250 research outputs found

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Adaptive and autonomous protocol for spectrum identification and coordination in ad hoc cognitive radio network

    Get PDF
    The decentralised structure of wireless Ad hoc networks makes them most appropriate for quick and easy deployment in military and emergency situations. Consequently, in this thesis, special interest is given to this form of network. Cognitive Radio (CR) is defined as a radio, capable of identifying its spectral environment and able to optimally adjust its transmission parameters to achieve interference free communication channel. In a CR system, Dynamic Spectrum Access (DSA) is made feasible. CR has been proposed as a candidate solution to the challenge of spectrum scarcity. CR works to solve this challenge by providing DSA to unlicensed (secondary) users. The introduction of this new and efficient spectrum management technique, the DSA, has however, opened up some challenges in this wireless Ad hoc Network of interest; the Cognitive Radio Ad Hoc Network (CRAHN). These challenges, which form the specific focus of this thesis are as follows: First, the poor performance of the existing spectrum sensing techniques in low Signal to Noise Ratio (SNR) conditions. Secondly the lack of a central coordination entity for spectrum allocation and information exchange in the CRAHN. Lastly, the existing Medium Access Control (MAC) Protocol such as the 802.11 was designed for both homogeneous spectrum usage and static spectrum allocation technique. Consequently, this thesis addresses these challenges by first developing an algorithm comprising of the Wavelet-based Scale Space Filtering (WSSF) algorithm and the Otsu's multi-threshold algorithm to form an Adaptive and Autonomous WaveletBased Scale Space Filter (AWSSF) for Primary User (PU) sensing in CR. These combined algorithms produced an enhanced algorithm that improves detection in low SNR conditions when compared to the performance of EDs and other spectrum sensing techniques in the literature. Therefore, the AWSSF met the performance requirement of the IEEE 802.22 standard as compared to other approaches and thus considered viable for application in CR. Next, a new approach for the selection of control channel in CRAHN environment using the Ant Colony System (ACS) was proposed. The algorithm reduces the complex objective of selecting control channel from an overtly large spectrum space,to a path finding problem in a graph. We use pheromone trails, proportional to channel reward, which are computed based on received signal strength and channel availability, to guide the construction of selection scheme. Simulation results revealed ACS as a feasible solution for optimal dynamic control channel selection. Finally, a new channel hopping algorithm for the selection of a control channel in CRAHN was presented. This adopted the use of the bio-mimicry concept to develop a swarm intelligence based mechanism. This mechanism guides nodes to select a common control channel within a bounded time for the purpose of establishing communication. Closed form expressions for the upper bound of the time to rendezvous (TTR) and Expected TTR (ETTR) on a common control channel were derived for various network scenarios. The algorithm further provides improved performance in comparison to the Jump-Stay and Enhanced Jump-Stay Rendezvous Algorithms. We also provided simulation results to validate our claim of improved TTR. Based on the results obtained, it was concluded that the proposed system contributes positively to the ongoing research in CRAHN

    Device discovery in D2D communication: A survey

    Get PDF
    Device to Device (D2D) communication was first considered in out-band to manage energy issues in the wireless sensor networks. The primary target was to secure information about system topology for successive communication. Now the D2D communication has been legitimated in in-band by the 3rd Generation Partnership Project (3GPP). To initiate D2D communication, Device Discovery (DD) is a primary task and every D2D application benefits from DD as an end to end link maintenance and data relay when the direct path is obstructed. The DD is facing new difficulties because of the mobility of the devices over static systems, and the mobility makes it more challenging for D2D communication. For in-band D2D, DD in a single cell and multi-cell, and dense area is not legitimated properly, causing latency, inaccuracy, and energy consumption. Among extensive studies on limiting energy consumption and latency, DD is one of the essential parts concentrating on access and communication. In this paper, a comprehensive survey on DD challenges, for example single cell/multi-cell and dense area DD, energy consumption during discovery, discovery delay, and discovery security, etc., has been presented to accomplish an effective paradigm of D2D networks. In order to undertake the device (user) needs, an architecture has been projected, which promises to overwhelm the various implementation challenges of DD. The paper mainly focuses on DD taxonomy and classification with an emphasis on discovery procedures and algorithms, a summary of advances and issues, and ways for potential enhancements. For ensuring a secure DD and D2D, auspicious research directions have been proposed, based on taxonomy

    Estratégias de encaminhamento para recolha oportunística de informação em redes móveis de internet das coisas

    Get PDF
    High vehicular mobility in urban scenarios originates inter-vehicles communication discontinuities, a highly important factor when designing a forwarding strategy for vehicular networks. Store, carry and forward mechanisms enable the usage of vehicular networks in a large set of applications, such as sensor data collection in IoT, contributing to smart city platforms. This work focuses on two main topics to enhance the forwarding decision: i) forwarding strategies that make use of location-aware and social-based to perform neighborhood selection, ii) and packet selection mechanisms to provide Quality of Service (QoS). The neighborhood selection is performed through multiple metrics, resulting in three forwarding strategies: (1) Gateway Location Awareness (GLA), a location-aware ranking classification making use of velocity, heading angle and distance to the gateway, to select the vehicles with higher chance to deliver the information in a shorter period of time, thus differentiating nodes through their movement patterns; (2) Aging Social-Aware Ranking (ASAR) that exploits the social behaviours of each vehicle, where nodes are ranked based on a historical contact table, differentiating vehicles with a high number of contacts from those who barely contact with other vehicles; (3) and to merge both location and social aforementioned algorithms, a hybrid approach emerges, thus generating a more intelligent mechanism. Allied to the forwarding criteria, two packet selection mechanisms are proposed to address distinct network functionalities, namely: Distributed Packet Selection, that focuses primarily on data type prioritization and secondly, on packet network lifetime; and Equalized Packet Selection, which uses network metrics to calculate a storage packet ranking. To do so, the packet number of hops, the packet type and packet network lifetime are used. In order to perform the evaluation of the proposed mechanisms, both real and emulation experiments were performed. For each forwarding strategy, it is evaluated the influence of several parameters in the network's performance, as well as comparatively evaluate the strategies in different scenarios. Experiment results, obtained with real traces of both mobility and vehicular connectivity from a real city-scale urban vehicular network, are used to evaluate the performance of GLA, ASAR and HYBRID schemes, and their results are compared to lower- and upper-bounds. Later, these strategies' viability is also validated in a real scenario. The obtained results show that these strategies are a good tradeoff to maximize data delivery ratio and minimize network overhead, while making use of moving networks as a smart city network infrastructure. To evaluate the proposed packet selection mechanisms, a First In First Out packet selection technique is used as ground rule, thus contrasting with the more objective driven proposed techniques. The results show that the proposed mechanisms are capable of provide distinct network functionalities, from prioritizing a packet type to enhancing the network's performance.A elevada mobilidade em cenários veiculares urbanos origina descontinuidades de comunicação entre veículos, um fator altamente importante quando se desenha uma estratégia de encaminhamento para redes veiculares. Mecanismos de store, carry and forward (guardar, carregar e entregar) possibilitam a recolha de dados de sensores em aplicações da Internet das coisas, contribuindo para plataformas de cidades inteligentes. Este trabalho é focado em dois tópicos principais de forma a melhorar a decisão de encaminhamento: i) estratégias de encaminhamento que fazem uso de métricas sociais e de localização para efetuar a seleção de vizinhos, ii) e mecanismos de seleção de pacotes que qualificam a rede com qualidade de serviço. A seleção de vizinhos é feita através de múltiplas métricas, resultando em três estratégias de encaminhamento: Gateway Location Awareness (GLA), uma classificação baseada em localização que faz uso de velocidade, ângulo de direção e distância até uma gateway, para selecionar os veículos com maior probabilidade de entregar a informação num menor período temporal, distinguindo os veículos através dos seus padrões de movimento. Aging Social-Aware Ranking (ASAR) explora os comportamentos sociais de cada veículo, onde é atribuída uma classificação aos veículos com base num histórico de contactos, diferenciando veículos com um alto número de contactos de outros com menos. Por fim, por forma a tirar partido das distintas características de cada uma das destas estratégias, é proposta uma abordagem híbrida, Hybrid between GLA and ASAR (HYBRID). Aliado ao critério de encaminhamento, são propostos dois mecanismos de seleção de pacotes que focam distintas funcionalidades na rede, sendo estes: Distributed Packet Selection, que foca em primeiro lugar na prioritização de determinados tipos de pacotes e em segundo lugar, no tempo de vida que resta ao pacote na rede; e Equalized Packet Selection, que usa métricas da rede para calcular a classificação de cada pacote em memória. Para tal, é usado o numero de saltos do pacote, o tipo de dados do pacote e o tempo de vida que resta ao pacote na rede. De forma a avaliar os mecanismos propostos, foram realizadas experiências em emulador e em cenário real. Para cada estratégia de encaminhamento, e avaliada a influência de vários parâmetros de configuração no desempenho da rede. Para além disso, é feita uma avaliação comparativa entre as várias estratégias em diferentes cenários. Resultados experimentais, obtidos usando traços reais de mobilidade e conetividade de uma rede veicular urbana, são utilizados para avaliar a performance dos esquemas GLA, ASAR e HYRID. Posteriormente, a viabilidade destas estratégias é também validada em cenário real. Os resultados obtidos mostram que estas estratégias são um bom tradeoff para maximizar a taxa de entrega de dados e minimizar a sobrecarga de dados na rede. Para avaliar os mecanismos de seleção de pacotes, um simples mecanismo First In First Out é utilizado como base, contrapondo com as técnicas propostas mais orientadas a objectivos concretos. Os resultados obtidos mostram que os mecanismos propostos são capazes de proporcionar à rede diferentes funcionalidades, desde prioritização de determinado tipos de dados a melhoramentos no desempenho da rede.Agradeço à Fundação Portuguesa para a Ciência e Tecnologia pelo suporte financeiro através de fundos nacionais e quando aplicável cofi nanciado pelo FEDER, no âmbito do Acordo de Parceria PT2020 pelo projecto MobiWise através do programa Operacional Competitividade e Internacionalização (COMPETE 2020) do Portugal 2020 (POCI-01-0145-FEDER-016426).Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Practical issues in the development of a minimalistic power management solution for WSNs

    Get PDF
    A flexible Wireless Sensor Network platform for implementation of diverse applications has been developed and deployed at Instituto Superior Técnico - Technical University of Lisbon (IST-TUL). Since its initial deployment in 2007, this testbed has grown steadily, supporting new nodes, applications and experiments. However, some initial problems, which were solved on an ad hoc basis, were becoming more serious as the network spanned throughout the campus. Major issues, like global power management, have to be tackled not only with traditional protocol level approaches but also from a system’s viewpoint, providing solutions capable of guaranteeing a consistent testbed. We discuss the main issues related with the development of power management solutions, presenting our architecture, design choices and implementation, and address the lessons learnt from its integration. Experimental evaluation of our solution has shown considerable energy savings, extending network lifetime by up to nine times
    • …
    corecore