pp. 593–604.
[40] T. Mossakowski, S. Autexier, D. Hutter, Extending development graphs with hiding, in: Fundamental Approaches to Software Engineering,

Vol. 2029 of Lecture Notes in Computer Science, Springer, 2001, pp. 269–283.
[41] T. Weber, Bounded model generation for Isabelle/HOL, Electronic Notes in Theoretical Computer Science 125 (3) (2005) 103–116.
[42] P. Baumgartner, A. Fuchs, C. Tinelli, Darwin: A theorem prover for the model evolution calculus, in: S. Schulz, G. Sutcliffe, T. Tammet

(Eds.), IJCAR Workshop on Empirically Successful First Order Reasoning (ESFOR (aka S4)), Electronic Notes in Theoretical Computer
Science, 2004, p. 191.

[43] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1: Equations und Initial Semantics, Vol. 6 of Monographs in Theoretical
Computer Science. An EATCS Series, Springer, 1985.

[44] T. Mossakowski, Two “functional programming” sublanguages of CASL, in [1] (Mar. 1998).
URL http://www.cofi.info/old/Notes/L-9/

[45] T. Brunet, Génération automatique de code à partir de spécifications formelles, Master’s thesis, Université de Poitiers (2003).
[46] C. A. R. Hoare, Proof of correctness of data representations, Acta Informatica 1 (1972) 271–281.
[47] R. Milner, An algebraic definition of simulation between programs, in: D. C. Cooper (Ed.), IJCAI, William Kaufmann, 1971, pp. 481–489.
[48] D. R. Smith, Designware: Software development by refinement, in: Proc. 8th Conference on Category Theory and Computer Science,

CTCS’99, Vol. 29 of Electronic Notes in Theoretical Computer Science, 1999, pp. 275–287.
[49] M. Bidoit, D. Sannella, A. Tarlecki, Global development via local observational construction steps, in: Proc. 27th Intl. Symp. on Mathematical

Foundations of Computer Science, Vol. 2420 of Lecture Notes in Computer Science, Springer, 2002, pp. 1–24.
[50] M. Bidoit, D. Sannella, A. Tarlecki, Observational interpretation of Casl specifications, Mathematical Structures in Computer Science 18 (2)

(2008) 325–371.

53

http://www.cofi.info/old/Notes/L-9/
http://www.cofi.info/old/Notes/L-9/

Appendix A. Proofs

Proof of Theorem 5.2:
Assume that arch spec ASP = units UDD+ result UE. Moreover, assume Γ∅v ` UDD+ ::c Γv and ` UDD+ :: Γgen,Γ.

We prove that if USP = SASP then Γgen,Γ ` UE :: USP.

• If UE = UT , it suffices to show that for any family of models M compatible with the diagram Γ′, MB |=

SASP(UT), where Γgen,Γ ` UT :: Γ′, B. We will proceed by induction on the structure of UT . Notice that
in the case of unit application and union, MB |= Samalg(B) using the amalgamation properties ensured by the
successful run of the extended static semantics.

– If UT = UN, then by definition SASP(UT) = SP where UN : SP in ASP and by construction of Γ′, the node
UN is labeled with SP. This means that MUN must satisfy SP = SASP(UT).

– If UT = UT1 and UT2, then by construction B has two incoming edges from A1 and A2, where Γgen,Γ `
UTi :: Γi, Ai, i = 1, 2. By the inductive hypothesis MAi |= SASP(UTi). It follows easily that MB |=

SASP(UT1) and SASP(UT2).

– If UT = F[UT ′ fit σ], then, using the notation of the rule, B has two incoming edges from Ar and Aa by
construction, Ar is labeled with SPr, and MAa |= SASP(UT ′) by inductive hypothesis. It is easy to check
that MB |= SASP(UT).

– If UT = UT ′ with σ then, using the notation of the rule, B has an incoming edge from A by construction
and MA |= SASP(UT ′), which implies MB |= SASP(UT).

– If UT = UT ′ hide σ then, using the notation of the rule, B has an outgoing edge to A by construction and
MA |= SASP(UT ′), which implies MB |= SASP(UT).

– if UT = local UDECL within UT ′, then we must show that MB |= SASP(UT) which by definition is SΓv (UT ′)
where Γv extends the verification context of UT ′ according to UDECL. By induction for UT ′, since the node
of UT is the one of UT ′ where the local declarations in UDECL are deleted, we get that MB |= SΓv (UT ′).

• If UE = λX : SP .UT , we have MB |= SASP(UT) where Γgen,Γ ` UT :: Γ′, B and since SP is obviously equivalent
with itself, we have that Γgen,Γ ` UE :: SP→ SASP(UT).

Proof of Theorem 5.4:
The inclusion from left to right follows from the generalized version of Thm. 5.1 and Thm. 5.3. Concerning the

converse inclusion, let ` ASP � � and ` ASP ::c USP.
We distinguish the cases of ASP being consistent or not. If ASP is inconsistent, the specification of some non-

generic unit UN in ASP must be inconsistent, because all generic unit specifications have been assumed to be con-
sistent. But then UN is being used in the result unit expression of ASP (because the framework requires that all
non-generic units not being used in the result unit expression of ASP are consistent), causing USP to be inconsistent
as well. Hence, both sides of the equation are the empty set.

Let us now assume that ASP is consistent, and let M be a model of USP. For simplicity, we consider M to be
non-parametric; the parametric case is treated similarly by considering all the possible applications to argument units.
Let UT be the result unit term of ASP. For each occurrence of a subterm oT of UT in UT , we construct a model MoT

satisfying SASP(oT), where the latter is built in the context of the unit definitions of ASP. In parallel, we define partial
functions MF for parametric units F for one or more argument tuples. Let h compute the height of a unit term. We
proceed by nested induction over h(UT)−h(oT) within unit terms and the dependency structure of the unit definitions,
which means by moving from each subterm to its immediate subterms and in the order of occurrence of defined units
in the unit term.

The induction base is the result unit term UT ; we put MUT := M. For the induction step, we make a case
distinction:

• if T is a unit name coming from a unit declaration, then there are no subterms;

54

• if T is a unit name coming from a unit definition T = UT ′, we proceed with UT ′ with the model MUT ′ = MT ;

• if T is T1 and T2, let MoT i := MT |σi , where σi is the inclusion of the signature of Ti into that of T . From
MT ∈Mod(SASP(T)), we easily get MoT i ∈Mod(SASP(Ti));

• if T is T1 with σ, let MoT1 := MT |σ. Again, from MT ∈Mod(SASP(T)), we easily get MoT1 ∈Mod(SASP(T1));

• if T is T1 hide σ, SASP(T) is SASP(T1) hide σ. Hence, by MT ∈ Mod(SASP(T)), there is some (not necessarily
unique) M1 ∈Mod(SASP(T1)) with M1|σ = MT . Put MoT1 := M1;

• if T = F[T1 fit σ1] . . . [Tn fit σn], then we know that SASP(T) = {S P with σ} and SASP(UT1) with ι1; ι′ and
. . . and SASP(UTn) with ιn; ι′ and Samalg(UT). Hence, for i = 1, . . . , n, we define MoT i := M|ιi;ι′ . We also define
the action of MF on the arguments thus defined: MF(MoT1 |σ1 , . . . ,MoTn |σn) := MT . (Note that by assumption, F
is applied only once.) If F is the name of a generic unit coming from a unit definition, we repeat the procedure
for the term FM, defining F with FFM := MT .

We need to show that if oT1 and oT2 are two occurrences of a term T in UT , then MoT1 = MoT2 . Thus, we can
define MT = MoT for each subterm T of UT and for an arbitrary occurrence oT of T in UT and we also ensure that
MF is well-defined, for any generic unit F.

Assume that oT1 and oT2 are two occurrences of T in UT . Let UT ′ be the least subterm of UT that contains both
oT1 and oT2, and notice that UT ′ can be either a unit application F[UT1] . . . [UTn] with oT1, oT2 subterms of UTi and
UT j respectively, for some i, j ∈ 1, . . . , n or a unit amalgamation UT1 and . . . and UTn with oT1, oT2 subterms of
UTi and UT j respectively, for some i, j ∈ 1, . . . , n. In both cases, by Def. 5.3 we have that MUT ′ |= Samalg(UT ′). Since
the framework assumes that no generic unit can be applied more than once, T cannot be a unit application G[T ′]. If
that were the case, the diagram DUT ′ of the unit term UT ′ would contain a sub-diagram like the following:

Σa(∆) Σa(∆)

Σr

σ(∆)
<<

Σa

ι

<<
ι

bb

Σr

σ(∆)
bb

Σ f

σ

<<

∆

aa

Σ f

∆

==

σ

bb

where the nodes labeled with Σa(∆) correspond to the two occurences oT1 and oT2, ∆ : Σ f → Σr is the inclusion of
the signature of the formal parameter of G in the signature of the result, σ is the fitting morphism to the signature of
the actual parameter T ′ and (Σa(∆), σ(∆), ι) is the selected pushout of the span (cf. Def. 4.1). Then the symbols of Σr

that are not in Σ f do not have a common origin in the diagram, and therefore their image along σ(∆) gives symbols
that do not neccesarily share. In all other possible cases, we can observe that the nodes corresponding to oT1 and oT2
in the diagram DUT ′ of the unit term UT ′ have symbols with the same origin. This implies that MoT1 and MoT2 must
be equal.

We now construct a model of ASP as follows: non-parametric unit names A are interpreted as MA (if this is
defined), while parametric units F are interpreted as MF whenever this is defined for specific arguments. The inter-
pretations of the remaining non-parametric units and remaining applications of parametric units to arguments does not
affect UT at all, we can hence take them from any model of ASP (which exists by consistency of ASP). This yields a
model of ASP that interprets UT as M.

Proof of Theorem 5.5:
Assume that arch spec ASP = units UDD+ result UE. Moreover, assume ` UDD+ :: Γgen,Γ. We prove that

for any unit expression UE′ occurring in ASP (either in a unit definition or in the result unit expression) if we have
Γgen,Γ ` UE′ :: USP′′ for some USP′′, then Γ∅v ` UDD+ ::c Γv, Γv ` UE′ ::c USP′ where USP′ = SΓv (UE′) and
USP′ ∼∼∼>USP′′. Then the theorem follows by taking UE′ = UE.

We proceed by induction on the sequence of unit definitions in UDD+ and then by induction on the structure of
UE′.

55

So, suppose that the claim holds for all unit expressions in the preceding unit definitions and for all subexpressions
of UE′. We make a case analysis on the form of UE′.

If UE′ is just a unit name UN, we have two possibilities: either UN is the name of a defined unit and then
the claim follows directly from the inductive hypothesis, or UN is the name of a declared unit. In the latter case
let USP′ be its specification in ASP. We have by the hypothesis that Γgen,Γ ` UN :: USP for some USP. By
definition of SASP(UN), we have that Γv ` UN ::c USP′. We have to show that USP∼∼∼>USP′. Let ASP′ be the
architectural specification obtained from ASP by replacing its result unit expression with UN. Since ` ASP′ ::c USP′,
by Thm. 5.4 we have ProjRes(Mod(ASP′)) = Mod(USP′). By ` ASP′ :: USP and soundness of ` :: we have
ProjRes(Mod(ASP′)) ⊆Mod(USP). Hence, Mod(USP′) ⊆Mod(USP).

Of the other cases, we present here only the case of one argument unit application, as the others are similar.
Therefore, let us assume that UE = F[UE′] where F : SP → SP′ in Γgen. Since Γgen,Γ ` UE :: USP for some
USP, we can easily show that Γgen,Γ ` UE′ :: SP (this follows directly from the verification condition of the proof
calculus ` :: for unit applications). By the inductive hypothesis, we get that Γv ` UE′ ::c SASP(UE′) and moreover
SP∼∼∼>SASP(UE′), which is precisely the verification condition of the proof calculus ` ::c for F[UE′]. This means
that Γv ` UE ::c SASP(UE), where SASP(UE) is as given in Def. 5.3. We need to show that USP∼∼∼>SASP(UE), and this
is done with the same argument as for the case of unit names.

Proof of Theorem 5.7:
The proof follows by induction on the structure of SPR.
If SPR = USP, then according to the rules of the model semantics in Fig. 12, we have ` SPR ⇒ R where

R = {(U,U)|U ∈ Unit(USP)}. With the proof calculus rule we have ` SPR ::c (USP,USP) and it is obvious that
R |= (USP,USP).

If SPR = USP refined via σ to SPR′ with ` SPR ::c S , then according to the proof calculus rule we have that
` SPR′ ::c (USP′,BSP), USP

σ
∼∼∼> USP′ and S = (USP,BSP). By the inductive hypothesis we get that there is R′ such

that ` SPR′ ⇒ R′ and R′ |= (USP′,BSP). Then ` SPR ⇒ R where R = {(U |σ,BM)|(U,BM) ∈ R′} and the refinement
condition USP

σ
∼∼∼> USP′ ensures that R |= S .

If SPR = arch spec ASP, then according to the proof calculus rule we have that for any unit declaration of the
form UN i : SPRi in ASP, ` SPRi ::c (USPi,BSPi). Let ASP′ be the architectural specification obtained by replacing
SPRi with USPi for each unit declaration UN i : SPRi in ASP and let UE denote the result unit of ASP. Then we define
SPM(UN) for any unit UN of ASP as SPM(UN) = BSPi, if UN is a declared unit UN i of ASP, and SPM(UN) =

SΓv (UE′) if UN = UE′ is a unit definition of ASP, where Γv is the verification environment of ASP′. This allows us
to define S = (SΓv (UE),SPM). By inductive hypothesis we have ` SPRi ⇒ Ri and Ri |= (USPi,BSPi) for each i.
Then ` SPR ⇒ R where R = {(U, π2(RE))| RE(UN i) ∈ Ri for the defined units UN i,U combines the units in π1(RE)
according to UE} and R |= S by Thm. 5.3, where AM = R and ` ASP ::c SΓv (UE) by the rules of the proof calculus
(Fig. 16).

If SPR = {UN i to SPRi}i∈J with ` SPR ::c S , then according to the proof calculus rule we have that S = {UN i 7→

S i}i∈J and ` SPRi ::c S i for i ∈ J . By the inductive hypothesis we get that ` SPRi ⇒ Ri and Ri |= S i. Then
` SPR⇒ R where R = {R | dom(R) = {UN i}i∈J ,R(UN i) ∈ Ri for each i ∈ J} and notice that R |= S by definition.

Finally, if SPR = SPR1 then SPR2, with the proof calculus rule we get ` SPRi ::c S i for i = 1, 2 such that
S = S 1; S 2 and by inductive assumption we have ` SPRi ⇒ Ri and Ri |= S i, for i = 1, 2. It follows (by case analysis,
sketched below) that R = R1;R2 is defined and R |= S .

Let us assume that ` SPR1 � (UΣ,BstC); the other cases are similar. Then S 1 = (USP,SPM), ` SPR2 � {UN i 7→

RΣi}i∈J with UN i ∈ dom(BstC) for i ∈ J and S 2 = {UN i → S i}i∈J . Let R2 = {UN i → Ri}i∈J ∈ R2 and assume there
exists R1 = (U,BE) ∈ R1. (If R1 were empty, the result follows by noticing that R = R1;R2 is empty as well 25 and
that R |= S 1; S 2 by distinguishing the subcases when an inconsistent specification in SPM is further refined or not.)
To ease understanding, we can assume that the second refinement further refines only one component UN of the first
refinement, and that the component UN corresponds to a leaf in the branching tree. This means that dom(R2) = {UN}
and moreover BstC(UN) = UΣ. Then SPM(UN) = USP and S 2(UN) = (USP′,BSP′). Since R2 |= S 2 we have
that R2(UN) = (U′,BM′′) such that U′ ∈ Unit(USP′). Since S 1; S 2 is defined, the associated verification condition

25In the case of simple refinement, this does not follow immediately from the definition of composition of refinement relations, but requires to
notice that if R1 is empty, then so is R2, and their composition is as well empty.

56

USP∼∼∼>USP′ holds and thus U′ is also in Unit(USP). Thus we can replace BE(UN) with U′ in BE to obtain a
branching environment BE′ that satisfies SPM and therefore there exists (U′′,BE′) ∈ R1. The composition R1;R2 is
then defined and it is easy to see that R1;R2 |= S 1; S 2.

Proof of Theorem 5.8: By induction on the structure of SPR.
If SPR = USP, then ` USP ::e ASP where arch spec ASP = units UN : USP result UN. By definition, ` USP⇒ R

where R = {(U,U)|U ∈ Unit(USP)}. From the rules of the model semantics for architectural specifications, we know
that ` ASP ⇒ AM, where AM = {(U, {UN 7→ U})|U ∈ Unit(USP)}. It is obvious that AM and R correspond up to
unit names.

If SPR = USP refined via σ to SPR′ and by the hypothesis ` SPR ::e ASP, then according to the proof calculus
we know that ` SPR′ ::e ASP′, where ASP′ is of the form units UN : arch spec ASP′′ result (UN hide σ), as in the
rule for simple refinements. By the induction hypothesis we get ` SPR′ ⇒ R′ and R′ and AM′ correspond up to
unit names, where ` ASP′ ⇒ AM′. Moreover, the refinement condition USP

σ
∼∼∼> SASP′ holds. Let (U,BM) ∈ R′.

Since R′ and AM′ correspond up to unit names we get U |= SASP′ and therefore U |σ |= USP. Then by definition
we have ` SPR ⇒ R, where R = {(U |σ,BM)|(U,BM) ∈ R′}. From the rules of the model semantics for architectural
specifications, we get ` ASP ⇒ AM where AM = {(U |σ,BM)|(U,BM) ∈ AM′} and since R′ and AM′ correspond
up to unit names, so do R andAM.

If SPR = arch spec ASP, then by the hypothesis for any unit declaration UN i : SPRi in ASP, ` SPRi ::e ASPi. By
the induction hypothesis this means ` SPRi ⇒ Ri and Ri corresponds up to unit names with the model class AMi

of ASPi. This means that for any (U,BM) ∈ Ri, U |= SASPi . Then for any choice of models (Ui,BMi) ∈ Ri for
each i, we obtain on one hand a unit environment for ASP by projecting the models on the first component and we
can combine them according to the result unit expression of ASP to obtain a model U. On the other hand, with the
same construction we get a unit environment for ASP′ (where ASP′ is the architectural specification defined in the
corresponding proof rule of the calculus) and since the result unit expression is the same, we get the same model U.
Since the choice of models for Ri was arbitrary, we get this for all possible refined-unit static contexts, and thus for
all models of ASP and ASP′. Then the models of ASP and ASP′ correspond up to unit names.

If SPR = {UN i to SPRi}i∈J , then by the hypothesis we know ` SPRi ::e VSi and by the inductive hypothesis we
have ` SPRi ⇒ Ri and Ri corresponds with the model class ofVSi. Then using the rules of the model semantics we
get ` SPR⇒ R = {UN i → Ri}i∈J and R corresponds with the model class of {UN i →VSi}i∈J .

Finally, if SPR = SPR1 then SPR2 and ` SPR ::c VS, then by the corresponding proof rule ` SPRi ::e VSi for
i = 1, 2 andVS = VS1;VS2. By the induction hypothesis we get ` SPRi ⇒ Ri and Ri corresponds up to unit names
to the model class of VSi, for i = 1, 2. We show that R1;R2 is defined and it corresponds up to unit names to the
model class ofVS by case analysis on the refinement signature RΣ1 of SPR1.

If RΣ1 = (UΣ,UΣ′) then RΣ2 = (UΣ′, BΣ). Then, VS1 and VS2 are both architectural specifications and VS1
has only one unit UN labelled with a unit specification USP (possibly inside several architectural levels). Therefore
the assignments in R2 are branching assignments of the form (U,BM) and by the inductive hypothesis, we know that
U |= SVS2 . Since VS1;VS2 is defined, this implies that U |= USP and there must be an assignment (U0,U) of R1,
becauseVS1 is architectural and therefore U generates a unit environment forVS1 in which the result unit ofVS1 is
evaluated to a model U0, andAM1 and R1 correspond up to unit names. This means that R1;R2 is defined. Moreover,
if we replace USP inVS1 with the result of evaluating SVS2 in the context given byVS2, we get that the model U0
satisfies SVS1 [UN/SVS2], which ensures that R1;R2 corresponds up to unit names to the model class of VS1;VS2.
The other cases are similar but tedious and we omit them.

Proof of Theorem 5.9:
By induction on the structure of SPR.
If SPR = USP, then ` SPR ::e ASP and ` ASP ⇒ AM, where AM = {(U, {UN 7→ U})|U ∈ Unit(USP)}. By

definition, ` USP ⇒ R where R = {(U,U)|U ∈ Unit(USP)} and therefore the one-to-one correspondence up to unit
names is obvious.

If SPR = USP refined via σ to SPR′ and we know that ` SPR ⇒ R, then from the rules of the model semantics
we get that ` SPR′ ⇒ R′ and for every (U,BM) ∈ R′, U |σ ∈ Unit(USP). By the inductive hypothesis we have that
` SPR′ ::e ASP′ and there is a one-to-one correspondence between R′ andAM′, where ` ASP′ ⇒ AM′. We need to
prove that USP

σ
∼∼∼> SASP′ , so let V |= SASP′ . We know that there is a branching model BM such that (V,BM) ∈ AM′

57

and we know that (V,BM) corresponds up to unit names with an assignment of R′, which gives us that V |σ |= USP.
Thus ` SPR ::e ASP. Finally, notice that the model class of ASP and R correspond up to unit names by construction
of ASP, definition of R and correspondence up to unit names betweenAM′ and R′.

If SPR = arch spec ASP and ` ASP ⇒ R, then from the rule in the model semantics we get that ` SPRi ⇒ Ri

for each unit declaration UN i : SPRi in ASP. By induction we get that ` SPRi ::e ASPi and model class of ASPi

correspond up to unit names with Ri. It follows that ` SPR ::e ASP′ and the model of ASP′ corresponds up to unit
names with R with the same argument as in the soundness proof.

If SPR = {UN i to SPRi}i∈J and ` SPR ⇒ R, then from the rule in the model semantics we get ` SPRi ⇒ Ri.
By induction we get ` Ri ::e VSi and with the proof calculus rule we get ` R ::e VS = {UN i to VSi}i∈J . The
correspondence between R and the model ofVS follows immediately by definition and the correspondence between
Ri and the model ofVSi, for each i ∈ J .

Finally, if SPR = SPR1 then SPR2, and ` SPR⇒ R. then according to the rule in the model semantics we get that
` SPRi ⇒ Ri for i = 1, 2 and R = R1;R2. By induction we get that ` SPRi ::e VSi and Ri corresponds with the model
class ofVSi for i = 1, 2. We need show thatVS = VS1;VS2 is defined.

We will consider only the case when VS1 is an architectural specification with more than one component; the
other cases are similar. We know thatVS2 is an enhanced verification map since the refinements compose. Let UN ∈
dom(VS2) and assume the specification of UN in VS1 is a unit specification USP (the case when the specification
of U is architectural reduces to this case) andVS2(UN) = ASP′. Let U |= SASP′ and then by Thm. 5.4 we know that
there is a BM such that (U,BM) is an architectural model of ASP′. Since the models of VS2 correspond up to unit
names with R2 and R1;R2 is defined, there must be an assignment (U′,BM′) in R1 such that BM′(UN) = U. We know
that (U,BM) corresponds up to unit names with a VS1-model, which implies U |= USP, so the refinement condition
holds. To prove the correspondence up to unit names between R and architectural models ofVS, let (U,BM) ∈ VS.
Notice that by construction ofVS, BM not only produces a unit environment forVS but also a unit environment for
VS1 such that evaluating the result unit expression of VS and VS1 yields the same result. This shows that we can
write (U,BM) as a composition between a model corresponding to an assignment in R1 and a model corresponding
up to unit names to an assignment in R2.

Proof of Theorem 5.10:
By induction on the structure of SPR.
If SPR = USP, the result follows directly from the soundness of the calculi for consistency and conservativity.
If SPR = USP refined via σ to SPR′, by definition, ` cons(SPR) holds if ` cons(SPR′) holds. By the induction

hypothesis, the refinement relation R′ of SPR′ is non-empty. Since ` SPR ::c �, it follows that USP
σ
∼∼∼> USP′, where

` SPR′ ::c (USP′,BSP). This means that U |σ ∈ Unit(USP) for any (U, BM) ∈ R′. It follows that the refinement
relation R = {(U |σ,BM) | (U,BM) ∈ R′} of SPR is non-empty.

If SPR = {UN i to SPRi}i∈J , by the hypothesis we get that ` cons(SPRi) and ` S PRi ::c �, for each i ∈ J . By
the induction hypothesis, for each i ∈ J , the refinement relation Ri of SPRi is non-empty. We can therefore take an
assignment from each such refinement relation and combine them as in the rule for component refinements in Fig. 12
to obtain a refinement assignment in the refinement relation of SPR.

If SPR = SPR1 then SPR2 we have two sub-cases.
Let us first assume that SPR1 contains branchings. By the hypothesis we get that ` cons(SPRi) and ` S PRi ::c �,

for any i ∈ {1, 2}. By the induction hypothesis, we get that the model classes R1 and R2 of SPR1 and SPR2 respectively
are non-empty and let Ri ∈ Ri, for i = 1, 2. Since ` SPR ::c � and SPR1 and SPR2 are consistent, using the soundness
of the proof calculus we have that R1;R2 is defined and ` SPR ⇒ R1;R2. Since the composition R1;R2 is defined,
there must be a model R′1 = (U′,BE[R2]) ∈ R1, where R1 = (U,BE) and the definition of BE[R2] has been given in
the second main case of Def. 4.6. Using the definition of the composition, we get that (U′,BE〈R2〉) (as defined in the
second main case of Def. 4.6) is a refinement assignment in R1;R2, which is thus non-empty.

Let us then consider the case when SPR1 does not contain branchings. By hypothesis we get that ` cons(SPR2) and
` SPRi ::c �, for any i ∈ {1, 2}. By induction we get that the refinement relation R2 of SPR2 is non-empty. Notice that
since SPR1 does not contain branchings, it must be the case that ` SPR1 � (UΣ,UΣ′) and ` SPR2 � (UΣ′, BΣ). Then
` SPR1 ::c (USP,USP′) and ` SPR2 ::c (USP′′,BSP) and moreover USP′ ∼∼∼>USP′′. This means that if (U,BM) is an
assignment in R2, U is not only a USP′′-model but also a USP′-model and, since R1 |= (USP,USP′), the constructor
κ associated with SPR1 is defined on U. We get thus the assignment (κ(U),BM) in R1;R2.

58

If SPR = arch spec ASP, by the induction hypothesis, SPRi has a model, for all UNi : SPRi in ASP. This gives
us a unit environment for ASP by projecting each of the models of SPRi to the first component and we can combine
the units in the way described by the result unit of ASP to get a model of ASP because ASP is statically correct.

Proof of Theorem 5.11:
By structural induction on SPR.
If SPR = USP, the result follows from the completeness of the calculus for structured specifications and conser-

vativity of extensions of structured specifications.
If SPR = USP refined via σ to SPR′, let R be the refinement relation of SPR. From the corresponding rule of the

model semantics, R = {(U |σ,BM) | (U,BM) ∈ R′} where R′ is the refinement relation of SPR′. Since ` SPR ::c � we
also get ` SPR′ ::c � and non-emptiness of R implies non-emptiness of R′. We can apply the inductive hypothesis to
get ` cons(SPR′), which implies ` cons(SPR).

If SPR = {UN i to SPRi}i∈J and SPR has a non-empty refinement relation, then we can define refinement assign-
ments of SPRi by projecting a refinement assignment of SPR to the i-th component. Since correctness of SPR implies
correctness of SPRi, by the induction hypothesis we obtain ` cons(SPRi). With the rule for component refinements
we get ` cons(SPR).

If SPR = SPR1 then SPR2 and SPR has a non-empty refinement relation R, let R ∈ R. With the corresponding
rule of the model semantics there must be assignments R1 ∈ R1 and R2 ∈ R2 such that R = R1; R2. By the induction
hypothesis we get ` cons(SPR1) and ` cons(SPR2) and with the calculus rule for compositions of refinements we get
` cons(SPR). Note that if SPR1 has no branching, it suffices to use ` cons(SPR2).

If SPR = arch spec ASP and ASP has a model class AM, then by the rule of the model semantics we know that
for any unit declaration UN i : SPRi of ASP, SPRi has a non-empty refinement relation Ri. We can apply the induction
hypothesis to get ` cons(SPRi) and with the rule for architectural specifications we get ` cons(ASP).

59

Appendix B. The Specification of the Steam Boiler Control System
To be included in the electronic version only

library UserManual/Sbcs

%author Michel Bidoit <bidoit@lsv.ens−cachan.fr>
%date 20 Oct 2003
%display(half %LATEX /2)%
%display(square %LATEX 2)%

from Basic/Numbers get Nat

from Basic/StructuredDatatypes get Set

from Basic/StructuredDatatypes get TotalMap

spec Value =

%% At this level we don’t care about the exact specification of values.
Nat

then sort Nat < Value
ops + : Value × Value→ Value, assoc, comm, unit 0;

− : Value × Value→ Value;
∗ : Value × Value→ Value, assoc, comm, unit 1;
/2, 2 : Value→ Value;

min, max : Value × Value→ Value
preds < , <= : Value × Value

end

spec Basics =

free type PumpNumber ::= Pump1 | Pump2 | Pump3 | Pump4
free type PumpState ::= Open | Closed
free type PumpControllerState ::= Flow | NoFlow
free type PhysicalUnit ::= Pump(PumpNumber) | PumpController(PumpNumber) | SteamOutput | WaterLevel
free type Mode ::= Initialization | Normal | Degraded | Rescue | EmergencyStop

end

spec Messages Sent =

Basics
then free type S Message ::= MODE(Mode)

| PROGRAM READY
| VALVE
| OPEN PUMP(PumpNumber)
| CLOSE PUMP(PumpNumber)
| FAILURE DETECTION(PhysicalUnit)
| REPAIRED ACKNOWLEDGEMENT(PhysicalUnit)

end

spec Messages Received =

Basics and Value
then free type

R Message ::= STOP
| STEAM BOILER WAITING

60

| PHYSICAL UNITS READY
| PUMP STATE(PumpNumber; PumpState)
| PUMP CONTROLLER STATE(PumpNumber;

PumpControllerState)
| LEVEL(Value)
| STEAM(Value)
| REPAIRED(PhysicalUnit)
| FAILURE ACKNOWLEDGEMENT(PhysicalUnit)
| junk

end

spec Sbcs Constants =

Value
then ops C, M1, M2, N1, N2, W, U1, U2, P : Value;

dt : Value
%% Time duration between two cycles (5 sec.)
%% These constants must verify some obvious properties:

• 0 < M1
• M1 < N1
• N1 < N2
• N2 < M2
• M2 < C
• 0 < W
• 0 < U1
• 0 < U2
• 0 < P

end

spec Preliminary =

Set[Messages Received fit Elem 7→ R Message]
and Set[Messages Sent fit Elem 7→ S Message]
and Sbcs Constants
end

spec Sbcs State 1 =

Preliminary
then sort State

ops mode : State→ Mode;
numSTOP : State→ Nat

end

spec Mode Evolution
[preds Transmission OK : State × Set[R Message];

PU OK : State × Set[R Message] × PhysicalUnit;
DangerousWaterLevel : State × Set[R Message]]

given Sbcs State 1 =

local

%% Auxiliary predicates to structure the specification of next mode.
preds Everything OK, AskedToStop, SystemStillControllable,

Emergency : State × Set[R Message]
∀ s : State; msgs : Set[R Message]

61

• Everything OK(s, msgs)⇔ Transmission OK(s, msgs) ∧ ∀ pu : PhysicalUnit • PU OK(s, msgs, pu)
• AskedToStop(s, msgs)⇔ numSTOP(s) = 2 ∧ STOP eps msgs
• SystemStillControllable(s, msgs)
⇔ PU OK(s, msgs, SteamOutput)
∧ ∃ pn : PumpNumber
• PU OK(s, msgs, Pump(pn))
∧ PU OK(s, msgs, PumpController(pn))

• Emergency(s, msgs)
⇔ mode(s) = EmergencyStop ∨ AskedToStop(s, msgs)
∨ ¬ Transmission OK(s, msgs)
∨ DangerousWaterLevel(s, msgs)
∨ (¬ PU OK(s, msgs, WaterLevel)
∧ ¬ SystemStillControllable(s, msgs))

within
ops next mode : State × Set[R Message]→ Mode;

next numSTOP : State × Set[R Message]→ Nat
%% Emergency stop mode:

∀ s : State; msgs : Set[R Message]
• Emergency(s, msgs)⇒ next mode(s, msgs) = EmergencyStop
%% Normal mode:
• ¬ Emergency(s, msgs) ∧ Everything OK(s, msgs)⇒ next mode(s, msgs) = Normal
%% Degraded mode:
• ¬ Emergency(s, msgs) ∧ ¬ Everything OK(s, msgs)
∧ PU OK(s, msgs, WaterLevel)
∧ Transmission OK(s, msgs)
⇒ next mode(s, msgs) = Degraded

%% Rescue mode:
• ¬ Emergency(s, msgs) ∧ ¬ PU OK(s, msgs, WaterLevel)
∧ SystemStillControllable(s, msgs)
∧ Transmission OK(s, msgs)
⇒ next mode(s, msgs) = Rescue

%% next numSTOP:
• next numSTOP(s, msgs) = numSTOP (s) + 1 when STOP eps msgs else 0

end

spec Sbcs State 2 =

Sbcs State 1
then free type

Status ::= OK | FailureWithoutAck | FailureWithAck
op status : State × PhysicalUnit→ Status

end

spec Status Evolution
[pred PU OK : State × Set[R Message] × PhysicalUnit]
given Sbcs State 2 =

op next status : State × Set[R Message] × PhysicalUnit→ Status
∀ s : State; msgs : Set[R Message]; pu : PhysicalUnit
• status(s, pu) = OK ∧ PU OK(s, msgs, pu)⇒ next status(s, msgs, pu) = OK
• status(s, pu) = OK ∧ ¬ PU OK(s, msgs, pu)⇒ next status(s, msgs, pu) = FailureWithoutAck
• status(s, pu) = FailureWithoutAck ∧ FAILURE ACKNOWLEDGEMENT (pu) eps msgs
⇒ next status(s, msgs, pu) = FailureWithAck
• status(s, pu) = FailureWithoutAck ∧ ¬ FAILURE ACKNOWLEDGEMENT (pu) eps msgs

62

⇒ next status(s, msgs, pu) = FailureWithoutAck
• status(s, pu) = FailureWithAck ∧ REPAIRED (pu) eps msgs⇒ next status(s, msgs, pu) = OK
• status(s, pu) = FailureWithAck ∧ ¬ REPAIRED (pu) eps msgs⇒ next status(s, msgs, pu) = FailureWithAck

end

spec Message Transmission System Failure =

Sbcs State 2
then local

%% Static analysis:
pred is static OK : Set[R Message]
∀ msgs : Set[R Message]
• msgs is static OK
⇔ ¬ junk eps msgs ∧ (∃! v : Value • LEVEL (v) eps msgs)
∧ (∃! v : Value • STEAM (v) eps msgs)
∧ (∀ pn : PumpNumber
• ∃! ps : PumpState
• PUMP STATE (pn, ps) eps msgs)

∧ (∀ pn : PumpNumber
• ∃! pcs : PumpControllerState
• PUMP CONTROLLER STATE (pn, pcs) eps

msgs)
∧ ∀ pu : PhysicalUnit
• ¬ FAILURE ACKNOWLEDGEMENT (pu) eps msgs
∧ REPAIRED (pu) eps msgs

%% Dynamic analysis:
pred is NOT dynamic OK for

: Set[R Message] × State
∀ s : State; msgs : Set[R Message]
• msgs is NOT dynamic OK for s
⇔ (¬ mode(s) = Initialization
∧ (STEAM BOILER WAITING eps msgs
∨ PHYSICAL UNITS READY eps msgs))

∨ (∃ pu : PhysicalUnit
• FAILURE ACKNOWLEDGEMENT (pu) eps msgs
∧ (status(s, pu) = OK
∨ status(s, pu) = FailureWithAck))

∨ ∃ pu : PhysicalUnit
• REPAIRED (pu) eps msgs
∧ (status(s, pu) = OK
∨ status(s, pu) = FailureWithoutAck)

within
pred Transmission OK : State × Set[R Message]
∀ s : State; msgs : Set[R Message]
• Transmission OK(s, msgs)
⇔ msgs is static OK
∧ ¬ msgs is NOT dynamic OK for s

end

spec Sbcs State 3 =

Sbcs State 2
then free type

63

ExtendedPumpState ::= sort PumpState | Unknown PS
op PS predicted : State × PumpNumber→ ExtendedPumpState

%{
status(s,Pump(pn)) = OK <=>

not (PS predicted(s,pn) = Unknown PS) }%
end

spec Pump Failure =

Sbcs State 3
then pred Pump OK : State × Set[R Message] × PumpNumber

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• Pump OK(s, msgs, pn)
⇔ PS predicted(s, pn) = Unknown PS ∨ PUMP STATE (pn, PS predicted (s, pn) as PumpState) eps msgs

end

spec Sbcs State 4 =

Sbcs State 3
then free type

ExtendedPumpControllerState ::= sort PumpControllerState | SoonFlow | Unknown PCS
op PCS predicted : State × PumpNumber→ ExtendedPumpControllerState

%{
status(s,PumpController(pn)) = OK =>

not (PCS predicted(s,pn) = Unknown PCS) }%
end

spec Pump Controller Failure =

Sbcs State 4
then pred Pump Controller OK : State × Set[R Message] × PumpNumber

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• Pump Controller OK(s, msgs, pn)
⇔ PCS predicted(s, pn) = Unknown PCS
∨ PCS predicted(s, pn) = SoonFlow
∨ PUMP CONTROLLER STATE

(pn, PCS predicted (s, pn) as PumpControllerState)
eps msgs

end

spec Sbcs State 5 =

Sbcs State 4
then free type Valpair ::= pair(low : Value; high : Value)

ops steam predicted, level predicted : State→ Valpair
%{
low(steam predicted(s)) is the minimal steam output predicted,
high(steam predicted(s)) is the maximal steam output predicted,
and similarly for level predicted. }%

end

spec Steam Failure =

Sbcs State 5
then pred Steam OK : State × Set[R Message]

∀ s : State; msgs : Set[R Message]
• Steam OK(s, msgs)

64

⇔ ∀ v : Value
• STEAM (v) eps msgs
⇒ low (steam predicted(s)) <= v
∧ v <= high (steam predicted(s))

end

spec Level Failure =

Sbcs State 5
then pred Level OK : State × Set[R Message]

∀ s : State; msgs : Set[R Message]
• Level OK(s, msgs)
⇔ ∀ v : Value
• LEVEL (v) eps msgs
⇒ low (level predicted(s)) <= v
∧ v <= high (level predicted(s))

end

spec Failure Detection =

{Message Transmission System Failure
and Pump Failure
and Pump Controller Failure
and Steam Failure
and Level Failure
then pred PU OK : State × Set[R Message] × PhysicalUnit

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• PU OK(s, msgs, Pump(pn))
⇔ Pump OK(s, msgs, pn)
• PU OK(s, msgs, PumpController(pn))
⇔ Pump Controller OK(s, msgs, pn)
• PU OK(s, msgs, SteamOutput)
⇔ Steam OK(s, msgs)
• PU OK(s, msgs, WaterLevel)⇔ Level OK(s, msgs)

}

hide preds Pump OK, Pump Controller OK, Steam OK,
Level OK

end

spec Steam And Level Prediction =

Failure Detection
and Set[sort PumpNumber fit Elem 7→ PumpNumber]
then local

ops received steam : State × Set[R Message]→ Value;
adjusted steam : State × Set[R Message]→ Valpair;
received level : State × Set[R Message]→ Value;
adjusted level : State × Set[R Message]→ Valpair;
broken pumps : State × Set[R Message]→ Set[PumpNumber];
reliable pumps : State × Set[R Message] × PumpState→ Set[PumpNumber]
%% Axioms for STEAM:

∀ s : State; msgs : Set[R Message]; pn : PumpNumber;
ps : PumpState
• Transmission OK(s, msgs)⇒ STEAM (received steam(s, msgs)) eps msgs
• adjusted steam(s, msgs) = pair(received steam(s, msgs), received steam(s, msgs))

65

when Transmission OK(s, msgs) ∧ PU OK(s, msgs, SteamOutput)
else steam predicted(s)

%% Axioms for LEVEL:
• Transmission OK(s, msgs)
⇒ LEVEL (received level(s, msgs)) eps msgs
• adjusted level(s, msgs)

= pair(received level(s, msgs), received level(s, msgs))
when Transmission OK(s, msgs)

∧ PU OK(s, msgs, WaterLevel)
else level predicted(s)

%% Axioms for auxiliary pumps operations:
• pn eps broken pumps (s, msgs)
⇔ ¬ PU OK(s, msgs, Pump(pn))
∧ PU OK(s, msgs, PumpController(pn))

• pn eps reliable pumps (s, msgs, ps)
⇔ ¬ pn eps broken pumps (s, msgs)
∧ PUMP STATE (pn, ps) eps msgs

within
ops next steam predicted

: State × Set[R Message]→ Valpair;
chosen pumps : State × Set[R Message] × PumpState→

Set[PumpNumber];
minimal pumped water, maximal pumped water : State × Set[R Message]→ Value;
next level predicted : State × Set[R Message]→ Valpair

pred DangerousWaterLevel : State × Set[R Message]
%% Axioms for STEAM:

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• low(next steam predicted(s, msgs))

= max(0, low (adjusted steam(s, msgs)) − (U2 ∗ dt))
• high(next steam predicted(s, msgs))

= min(W, high (adjusted steam(s, msgs)) + (U1 ∗ dt))
%% Axioms for PUMPS:
• pn eps chosen pumps (s, msgs, Open)
⇒ pn eps reliable pumps (s, msgs, Closed)
• pn eps chosen pumps (s, msgs, Closed)
⇒ pn eps reliable pumps (s, msgs, Open)
• minimal pumped water(s, msgs)

= (dt ∗ P) ∗ #
(reliable pumps (s, msgs, Open) − chosen pumps
(s, msgs, Closed))

• maximal pumped water(s, msgs)
= (dt ∗ P) ∗ #

(((reliable pumps (s, msgs, Open) union chosen pumps
(s, msgs, Open))

union broken pumps (s, msgs))
− chosen pumps (s, msgs, Closed))

%% Axioms for LEVEL:
• low(next level predicted(s, msgs))

= max
(0,
(low (adjusted level(s, msgs)) +

minimal pumped water (s, msgs))

66

−

((dt square ∗ U1 half) +

(dt ∗ high (adjusted steam(s, msgs)))))
• high(next level predicted(s, msgs))

= min
(C,
(high (adjusted level(s, msgs)) +

maximal pumped water (s, msgs))
−

((dt square ∗ U2 half) +

(dt ∗ low (adjusted steam(s, msgs)))))
• DangerousWaterLevel(s, msgs)
⇔ low (next level predicted(s, msgs)) <= M1
∨ M2 <= high (next level predicted(s, msgs))

hide ops minimal pumped water, maximal pumped water
end

spec Pump State Prediction =

Status Evolution[Failure Detection]
and Steam And Level Prediction
then op next PS predicted

: State × Set[R Message] × PumpNumber→
ExtendedPumpState

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• next PS predicted(s, msgs, pn)

= Unknown PS
when ¬ next status(s, msgs, Pump(pn)) = OK
else Open

when (PUMP STATE (pn, Open) eps msgs
∧ ¬ pn eps chosen pumps (s, msgs, Closed))
∨ pn eps chosen pumps (s, msgs, Open)

else Closed
end

spec Pump Controller State Prediction =

Status Evolution[Failure Detection]
and Steam And Level Prediction
then op next PCS predicted

: State × Set[R Message] × PumpNumber→
ExtendedPumpControllerState

∀ s : State; msgs : Set[R Message]; pn : PumpNumber
• next PCS predicted(s, msgs, pn)

= Unknown PCS
when ¬ next status(s, msgs, PumpController(pn)) = OK

∧ next status(s, msgs, Pump(pn)) = OK
else Flow

when (PUMP CONTROLLER STATE (pn, Flow) eps
msgs
∨ (PUMP CONTROLLER STATE

(pn, NoFlow) eps msgs
∧ PCS predicted(s, pn) = SoonFlow))

∧ ¬ pn eps chosen pumps (s, msgs, Closed)

67

else NoFlow
when pn eps chosen pumps (s, msgs, Closed)

∨ (PUMP CONTROLLER STATE
(pn, NoFlow) eps msgs
∧ ¬ PCS predicted(s, pn) = SoonFlow
∧ ¬ pn eps chosen pumps

(s, msgs, Open))
else SoonFlow

end

spec PU Prediction =

Pump State Prediction and Pump Controller State Prediction
end

spec Sbcs Analysis =

Mode Evolution[PU Prediction]
then local

ops PumpMessages, FailureDetectionMessages
: State × Set[R Message]→ Set[S Message];
RepairedAcknowledgementMessages
: Set[R Message]→ Set[S Message]

∀ s : State; msgs : Set[R Message]; Smsg : S Message
• Smsg eps PumpMessages (s, msgs)
⇔ ∃ pn : PumpNumber
• (pn eps chosen pumps (s, msgs, Open)
∧ Smsg = OPEN PUMP(pn))
∨ (pn eps chosen pumps (s, msgs, Closed)
∧ Smsg = CLOSE PUMP(pn))

• Smsg eps FailureDetectionMessages (s, msgs)
⇔ ∃ pu : PhysicalUnit
• Smsg = FAILURE DETECTION(pu)
∧ next status(s, msgs, pu) = FailureWithoutAck

• Smsg eps RepairedAcknowledgementMessages (msgs)
⇔ ∃ pu : PhysicalUnit
• Smsg = REPAIRED ACKNOWLEDGEMENT(pu)
∧ next status(s, msgs, pu) = FailureWithAck

within
op messages to send

: State × Set[R Message]→ Set[S Message]
∀ s : State; msgs : Set[R Message]
• messages to send(s, msgs)

= ((PumpMessages (s, msgs) union
FailureDetectionMessages (s, msgs))

union RepairedAcknowledgementMessages (msgs))
+ MODE (next mode(s, msgs))

end

spec Sbcs State =

Preliminary
then sort State

free type
Status ::= OK | FailureWithoutAck | FailureWithAck

68

free type
ExtendedPumpState ::= sort PumpState | Unknown PS
free type
ExtendedPumpControllerState
::= sort PumpControllerState | SoonFlow | Unknown PCS
free type Valpair ::= pair(low : Value; high : Value)
ops mode : State→ Mode;

numSTOP : State→ Nat;
status : State × PhysicalUnit→ Status;
PS predicted
: State × PumpNumber→ ExtendedPumpState;
PCS predicted
: State × PumpNumber→

ExtendedPumpControllerState;
steam predicted, level predicted : State→ Valpair

end

spec Steam Boiler Control System =

Sbcs Analysis
then op init : State

pred is step
: State × Set[R Message] × Set[S Message] × State
%% Specification of the initial state init:

• mode(init) = Normal ∨ mode(init) = Degraded
%% Specification of is step:
∀ s, s’ : State; msgs : Set[R Message];
Smsg : Set[S Message]
• is step(s, msgs, Smsg, s’)
⇔ mode(s’) = next mode(s, msgs)
∧ numSTOP(s’) = next numSTOP(s, msgs)
∧ (∀ pu : PhysicalUnit
• status(s’, pu) = next status(s, msgs, pu))

∧ (∀ pn : PumpNumber
• PS predicted(s’, pn)

= next PS predicted(s, msgs, pn)
∧ PCS predicted(s’, pn)

= next PCS predicted(s, msgs, pn))
∧ steam predicted(s’) = next steam predicted(s, msgs)
∧ level predicted(s’) = next level predicted(s, msgs)
∧ Smsg = messages to send(s, msgs)

then
%% Specification of the reachable states:
free
{pred reach : State
∀ s, s’ : State; msgs : Set[R Message];
Smsg : Set[S Message]
• reach(init)
• reach(s) ∧ is step(s, msgs, Smsg, s’)⇒ reach(s’)
}

end

arch spec Arch Sbcs =

69

units P : Value→ Preliminary;
S : Preliminary→ Sbcs State;
A : Sbcs State→ Sbcs Analysis;
C : Sbcs Analysis→ Steam Boiler Control System

result lambda V : Value • C [A [S [P [V]]]]
end

spec Elem =

sort Elem
end

arch spec Arch Preliminary =

units SET : Elem × Nat→ Set[Elem];
B : Basics;
MS : Messages Sent given B;
MR : Value→Messages Received given B;
CST : Value→ Sbcs Constants

result lambda V : Value
• SET [MS fit Elem 7→ S Message] [V] and SET [MR [V] fit Elem 7→ R Message] [V] and CST [V]

end

spec Sbcs State Impl =

Preliminary
then free type Status ::= OK | FailureWithoutAck | FailureWithAck

free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type ExtendedPumpControllerState ::= sort PumpControllerState | SoonFlow | Unknown PCS
free type Valpair ::= pair(low : Value; high : Value)

then TotalMap[Basics fit S 7→ PhysicalUnit][sort Status]
and TotalMap

[Basics fit S 7→ PumpNumber][sort ExtendedPumpState]
and TotalMap

[Basics fit S 7→ PumpNumber]
[sort ExtendedPumpControllerState]

then free type
State ::= mk state(mode : Mode;

numSTOP : Nat;
status : TotalMap[PhysicalUnit,Status];
PS predicted : TotalMap[PumpNumber,ExtendedPumpState];
PCS predicted : TotalMap [PumpNumber,ExtendedPumpControllerState];
steam predicted, level predicted : Valpair)

ops status(s : State; pu : PhysicalUnit) : Status = lookup(pu, status(s));
PS predicted (s : State; pn : PumpNumber) : ExtendedPumpState = lookup(pn, PS predicted(s));
PCS predicted(s : State; pn : PumpNumber) : ExtendedPumpControllerState = lookup(pn, PCS predicted(s))

end

unit spec Unit Sbcs State =

Preliminary→ Sbcs State Impl
end

arch spec Arch Analysis =

units FD : Sbcs State→ Failure Detection;
PR : Failure Detection→ PU Prediction;

70

ME : PU Prediction→Mode Evolution[PU Prediction];
MTS : Mode Evolution[PU Prediction]→ Sbcs Analysis

result lambda S : Sbcs State •MTS [ME [PR [FD [S]]]]
end

arch spec Arch Failure Detection =

units MTSF : Sbcs State→Message Transmission System Failure;
PF : Sbcs State→ Pump Failure;
PCF : Sbcs State→ Pump Controller Failure;
SF : Sbcs State→ Steam Failure;
LF : Sbcs State→ Level Failure;
PU : Message Transmission System Failure × Pump Failure × Pump Controller Failure ×

Steam Failure × Level Failure→ Failure Detection
result lambda S : Sbcs State

• PU [MTSF [S]] [PF [S]] [PCF [S]] [SF [S]] [LF [S]]
hide Pump OK, Pump Controller OK, Steam OK, Level OK

end

arch spec Arch Prediction =

units SE : Failure Detection→ Status Evolution[Failure Detection];
SLP : Failure Detection→ Steam And Level Prediction;
PP : Status Evolution[Failure Detection] × Steam And Level Prediction→ Pump State Prediction;
PCP : Status Evolution[Failure Detection] × Steam And Level Prediction→ Pump Controller State Prediction

result lambda FD : Failure Detection
• local SEFD = SE [FD]; SLPFD = SLP [FD] within
{PP [SEFD] [SLPFD] and PCP [SEFD] [SLPFD]}

end

%% We may record this initial refinement now:
spec Sbcs System Impl =

Steam Boiler Control System
end

unit spec Unit Sbcs System =

Sbcs Analysis→ Sbcs System Impl
end

unit spec SBCS Open =

Value→ Steam Boiler Control System
end

refinement Ref Sbcs =

SBCS Open refined to arch spec Arch Sbcs
end

unit spec StateAbstr = Preliminary→ Sbcs State
end

refinement StateRef =

StateAbstr refined to Unit Sbcs State
end

71

refinement Ref Sbcs’ =

Ref Sbcs
then {P to arch spec Arch Preliminary, S to StateRef, A to arch spec Arch Analysis}

end

refinement Ref Sbcs” =

Ref Sbcs’
then {A to

{FD to arch spec Arch Failure Detection, PR to arch spec Arch Prediction }
}

end

72

	Introduction
	Refinements in CASL
	A Brief Summary of Institution-Independent Specifications in CASL
	Architectural Specifications: Motivation
	CASL Architectural Specifications
	Refinements
	Examples and Methodology

	Foundations
	Semantics of CASL Refinements
	Semantics of CASL Structured Specifications
	Semantics of Unit Specifications
	Semantics of Architectural Specifications
	Static Semantics of Refinements
	Model Semantics of Refinements

	Calculi for Refinements
	Proof Calculus for Architectural Specifications
	Unit Imports in CASL
	Proof Calculus for Refinements
	Completeness of the Proof Calculus
	Checking Consistency of Refinements

	Tool Support
	The Heterogeneous Tool Set
	Refinement Trees

	Remarks on Programs in CASL
	Conclusions, Related and Future Work
	Proofs
	The Specification of the Steam Boiler Control System To be included in the electronic version only

