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Abstract

Edge computing promotes the execution of complex computational processes
without the cloud, i.e., on top of the heterogeneous, articulated, and possibly
mobile systems composed of IoT and edge devices. Such a pervasive smart
fabric augments our environment with computing and networking capabilities.
This leads to a complex and dynamic ecosystem of devices that should not only
exhibit individual intelligence but also collective intelligence—the ability to take
group decisions or process knowledge among autonomous units of a distributed
environment. Self-adaptation and self-organisation mechanisms are also typi-
cally required to ensure continuous and inherent toleration of changes of various
kinds, to distribution of devices, energy available, computational load, as well
as faults. To achieve this behaviour in a massively distributed setting like edge
computing demands, we seek for identifying proper abstractions, and engineer-
ing tools therefore, to smoothly capture collective behaviour, adaptivity, and
dynamic injection and execution of concurrent distributed activities. Accord-
ingly, we elaborate on a notion of “aggregate process” as a concurrent collective
computation whose execution and interactions are sustained by a dynamic team
of devices, whose spatial region can opportunistically vary over time. We ground
this notion by extending the aggregate computing model and toolchain with new
constructs to instantiate aggregate processes and regulate key aspects of their
lifecycle. By virtue of an open-source implementation in the ScaFi framework,
we show basic programming examples as well as case studies of edge computing,
evaluated by simulation in realistic settings.

Keywords: computational collective intelligence, self-organisation, distributed
computing, aggregate programming, computational fields, multi-agent systems

1. Introduction

Emerging scenarios like pervasive computing, Internet of Things (IoT), and
cyber-physical systems (CPS) are leading towards a new reference computa-
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tional fabric made of dense, large-scale networks of heterogeneous devices. In
such contexts, software services are naturally highly contextual, and hence fun-
damentally related to their space-time situation and physical environment [1].
They opportunistically leverage the available parts of such fabric, dynamically
exploiting its sensing, actuation, storage, computation, and networking capabil-
ities [2, 3].

In this paper, we seek to unveil the potential of such digitally empowered
ecosystems in supporting (computational) collective intelligence, i.e., the form of
artificial intelligence [4] dealing with group decision making or knowledge pro-
cessing in distributed environments of autonomous situated entities [5]. Most
specifically, we follow ideas of swarm intelligence [6], relying on the repeated
interaction of simple information-processing units. We shall design proper ab-
stractions and development techniques to smoothly express collective behaviour
leading to intelligent activities that can be transparently executed on oppor-
tunistic formations of devices [7]. In doing so, we then target so-called edge
computing : a paradigm where computation is performed at the “network edge”,
close to data sources and users [8].

Openness and dynamism require distributed collective activities to be de-
pendable, self-adaptive and self-organising in order to maintain coherence and
functionality across unpredictable and inevitable context changes and adver-
sary events. They should also opportunistically activate wherever and when-
ever their existence conditions hold—whether they are by-design or emergent.
For instance, for collaborative smartphone-based applications in a smart city,
such activities may include: a gossip process by which people in a plaza share
comments, a guidance process to make a group of friends gather in a convenient
point, a dispersal process for people creating bloat, a process to advertise one’s
presence to nearby users for the next minute, a process providing crowd-aware
directions towards a point of interest, and so on [9, 10, 11, 8]. Similarly, a
swarm of robots (Figure 1) to be engaged in an exploration mission could be
programmed to autonomously perform multiple concurrent activities that are
collective in nature. Such concurrent tasks may include: coordinated movement
in flock formation [12]; estimation of a physical quantity of interest [13, 14],
such as the humidity level or risk of fire (cf. case study in Section 6.2); col-
lective decision-making [15], to determine a team of robots for handling certain
sub-tasks, based on available energy and capabilities of the robots; and so on.

According to this vision, we present the concept of aggregate process, denot-
ing a distributed computation sustained by a dynamic aggregation of devices.
By this abstraction we shall target the design of transient collective activities,
which may concurrently span and overlap over the fabric created by large-scale
deployment of possibly mobile devices. Aggregate processes are intended to
capture dynamicity and context-orientation in an intrinsically resilient fashion,
taking an aggregate stance—with “aggregate” having the meaning of “pertain-
ing to a collective” [9, 16]. Similar to multi-agent organisational approaches [17],
this notion fosters a vision of smart distributed environments like a society or
ecosystem, where services and processes are seen as cooperative activities that
involve and influence groups of agents.
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To formally capture the features of aggregate processes, and experiment with
mechanisms to handle their lifecycle (process creation, disposal, logic and inter-
action), we adopt as basis framework the aggregate computing paradigm [9, 16].
This is a functional approach to collective adaptive system programming based
on the notion of computational field [18], namely, a time-evolving distributed
structure mapping devices to computational values. The essence of aggregate
computing is currently captured by the field calculus [18], whereby the self-
organising, collective behaviour of an ensemble is declaratively and composi-
tionally expressed as pure functions from fields to fields. Aggregate processes
are supported in the field calculus by the primitive construct spawn, yielding a
field that, across space and time, combines several independent but interacting
“computational bubbles” (process instances). Programming constructs to work
with aggregate processes are implemented in ScaFi1 [19, 20], a Scala-based
aggregate programming toolkit. The proposed implementation is used to show-
case the expressiveness of the notion and to empirically evaluate the proposed
abstraction through simulation of three paradigmatic case studies: (i) coordi-
nation of communications in a mobile, ad hoc-network; (ii) consensus reaching
on a drone swarm; and (iii) self-discovery of nodes provisioning edge-replicated
services.

In summary, this work provides the following major contributions:

1. presentation of the “aggregate process” abstraction to capture a dynamic,
concurrent activity carried out by a dynamic ensemble of devices;

2. implementation in the ScaFi aggregate programming framework, through
the primitive construct spawn;

3. design of an Application Program Interface (API) and idioms for program-
ming with aggregate processes in ScaFi;

4. evaluation of the expressiveness and benefits of aggregate processes
through simulated case studies based of three scenarios in pervasive com-
puting, swarm intelligence, and edge computing.

With respect to the conference paper [21], where construct spawn is formalised,
this work elaborates on the engineering perspective, by: providing more details,
explanations, and much deeper comparison with respect to related work; dis-
cussing motivation, requirements, and characteristics of the aggregate process
abstraction; covering implementation details in ScaFi; providing a full account
of programming techniques for building applications with aggregate processes;
and showing practical expressiveness through a whole new case study of edge
service discovery.

The remainder of this paper is organised as follows. Section 2 gives an in-
formal introduction to the aggregate process concept, by providing motivation,
desired characteristics, and prominent features. Section 3 provides background
for the rest of the paper, by introducing the aggregate computing paradigm and
the ScaFi language. Section 4 explains how aggregate computing and ScaFi

1http://scafi.github.io/
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Figure 1: A drone swarm running concurrent collective computations. The swarm moves in
flocking formation in the direction set by the “driver” drone, while estimating some physical
quantity. At the same time, a continuous leader election process is in place (cf., green drone).
At some point, a team (violet bubble) leaves the swarm for a sub-task, and the flock re-adapts
to the change in the formation.

are extended to support the aggregate process abstraction. Section 5 covers pro-
gramming with aggregate processes, explaining the semantics of the abstraction
and showing how process-based APIs can be developed. Section 6 provides
evaluation of aggregate processes through synthetic experiments: here, we show
that processes provide practical advantages both in terms of performance and
in terms of programmability. Section 7 includes a detailed coverage of related
work. Finally, Section 8 concludes the paper.

2. Aggregate Processes: Concepts

We start focussing on the notion of aggregate processes, as key abstraction
for modelling:

dynamic, context-driven and collective activities that concurrently
span and overlap into a possibly mobile, large-scale collection of
situated, computational devices—which we call an aggregate or en-
semble.

Figure 2 describes the role of aggregate processes in IoT systems, in terms
of relationships with typical entities involved, which are the situated devices
(things) and new first-class citizens like aggregates (collectives of things).
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Figure 2: Logical UML model of IoT systems, comprising first-class aggregates cooperatively
playing some aggregate behaviour which may include multiple concurrent aggregate processes.
Colours are used to discriminate between individual (blue) and collective (orange) concepts.

2.1. Requirements

In order to be more systematic in the characterisation of our aggregate pro-
cess abstraction, we make a set of requirements and desiderata explicit. These
unify the aforementioned vision with pragmatic aspects of the software engi-
neering practice:

� Collective stance — To promote pervasive adaptation, aggregate processes
must abstract the individual device and seamlessly regulate the behaviour
of an ensemble across scales, density, and heterogeneity.

� Dynamicity and context-orientation — Aggregate processes should conve-
niently support the implementation of dynamically evolving, distributed,
and possibly spatio-temporally situated activities where context plays a
major role and continuous change is the norm.

� Intrinsic resiliency — Aggregate processes must react to change and
failure; in particular, implementations should provide formal guarantees
about independence to large classes of environmental dynamics and faults.

� Opportunistic resource exploitation — Aggregate processes should support
dynamic execution strategies across elastic and heterogeneous infrastruc-
ture.

� Conceptual, methodological, and technological integration — Aggregate
processes should integrate with mainstream paradigms, development tech-
niques and tools.
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2.2. Features of Aggregate Processes

Multiple aspects and perspectives – structural, behavioural, and interac-
tional – need to be considered to fully characterise an aggregate process. In
this paper, we shall abuse for convenience the term process to refer to both
process types and process instances, i.e., concrete, living occurrences of process
types. For example, a process type can model a gossip activity, its instances
being actual executions—this is similar to the class versus object distinction in
object-oriented programming.

When specifying an aggregate process, a designer should be generally able
to control the following aspects:

� Process lifecycle — It includes process generation (where and when a
process is to be spawned) and destruction (shutdown logic and teardown
dynamics), which are generally based on recognition of contextual events.

� Process identity — Since there could be multiple process instances of a
given process type, it is important to define a way to identify them in order
to correlate process-scoped activities. This also supports understanding
whether different computations belong to the same process and can hence
be merged.

� Process structure — Mechanisms are needed to regulate the spatio-
temporal extension of a process or, similarly, define the dynamic domain
of devices participating in the process. This is related to defining a shape
and boundary for the process.

� Process behaviour — It covers mechanisms to define the core logic of a
process, representing an input-output transformation in terms of a set of
parameters.

� Inter-process interaction — It covers the ways by which different collective
computations can affect each other, e.g., by “piping” the input of one to
the output of another, or by indirectly causing the generation of a process
by issuing a particular event.

Metaphorically, aggregate processes can be imagined as sorts of “computational
bubbles” (Figure 3), sustained by collectives of devices, that spring out, stretch,
perform some work, and vanish across space and time.

3. Background: Aggregate Computing and ScaFi

In this section, we describe the aggregate computing approach and ScaFi
implementation, which can provide a ground to meet the requirements stated
in Section 2.1, and which therefore represent a natural basis upon which devel-
oping our aggregate process notion.
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Figure 3: Aggregate processes are like dynamically evolving, distributed computational “bub-
bles”, adapting as devices move or enter/leave the system. So, for instance: the (top, left)
red bubble could carry out a process collecting information from an area into a sink device,
vanishing upon reception of the final value; the “x”-shape, blue process could consist of two
point-to-point communication channels supporting P2P interaction when there is no global
connectivity (cf., Section 6.1), closing upon hang-up; finally, the purple triangle could repre-
sent a monitoring process keeping statistics about the people or vehicles crossing a particular
area of a city.

3.1. Aggregate Computing

Aggregate Computing [9, 16] is an engineering paradigm (see Figure 4) for
collective adaptive systems. In a nutshell, it provides a functional programming
model that enables three main elements:

1. abstraction and composition of collective behaviours;

2. expression of the self-adaptive, self-organising logic of an ensemble;

3. flexibility of mapping aggregate computation onto the available infrastruc-
ture [22].

A key merit of the approach is that it turns the self-organisation and collective
intelligence problem into a programming language and middleware problem.

3.1.1. Foundations: Logical Model and Field Calculus

The programming model is formally grounded in the field calculus [18], a
core language capturing the essence of “continuous distributed computation”
through (computational) fields and the very principles for “engineering emergent
behaviour” [18]. Fields are time-evolving maps from a domain of devices to
computational values, so they are collective and dynamic in nature.

In this framework, one defines a single aggregate program that is conceptually
run on an entire aggregate. An aggregate is a logical network of asynchronously
computing devices connected by some neighbouring relationship and collabora-
tively playing the same aggregate program. A simple aggregate is shown as a
network in Figure 5.
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Figure 4: Aggregate Computing Engineering Stack—the aggregate process concept, captured
by the spawn construct, is the framework extension discussed in this paper that opens to the
dimension of concurrency—adapted from [9].

v1

δ1

v2

δ2

v3

δ3

v4

δ4

Figure 5: Simple network representing a logical aggregate system. We denote devices through
square nodes. Value vi denotes the most recent value computed by device δi. The neighbouring
relationship is assumed to be symmetric and denoted through solid lines connecting nodes.

As we will see in Section 3.2, an aggregate program is a standard computa-
tion plus calls to field operations that basically express a way to compositionally
(i) handle state, (ii) interact with neighbours, and (iii) branch computation,
i.e., dynamically entering a scope. An aggregate program specifies collective be-
haviour in terms of both computation and neighbour-to-neighbour interaction.

3.1.2. Platform Assumptions

A possibly distributed platform is assumed to be available that provides each
device of the aggregate with local essential computational/interaction mecha-
nisms, namely:

1. Neighbourhood — In each moment of time, each device has a neighbour-
hood defined as the set of devices it can send messages to. Neighbourhood
can be static or change over time to reflect, e.g., mobility and faults.

2. Sensors — Upon request, a device can obtain values from local sensors,
which model access to the observable part of the environment. Sensors
are typically assumed to be the same across all devices. For instance, in
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the following we shall use sensors for getting the local id of a device, or
the perceived temperature.

3. Actuators — Upon request, a device can perform an action directed to-
wards itself or the environment.

4. Message reception — During operation, devices exchange messages. In
each moment of time, any device can retrieve a map from neighbours
to the most recent messages received from them; i.e., older messages are
discarded.

5. Message broadcast — Upon request, any device can broadcast a message
to all its neighbours. Message exchange is assumed to be asynchronous
and order-preserving. Loss of messages is handled by (possibly transient)
changes in neighbours.

6. State — Each device has a local memory to make data persist over time.
This is typically structured in a dynamic set of typed variables.

7. Computation — Each device breaks computations in small pieces called
computational rounds. Rounds are assumed to be terminating and short,
relying on locally available services as described above, and producing a
possibly structured value as result. Such a value could be used to feed
actuators, for instance.

8. Scheduling — Computational rounds are triggered by a local scheduler.
Overall, scheduling is generally assumed to be asynchronous and fair, with
devices possibly firing at different speed. Also, it is assumed that a round
is scheduled only when the previous one is over.

We also note that an aggregate is, first of all, a logical network of devices
that can be mapped variously to the available physical network of computing
nodes [22]. In simple deployments, there could be a 1-to-1 mapping from
logical to physical devices: e.g., in a robot swarm, each robot could individually
execute the aggregate program against its local context.

We summarise the aggregate computing meta-model in Figure 6.

3.1.3. Execution Model

The missing piece to enable emergence of collective intelligence is an execu-
tion model in which each device di computes the overall aggregate program by
organising computational rounds as follows:

1. perceives the local context ci, given by a sample of the status of the
environment, obtained by sensors, and the messages from neighbours;

2. re-evaluates the aggregate program against the local context, obtaining an
output vi and a “coordination message” ei, called an export ;

3. acts upon the environment through actuators, as described by the pro-
gram;

4. sends the export to neighbours—which is basically a way to inform the
surroundings about a change in the local context, effectively supporting
local-to-global state evolution.

9
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Figure 6: A pictorial representation of the aggregate computing meta-model. An aggregate
system is a set of devices connected through a neighbouring relationship and situated in some
environment. A device has state, sensors, actuators, a computational part, and means to send
and receive messages to/from neighbours. Dynamically, devices follow the protocol discussed
in Section 3.1.3, collectively behaving as described by the aggregate program they compute.

The very details of the execution model, both within a single device and among
devices, are application-specific. Notice that, since rounds of different devices
are usually asynchronous, aggregate programs tend to be used to express how an
entire aggregate progressively adapts to changes of the environment and the sys-
tem itself (cf., failure, mobility) and produces eventually consistent responses.

An example of system evolution is given by an event structure—see Figure 7.
An event structure is a graph of events (corresponding to computational rounds
of particular devices), with a partially-ordering causality relation. We implicitly
use “columns” of the x-axis (which we call space) to label events with device
identifiers; so, for instance, the event labelled with δ1 and all the events below it
in the same column denote events happening in the device δ1. Edges are given
“export labels”, i.e., symbols denoting particular exports. Notice that, given an
event, all the outgoing edges are given the same export label, which represents
the export produced by evaluating the aggregate program in the corresponding
round. Also, notice that the same export is sent to all the neighbours, including
the device itself. Edge labels can be straightforwardly inferred from an event
structure: edr is the export yield at the r-th round performed by device d. In
the following, we will omit export labels to improve readability and rather focus
on output values written inside the circles.

Devices may execute rounds at different frequencies, and no synchronisa-
tion is needed. Still, the timings between rounds at different devices and com-
munication delays may affect the dynamics of distributed algorithms. How-
ever, there exist results regarding convergence of field computations (cf., self-
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Figure 7: Example of an event structure. Each circle node represents a round execution
event, vji denotes the output of device δi at its j-th round, and dashed arrows denote an event
has observed the export produced at the source event (which captures both state preservation
between subsequent rounds of the same device as well as communication between different
neighbour devices).

stabilisation [23]). For a deep coverage of Aggregate Computing and the field
calculus, refer to [16, 18]. In the rest of the background, the aggregate paradigm
is described through its ScaFi implementation.

3.2. ScaFi—Aggregate Programming in Scala

ScaFi2 (Scala Computational Fields) is a development toolkit for aggre-
gate systems in the Scala programming language. It provides a Scala-internal
domain-specific language (DSL) – i.e., an API masked as an “embedded lan-
guage” – and library of functions for programming with fields, as well as other
development tools (e.g., for simulation).

ScaFi, as an embedded DSL, inherits the syntax and semantics of its host
language. Therefore, for the sake of self-containment, we briefly point out in
Appendix A some relevant syntactic and semantic aspects of Scala that are
used in the ScaFi examples throughout the paper. Notice that while certain
features improve the aesthetic quality of the DSL, others may facilitate or enable
implementation of particular mechanisms and checks.

In ScaFi, the field constructs are captured by the Constructs interface,
shown in Figure 8. There, functions (except mid) are generic in a type param-
eter A, syntax =>T denotes a by-name parameter and syntax T=>R denotes a
functional type. In a nutshell:

� rep captures state evolution, starting from an init value that is updated
each round through fun;

� nbr captures communication, of its expr value, with neighbours; it is
used only inside the argument expr of foldhood, which supports data

2https://github.com/scafi/scafi
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trait Constructs {

def rep[A](init: => A)(fun: A => A): A

def nbr[A](expr: => A): A

def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

def branch[A](cond: => Boolean)(th: => A)(el: => A)

def mid: ID

def sense[A](sensorName: String): A

def nbrvar[A](name: NSNS): A

}

Figure 8: Interface modelling field constructs in ScaFi.

class MyProgram extends AggregateProgram with BlockG {

type MainResult = Double // type of result

def main: MainResult = {

???

}

}

Figure 9: An example of aggregate program in ScaFi.

aggregation of neighbourhood-dependent data to single values, through
the input accumulator function acc;

� branch captures domain partitioning, or space-time branching;

� mid is a built-in sensor providing the identifier of devices;

� sense abstracts access to local sensors; and

� nbrvar abstracts access to neighbouring sensors that behave similarly to
nbr but are provided by the platform.

This interface is implemented by abstract class AggregateProgram, which in
turn provides its subclasses with access to the field constructs. So, in ScaFi, an
aggregate program is merely a class that implements AggregateProgram and
defines a main expression. An example is provided in Figure 9. Notice that
library modules such as BlockG can be imported through trait inheritance via
the with keyword.

In order to obtain an actual distributed aggregate system, the aggregate
computing metamodel and execution model presented in Section 3.1 are to be
implemented by proper platform software, such as ScaFi’s Akka actor-based
platform [20]. By having any logical device execute the aggregate protocol with
a given AggregateProgram, which is the same for every device, one effectively
gets an operational aggregate system.
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Figure 10: Addition: example of the global interpretation of a field expression.

3.3. Examples

In this section, we explain the field constructs in detail, by examples. To do
so, we introduce all the elements needed to implement a simple but illustrative
and important example of edge computing. Following the approach in [9], this is
a collective behaviour that builds a distributed data structure – i.e., a gradient
field – for navigating agents in space through paths of minimal lengths that
avoid certain obstacle areas. This example also showcases our approach to
edge intelligence. Indeed, it enacts a form of collective intelligence whereby the
entire collective globally adapts to target points, dis/appearance of obstacles,
and mobility of nodes (including disappearance of nodes by failure or appearance
by joining, as in open systems). For such an example, we need mechanisms to:
work with field values, including sensor values; handle collective state, through
rep; observe neighbourhoods, through foldhood and nbr; distinguish roles and
behaviours, through conditional constructs mux and branch; and combine these
to process and propagate information in a network.

In ScaFi a usual expression such as, for instance,

1 + 2

is to be seen as a constant (i.e., not changing over time) and uniform (i.e., not
changing across space3) field holding local value 3 at any point of the space-time
domain. More specifically, as shown in Figure 10, this denotes a global expres-
sion where a field of 1s and a field of 2s are summed together through the field
operator +, which works like a point-wise application of its local counterpart.

A constant field does not need to be uniform. For instance, given a static
network of devices, then

mid()

denotes the field of device identifiers, exemplified in Figure 11, which does not
change across time but does vary in space. We assume devices do not change

3For space, we generally mean the logical space given by the graph where nodes are devices
and edges represent channels of communication reified by an application-specific neighbouring
relationship. For situated systems, however, this representation naturally maps to physical
space.
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Figure 12: Example field of round counting. At any event of a given device, the output is the
value of the previous event at the same device incremented by one.

their identifier for their whole lifetime and that identifiers are unique. On the
other hand, expression

sense[Double]("temperature")

is used to represent a field of temperatures, obtained by collectively querying the
local temperature sensors over space and time, which is in general non-constant
and non-uniform.

Fields changing over time can also be programmatically defined by the rep

operator; for instance, expression

// Initially 0; state is incremented at each round

rep(0){ x => x + 1 } // Equally expressed in Scala as: rep(0)(_ + 1)

counts how many rounds each device has executed—see Figure 12. Indeed, the
first time the rep expression is evaluated, x is bound to 0, and the expression
evaluates to 0+1=1; the next round on the same device, x is bound to 1 (i.e., to
the value of the expression in the previous round) and the expression evaluates
to 1+1=2; and so on. It is still a non-uniform field since the update phase and
frequency of the devices may vary both between devices and across time for a
given device.

Collective intelligence can be programmed by letting the local affect the
global and vice versa. This operation is supported through foldhood and nbr.
As a simple initial example, consider
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Figure 13: Example field of neighbour counting. In this example, the assumption is that
neighbours are discovered upon send and reception of messages (for sends, the neighbours are
visible since the next local round).

foldhood(0)(_ + _){ 1 }

which counts the number of neighbours at each device, possibly changing over
time if the network topology is dynamic. The neighbourhood also includes the
device itself. Indeed, in this example, folding collects the result of the evaluation
of 1 against all neighbours, which simply yields 1 per neighbour. So, the effect
is merely the addition of 1 for each existing neighbour—as we use the binary
addition + as the accumulator function, of the accumulation value and the
current, accumulating value. Note that the concern of neighbour discovery
is orthogonal to the field program. In general, indeed, the neighbourhoods are
managed by the aggregate computing platform. An example of system evolution
is given in Figure 13.

Construct nbr{e} enables to “look around” just one step beyond a given
locality, for what neighbours evaluate for e—or, dually, this models a device
willing to advertise its view of e in its 1-hop surroundings. So, expression

foldhood(0)(_ + _){ nbr { sense[Double]("temperature") } } /

foldhood(0)(_ + _){ 1 }

evaluates to the field of average temperature that each device can perceive in its
neighbourhood. The numerator sums temperatures sensed by neighbours (or,
analogously, it sums the neighbour evaluation of the temperature sensor query
expression), while the denominator counts neighbours as described above.

Ordinary Scala functions can be defined to capture and give a name to com-
mon field computation idioms, patterns, and domain-specific operations. For
instance, consider a mux function that implements a strictly-evaluated version
of if:

def mux[A, B<:A, C<:A](cond: Boolean)(th: B)(el: C): A =

if(cond) th else el

The then and else expressions are both evaluated first, and the proper
result is then selected according to the Boolean condition With mux, a
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def gradient(source: Boolean, metric: () => Double = nbrRange): Double =

rep(Double.PositiveInfinity){ distance =>

mux(source) { // Source devices yield 0.0

0.0

}{ // Others minimise over neighbours’ gradient value + distance

foldhoodPlus(Double.PositiveInfinity)(Math.min(_,_)){

nbr{distance} + metric()

} } }

Figure 14: Simple gradient implementation.

variation of foldhood, called foldhoodPlus4, which does not take the
current device, or “self”, into account, can be implemented as follows:

def foldhoodPlus[A](init: => A)(aggr: (A, A) => A)(expr: => A): A =

foldhood(init)(aggr)(mux(mid==nbr{mid}){ init }{ expr })

Notice that the identity value init is used when considering a neighbour device
whose identifier, nbr{mid}, is the same as that of the current device, mid, hence
ensuring that expr, though evaluated, is not accumulated for “self”. As another
example, one can give a label to particular sensor queries, such as:

def temperature = sense[Double]("temperature")

def nbrRange = nbrvar[Double]("nbr-range")

The second case uses construct nbrvar, which is a neighbouring sensor query
operator providing, for each device, a sensor value for each corresponding neigh-
bour. For instance, for nbrRange, the output value is a floating-point number
expressing the estimation of the distance from the currently executing device to
that neighbour—so, it is usually adopted as a metric for “spatial algorithms”.

Based on the above basic expressions, one can define a rather versatile and
reusable building block of Aggregate Programming, called gradient [24, 25]. A
gradient is a numerical field, exemplified in Figure 15, expressing the minimum
distance, according to a certain metric, from any device to source devices; it is
also interpretable as a surface whose “slope” is directed towards a given source.
In ScaFi, it can be programmed as shown in Figure 14. The rep construct keeps
track of the gradient values across rounds of computations: source devices are at
a null distance from themselves, and the other devices take the minimum value
among those of neighbours increased by the corresponding estimated distances
as given by metric—defaulting to nbrRange. Notice that foldHoodPlus must
be used to prevent devices from getting stuck to low values because of self-
messages, as it would happen when a source node gets deactivated: with it,
gradients dynamically adapt to changes in network topology or position/number
of sources, i.e., they are self-stabilising [23].

Another common and important operation on fields is splitting computation

4The “Plus” suffix is to mimic the mathematical syntax R+ of the transitive closure of a
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Figure 15: Pictorial representation of a gradient field snapshot in the midst of a simulation
in ScaFi. The red nodes are the sources of the gradient. The nodes at the top-left have
parted from the network and their values increase unboundly. The grey lines represent device
connectivity according to a proximity-based neighbouring relationship.

into completely separate parts or sub-computations executed in isolated space-
time regions. An example is computing a gradient in a space that includes
obstacle nodes so that gradient slopes circumvent the obstacles. The technical
issue, here, is to prevent obstacle nodes to participate in gradient construction
and share a distance that could be wrongly selected by some device. Construct
branch(c){e1}{e2} partitions the domain according to boolean field c: devices
for which c is true run e1, others run e. Therefore, a gradient overcoming an
obstacle is properly written as

val isObstacle = temperature > CRITICAL_TEMP // bool field of obstacles

branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) }

since the gradient is effectively called and executed only by the set of devices
for which isObstacle is false. We remark that the above field calculus
expression of a gradient avoiding obstacles effectively creates a distributed data
structure that is rigorously self-adaptive [23]: independently of the shape and
dynamics of obstacle areas, source areas, metric and network structure, it will
continuously bring about formation of the correct gradient, until eventually
stabilising to it.

Such a behaviour is an example of collective intelligence at the edge: all the
situated devices of the system continuously sense their local context and interact
with neighbours to adjust their corresponding gradient value. Such a value,
indeed, can be used to support services like: navigation of agents to a particular
destination while avoiding risky areas (e.g., we can identify as obstacles those
devices nearby overcrowded or dangerous situations), or providing directions for

(neighbouring) relation R.
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broadcasting or collecting information in a network (see, e.g., the case study of
Section 6.1) while excluding unreliable devices.

4. Extending Field Calculus with Concurrency: Aggregate Process
Implementation in ScaFi

The field calculus is space-time universal [26] and, as such, is able to ex-
press every causal and Turing-computable distributed function. However, just
like Turing-equivalence, this ability does not say much about how easy it is to
encode a target behaviour, how understandable the resulting program will be,
or how programs can be composed to scale with complexity. Relative expres-
siveness tests could be performed through compositional language embeddings,
as studied in [27] for process algebras and in [28] for Linda dialects, expressed
as process algebras following [29]. These tests can provide an answer to the
problem of “practical expressiveness”, however, they are only possible between
languages with a similar model and structure. In particular, a comparison be-
tween process algebras and field calculus cannot be performed that way, and
introducing notions of relative expressiveness for field calculi is left as future
work.

In Section 4.1, we discuss the expressiveness limitations of field calculus,
which revolves around the expression of concurrency within field computations.
In this perspective, aggregate processes do extend the practical expressiveness of
the field calculus, similarly to how concurrency mechanisms for multi-threaded
programming extend the ability of traditional languages to express complex
systems. Then, in Section 4.2, we enhance the field calculus, and hence the
ScaFi reference implementation we use here, with a small set of mechanisms
and library components to properly raise the abstraction level up to conveniently
capture our notion of aggregate process. Our implementation is based on three
pillars:

1. a system of processes is modelled as a “distributed field of sets of pro-
cess descriptors”, mapping each device to the set of processes it locally
executes;

2. the computational activity run by an aggregate process is defined in terms
of a field computation (namely, as the continuous evolution of a distributed
data structure); and

3. the building block, called spawn, is added to allow programmers to de-
fine aggregate processes, generate instances, and manipulate their inputs
and outputs—i.e., essentially specifying what collective activities are to
be spawned, when and where, and how they relate within the overall ag-
gregate program.

4.1. Alignment and Dynamic Field Expressions

Results of field computations, at runtime, can be represented by hierarchical
structures known as value-trees (vtrees). A vtree is an ordered tree of values
tracking the result of any evaluated sub-expression. The vtree θ produced by
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branch(isObstacle){ Double.PositiveInfinity }{ gradient(isSource) }

(a) Gradient computation around obstacles.

∞ branch

∞true

(b) Vtree computed by obstacle
nodes.

dk branch

false dk rep

∞ dk mux

false 0.0 dk foldHoodPlus

∞ min dk−1 +

dk−1nbr 0 nbrvar

(c) Vtree computed by non-obstacle nodes.

Figure 16: Different kinds of vtrees for a gradient computation around obstacles.

the evaluation of an expression e is denoted as v〈θ1, . . . , θn〉, where the root
v is the value produced by e, and θ1, . . . , θn are the vtrees produced by the
immediate sub-expressions of e. The operational semantics of the field calculus
leverages vtrees; in other words, an evaluation of field expressions is a process
building a vtree. So, essentially, the output of an execution of an aggregate
program is a vtree. Notice that two devices of the same aggregate may yield
vtrees with different shape (i.e., different structure beside different values for
the same nodes) while evaluating the same aggregate program, e.g., due to
branching constructs. Fundamental to the machinery and compositionality of
the approach is the notion of alignment [30], by which evaluation (construction
of vtrees) is defined in terms of other structurally-equivalent vtrees: the vtree
corresponding to the previous round of the executing device, and the vtrees
of neighbours devices. When two vtrees are not structurally-equivalent (i.e.,
they have different nodes), they do not “align”, and hence one cannot be used
with the other; notice, however, that two vtrees may partially align, and hence
interaction is possible only within the aligned subtrees.

As already mentioned in Section 3, the local execution of a field computation
yields an export message that is meant to be sent to neighbours in order to
sustain the global behaviour of the aggregate. Such an export can also be seen
as the state- and communication-related part of vtrees.

For instance, the expression of Figure 16a yields the following vtrees:

� For obstacle nodes, the vtree of Figure 16b. The root of the vtree, ∞, is
the result of the whole expression. The left sub-tree is the result of the first
sub-expression: isObstacle, which evaluates to true). Finally, the right
sub-tree is the result of the branch taken: Double.PositiveInfinity,
which evaluates to ∞.
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� For non-obstacle, non-source nodes, the vtree of Figure 16c—where dk is
the current distance estimate, dk−1 the previous one, and the main sub-
expressions relative to nodes are reported on their right. For source nodes
the vtree is the same, except that dk = 0.

Notice that both state and communication are based on alignment: rep

retrieves the value to work on from the previous vtree of the device, and nbr

gets the values from neighbours by observing the nodes in the corresponding
vtrees that have the same place in the computation as the current vtree node.
In other words, interaction works on a structural basis where order matters.

However, dynamicity – due to potentially different and unknown activities
– would break ordering and hence alignment, possibly leading to ambiguous or
inconsistent vtree entries.

4.1.1. Paradigmatic Example of the Alignment Issue: Limited Multi-Gradient

The gradient function already supports the creation of a gradient from
multiple sources: it is sufficient to build a source input field that is true in
correspondence of multiple nodes.

val isSource = sense[Boolean]("source")

gradient(isSource)

With this approach, however, the resulting gradient field could not be used, e.g.,
to collect information into a source from nodes that are beyond the midpoint
between that source and another adjacent source. The solution is to leverage
multiple independent gradient computations that can overlap within the aggre-
gate. For a fixed number of gradients, the following code works.

(gradient(source1), gradient(source2), ...)

However, there is no trivial way to handle a dynamic number of gradients that
are to be generated and destroyed as new sources activate or deactivate, respec-
tively, without breaking alignment. For instance, the following code

val sources: Set[ID] = // gossip the source set

val gradients: Map[ID,Double] =

sources.map(source => source -> gradient(source==mid)).toMap

would break in unexpected ways.

4.1.2. Solution: Alignment over Arbitrary Keys

The previous example involves evaluating a field expression in an iterative
context. When mapping a dynamic collection, the number of elements and the
order of traversal do not allow for drawing a consistent correspondence between
two iteration steps of two devices. This unless one manually introduces keys or
tags for the field expressions, e.g., based the identity of the mapped elements.
Therefore, we address this problem by the primitive mechanism, called align,
with signature
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def align[K,V](key: K)(proc: K => V): V

to enable alignment on arbitrary keys, namely, to introduce a new computation
scope by inserting a vtree node tagged with the provided key. Upon this, the
previous code can be fixed as follows:

val gradients: Map[ID,Double] =

sources.map(source =>

source -> align(source){ _ => gradient(source==mid) }

).toMap

However, this approach is quite low-level, and does not properly handle lifecycle,
which is currently expressed by field sources, e.g., assumed to be provided by
means of gossiping. Therefore, we use the principle explained in this section
to define a more expressive construct that provides both aligned execution and
automatic propagation of keys. Such construct, spawn, effectively provides an
implementation of our aggregate process abstraction.

4.2. Aggregate Processes in ScaFi

The spawn primitive supports our notion of aggregate processes by handling
activation, propagation, merging, and disposal of process instances for a speci-
fied kind of process. Coherently with the formalisation in [21], it has signature:

def spawn[K,A,R](process: K => A => (R,Boolean),

newKeys: Set[K],

args: A): Map[K,R]

It is a generic function, parametrised by three types:

K — the type of process keys;

A — the type of process arguments, or inputs;

R — the type of process result.

The function accepts three formal parameters:

1. process — has type K=>A=>(R,Boolean) and expresses the computation
logic of the process by a curried function taking a key, an argument, and
then returning a pair of the computation result and a boolean status value
expressing whether the current device is willing to participate in the pro-
cess instance or not;

2. newKeys — is the set of keys of the processes to be spawned; and

3. args — is the “runtime argument” for the process instances active in this
round.

Remember that values are fields—e.g., newKeys is a field of sets which may
have entries only in specific devices and execution rounds, and args is a field
whose values of type A may differ in different space-time locations. By a local
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val vm: RoundVM = // provides access to virtual machine calls

def spawn[K, A, R](

process: K => A => (R, Boolean),

newKeys: Set[K],

args: A

): Map[A,R] = {

rep(Map[K, R]()) {

case processMap => {

// 1. Take active process instances from my neighbours

val nbrProcs = includingSelf.unionHoodSet(nbr{ processMap }.keySet)

// 2. New processes to be spawn

val newProcs = newKeys

// 3. Collect all process instances to be executed,

// execute them, and update their state

(nbrProcs ++ newProcs).map { p =>

vm.newExportStack

val result = align(puid) { _ => process(p)(args) }

// Discard the export of the previous step if status is false

if(result._2) vm.mergeExport else vm.discardExport

p -> result

}

.collect { case(p,pi) if pi._2 => p -> pi._1 }

.toMap

}

}

}

Figure 17: Illustrative implementation of spawn in ScaFi

perspective, spawn accepts a set of keys to allow generation of zero or more
process instances at the device in the current round. Note that a process key has
a twofold role: it works both as a process identifier (PID) and as initialisation or
construction parameter. When different construction parameters should result
in different process instances, it is sufficient to instantiate type K with a data
structure type including both pieces of information and with proper equality
semantics. Notice that if a new key already belongs to the set of active processes,
there will be no actual generation, or restart, but merging instead, since identity
is the same as an existing process instance. Finally, note also that the outcome
of spawn, namely, a map from process keys to process result values, can in turn
be used to fork other process instances or as input for other processes. Indeed,
the basic means for processes to interact is to connect the corresponding spawns
with data.

4.3. Behind-the-Scenes: spawn Implementation

To provide an intuition of the operational semantics of aggregate processes,
formalised in [21], we take a look at the implementation of spawn, illustrated
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in the listing of Figure 17. Abstracting from ancillary details, spawn internally
works as follows:

1. it combines new process keys with previous ones from the device itself and
those from direct neighbours,

2. maps the resulting keyset by running process in an aligned way w.r.t.
the process keys; and finally

3. filters results upon the boolean status value.

Crucially, the filtering of results, achieved through the vm calls, prevents the
writing of exports: so, filtered processes are not broadcast to neighbours. This
mechanism ultimately impacts the spatiotemporal evolution of a process.

4.4. Support for Aggregate Processes

The aggregate approach and its ScaFi embedding covered in Section 3 do
support the requirements presented in Section 2.1 through the extensions cov-
ered in this section. Indeed:

� they foster a collective stance because the behaviour of an ensemble is
expressed by a global perspective and reified as aggregate computations
executed repeatedly and in concert by every device participating in the
system [16];

� the field abstraction and neighbour-based interaction model naturally
support dynamic and contextual responses to network and environment
change [23];

� resiliency is promoted by the self-organising and eventual consistency
properties of aggregate computing [16];

� opportunism in resource exploitation is enabled by the flexibility in the
execution and deployment of aggregate systems [22];

� integration with mainstream paradigms, techniques, and tools is sup-
ported by the ScaFi DSL embedding into the Scala language [31].

In Section 5, we cover in detail how the process features shown in Figure 2 and
implied by the described implementation can be specified, programmatically.

5. Programming with Aggregate Processes: Techniques and Patterns

In the following, we discuss programming and management of aggregate pro-
cesses activated through spawn. We start from the basics (process definition,
lifecycle and boundary management) and then introduce more complex exam-
ples in order to delineate the principle behind an “aggregate process API”, as
well as to prepare for the case studies that follow—concretely showing how
composition of collective behaviour could support the engineering of pervasive
applications.
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5.1. Process Definition

Defining a type of process merely consists of defining a function that can be
passed as the process parameter to spawn. It must be a curried function from
a process key K, an argument A, to a tuple result (R,Boolean)—for some choice
of K, A, R made statically at a particular call of spawn.

It is good practice to define custom types for K, A, and R, e.g.:

case class PID(id: Int)(val initiator: ID)

case class PArgument(arg: Int)

case class PResult(result: String)

Therefore, a process definition could take the following schema:

// Method syntax

def myProcessLogic(pid: PID)(parg: PArgument): (PResult,Boolean) = {

val result: PResult = ??? // compute result

val stay: Boolean = ??? // compute logic for process boundary/lifecycle

(result, stay) // returned pair

}

// Function syntax

val myProcess = (pid: PID) => (parg: PArgument) => ???

// or, from a method:

val myProcess: PID => PArgument => PResult = myProcessLogic _

Once we have defined a process function, we can use spawn to create process
instances:

spawn[PID,PArgument,PResult](myProcess, ...)

5.2. Process Generation (Lifecycle Management part 1/2)

Generating process instances is just a matter of creating a field of keysets
that become non-empty as soon as some “triggering” space-time event has been
recognised. Examples include spatial conditions on sensors data and computa-
tion, timers firing, and so on [23].

Consider the following simple process definition:

type K = Int // The type (alias) of process keys

type A = Int // The type (alias) of process arguments

type R = (Int, Boolean) // The type (alias) of process return

def m(k: K)(a: A): R = (k + a, true) // true means: always participate

val p = m _

A trivial example could leverage a constant, uniform field with full domain:

val keySet = Set(1)

val argument = 2

val processes = spawn(p, keySet, argument)
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In this case, a single process instance gets activated everywhere, and repeatedly
appliedm on a round by round basis, against a constant argument: for every
device (everywhere), processes is always (everytime) a Map(1->3). Of course,
we can spawn multiple instances of the same process type in a single spawn, and
provide a non-uniform argument field. For instance, expression

// Remember: mid is the field of local device IDs

spawn(p, newKeys = Set(1,2), args = mid)

yields a constant field that is locally Map(1->1+δ,2->2+δ) for any device δ.
Things get more interesting when the keyset field is non-uniform. Consider a

connected system of three devices δ1, δ2, δ3. Since process keys are automatically
propagated to neighbour devices, expression

spawn(p, newKeys = mid, args = 0)

will stabilise to a field that is everywhere Map(δ1->δ1,δ2->δ2,δ3->δ3). In this
case, the“source” or “generator” of process with PID δi is the device δi itself.
The time it takes for a process to spread depends on the timing of round execu-
tion and communication acts in the different devices. Now, suppose the system
gets split into two partitions (δ1, δ2) and (δ3), and that, later, the latter is joined
by a device δ4: under these circumstances, the output will remain the same for
δ1, δ2 whereas δ3 and δ4 will both output Map(δ1->δ1,δ2->δ2,δ3->δ3,δ4->δ4).

Typically, processes are generated by specific devices, when specific condi-
tions come true. This is modelled by a keyset field which is empty everywhere
in space-time except in locations where the event is recognised. A schema is as
follows:

val event: Boolean = // ...

val generateKey: Any => K = // ...

val keys: Set[K] = if(event){ Set(generateKey(???)) } else { Set.empty }

spawn(???, keys, ???)

you generally need a way to generate a process key to uniquely identify a process
instance with the particular occurrence of the event.

As mentioned before, process keys work both as process identities and as
construction parameters. Consider this process modelling a gradient computa-
tion:

def gradientProcess(source: ID)(obstacle: Boolean): Double =

branch(!obstacle){ gradient(source==mid) }{ Double.PositiveInfinity }

In this case, since the ID of the source is used to identify a process instance, you
cannot have more than one gradient process per source. Now, suppose you want
to preserve the same semantics but also keep track of the device who generated
the process (which is not necessarily the source of the gradient): you do not
want process identity to depend on the generator, so your key data type must
carry the additional information while handling identity (i.e., equality) like in

25



the previous example. For this purpose, the following Scala case class idiom
comes handy:

case class PID(source: ID)(val generator: ID)

Finally, a clarification is needed, regarding the semantics of spawn and the
peculiar execution model of round-by-round field computations, as they espe-
cially relate to branching. Construct spawn differs from traditional “thread
spawning” constructs like Erlang’s spawn or Java’s Thread.start(), in that a
ScaFi’s spawn expression needs to always be evaluated in each round in order
to carry through active process instances. That is, in the following program,

branch(someCondition){

spawn(???, ???, ???)

}{

spawn(???, ???, ???)

}

taking a branch will cause the destruction of all the process instances spawned
in the other branch.

5.2.1. Time tracking in ScaFi

Basic techniques for process generation include space-time event recognition
and time-wise scheduling. For the purpose, building block T is used to model
the passing of time in field computations [23]. In ScaFi, it can be implemented
as follows.

def T(init: Double, floor: Double, decay: Double => Double): Double =

rep(init) { v => Math.min(init, Math.max(floor, decay(v))) }

def T(init: Double, delta: Double): Double =

T(init, 0.0, (t: Double) => t - delta))

Operator T works by keeping track of the remaining time (starting from init)
via construct rep, and then using the provided function decay to enact the
passing of time until floor is hit. A derived version based on a delta step can
be straightforwardly defined. Built-in, local sensor dt() is used to locally keep
track of time passed since the previous computation round. Using T, it is trivial
to spawn a process once after some delay:

val newPids = mux(T(100, dt())==0){/* gen new keyset */}{ Set() }

The key thing to understand is that such a “once timer” restarts any time
the corresponding computation is “re-entered”. In other words, it is refreshed
when the corresponding computation is not executed, since its rep node, by
disappearing from the vtree, loses its memory; hence, a clock based on a cyclic
timer can be implemented as follows.

def clock(len: Long, decay: Long): Long =

rep((0L,len)){ case (k,left) => // Function defined by pattern matching
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branch (left == 0){ (k+1,len) }{ (k, T(len, decay).toLong) }

}._1 // "_1" projects to the first element of the tuple

Such a clock can be used for periodically spawning processes: see, e.g., the
replicated example below.

5.3. Process Expansion/Shrinking (Boundary Management)

Notice that a condition for process generation is that the generating device
does not immediately quit itself. By spawn, every process instance is automat-
ically propagated by all the participating devices to their neighbours. Such a
propagation does not occur only if the device returns status false—meaning
that the device does not want to participate in that process instance. Therefore,
it is possible to regulate the shape of such “computational bubble” by dictating
conditions by which a device must return status false (i.e., meaning external
to the bubble)—as mentioned, this indicates the willingness to stop computing,
or participation in the process. That is, only devices that return status true

are internal and so will propagate the process.
Moreover, such a propagation happens continuously: so, a device that exited

from a process may execute it again in the future, if any of its neighbours is
still internal to that process. In particular, the border of a process bubble
is given by the set of all the devices that are external but have at least one
neighbour which is internal. As long as a node is in the border, it continuously
re-acquires and immediately quits from the process instance: this continuous
evaluation of the border is what ultimately enables a spatial expansion of the
process bubble. Conversely, a process bubble gets restricted when internal nodes
become external; this is called shrinking.

As an example of expansion and shrinking, consider the system evolution of
Figure 18, where a process instance is generated at δ1 and > (resp. ⊥) represents
true (resp. false) status.

5.4. Process Termination (Lifecycle Management part 2/2)

As we have seen, a process instance terminates when all the devices quit by
returning status false. Implementing process termination may not be trivial,
since proper local or global conditions must be defined so that the “collapsing
force” can overtake the “propagation force”. Precautions should be taken so
that external devices do not re-acquire the process: the border should steadily
shrink, also considering temporary network partitions and transient recoverable
failures from devices. In the following pages, we will develop an higher-level
support to process termination based on “termination signals”.

Example: spatiotemporally limited processes. It is often useful to run processes
on a limited subset of the devices (e.g., those contained within a certain range
from the process generator), for a limited amount of time. In order to support
this, a process should carry information about the generation location, the dis-
tance from the generation location, the time of generation, and the time that
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Generation at δ1: process will spread to δ2

>

δ1

⊥

δ2 δ3 δ4

Border formation: δ2 forms the external fence

>

δ1

>

δ2 δ3 δ4
Process expansion: δ2 decides to join and
becomes internal; process will spread to δ3

⊥

δ1

>

δ2

⊥

δ3 δ4
Process shrinking: δ1 leaves, while δ3 enters
the external border to monitor expansion

⊥

δ1

⊥

δ2

⊥

δ3 δ4
Pre-termination: all the devices are external,
so the process bubble can vanish

δ1 δ2 δ3 δ4

The process disappears

Figure 18: Example of a system evolution comprising all the dynamic phases (generation,
expansion, shrinking, and termination) of an aggregate process instance. Each line shows the
network at a given time instant and the corresponding output status for a single aggregate
process instance. Nodes with bold border denote devices participating in the processwith
true status; grey nodes denote devices of the borderwith false status; empty nodes do not
evaluate the process at all.

has elapsed since generation. Border and lifecycle management should man-
age and predicate on such information. In the example of Figure 19, devices
call themselves out when the process time exceeds lifetime or the distance
computed by the gradient exceeds maxRange.

Notice that, in circumstances like this, the logic of computation can be
completely separated from process border and lifecycle management; in these
cases, program design can benefit from separation of concerns, adopting a
single-responsibility principle while functional composition enables creation of
a full process definition for spawn. Moreover, with careful design, this enables
reusability of lifecycle strategies, as shown in Figure 20. The STLifecycle

can be combined with any process logic over process keys that conform to
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case class PID(pid: String)

(val generator: ID, val startTime,

val lifetime: Long, val maxRange: Double)

type K = PID

type A = Unit // we are not interested in any runtime argument

type R = Int

def logic(k: K)(a: A): R = 0 // trivial

def lifecycle(k: K)(a: A): Boolean =

time()-k.startTime < k.lifetime &

gradient(k.generator==mid) <= k.maxRange

// This utility function merges logic with lifecycle functions into one

def combine[K,A,R1,R2](f1:K=>A=>R1)(f2:K=>A=>R2):K=>A=>(R1,R2) =

k => a => (f1(k)(a), f2(k)(a))

spawn[K,A,R](combine(logic)(lifecycle), /* newKeys */, ())

Figure 19: Example of a spatiotemporally limited process.

STLimitedProcessKey5.

5.5. Process Abstraction

Using functional abstraction, it is possible to define high-level behaviours
that provide a clean interface hiding the complexity of internal process manage-
ment.

Example: time replication. In [33], a technique based on time replication for
improving the dynamics of gossip is presented. It works by keeping k running
replicates of a gossip computation executing concurrently, each alive for a certain
amount of time. New instances are activated with interval p, staggered in time.
The whole computation always returns the result of the oldest active replicate.
This is intended to improve the dynamics of algorithms, providing an intrinsic
refresh mechanism that smoothly propagates to the output. With spawn, it
is trivial to design a replicated function that provides process replication in
time.

def replicated[A,R](proc: A => R)(argument: A, p: Double, k: Int) = {

val lastPid = clock(p, dt())

spawn[Long,A,R](pid => arg => (proc(arg), pid > lastPid+k),

Set(lastPid), argument)

} // returns a Map[Long,R] from replicate IDs to corresponding values

5Notice that Scala provides mechanisms, such as structural types or the pimp-my-library
pattern [32], to avoid the requirement of explicit, apriori trait implementation.
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trait STLimitedProcessKey {

val generator: ID

val startTime: Long

val lifetime: Long

val maxRange: Double

}

def STLifecycle[K,A,R](k: K <: STLimitedProcessKey)(a: A): Boolean =

time()-k.startTime < k.lifetime &

gradient(k.generator==mid) <= k.maxRange

Figure 20: Schema of a pattern for creating reusable lifecycle strategies.

case class Msg[V,From,To](body: V, from: From, to: To)

type MBox = List[Any]

type PostOffice = Map[Any,MBox]

rep[PostOffice](Map.empty)(msgs => {

spawn(???, ???, Args1(???, msgs))

spawn(???, ???, Args2(???, msgs))

msgs

})

Figure 21: Process interaction idiom: using rep to support interaction of processes spawned
in different parts of the source code.

clock is a distributed time-aware counter [33] yielding an increasing number i
at each interval p that represents the PID of the i-th replica. Notably, in this
case, every device can locally determine when it must quit a process instance.
Moreover, the exit condition based on PID numbering, pid > lastPid+k, pre-
vents process reentrance. Section 6.2 provides an empirical evaluation of the
behaviour of function replicated.

5.6. Process Interaction

The most basic means to make aggregate processes interact is by piping the
output of a process into the input of another.

val p1s: Map[K1,R1] = spawn[K1,A1,R1](???, ???, ???)

val arg: R1 = p1s.headOption.getOrElse(??? /* some default value */)

type A2 = R1

val p2s: Map[K2,R2] = spawn[K2,A2,R2](???, ???, arg)

Moreover, the programming idiom of Figure 21 can be used in the case of
mutually feeding processes, spawns in different scopes, or when a “program-
wide” communication structure is desired.
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trait Status

case object ExternalStatus extends Status // External to the bubble

case object BubbleStatus extends Status // Within the bubble

case object OutputStatus extends Status // Within the bubble + output

case object TerminatedStatus extends Status // Willingness to shutdown

val External: Status = ExternalStatus

val Bubble: Status = BubbleStatus

val Output: Status = OutputStatus

val Terminated: Status = TerminatedStatus

case class POut[T](result: T, status: Status)

object POut {

// Implicit definition to map POut to (T,Boolean)

implicit def toBasicSpawnTuple[T](pout: POut[T]): (T,Boolean) =

(pout.result, pout.status!=External)

// Conversion between process computation definitions

implicit def fto[K,A,R](proc: K => A => POut[R]): K=>A=>(R,Boolean) =

k => a => toBasicSpawnTuple(proc(k)(a))

}

Figure 22: Process statuses.

5.7. More Expressive Process Definitions

Now, we show how to support more declarative process definitions by lever-
aging expressive “statuses”, modelled in Figure 22. First, we define the concrete
Statuses. We also capture a process output not as a tuple (T,Boolean) but as
a tuple (T,Status), which we render as an algebraic data type POut to provide
useful implicit conversions to the former form (leveraging the power of Scala).
At this point, we can handle termination as per Figure 23 by mapping process
computation definitions. We can employ a simple shutdown algorithm that dis-
tributes the termination signal to neighbours, closes the process in a device,
by going External, when all the neighbours have received such a signal, and
prevents re-acquisition of the process if any neighbour presents the termination
signal.

Output filtering is achieved by mapping results to optional values that are
present only when the device has status Output; however, this also requires a
filtering outside the call to spawn. Function handleOutput in Figure 24 maps
process results, of type T, to Option[T] values, present (constructor Some) or
not (constructor None) based on whether status is Output or not, respectively.

Finally, a higher-level “spawn” function statusSpawn can be defined as
per Figure 25, where handleOutput and handleTermination wrap the given
process (which must yield a POut[T] value), and only Option[R] values that
are present (not None) are kept. See Figure 26 for a graphical example.

31



def handleTermination[T](out: POut[T]): POut[T] = {

rep[(Boolean,Int,POut[T])]((false,0,out)){

(terminated,k,res) =>

val mustTerminate = out.status==Terminated |

includingSelf.anyHood(nbr{terminated})

val mustExit = includingSelf.everyHood(nbr{mustTerminate})

(mustTerminate, // true if observed termination signal

1, // flag (k=0 only in the first round for this process)

if(mustExit || (mustTerminate && k==0))

(out.result, External) // enforce quit

else

out // just pass given (output,status) through

)

}._3

}

Figure 23: An example of a process termination algorithm.

def handleOutput[T](out: POut[T]): POut[Option[T]] = out match {

case POut(res, Output) => POut(Some(res), Output)

case POut(_, s) => POut(None, s)

}

Figure 24: A function for filtering process outputs according to process statuses.

Example: limited multi-gradient. The problem described in Section 4.1 of ac-
tivating a spatially-limited gradient computation for each device where sensor
isSrc gives true, and deactivating it when it stops doing so, can be solved as
per Figure 27. There, we also show the “closure idiom”, by which a process
behaviour is defined as a closure, i.e., a function closing over its environment
(in this case, parameter isSrc).

6. Case Studies

In this section, we exercise the constructs previously introduced by present-
ing three application examples. The first two case studies, originally presented
in [21], are described here in more detail, while the third one is a novel contri-
bution addressing the edge-cloud domain.

We implemented all the scenarios in ScaFi combined with the Alchemist
simulator [34], described below. Data generated by the simulator has been
analysed using xarray [35]; visual reports of the data have been created via
Seaborn and matplotlib [36]. For every experiment, we execute 101 runs;
results reported in this manuscript represent their average. For the sake
of reproducibility, the source code and instructions for running experiments
are publicly available in two separate repositories: one hosting the former two
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def statusSpawn[K, A, R](process: K => A => POut[R],

newKeys: Set[K],

args: A): Map[K,R] =

spawn[K,A,Option[R]](

k => a => handleOutput(handleTermination(process(k)(a))),

params,

args).collectValues { case Some(p) => p }

Figure 25: More expressive process spawning.

case studies6; and a separate one for the latter7, there including additional
implementation details.

A key goal of these case studies is to demonstrate the soundness of our ag-
gregate process implementation. Moreover, our empirical evaluation will also
show that, orderly: (i) in certain cases, aggregate processes can greatly limit
the consumption of computational resources while retaining a reasonable qual-
ity of service (QoS); (ii) in certain cases, powerful meta-algorithms enabled
by aggregate processes can improve the dynamics of distributed computations.
Moreover, we also intend to show how aggregate computing and processes pro-
mote the implementation of systems exhibiting forms of collective intelligence.
In particular:

1. in the messaging case study, Section 6.1, the aggregate is able to create
dynamic teams of devices in order to hop-by-hop connect a source of a
message with the corresponding recipient, through a central, coordinator
node;

2. in the swarm case study, Section 6.2, the drones exploring the environment
in a mission collaborate to agree on the risk of fire;

3. in the edge computing case study, Section 6.3, the nodes in the infrastruc-
ture coordinate and adapt to provide efficient service discovery.

Simulation Framework

The Alchemist simulator has been selected as it features a meta-model, de-
picted in Figure 28, suitable for aggregate computing system models. In the
simulator, nodes are situated inside an environment and are connected to each
other through a linking rule. Nodes are programmed with reactions, which are
rules guarded by conditions and causing actions on the environment. Reac-
tion occurrence is described by an equation considering a time distribution and
possibly the current state of the conditions. Nodes contain molecules (data
identifiers), which are associated to concentrations (data values). The simu-
lator leverages an extended version of the Gibson-Bruck kinetic Monte Carlo
algorithm [37] to determine which event to process next, and efficiently deals

6https://bitbucket.org/metaphori/experiment-spawn
7https://github.com/DanySK/Experiment-2019-EAAI-Processes
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Figure 26: Graphical example of the evolution of a system of processes and the role of statuses
in statusSpawn. The green bubble springs into existence; the blue bubble dissolves after
termination is initiated by a node; the orange bubble expands. Only output nodes will yield a
value. Bubbles may of course overlap (i.e., a node may participate, with different statuses, to
multiple processes) and the dynamics can be arbitrarily complex (because of mobility, failures,
and local decisions).

with chains of causal events by maintaining a dependency graph among reac-
tions. In fact, Alchemist’s concepts can be instanced as follow (cf. Figure 28
and Figure 6):

� nodes are devices executing an aggregate program;

� linking rules are leveraged to model neighbourhoods;

� reactions are exploited to model the proactive parts of the software,
namely, the actual evaluation of the aggregate program and the subse-
quent sending of coordination messages;

� molecules keep state for devices, including, e.g., sensors and actuators
identifiers, used to access the local device capabilities; and finally

� concentrations are the actual values read from sensors and sent to actua-
tors.

Alchemist is a reference simulator for aggregate computing, leveraged in al-
most all its research activities requiring empirical evaluation by simulation
[9, 16], and providing support for various aggregate computing languages, such
as ScaFi [19] and Protelis [38] programs. Alchemist also provides integration
with OpenStreetMap [39] and Graphhopper8, enabling simulation of real-world

8https://www.graphhopper.com/
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def multiGradient(isSrc: Boolean, maxExtension: Double) =

statusSpawn[ID,Double,Double](src => limit =>

gradient(src==mid,nbrRange) match { // consider the usual gradient

case g if src==mid && !isSrc => (g, Terminated) // close on unsource

case g if g>limit => (g, External) // out of bubble

case g => (g, Output) // in bubble + get

},

newKeys = if(isSrc) Set(mid) else Set.empty,

args = maxExtension

)

Figure 27: An example implementation of the limited multi-gradient functionality.

situated scenarios; and is equipped with a batch engine for automating the
execution of several repetitions of a simulation.

6.1. Opportunistic Point-to-Point Instant Messaging

6.1.1. Motivation

The possibility of communicating by delivering messages regardless the pres-
ence of a conventional Internet access has recently gained attention as a mean
to work around censorship9 as well as in situations with limited access to the
global network—e.g., in rural areas, in exploration of unknown territories, in
emergency scenarios or during urban events when the network capability is
overtaken.

Here, we consider a messaging application where a source device, or sender,
wants to deliver a payload to a peer device, aka recipient, target, or destination,
in a hop-by-hop fashion by exploiting nearby devices as relays. The source
device only knows the identifier of the recipient, whose spatial and network
locations are unknown, and no viable route is pre-determined. The recipient’s
identifier could be obtained either from an infrastructural bootstrapping process
assigning and distributing identities (i.e., a registration process), or in a entirely
distributed fashion through an aggregate predicate on the device state (i.e., a
function computing a boolean field).

Our goal is to show how aggregate processes can support this kind of appli-
cation featuring multiple concurrent messages. It will do so in a self-organising
way, by limiting the number of devices involved in message delivery, and leading
to bandwidth savings and energy savings in turn.

6.1.2. Opportunistic Chat: Aggregate Process-based Implementation

The idea of the case study is to activate an aggregate process instance for
each message sent from a source node to a destination node, and to limit the
extension of such process instance to a small subset of the devices belonging to

9http://archive.is/C3niO
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Reaction
A proactive behaviour

Linking Rule
A function of the environment

that decides wether or not
two nodes are connected

Molecule
token representing a
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(think of it as a pointer)

Concentration
Actual data associated

with a "molecule"

Environment
Riemannian manifold

where nodes live

Node
A container of reactions
and molecules situated
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Figure 28: A pictorial representation of the Alchemist simulator meta-model, taken from [34].
Aggregate programming concepts are mapped onto the simulator abstract model, producing
an aggregate computing-enabled simulation platform, upon which the experiments have been
executed.

the whole system. A simple algorithm to do so involves creating information
flows from the source node to a “central” coordinator node, and from the central
node to the recipient node. Once the recipient has received the message, the
message delivery process must be closed.

An implementation can be as shown in Figure 30. First, we model the data,
i.e., the message, which also represents the PID, and coordination data used for
directing the shape of the process, which also represent the runtime arguments.
Then, we define the process computation logic, where the target of the message,
msg.target, has status Output at first and then Terminated. Indeed, after it
has read the message, the process bubble can vanish. Only nodes for which
field inRegion is locally true have status Bubble and hence participate in the
message delivery process for msg. The nodes for which inRegion is true are
those that belong to the path from the source of a message to the coordina-
tor or to the path from the coordinator to the recipient; these are calculated,
respectively, exploiting knowledge of nodes on the minimal path to the coor-
dinator (parentToCentre) and knowledge of neighbours whose minimal path
to the coordinator includes the current node (dependentNodes), in turn cal-
culated from the knowledge of the parent device of the spanning tree implied
by a gradient from the centre—cf. gradientWithParent call in the next list-
ing. Notice that the code of chatProcessLogic actually deals only with the
management of the process boundary and lifecycle; indeed, the “core logic” of
such a process is merely the expression returning msg as output. Finally, we
define a chat function that leverages statusSpawn, where the device used as
centre and new messages to be sent are externally provided through parameters
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Figure 29: Snapshot of the chat users in the city of Cesena. Green dots are users participating
the system, the big sized yellow dot is the coordinator, big sized red dots represent devices
currently sending a new message, big sized blue dots represent devices currently targeted to
receive a message.

centre and newMsgs, respectively. The output of function chat is the field of
the collections of messages that have been currently received at the recipient
devices.

6.1.3. Experimental Setup

We compare two aggregate implementations of such messaging system. The
first implementation, called flood chat, simply broadcasts the payload to all
neighbours. In spite of an in-place garbage collection system, however, this
strategy may end up dispatching the message towards directions far-off the
optimal path, burdening the network and memory capabilities of the system.
The second implementation, spawn chat, leverages spawn in order to reduce
the impact on the network infrastructure by electing a node as coordinator.
Then it creates an aggregate process connecting the source with the coordinator
and the coordinator with the target, and finally delivers the message along
such support. In this experiment, we naively choose a coordinator randomly,
but better strategies could be deployed to improve over this configuration [16],
including a self-organising election of the centre, a better positioning of such
dynamic centre along the shortest path, and improved resilience to network
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case class Msg(src: ID, target: ID, str: String)

case class ChatArgs(parentToCentre: ID, dependentNodes: Set[ID])

def chatProcessLogic(msg: Msg)(args: ChatArgs): POut[Msg] = {

// Boolean field denoting the path from the msg source to the centre

val srcToCentrePath = msg.src == mid | includingSelf.anyHood {

nbr(args.parentToCentre) == mid

}

// Boolean field denoting the path from the centre to the target

val destToCentrePath = args.dependentNodes.has(msg.target)

// Boolean field denoting the process domain (set of participants)

val inRegion = srcToCentrePath || destToCentrePath

POut(

result = msg,

status =

branch (mid == msg.target) {

justOnce(Output, thereafter = Terminated) // Message for me

} {

mux(inRegion) { Bubble } { External }

}

)

}

def chat(centre: ID, newMsgs: Set[Msg]): Iterable[Msg] = {

val (_, parentToCentre) = gradientWithParent(centre == mid)

val dependentNodes = rep (Set.empty[ID]) { case (s: Set[ID]) =>

// nodes whose path towards centre passes through me

mid + excludingSelf.unionHoodSet[ID](

mux (nbr{parentToCentre}==mid) { nbr(s) } { Set.empty[ID] }

)

}

statusSpawn[Msg,ChatArgs,Msg](

process = chatProcessLogic(_), // note: m(_) turns method m to lambda

newKeys = newMsgs,

args = ChatArgs(parentToCentre, dependentNodes)

).values

}

Figure 30: ScaFi code for the opportunistic chat case study.

failures by letting processes run within a wider channel with no coordinator.
The experiment simulates a mesh network of 1000 devices randomly de-

ployed in the urban area of Cesena, in Italy10. The experiment, whose software

10This city has been selected mostly because it is well-known by the authors, and thus
inconsistencies in the simulated deployment or bugs related to the mimicking of a real world
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part is stable, could be reproduced on different urban settings by changing the
deployment area, provided that the target city is reasonably well covered by
OpenStreetMap data. A snapshot of a displacement is provided in Figure 29.
We simulate the creation and delivery of messages among randomly chosen
nodes, with nodes sending a message in time window [0, 250] with an exponen-
tial distribution of 1mHz : on average, a message per second is generated by the
network. Devices execute rounds asynchronously at an average of 1Hz, though
their actual execution frequency can vary according to a Weibull distribution
with k = 0.2, and such variance varies with the same Weibull distribution, in
order to simulate the potential drift of devices executing the program. In each
experiment, we generate a different random displacement, different message
sources and destinations, and different random seeds for the drift distributions.

We gather a measure of QoS and a measure of resource usage. We use
the probability of delivering a message with time as a QoS measure, and we
measure the number of payloads sent by each node as a measure of impact on
performance. In doing so, we suppose the payload makes up for the largest part
of the communication: our metric gets closer to reality as the ratio between
the payload size and the total amount of information sent grows. As such, this
metric fits particularly well a scenario in which multimedia data are exchanged.

6.1.4. Results and Discussion

Figure 31 shows experimental results of the simulation of the 1000 devices
displaced. The two implementations achieve a very similar QoS, with the flood
implementation being faster on average. This is expected, as flooding the whole
network also implies sending through the fastest path—by echoing all messages
to all neighbours also the shortest path between sender and receiver will be
selected. The difference, however, is relatively small, as a message sent using
spawn-chat takes few additional seconds to get delivered with devices working
at 1Hz on average.

On the contrary, we see the spawn chat affords a dramatic decrease in band-
width usage, by properly constraining the expansion of message delivery bub-
bles, despite the simplistic selection of the coordinating device: the bandwidth,
measured in payloads sent per second per node, is orders of magnitude lower.
This is due to the spawn chat message delivery being untied from the number of
nodes: a channel gets built from the source to the coordinator and then to the
receiver, and such channel length is likely to grow with the network diameter,
not with the number of nodes and density of neighbourhoods. On the contrary,
the payloads shared by the flood chat are directly tied to the total number of
communication links among nodes, as messages get sent to every neighbour on
every round.

Those two effects, combined, provide the results of Figure 31, where the
spawn chat system trades a moderate degradation of QoS for a considerable
improvement over resource usage.

displacement could be addressed more easily.
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Figure 31: Evaluation of the opportunistic chat algorithms. The figure on top shows similar
performance for the two algorithms, with the flood chat featuring a slightly better delivery
time for the payloads (as it intercepts the optimal path among others). However, as the
bottom figure depicts, spawn chat requires orders of magnitude less resources due to the
algorithm executing on a bounded area (i.e., by involving only a subset of system devices for
each message delivery process).

6.2. Reconnaissance with a Drone Swarm

6.2.1. Motivation

Performing reconnaissance of areas with hindrances to access and movement
such as forests, steep climbs, or dangerous conditions (e.g. extreme weather
and fire) can be a very difficult task for ground-based teams. In those cases,
swarms of unmanned airborne vehicles (UAVs) could be deployed to quickly
gather information [40]. One scenario in which such systems are particularly
interesting is fire monitoring [41].

With this case study, we show how aggregate processes enable easy program-
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def gossipNaive[T](value: T)(implicit ev: Bounded[T]) =

rep(value)(max => ev.max(value, maxHoodPlus(nbr(ev.max(max, value)))))

def gossipGC[T](value: T)(implicit ev: Bounded[T]) = {

val leader = S(grain = Double.PositiveInfinity, nbrRange) // S

val potential = gradient(leader) // G

val collectedValue = C[Double,T](potential, acc = ev.max(_,_), // C

local = value, Null = ev.bottom)

// Broadcast the "collectedValue" only from where "leader" is true

valueBroadcast(leader, collectedValue)

}

def gossipReplicated[T:Bounded](value: T, p: Double, k: Int) =

(replicated{ gossipNaive[T] }(value,p,k) // returns a Map[Long,Double]

+ (Long.MaxValue -> value) // default, lowest-priority map entry

).minBy[Long](_._1)._2 // projects the value of instance with min PID

Figure 32: Code of the gossip algorithms used in the reconnaissance case study.

ming of a form of gossip that supports a precise and quick, self-healing collective
estimation of risk in dynamic scenarios.

6.2.2. Experimental Setup

In this case study, we simulate a swarm of 200 UAVs in charge of monitoring
the area of Mount Vesuvius in Italy11 Our goal is to showcase the application
of spawn in a challenging scenario, yet we decided to use reasonably realistic
data and parameters where available, in order to work with realistic distances
and speeds. UAVs move at an average speed of 130km

h following a simple
exploration strategy: starting from the base station, they visit a randomly
generated sequence of ten waypoints, and once done they come back for refu-
elling and maintenance. UAVs sense their surroundings once per second and
assess the local situation by measuring the risk of fire in a [0, 1] range, where 0
is absence of risk, and 1 is ongoing fire. The goal of the swarm is to agree on the
area with the highest risk of fire and report the information back to the station
for deployment of ground intervention. A snapshot of the drones performing
the reconnaissance is provided in Figure 33.

In this paper, we are not concerned with realistic modelling of fire dynamics,
but rather with challenging the distributed algorithms. We designed the risk
of fire to be maximum in a random point of the surveyed area for 20 minutes.

11This area has been heavily hit by wildfires in 2017, exposing volcanic rock to erosion with
harmful implications on the local hydrogeological risk (http://archive.is/j3lsm). All drones
are considered to be dispatched from the same base station in Boscoreale, a town just shy of
30.000 residents located on the southern side of the volcano. The site, situated within the
Vesuvio National Park, has been chosen as it matches the location of an actual civil protection
headquarter.
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Figure 33: Snapshot of the UAV swarm surveying the Vesuvius area as simulated in Alchemist.
Yellow dots are UAVs. Grey lines depict direct drone-to-drone communication. Drones travel
at an average speed of 130 km

h
, in line with the cruise speed performance of existing military-

grade UAVs (see http://archive.is/8zar5), and communicate with other drones within 1km
distance in line-of-sight. Forming a dynamic mesh network using UAV-to-UAV communication
is feasible [42], although challenging [43].

The risk then drops, e.g. due to a successful fire-fighting operation, with the
new maximum, lower than the previous, being in another randomly generated
coordinate. After further 20 minutes the risk sharply increases again to on a
third random coordinate (e.g. due to dry and windy conditions).

We compare three approaches: (i) naive gossip, a simple implementation
of a gossip protocol estimating the collective maximum by repeated propaga-
tion and aggregation of state estimates between neighbouring devices [44]; (ii)
S+C+G [45], a more elaborated algorithm – based on self-stabilising building
blocks [23] – that elects a leader, aggregates the information towards it, then
spreads it to the whole network by broadcast; (iii) spawn-based replicated gossip,
which replicates the first algorithm over time as per [33] and whose implemen-
tation, shown in Figure 32, uses function replicated defined in Section 5 upon
spawn. For the replicated algorithm, we use two replicates (k = 2) and choose
the period p according to the recommendations in [33] by estimating the net-
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Figure 34: Evaluation of the gossip algorithms in the UAV reconnaissance scenario. The
figure on top shows expected values and measures performed by the competing algorithms.

The bottom figure measures the error as root-mean-square:

√∑
n (vn−a)2

n
where n device

count, a actual value, and vn value at the n-th device. The naive gossip cannot cope with
danger reduction, S+C+G cannot cope with the volatility of the network, while spawn-based
replicated gossip provides a good estimate while being to cope with changes.

work diameter offline as the distance between the base station and explorable
point farthest from it, divided by the communication range.

6.2.3. Results and Discussion

Results are shown in Figure 34. The naive gossip algorithm quickly converges
to the correct value, but then fails at detecting the conclusion of the dangerous
situation: it is monotonic in nature [46], hence the collective state converges to
the highest peak and can not react to an improvement in the global situation;
namely, it does not detect the case in which there is a new global maximum
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which is smaller than a previously computed maximum. This is the case after
simulation time 20 in Figure 34: changes from the initial situation go undetected,
making the naive gossip unsuitable for evolving scenarios. One possible
way around would be to regularly restart the protocol, or timestamp readings
and discard them after a period of time. Both strategies however incur in
large errors upon restart/discard [33], and the former also potentially introduces
synchronisation concerns.

S+C+G can adapt to changes, but it is very sensitive to modifications in the
network structure: data gets aggregated along a spanning tree generated from
the dynamically chosen coordinator, but in a network of fast-moving airborne
drones such structure gets continuously disrupted.

In this study, the spawn-based replicated gossip performs best, as it conju-
gates the stability of the naive gossip algorithm with the ability to cope with
reductions in the sensed values. The algorithm, in this case, provides underes-
timates, as it reports the highest peak sensed in the time span of validity of a
replicate, and drones rarely explore the exact spot where the problem is located,
but rather get in its proximity.

6.3. Self-Discovery of Services in Edge-Cloud Infrastructures

6.3.1. Motivation

As already mentioned, edge computing is an emerging paradigm where stor-
age and computation are brought closer to data sources and users, i.e., towards
the “edge of the network”. Edge computing is not to be intended as a replace-
ment for traditional cloud computing but rather as a complementary paradigm,
providing options to system designers when, e.g.: the cloud is temporarily or
permanently not available; the cloud is available but undesirable or incompati-
ble with cost, latency or other non-functional requirements; or when the kind of
services to be provided operate inherently at the edge, such as in mobile crowd-
sensing [47] scenarios. In this context, various issues arise including, for instance,
QoS-aware deployment of services in heterogeneous infrastructures [48, 49, 50],
opportunistic computing [2, 3, 51], adaptive coordination of resources in edge-
clouds [52, 53], energy-aware task offloading [54], etc. In this section, we focus
on the problem of decentralised service discovery [55], which is especially non-
trivial in dynamic, open, large-scale edge systems such as, for instance, those
envisioned in the Social [56] and Robotic [57] IoT.

Our model of the problem, illustrated in Figure 35, is based on a hierarchical
network of nodes organised around three layers: edge, fog, and cloud. Each node
can provide and consume multiple services such as storage, voice recognition,
image processing, etc. In particular, a task needs one or more service instances
to be performed. Since the services needed to accomplish a task are usually not
all available at the node responsible for the task, and the network is potentially
dynamic, a service discovery process must be activated to find the set of required
service providers. In this case study, we model any service discovery process as
an aggregate process spreading in the network. We show how the abstraction
can be used to tackle relevant problems in edge computing, and how a process-
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Figure 35: Simulation snapshot of the system for the self-discovery case study, showing the
network structure. Service requestors are depicted a dark blue squares, and progressively
extend their search for nearby providers. Network nodes potentially working as providers are
depicted as circles, matching colours indicate the execution of the same discovery process.

based solution outperforms a corresponding baseline field implementation that
does not exploit processes.

6.3.2. Experimental Setup

In this experiment, we model a hierarchical network comprised of diverse
systems whose computational performance decreases towards the edge of the
network. All network nodes feature both local connection to other nodes (em-
ulating local area networks, or body area networks) as well as Internet access
to the cloud. The deployment shape is depicted in Figure 35, and it comprises
100 lightweight devices (with smartphone / system-on-chip level capabilities)
on the outer side, 25 devices with desktop PC-level performance, and 10 high
performance small servers at the network core. Peripheral nodes run applica-
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tions which require one or more remote services. These services can be accessed
via the cloud access, or through a nearby edge server hosting them, provided
that such node services can be discovered in the local network. Requestors are
programmed to try to self-discovery nearby services, and fall back to cloud if
none are found shortly after the application launch.

In this experiment, we compare two approaches to self-discovery. The former
is a classic aggregate programming solution: requestors diffuse a gradient field,
expanding a service request progressively on the edge network. Edge service
providers reached by such field can offer their service—a communication channel
is established by means of the converge-cast operator C. This network segmen-
tation and communication pattern is also known as self-organizing coordination
regions (SCR) [45]. The second approach leverages processes to improve the
search capabilities of the baseline. In particular, the main limitation of a plain
SCR implementation in the proposed setup is the absence of request overlaps:
each request generates an area, and other requests do not penetrate it. On the
contrary, aggregate processes allow concurrent requests to overlap in the edge
network, enabling a longer range discovery, and potentially more requests to be
served without cloud access.

In our experiments, we simulate a request creation process following an expo-
nential distribution with varying λ (request creation rate). In order to emulate
the usually sequential use of mobile and web applications, we allow new requests
from client devices to be created only if the previous one has been satisfied, either
via edge or cloud. Our metric is the number of hops the communication must go
through. This metric would basically be the same as running the traceroute

command from requestor to provider and counting the entries. We believe this
roughly maps to latency, as shortest network paths usually count less hops and
geographic distance. Since access to a cloud service cost, in terms of hops, varies
depending on the backbone network serving the edge deployment, we run sim-
ulation with a variable cost of access the cloud. We experimented with a wide
range of costs for cloud access, including the unrealistic hypothesis of no cost
(which would imply access to the cloud having the same performance of the ser-
vice being provided by an infinitely powerful device with network performance
equal to the loopback network interface). We believe a typical realistic cloud
cost can range between 5 and 20 hops.

In our evaluation, we consider a reasonable performance to be up to about
20 hops.

6.3.3. Results and Discussion

Results are depicted in Figure 36. The process-based discovery, leveraging
overlapping, is able to timely discover available edge services in face of much
higher requests: while the baseline algorithm’s performance degrade and cause
cloud fallbacks consistently at about 0.00056 requests per user per second, the
process-based version performance drop-off point is at 0.0075 requests per user
per second, an order of magnitude higher.

Failures in local service discovery and fallback to cloud access are the cause
of better performance for the baseline algorithm in the utopian case of no cost
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Figure 36: Evaluation of the edge discovery service performance for classic gradient-based SCR
implementation (top) and for the overlapping aggregate processes implementation (bottom).
Yellow and green colours indicate better performance (fewer hops to reach the service). Purple-
ish colours indicate low to unacceptable performance. The process-based approach shows a
much higher probability of timely discovering services in the edge network with respect to the
baseline algorithm. This fact can be noted by looking at the lower costs across the leftmost
columns, up to 0.01778 service requests per second per user, and in particular with realistic
cloud access costs.

for cloud access, or in the unlikely cases of access to cloud being cheaper than
access to a nearby network node.
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7. Related Work

7.1. Spatial Computing

Space is important in computing, both for efficiency and design. The impor-
tance of the environment is widely recognised in multi-agent systems design [58].
Indeed, in many cases, systems are situated in physical or logical space, and must
deal with its constraints and opportunities. In a further view, a situated sys-
tem can also be thought as the very space it occupies and perceives, so that
programming the system is like programming the corresponding space.

Various programming models and approaches that address peculiarities of
space-time have been developed across a wide variety of application domains.
The survey in [16] describes the historical evolution of “aggregate computing”
from research in distributed systems, coordination languages, and spatial com-
puting. In particular, four main clusters of approaches can be identified.

A first cluster is given by “bottom-up” approaches that abstract individ-
ual networked devices. In Tuples On The Air (TOTA) [59], tuples spatially
distributed in space are used to represent context (as information with the en-
vironment) and support loosely coupled coordination between situated devices.
Aggregate processes can be used to represent situated and evolving tuples à la
TOTA [60]. In Hood [61] and Abstract Regions [62], geographic or topological
neighbourhoods can be defined to support communication. This logical model
aims to simplify application development by abstracting interaction through
a region-based collective communication interface. Similarly, the aggregate
computing model, upon which aggregate processes are developed, also considers
“bulk communications” based on a logical notion of neighbourhood. Moreover,
note that two kinds of neighbourhood-like notions exist in aggregate computa-
tions: those providing the basic connectivity in the system and “assumed” by
the program (i.e., reified by the underlying platform and network) and those
at the application-level that are explicitly regulated by branching constructs.
In the latter sense, aggregate processes can be used to define dynamic domains
constraining the scope of communications.

Another cluster is given by languages for expressing spatial and geometric
patterns. Examples include Growing Point Language (GPL) [63], which uses a
botanical metaphor with growth processes replicating tropisms in plants, and
Origami Shape Language (OSL) [64], which provides geometrical constructs
to create and compose regions of a “computational surface”. A more recent
framework is Pleiades [65], a topology programming framework which exploits
self-organising overlays and assembly-based modularity to construct and en-
force self-stabilising structural invariants. These features can be useful, e.g., for
morphogenesis and self-assembling robots. Aggregate processes can in princi-
ple support the development of geometrical shapes, by properly regulating the
process of expansion and shrinking of their border together with the mobility
of devices. This feature is expected to be relevant to, e.g., modular robotics,
but specific investigations are needed to properly validate the effectiveness of
the approach in that and similar domains.
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Many spatial computing approaches also arose in the context of wireless sen-
sor networks (WSN), where a multitude of sensors are deployed to capture and
process environment data [66]. In this context, a common problem is to iden-
tify abstractions to simplify streaming and summarising of information over
space-time regions. Note that aggregate processes propagating or collecting
data through gradients are a very natural way to do that. Similarly, in litera-
ture, these tasks are often achieved through macro-programming languages that
express the system-level behaviour through global abstractions. Notable exam-
ples include Regiment [67], a functional reactive language which models network
state as time-varying signals (similar to computational fields); SpaceTime Ori-
ented Programming (STOP) [68], a Ruby DSL that support on-command and
on-demand data collection through mobile agents; and Sense2P [69], a logic
macro-programming language whereby WSNs are abstracted as database upon
which data collection and spreading of logic queries can be performed. Aggre-
gate computing is also a macro-programming paradigm, but it is unique as it
adopts a functional approach (rather than logic or procedural), which hence
grants the benefit of purely declarative compositionality.

Finally, there are general-purpose space-time computing models, such as
MGS [70], the field calculus [18], and the Soft Mu-calculus for Computational
fields (SMuC) [11]. MGS follows a topological computing approach by which
the programmer defines computations over manifolds, whereas the field calculus
and SMuC work on a computational field abstraction as covered in this paper.

7.2. Collective Adaptive Systems and Ensemble-based Approaches

Other works that do take into account the collective dimension of systems in-
clude so-called ensemble-based approaches, which are centred around the notion
of an ensemble, i.e., a dynamic formation of components. For instance, in Dis-
tributed Emergent Ensembles of Components (DEECo) [71], components can
communicate by dynamically binding together through ensembles, which are
formed according to a membership condition and consists of one coordinator
and multiple members interacting by implicit knowledge exchange. Protelis [38]
is an aggregate programming language based on the field calculus, and as such
featuring many base constructs already found in ScaFi. It allows arbitrary
alignment via the alignedMap construct, enabling some form of parallel aggre-
gate execution exploited in the multiInstance API [72]. These constructs
have inspired align and spawn, which however (i) have been given precise se-
mantics [21], (ii) are typed, (iii) locally keep the state of active keys from round
to round, and (iv) provide automatic propagation and filtering of process keys
to the neighbourhood, therefore simplifying domain management.

Another key representative is Service Component Ensemble Language
(SCEL) [73], a kernel language to specify the behaviour of autonomic com-
ponents, the logic of ensemble formation, as well interaction through attribute-
based communication (which enables implicit selection of a group of recipients).
A stochastic process algebra with a similar setup is CARMA (Collective Adap-
tive Resource-sharing Markovian Agents) [74]. The idea of these approaches is
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to use attributes to support dynamic definition of ensembles. An aggregate pro-
cess also defines and is therefore run by an ensemble: the logic of membership
can be purely local or collective, and can unfold progressively in a decentralised
fashion; attributes could also be used to regulate the domain of an aggregate
process instance or multi-hop multicasting activities.

7.3. Multi-Agent System and Organisations

Multi-agent systems can bring agents together according to multiple organ-
isational paradigms [17], including (i) network organisations or adhocracies,
with complex and dynamic structures; (ii) hierachies, with tree-like structures;
(iii) holarchies, i.e., hierarchically nested structures of holons (which are both
wholes and parts) with cross-tree interactions; (iv) coalitions, i.e., short-lived,
goal-directed groups of agents with the goal of maximising individuals’ utilities;
(v) teams, i.e., sets of cooperative agents which have agreed to work together to-
wards a common goal; (vi) congregations, i.e., long-lived agent groupings, formed
with no specific goal in mind, aimed at facilitating the process of finding collab-
orators (cf., service discovery); (vii) societies, i.e., long-lived, open organisations
aimed at providing consistency through social laws to facilitate coexistence and
ordered-yet-flexible interaction; (viii) federations, i.e., groups of agents which
have ceded some autonomy to a single delegate which represents the group and
mediates interaction with other groups; (ix) markets, i.e., organisations of com-
petitive buyers, suppliers, and sellers, mainly aimed at supporting processes of
allocation and pricing; (x) matrix organisations, i.e., structures with rows of
agents and columns of managers. Notice that certain kinds of organisations –
such as teams, coalitions, congregations, and societies – are structurally similar
and rather defined by their dynamics.

With aggregate processes, it is possible to program the logic of group forma-
tion and dissolution in order to implement various grouping strategies. In the
messaging case study, e.g., a dynamic, goal-directed team of devices is formed
just to connect senders with recipients, dissolving when the task is completed.
The use of aggregate processes to define social processes can be considered as
an interesting future work.

7.4. Declarative Parallel Programming Models

Declarative programming has the advantage of specifying a desired compu-
tation logic without delving into low-level aspects of its actual implementation:
in this way, the runtime engine has the flexibility of organising execution while
taking into account various contextual aspects and performance metrics. A well-
known example is the query optimiser component in relational databases, which
returns efficient query execution plans for a given query expressed declaratively
in the SQL language. Similarly, the aggregate programming paradigm, in virtue
of its logical, abstract model, delegates to the aggregate computing platform a
whole set of issues related to the execution of an aggregate computation over
heterogeneous edge-fog-cloud infrastructure, as explored in [22].
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Related to the specifics of process execution, there are different models which
aims at simplifying programming of multiple computing nodes as well as anal-
ysis of resulting programs. For instance, in Valiant’s Bulk Synchronous Par-
allel (BSP) model [75], computations are structured as sequences of rounds
followed by synchronisation steps; large-scale graph processing frameworks such
as Apache Giraph [76] are inspired by BSP. The execution model of aggre-
gate computing, though technically similar (round-based with communications
at the end of each round), is motivated by the need of adapting to context
change rather than by the need of enabling accurate performance analysis for a
variety of architectures. That is, these approaches have different goals and do-
mains: BSP is for parallel computing, and aggregate computing is for collective
adaptive systems.

Modern distributed data processing models (e.g., MapReduce [77] and de-
rived ones such as Apache Spark [78]) also abstract away network structure and
trade performance for constrained programming schemas. Similarly, aggregate
computing programs abstract from execution details and hence are amenable
to different deployments and optimisations. However, note that the emphasis
in aggregate computations is on the self-adjusting and correct eventual result,
rather than on incremental but precise and consistent calculations.

By another perspective, works on service computing [79] tailored to dynamic
ad-hoc environments [80] are also relevant but usually neglect the collective di-
mension and rarely consider open-ended situated activities. The service perspec-
tive connects also to utility computing and related efforts for abstracting and au-
tomatically managing networking and hardware infrastructure [81]—aggregate
processes, by admitting diverse computation partitioning schemas [22], foster
this vision.

7.5. Process Algebras

A thread of related work is given by process algebras or process calculi, whose
research line was initiated in the 1970s and 1980s with the independent formu-
lation of Communicating Sequential Processes (CSP) [82] by Hoare, Calculus
of Communicating Systems (CCS) [83] by Milner, and the Algebra of Commu-
nicating Processes (ACP) [84] by Bergstra and Klop. Historical treatments of
the development of process algebras can be found, e.g., in [85, 86]. A signif-
icant representative of this research line is the π-calculus [87], which models
concurrent computation as a set of processes that interact by reading from and
writing to shared channels. With respect to its predecessors, the π-calculus also
attempts to model mobility : it does so by supporting dynamic reconfiguration
of the system topology by exchanging channel names over channels themselves.
In these formal frameworks, important properties to prove include equivalence
between two processes (cf., bisimulation), deadlock freedom, liveness etc.

The idea of core languages like π-calculus or the field calculus is generally
to identify a minimal set of operators (core language) for capturing relevant
modelling aspects, specifying systems in an abstract sense, and then formally
analyse system specifications for properties of interest. The main difference be-
tween them lies essentially in their abstraction level and goals, which are quite
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different. While the goal of the π-calculus is essentially to describe concurrent
communicating processes enacting given protocols, the field calculus describes
so-called collective adaptive systems [88], realised as continuously-iterated local
computation chunks that denote communication implicitly: executed by a col-
lection of interacting devices this results in a globally coherent (i.e., designed)
distributed system. Technically, the differences are many: a π-calculus specifi-
cation composes processes from atomic ones to larger-scale parallel/distributed
systems, while in field calculus composition concerns increasingly complex be-
haviour of the same set of devices; in π-calculus each interaction act results in a
message exchange, while in field calculus messages are exchanged continuously
and the specification only “fills” the message content; and finally, of a π-calculus
specification one typically observes traces of message exchanges, while the field
calculus concerns the computational fields that results from a given event struc-
ture [18].

More similar to the field calculus are process algebras for collective adap-
tive systems that provide operators for group communication. For instance,
CARMA [74] leverages attributes to dynamically aggregate components into
ensembles, and components can interact via guarded broadcasts. In PALOMA
(Process Algebra of Located Markovian Agents) [89], interaction between agents
depends on their location and state—through a perception function that affects
message reception. These approaches, rooted in attribute-based communica-
tion, differ from the field calculus, where communication is a broadcast and
the group of recipients is captured by some neighbouring relationship. In [90],
the π-calculus is extended with a weighted choice operator and channel types
for distribution, broadcast, and aggregation, in order to model and analyse self-
organisation in WSNs; however, scope seems limited as validation only considers
a clustering algorithm. In summary, crucially, with respect to other approaches,
the field calculus naturally leads to programming languages (like ScaFi) that
are usable in practice and that enable various kinds of applications where col-
lective adaptation makes sense—cf., crowd management [9], edge resource man-
agement [52, 91, 45], distributed sensing [20], cooperative problem solving [92],
and so on [16].

8. Conclusions and Future Work

In this paper, we have presented and implemented the notion of aggregate
processes to model dynamic, concurrent collective adaptive behaviours carried
out by dynamic formations of devices. In particular, we have designed this
abstraction through the spawn construct, which extends the practical expres-
siveness of the field calculus. In a nutshell, this extension can be thought of
as adding a support for concurrent field computations, with fine-grained do-
main management. We have implemented the spawn primitive in the ScaFi
language, and covered programming techniques for dealing with the definition,
generation, shape regulation, and termination of aggregate processes. Finally,
we have implemented three case studies, by simulation, showing the correctness
and performance of useful programs that would be infeasible (or very hard) to
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write in the original framework. These case studies exemplify how a form of
swarm or collective intelligence can emerge out of a computational aggregate
by having it play an aggregate program which describes how its devices must
behave and coordinate by a global perspective. In this view, aggregate pro-
cesses extend aggregate computing with a new mechanism for structuring and
expressing intelligent activity (which includes the ability of a device to evaluate
its context to determine whether it should participate in a process or not).

In future work, it would be interesting to consider adoption of aggregate pro-
cesses to define social processes implementing typical organisational paradigms
in multi-agent systems, such as those surveyed in Section 7.3. Indeed, as
aggregate processes group together sets of agents that need to coordinate or
collaborate on common activities, they could be useful to structure or regulate
agent societies. Another compelling direction involves investigating the case for
a “collective adaptive operating system”, where both system processes and ap-
plication processes launched by users run in the smart cyber-physical ecosystem
across the edge-fog-cloud continuum. This direction would attempt to gener-
alise over recent work in the context of smart cities [91, 92]: the idea is that, e.g.,
a smart city or a long-lived ecosystem made of a network of computing nodes
may sustain its operations through several concurrent activities collectively ex-
ecuted by ensembles of smart devices (including smart sensors and actuators);
at the same time, citizens may implicitly or explicitly request city services (e.g.,
crowd-aware navigation, smart lighting) activating new processes (potentially
aggregating several devices). In other words, we envision a platform for collec-
tive intelligence sustained by a self-organising aggregate of humans and smart
devices.
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Appendix A. The Scala Programming Language for ScaFi: a Primer

Scala is strongly, statically typed language that coherently integrates the
functional and the object-oriented paradigms (with single class inheritance and
multiple component composition through traits) and provides advanced typing
and composition mechanisms. In the following, we assume familiarity with
Java/C-like languages.

Consider the ScaFi Constructs trait, reported here for the reader’s conve-
nience.

trait Constructs {

def rep[A](init: => A)(fun: A => A): A

def nbr[A](expr: => A): A

def foldhood[A](init: => A)(acc: (A, A) => A)(expr: => A): A

def branch[A](cond: => Boolean)(th: => A)(el: => A)

def mid(): ID

...

}

In Scala, methods are introduced with the def keyword, can be generic (with
type parameters specified in square brackets), can be written in curried form
(with multiple parameter lists), have a return type which is specified at the

62

https://doi.org/10.1145/2800835.2809508
https://doi.org/10.1007/978-3-319-10696-0_22
https://doi.org/10.1007/978-3-319-10696-0_22
https://doi.org/10.1109/ICUMT.2009.5345551
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1007/978-3-030-22397-7_11
https://doi.org/10.1109/SCC.2019.00019


end of the signature, and admit use of both round and curly brackets for 1-ary
parameter lists (so that rep(.)(.), rep{.}{.}, rep(.){.}, rep{.}(.) are all
valid calls). When using block syntax {...} – e.g., as a parameter value or
body of a method, in if-else expressions etc. – it is possible to specify multiple
expressions or statements (which are also expressions, returning a value of the
singleton type Unit); the last evaluated expression is the return value of the
block.

nbr {

val x = 10

x + 2

} // the nbr block is a by-name parameter; when evaluates, it returns 12

Moreover, at the invocation side, named arguments can be used:

nbr(expr = 1+2)

Parameterless methods can also be defined and can be simply invoked without
the common function call operator ():

mid // invokes parameterless method

Syntax ⇒ A denotes a call-by-name parameter which is passed
unevaluated—i.e., as a thunk—to the method (basically, it is syntactic sugar
over nullary functions). E.g., expression 1+2 in the above nbr call is not eval-
uated strictly but wrapped as such and evaluated any time argument expr is
referred to within nbr’s implementation.

Syntax (T1, . . . , Tn) denotes tuple types, whose objects (v1, . . . , vn) can be
queried for elements via selectors t. n. Syntax (k -> v), useful for maps, can be
used to denote a two-element tuple (k, v):

val m = Map("a"->1) + ("b"->2) // m = Map("a"->1,"b"->2)

// Note ’+’ overloaded to add entry to map

m.toSet // (Set("a",1),("b",2)) -- i.e., a map is a set of 2-elem tuples

Keyword val introduces named immutable references to (mutable or immutable)
objects. Notice that we omitted the type of m, by exploiting Scala’s type infer-
ence.

Syntax A1 ⇒ . . . An ⇒ Ret denotes (curried) function types, whose values
(functions) can be expressed with similar syntax (a1 : A1) ⇒ . . . ⇒ (an :
An) => retExpr. A shortcut for creating lambdas (anonymous functions)
leverage symbol for subsequent positional arguments.

((x:Int)=>x+1)(2) // => 3

((_:Int)+1)(2) // => 3

(_+1)(2) // => 3 (with type inference)

Functions can also be obtained from methods (methods can be defined in class,
trait or object definitions, and even locally to other methods):
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def m(x: Int)(y: Int): Int = ???

val mfun = m _ // Or also: m(_). Inferred type: Int => (Int => Int)

Symbol ??? is a valid expression, of type Nothing (the bottom type in Scala,
i.e., the subtype of any other type), that stands for a missing implementation
(i.e., it raises an exception when evaluated). Lambdas can also be defined
through pattern matching on the input parameter,

{

case pattern1 => body1

// ...

case patternN => bodyN

}

These can be used in place of arg ⇒ ret syntax to improve code legibility by,
e.g., destructuring tuples into values:

rep((0,""))(tp => (tp._1+1, tp._2+"!")) // or also: rep(...){ tp => ... }

rep((0,"")){ case (k,s) => (k+1, s+"!") }

Pattern matching on values leverage keyword match, and may optionally
specify guards introduced with keyword if:

value match {

case pattern1 if guard1 => body1

case _ => bodyCatchAll // catch-all pattern

}

In Scala, it is possible to express type class constraints on type parameters,
leveraging implicit parameters (or an equivalent special syntax). For instance,
in

def f[T](implicit evidence: C[T]) = ???

def g[T:C] = { // constraint T:C ensures there’s a C[T] implicit

val evidence = implicitly[C[T]] // takes the implicit

???

} // exactly like f

methods f and g can only be invoked if there exists in scope an implicit instance
of type C[T] (defined with keyword implicit and possibly imported in scope).
This is the idiomatic way to implement the typeclass pattern in Scala [32].

Another useful construct is case classes (product types),

case class C1(v1: Int)

val c = C1(7) // creates an instance (no need to use the ’new’ operator)

c match { case C1(x) => x } // returns 7 (extract by pattern matching)

c == C1(7) // true (field-by-field equivalence)

case class C2[T](x: T, y: T)(val z: T) // equivalence only on x, y

val c2 = C2(0,0)(8) // type inference: C2[Int]

c2 == C2(0,0)(7) // true
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c2 match { case c@C2(a,b) => a+b+c.z } // 8 (c binds to entire structure)

which simplify the definition of immutable records and provide built-in support
for structural equivalence, pattern matching, and destructuring. Notice that,
according to the semantics of Scala’s case classes, C2(0,0)(7)==C2(0,0)(8) is
true because equality is based only on the fields provided in the first parameter
list (which are the same for the left-hand and right-hand side expressions).

Sum types can be defined by using inheritance.

trait Status

// A Status can be a BubbleStatus or an ExternalStatus

case object BubbleStatus extends Status

case object ExternalStatus extends Status

where we may use case objects instead of case classes if the component
types are singleton (so we need just one instance). Sum and product types are
the Scala’s idiomatic way of defining Algebraic Data Types (ADTs).

Sometimes, it is handy to define type aliases, for better naming or for defining
shorthands.

type Pid = Long
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