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ABSTRACT 

The scarcity of bandwidth in the radio spectrum has become more vital since the 

demand for wireless applications has increased. Most of the spectrum bands have 

been allocated although many studies have shown that these bands are significantly 

underutilized most of the time. The problem of unavailability of spectrum bands and 

the inefficiency in their utilization have been smartly addressed by the cognitive radio 

(CR) technology which is an opportunistic network that senses the environment, 

observes the network changes, and then uses knowledge gained from the prior 

interaction with the network to make intelligent decisions by dynamically adapting 

transmission characteristics. In this thesis, recent research and survey about the 

advances in theory and applications of cognitive radio technology has been reviewed. 

The thesis starts with the essential background on cognitive radio techniques and 

systems and discusses those characteristics of CR technology, such as standards, 

applications and challenges that all can help make software radio more personal. It 

then presents advanced level material by extensively reviewing the work done so far 

in the area of cognitive radio networks and more specifically in medium access 

control (MAC) protocol of CR. The list of references will be useful to both 

researchers and practitioners in this area. Also, it can be adopted as a graduate-level 

textbook for an advanced course on wireless communication networks. 

The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV 

broadcasts and satellite has created immense demand for radio spectrum which is a 

limited natural resource ranging from 30KHz to 300GHz. For every wireless 

application, some portion of the radio spectrum needs to be purchased, and the 

Federal Communication Commission (FCC) allocates the spectrum for some fee for 

such services. This static allocation of the radio spectrum has led to various problems 

such as saturation in some bands, scarcity, and lack of radio resources to new 

wireless applications. Most of the frequencies in the radio spectrum have been 

allocated although many studies have shown that the allocated bands are not being 

used efficiently. The CR technology is one of the effective solutions to the shortage 

of spectrum and the inefficiency of its utilization. 
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In this thesis, a detailed investigation on issues related to the protocol design for 

cognitive radio networks with particular emphasis on the MAC layer is presented. A 

novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies 

between the CR MAC protocol families of globally available common control 

channel (GCCC) and local control channel (non-GCCC).  First, a multi-access 

channel MAC protocol, which integrates the best features of both GCCC and non-

GCCC, is proposed. Second, an enhancement to the protocol is proposed by 

enabling it to access more than one control channel at the same time. The cognitive 

users/secondary users (SUs) always have access to one control channel and they can 

identify and exploit the vacant channels by dynamically switching across the different 

control channels. Third, rapid and efficient exchange of CR control information has 

been proposed to reduce delays due to the opportunistic nature of CR. We have 

calculated the pre-transmission time for CR and investigate how this time can have a 

significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, 

including a Markov chain model, has been proposed. This analytical model will 

rigorously analyse the performance of our proposed DDH-MAC protocol in terms 

of aggregate throughput, access delay, and spectrum opportunities in both the 

saturated and non-saturated networks. Fifth, we develop a simulation model for the 

DDH-MAC protocol using OPNET Modeler and investigate its performance for 

queuing delays, bit error rates, backoff slots and throughput. It could be observed 

from both the numerical and simulation results that when compared with existing 

CR MAC protocols our proposed MAC protocol can significantly improve the 

spectrum utilization efficiency of wireless networks. Finally, we optimize the 

performance of our proposed MAC protocol by incorporating multi-level security 

and making it energy efficient.  
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Chapter 1: Introduction 

1.1. Spectrum and Frequency Allocation 

The wireless technology has become an integral part of everyday life. 

Broadband wireless access, mobile TV and local TV programme services are just 

some of the newly-developed services which need spectrum. High definition TV and 

new developments in digital radio broadcasting are being offered to the public. Some 

of the other proliferations of spectrum use are broadcasts, remote controllers, mobile 

phones, garage door openers, satellite transmission, and PDA‟s.  The electromagnetic 

spectrum which is used as a medium of transmission for wireless communication is a 

natural resource. Thanks to the German physicist Heinrich Hertz whose discovery of 

electromagnetic waves led to the development of radio [1][2]. All wireless 

communication uses some portion of the radio spectrum that needs to be purchased, 

and the Federal Communication Commission (FCC) provides the service of 

allocating the spectrum (ranging from 30KHz to 300GHz) for a fee [3][4]. 

1.1.1. Static and Dynamic Frequency Allocation  

A portion of the spectrum can either be statically assigned or dynamically 

allocated for certain wireless applications. For example, Wi-Fi always uses 2.4GHz 

band, aeronautical radio navigation operates within the band 190-535 kHz and 

100GHz-102GHz is allocated for mobile space-research [5]. Figure 1.1 shows the 

complete allocation chart of UK frequencies for year the 2012. The second spectrum 

allocation approach, i.e., dynamic spectrum allocation (DSA), was first discussed in 

the European DRiVE project [6]. This project aimed to improve spectrum efficiency 

by dynamically allocating the spectrum to different services. This means that, to 

introduce flexibility and to improve spectrum efficiency, certain spectrum bands can 

be allocated to different services for exclusive use.  Dynamic spectrum allocation also 

allows the licensed users of the spectrum to sell and lease their spectrum and to 

freely choose technology. In this way, DSA enables the industry to make best use of 

spectrum by allowing the licensed user of the spectrum to either freely use or share 

their spectrum with unlicensed wireless services. 
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1Figure 1.1. The UK frequency allocation chart [7]. 

1.1.2.  Advantages and Disadvantages of Fixed/Dynamic Frequency Allocation  

The major advantage of static allocation of the frequencies in a spectrum band 

like the Industrial Scientific and Medical (ISM) band (e.g. 2.4 GHz) is that it 

facilitates development of those wireless applications that can be used globally. It is 

the static allocation of the ISM spectrum band that helps us connect to the internet 

regardless of the type and location of the device. However, this has caused severe 

inefficiency of spectrum utilization which is discussed in more detail in the following 

section. 

1.1.3. Problems in Spectrum Allocation  

With the rapid development of wireless applications and more demand for 

spectrum, the existing spectrum policies have appeared to be longstanding and 

outmoded. Some of the factors that have forced the policy makers to think beyond 

the traditional spectrum allocation methods are: demand for increased efficiency of 

wireless services; development of versatile wireless devices, advances in technology 

                                                           
 

1 Courtesy: http://topdf.info/owners-manual/the-uk-frequency-allocations-pdf.pdf 

 



- 3 - 
 

and installation of more and more wireless local area networks (WLANs) in homes 

and small businesses. Some of the potential problems caused by the classical ways of 

spectrum allocation have been summarised below. 

1- Congestion on some of the spectrum bands, e.g., the ISM band. 

2- Inefficiency of spectrum utilization in other spectrum bands, e.g., the TV 

band in rural areas [3][4]. 

3- Scarcity of spectrum for new wireless applications. 

4- Lack of radio resource for those who are more appropriate and needy. 

Figure 1.2 shows the inefficiency of spectrum usage in certain spectrum bands.  

 

Licensed Bands 

 

Unlicensed Bands 

 

 

2Figure 1.2. Today‟s wireless spectrum [8]. 

1.1.4. Solutions to the Spectrum Scarcity  

Technological advancements have enabled the reforms and changes in 

spectrum policies. Different solutions have emerged to solve the spectrum scarcity 

issues and to create possibilities for radio systems to use spectrum more rigorously 

and more efficiently. A few of these solutions are discussed below: 
                                                           
 

2 Obtained from D. Cabric et al., “Implementation Issues in Spectrum Sensing for Cognitive Radio.” 
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a) Increased Spectrum Access 

The development of new wireless applications and devices has made the 

spectrum a more scarce resource. Many of the prime spectrum bands have already 

been allocated to one or more parties, and it is becoming ever more difficult to find 

spectrum or to expand existing bands for new services. Increased spectrum access 

allows the licensed users to access the spectrum with more flexibility and more 

leasing options [9]. 

b) Opportunistic/ Dynamic Spectrum Access 

The concept of opportunistic spectrum access (OSA) has recently emerged as a 

way to improve spectrum utilization. The basic idea is to first sense the spectrum, 

which a device wishes to access, and then determine the presence of primary users (if 

any). Based on that information and regulatory policies, the device can identify 

transmission opportunities and can utilize the free spectrum if the device imposes no 

interference or disruption of services to the primary users. The basic components of 

OSA are: spectrum opportunity identification; spectrum opportunity exploitation; 

and regulatory policies. OSA allows a higher spectrum utilization and radios can 

opportunistically retarget their services to a new portion of the spectrum as needed 

[10][11]. 

“Dynamic Spectrum Access (DSA) improves spectrum utilization by allowing 

radios to transmit on spectrum bands when they are not in use by the primary 

owners. The basic components of DSA are: spectrum property rights; dynamic 

spectrum allocation; and spectrum underlay. The network of radios with the primary 

rights to transmit in a particular band is the primary network and a radio in this 

network is a primary radio. The radios that do not have primary rights to transmit in 

the band are referred to as secondary radios. In DSA, the devices always examine the 

unoccupied spectrum prior to any data transmission. If the spectrum band is sensed 

vacant, radio devices can opportunistically use the primary users‟ spectrum. 

However, the unlicensed radios must vacate the channel whenever a licensed user‟s 

activity is sensed.  In order to minimise the interference with the licensed user, 

spectrum bands are repeatedly scanned by the unlicensed user to avoid any conflict  

[12]. 



- 5 - 
 

c) Software-Defined Radios 

 In response to the reforming of spectrum policy, various new technologies 

emerged to address the spectrum scarcity issue for efficient radio communication in 

the 21st century. Among them the technology of Software-Defined Radio (SDR)[13] has 

attracted most attention. SDR aims to perform adaptive and extensive radio signal 

processing which are not supported in the traditional radio [14]. Based on the same 

radio hardware, different transmitter/receiver algorithms are implemented in 

software [15][16][17]. A basic architecture for software-defined radio has been 

presented in Figure 1.3. This SDR technology has become an integral architectural 

component of cognitive radio networks.   

Processing

Software
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Algorithms

Hardware 

(Digital Signal 

Processing)

Signal 

Conversion 

Analog-to-Digital 

Convertor

Flexible 

Radio 

Frequency 

Hardware

Digital-to-Analog  

Convertor

Smart

AntennaOutput

Input

  Figure 1.3. Basic architecture for software-defined radio. 

The standard features and functions of a software-defined radio have been defined 

by the International Telecommunication Union (ITU) as follow [18]: 

 

 

 

 

 

 

 

d) Cognitive Radios 

Advancements in signal processing, radio frequency (RF) technology, and 

software have led to a rapid evolution of the software-defined radio technology since 

the term “software radio” was coined by Joe Mitola in 1999 [13][19]. SDR is an 

essential part of the US military‟s Joint Tactical Networking Center (JTNC) [20]. 

Beyond the military applications, commercial standards are being developed and 

implemented in software (802.16m [21]) and commercial base stations are being 

Definition 1.1: Software-Defined Radio 

“Software-Defined radio (SDR): A radio transmitter and/or receiver 

employing a technology that allows the RF operating parameters including, 

but not limited to, frequency range, modulation type, or output power to be 

set or altered by software, excluding changes to operating parameters 

which occur during the normal pre-installed and predetermined operation 

of a radio according to a system specification or standard.” 
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implemented as software radios. The Institute of Electrical and Electronics 

Engineers (IEEE) has also taken initiatives in the potential of software radio and is 

extensively researching the process of standardization of different networking 

technologies (802.21[22]). Consider a radio that senses and makes use of an 

unoccupied spectrum to increase the transmission rate of a data file. Suppose this 

same radio has the capability to remember the locations where your mobile calls drop 

and this radio arranges alternate mobile services by different service providers for 

those locations. This is perhaps the most interesting and motivating idea towards the 

development of cognitive radio (CR) [13]. In fact, a cognitive radio is a software radio 

which makes use of the knowledge learnt and performs intelligent processing 

towards users‟ end goals. Cognitive radio has the capability to learn from its 

environment and can tune its transmissions parameters to improve reliability, 

coverage and capacity [23]. Also the use of spectrum in a smart way by cognitive 

radio can overcome the deficiencies of inexpensive analog components and can offer 

the deployment of low price cognitive radios [23].” 

1.2. Defining Cognitive Radio 

The simplest way a cognitive radio could be defined is “a radio that is 

cognitive” or “a radio that thinks”. Some of the more prominently offered 

definitions of cognitive radio are provided below. In the paper published in 1999 

which first coined the term “cognitive radio”, Joseph Mitola defines a cognitive radio 

as [13]: 

“A radio that employs model based reasoning to achieve a specified level of competence 

in radio-related domains.” 

Simon Haykin defines a cognitive radio in his highly cited paper as [24]:  

“An intelligent wireless communication system that is aware of its surrounding 

environment (i.e., outside world), and uses the methodology of understanding-by-

building to learn from the environment and adapt its internal states to statistical 

variations in the incoming RF stimuli by making corresponding changes in certain 

operating parameters (e.g., transmit-power, carrier frequency, and modulation 

strategy) in real-time, with two primary objectives in mind: 

 highly reliable communications whenever and wherever needed; 

 efficient utilization of the radio spectrum.  
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The FCC has defined a cognitive radio as [25]: 

“A radio that can change its transmitter parameters based on interaction with the 

environment in which it operates.” 

The National Telecommunications and Information Administration (NTIA) [26], 

adopted the following definition of cognitive radio that focuses on some of the 

applications of cognitive radio: 

 “A radio or system that senses its operational electromagnetic environment and can 

dynamically and autonomously adjust its radio operating parameters to modify 

system operation, such as maximize throughput, mitigate interference, facilitate 

interoperability, and access secondary markets.” 

The International Telecommunication Union (ITU) has defined a cognitive radio 

system as [18]:  

“Cognitive radio system (CRS): A radio system employing technology that allows 

the system to obtain knowledge of its operational and geographical environment, 

established policies and its internal state; to dynamically and autonomously adjust 

its operational parameters and protocols according to its obtained knowledge in order 

to achieve predefined objectives; and to learn from the results obtained.” 

IEEE USA offered the following definition[27]:  

“A radio frequency transmitter/receiver that is designed to intelligently detect 

whether a particular segment of the radio spectrum is currently in use, and to jump 

into (and out of, as necessary) the temporarily-unused spectrum very rapidly, without 

interfering with the transmissions of other authorized users.” 

The IEEE 1900.1 group to define cognitive radio has the following working 

definition [28]: 

 “A type of radio that can sense and autonomously reason about its environment 

and adapt accordingly. This radio could employ knowledge representation, 

automated reasoning and machine learning mechanisms in establishing, conducting, 

or terminating communication or networking functions with other radios. Cognitive 

radios can be trained to dynamically and autonomously adjust its operating 

parameters.”  
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Virginia Tech Cognitive Radio Working Group has adopted the following capability-

focused definition of cognitive radio [29]:  

“An adaptive radio that is capable of the following: 

 awareness of its environment and its own capabilities, 

 goal driven autonomous operation, 

 understanding or learning how its actions impact its goal, 

 recalling and correlating past actions, environments, and performance.” 
 

Finally, the author of this dissertation has defined cognitive radio as [30][31][32][33]:  

“CR nodes are intelligent wireless devices that sense the environment, observe the 

network changes, and then use knowledge learnt from the previous interaction with 

the network, to make intelligent decisions to seize the opportunities to transmit. This 

process of scanning the spectrum (S), exchanging control information (E), agreeing 

upon white space (A) and transmitting data (T) on the network is repeated 

continuously in a cycle called SEAT cycle.”  

Wireless 

Environment

Transmit 

Data

Exchange 

Control 

Information

Scan 

Spectrum

Agree on a 

WS

 

Figure 1.4. Cognitive radio SEAT cycle. 

It is possible that these definitions may not be harmonized. However, the 

following are some general capabilities (see Figure 1.5) found in all of the definitions: 

a) Intelligence/Awareness – the radio is capable of applying 

information towards a purposeful goal. 

b) Adaptivity – the radio is capable of changing its waveform. 

c) Reconfigurable – the radio is capable of tuning its transmission 

parameters such as wavelength.  

d) Convenient – whether directly or indirectly, the radio is capable of 

acquiring information about its operating environment. 
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Figure 1.5: Generic capabilities of cognitive radio networks. 

Table 1.1 presents the definition matrix for cognitive radio.  

Table 1.1 Definition  Matrix for Cognitive Radio (adapted from [34]). 
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Mitola [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   

IEEE 1900.1[28] ✓ ✓ ✓ ✓ ✓ ✓  ✓   

ITU [18] ✓ ✓ ✓ ✓ ✓ ✓  ✓   

Author [30-33] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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By using common features of all these definitions we arrive at the definition of 

cognitive radio given in Definition 1.2. 

 

 

 

 

 

 

 

 

CR has emerged as promising technology to address spectrum scarcity issues. 

However, there are some issues related to CR. For example, how can we assure that 

cognitive radios will not behave inconsistently and the opportunistic spectrum access 

will not result in overall a poor network performance? Also, how can we verify that 

the radio will behave as intended and there will be collaboration and cooperation 

amongst cognitive radios to seize spectrum opportunities? 

 The work presented in this thesis concentrates on this last problem – the 

interaction and convergence of cognitive radios in distributed radio environment by 

developing techniques for modelling and analysing adaptive algorithms for 

cooperative communication to determine convergence, coordination and 

cooperation that yield good performance for the cognitive radio network.  

Beyond cognitive radio, the techniques developed and presented in this thesis 

can also be extended to the modelling, analysis and design of cooperative 

communication in a distributed radio environment. This chapter focuses on the 

concept, implementation, and applications of cognitive radio and is organized as 

follows: Section 1.1 discusses the spectrum scarcity issues which gave birth to the 

concept of cognitive radios. Section 1.2 formally defines cognitive radio. Section 1.3 

discusses CR evolution. Related terminologies are discussed in Section 1.4. Section 

1.5 discusses some of the regularization issues in CR. Section 1.6 presents existing 

standards for CR. Section 1.7 briefly reviews the applications of CR. Issues and 

challenges currently being faced by CR are presented in Section 1.8. Section 1.9 

Definition 1.2: Cognitive Radio 

CR nodes are intelligent wireless devices that sense the environment, 

observe the network changes, and then use knowledge learnt from the 

previous interaction with the network, to make intelligent decisions to seize 

the opportunities to transmit. This process of scanning the spectrum (S), 

exchanging control information (E), agreeing upon white space (A) and 

transmitting data (T) on the network is repeated continuously in a cycle 

called SEAT cycle. 
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provides some solutions to the existing problem in CR. And lastly, our problem 

statement, objectives and motivations are discussed in Section 1.10. 

1.3. Cognitive Radio Evolution  

Cognitive radio has been continuously evolving over the past 15 years. 

Cognitive radio is in fact an enhanced version of software radio. The idea of software 

radio was first introduced by Joseph Mitola in the early 1990s [35]. In his dissertation 

published in 2000, Mitola took the SDR concept one step further, coining the term 

of cognitive radio [19]. In short, CRs are basically SDRs with the additional feature 

of artificial intelligence. This feature makes the CR capable of sensing and reacting to 

its environment. Figure 1.6 differentiates traditional with cognitive radio. 

Traditional Radio

Hardware Software

RF Modulation Coding Framing Processing

Cognitive Radio

Hardware Software

RF Modulation Coding Framing Processing

Intelligence (SEAT) 

 

Figure 1.6. Evolution of radio technology. 

Based on their adaptability and applicability, cognitive radios have also been 

defined as: “a military radio that can sense the urgency in the operator's voice, and 

can guarantee QoS”. Another example is “a mobile phone that could make a mobile 

call and establish the necessary cell tower handoffs” [13]. CR can also be considered 

as a reasoning engine with learning and decision making capabilities. Figure 1.7 

shows that in addition to a simple policy-based engine, a learning engine is required 
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to observe the radio's behaviour and resulting performance. The facts in the 

knowledge base are used to form judgements.  
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Figure 1.7. Learning and reasoning capabilities of a cognitive radio. 

The FCC has shown interest in researching ways in which CRs could be allowed to 

use licensed bands, if they do not interfere with existing licensed users. A document 

has been recently approved and adopted by the FCC [36], which allows cognitive 

radios to operate in certain frequency bands. 

1.4. Related Terminology 

This subsection describes some terminology, including Primary User, Secondary 

User, White Space and Common Control Channel. 

1.4.1. Primary User  

The licensed users or primary users (PUs) of the frequency band are those 

wireless applications who purchased portion of radio spectrum from FCC for some 

fee [12][19][32][37][38][39][40].  

There are three types of frequency bands allocation [41]: 

1- No one may transmit, e.g., frequencies reserved for radio astronomy to 

avoid interference at radio telescopes 

2- Anyone may transmit, as long as they respect certain transmission power 

and other limits, e.g., open spectrum bands such as the unlicensed ISM 
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bands and the unlicensed ultra-wideband band, and the somewhat more 

regulated amateur radio frequency allocations. 

3- Only the licensed user (PU) of that band may transmit 

Some of the examples of spectrum primary user wireless applications are 

FM Radio Band II = 88MHz - 108MHz  

TV Band I (Channels 2 - 6) = 54MHz - 88MHz 

GSM primary mobile communication bands = 850MHz and 1.900GHz 

Wi-Max Spectrum Band = 3.5GHz and 5.8 GHz 

1.4.2. Unlicensed/Secondary/Cognitive User  

The secondary users (SUs) are those wireless applications which utilize the 

unoccupied licensed spectrum opportunistically for communication with the 

condition that there would be no interference to PUs [19][37][38][42]. Spectrum 

opportunity [10][39][40][43][44][45] deals with the usage of free/unoccupied 

spectrum that is part of radio spectrum and not currently being used by PUs.  

1.4.3. Spectrum Holes 

PUs, when not transmitting in the licensed spectrum, create free channels in 

the spectrum. These free channels, also called white spaces (WS) or spectrum holes, 

are used by SUs opportunistically [30][32]. Figure 1.8 shows the spectrum usage by 

PUs and the formation of free channels. These free channels are in fact the 

opportunities for SUs to transmit.  
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Figure 1.8. Spectrum usage by PUs and the formation of white spaces. 
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1.4.4. Common Control Channel 

A Common Control Channel (CCC) is a free channel required by cognitive 

devices to exchange the free channel list (FCL) and to initialize communication 

among co-operating cognitive nodes. Before a pair of SUs start sending and receiving 

actual data, first they have to coordinate and decide by communicating on the CCC 

about the chosen white space(s) for subsequent transmission. The pair of SUs 

exchanges initial information such as how to send the FCL requests, which white 

spaces to be used and how long the communication will last, etc. This information 

could also include exchange of Ready-To-Send (RTS) and Clear-To-Send (CTS) 

control frames, mostly used by cognitive radio devices for exchange of control 

information [32][47–50][51].  
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F
C
L

Node B

11

1

3

6
5

9
4

7
Node C

Node A

FCL launched by

Node A: 1, 2, 3, 4, 6

Node B

Node C

1, 2, 3, 

4, 6

NeighbourFCL

Node A

Node B

4, 6, 7, 

9, 11

NeighbourFCL

Node A

Node C

1, 3, 5, 

9, 11

NeighbourFCL

2

 

Figure 1.9. Existence of common control channel to exchange the FCL between CR nodes. 
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The SUs, also called CR users, scan the spectrum for the unused bands (channels) 

from time to time and create the FCL. The FCL generated by one CR user could be 

different from the other. The existence of a common control channel between the 

CR users is the core component in a cognitive radio network (CRN) through which 

FCLs could be exchanged amongst CR nodes. For communication to occur in a 

CRN, there must be at least one white space common in their FCLs. The CCC 

provides a mechanism for nodes in CRN to control access to the spectrum and to 

exchange the FCL. 

1.5. Cognitive Radio Regularisation  

“Joseph Mitola [52] considers the nine levels of increasing cognitive radio 

functionality shown in Table 1.2, ranging from software radio to complex self-aware 

radio. 

Table 1.2 Levels of Cognitive Radio Functionality (adapted from [52]). 

Level Characteristic Comment 

1 Pre-programmed A software radio 

2 Goal driven Chooses waveform according to goal. 
Environment aware. 

3 Context aware Knowledge of what user is trying to achieve 

4 Radio aware Knowledge of radio and network components 

5 Capable of planning Analyze situation 

6 Negotiates Settle on plan with another radio 

7 Environment learning Determines environment 

8 Adapts plan Generates new goals 

9 Adapts protocols Proposes and negotiates mew protocols 

 

The learning process in a cognitive radio is repeated in a cycle which can 

make a CR more complex and more artificial intelligence dependent. Some 

researchers expect lower levels of functionality in their cognitive radio. For instance, 

in his remarks at the 2005 MPRG Technical Symposium, Bruce Fette, Chief Scientist 
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at General Dynamics Decision Systems, comments that the learning cycle in 

cognitive radio should be primarily based on an “OODA” (Observe, Orient, Decide 

and Act) loop. However, [52] suggests that apart from learning capabilities obtained  

through an OODA loop, there must be additional planning capabilities based on 

previous network interactions in a cognitive radio.  

Based on the existing concept of the OODA cycle, we have developed a loop 

model specifically for cognitive radio networks. We have called this loop the SEAT 

cycle and have already shown it in Section 1.2, Figure 1.4. All cognitive radios are most 

likely to make use of the SEAT cycle.  

The CR technology is being researched extensively. Different regulatory steps 

have been put forward to make CR more regularized and applicable. Based on CR 

functionality and adaptive features, many organizations have implemented cognitive 

radios in different ways. Some examples of implemented cognitive radio are: CR1 

[52]; DARPA‟s xG program [28]; the biologically inspired cognitive radio [53][54]; 

CoRTekS (Cognitive Radio Tektronix System) [55]; and Adapt4 [56]. 

1.6. Cognitive Standards 

Since the inception of this technology, lots of efforts have already been made 

and quite a few are underway to develop cognitive radios as a standardized 

technology. A generalized policy-based radio suitable for cognitive radio is being 

developed by DARPA under the xG program using XML based policy descriptive 

language [57][58]. The IEEE 802 community is currently developing two standards 

directly related to cognitive radio – IEEE 802.22 and IEEE 802.11h [59][60][61]. 

Table 1.3 below compares various IEEE standards which incorporate cognitive, 

dynamic spectrum access, and coexistence technologies. 

Table 1.3 Comparison of various IEEE standards [62]. 

Standard Scope 

IEEE 802.22 

Initiation: 9/2004 

Completion: 9/2009 

This standard specifies the air interface, including MAC and PHY 

layers, of fixed point-to-multipoint wire-less regional area networks 

operating in the VHF/UHF TV broadcast bands between 54 MHz and 

862 MHz.  



- 17 - 
 

 

802.19 

Initiation: 3/2006 

Completion: 9/2008 

This describes methods for assessing coexistence of CR with wireless 

networks. The document defines recommended coexistence metrics 

and methods of computing these coexistence metrics. The focus of the 

document is on IEEE 802 wireless networks, though the methods 

developed may be applicable to other standards development 

organizations and development communities. 

 

IEEE 802.16h 

Initiation: 12/2004 

Completion: 9/2008 

This amendment to the 802.16 standard specify improved mechanisms 

(as policies and medium access control enhancements) to enable 

coexistence among license-exempt systems based on IEEE standard 

802.16 and to facilitate the coexistence of such systems with primary 

users. 

 

IEEE 802.16m 

Initiation: 12/2006 

Completion: 12/2009 

This amendment to the 802.16 standard provides an advanced air 

interface for operation in licensed bands. It meets the cellular layer 

requirements of IMT-advanced next-generation mobile networks while 

providing continuing support for legacy Wireless MAN-OFDMA 

equipment. It is possible cognitive technology may be introduced in 

this amendment. 

 

IEEE 802.11y 

Initiation: 3/2006 

Completion:12/2009 

This amendment to the 802.11 standard allows application of 802.11-

based systems to the 3650–3700MHz band in the U.S. It standardizes 

the mechanisms required to allow shared 802.11 operations with other 

users. Likely required mechanisms include: specification of new 

regulatory classes (extending 802.11j), sensing of other transmitters 

(extending 802.11a), transmit power control (extending 802.11h), 

dynamic frequency selection (extending 802.11h). 

 

Apart from initial deployments of cognitive radios, several institutes such as DARPA 

[23][58][63], the SDR forum [58], NASA's SCaN [64], FCC [65], Winlab, [66] and 

IEEE 1900 group [28][67][68] have started widely acknowledged initiatives.  

1.7. Cognitive Radio Applications 

Despite the fact that cognitive radio technology is in its infancy and there is 

not any concrete example of fully functional and operational cognitive radio, there is 

a lot of potential applicability of cognitive radio because of its compelling, affordable 

and unique features. Also, cognitive radio is a promising technology to enhance the 

existing SDR techniques. In this section we will review cognitive radio applications. 
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1.7.1. Commercial Applications 

The CR technology can be deployed for a number of commercial applications.  

 Switching of TV channels from analog to digital has vacated a large amount of 

TV band [69]. This released TV band could now be used for provision of 

different commercial wireless applications. Wireless broadband could be one 

commercial example of a CR technology.  

 The requirement for a higher bandwidth for achieving maximum throughput in 

downlinks in Advanced Long-Term Evolution (LTE-Advanced) systems is 

another factor contributing towards spectrum scarcity. An LTE-advanced 

system could seek the opportunities in the DVB (digital video broadcasting) 

band by using spectrum sensing and sharing methods. A cognitive based 

spectrum sharing scheme can be employed for spectrum sharing between the 

DVB and  LTE-Advanced systems, which leads to efficient spectrum usage 

[70].  

 Femtocells are widely deployed in homes and buildings due to its attractive 

benefits for both subscribers and operators, to improve indoor coverage and 

system capacity. However, some unique features present a challenge in 

interference mitigation in femtocells. Cognitive radio technology could be 

deployed to mitigate both cross-tier (nodes in the same tier) and intra-tier 

(nodes in different tiers) interferences. The potential of applying cognitive radio 

yields limited complexity and imposes no impact on the state-of-the-art 

architecture of femtocells [71]. 

1.7.2. Spectrum Sensing and Access Applications  

“CR systems are able to sense and observe the local spectrum utilization. The 

information could then be passed on to the centralized management of a CR system 

to create increased spectrum access opportunities. This will also avoid interference 

between two CR systems. By estimating the other uses and monitoring for 

interference, two CR systems may converge on an unoccupied spectrum band and can 

communicate [72]. Since spectrum is dispersed, continuous monitoring is required, 

and cooperative and distributed coordination is needed. A centralized control channel 



- 19 - 
 

could be used to govern the cognitive function and spectrum occupancy amongst CR 

users.” 

1.7.3. Free Mobile Calls with Improved Link Quality 

A daily life example that could directly benefit a mobile user is „free mobile 

calls‟. Consider your mobile device as a CR functionality enabled which has the 

capability to detect white spaces, and the moment some free channels are 

detected/sensed by the CR mobile device, the user could be given an option to 

switch a GSM call over a CR call for free conversation. Or switching from a GSM 

network to a CR network could also be performed to improve call quality and 

achieve better coverage, e.g., inside a lift or a building where the reception of GSM 

signals is week. 

1.7.4. Public Safety and Disaster Management Applications  

It has been identified that there is a severe lack of interoperability amongst 

emergency service providers. Responders are unable to establish coordination in an 

emergency response [73]. Spectrum band which has been dedicated for public safety 

sometimes interleaves with the frequencies designated for business, industrial, and 

transportation users and non-military federal users [73]. A cognitive radio could be 

an efficient solution for the congestion in the traditional radio bands. Policy-based 

cognitive radio systems could be deployed which can operate and cooperate in a 

timely manner.” 

1.7.5. CR Applications for Authentication 

Mostly cell phones are equipped with digital cameras with facial recognition 

software to authenticate an owner. A cognitive radio could also be equipped with 

such a mechanism that helps learning the identity of its owner and can authentication 

the legitimate cognitive user. The unauthorised users which try to become part of the 

CR network could be denied access by running an authenticate application either 

locally on a cognitive radio device or it can access a remote cognitive radio 

authentication server. Voice or image recognition could also be used to prevent 

unauthorized users from becoming part of the CR network. 
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1.7.6. License Free 

For any wireless application, some portion of the spectrum needs to be 

purchased from FCC. Due to the nature of this technology, CR applications do not 

have to pay any licensing fee and do not require any permission to use the 

unoccupied spectrum (as long as they operate within the restricted bands). This 

feature makes a CR technology less expensive as compared with Wi-MAX and other 

mobile services.  

1.7.7. Radio Resource Management 

Tuning the radio parameters after deployment of a wireless network, to adjust 

call drop thresholds, antenna patterns, antenna power and timing to get the most out 

of a network, is a challenging task for engineers.  Cognitive radio networks could 

take over the task of post-deployment tuning and automatically update the radio 

parameters to improve efficiency in terms of performance and network adaption 

[74]. Cognitive radio should be able to reduce the demand for post-deployment 

engineering. Such a CR application would have a significant impact on rapidly 

deployed networks, for example, home WLANs, and certain networks in fixed 

commercial infrastructure.  

1.7.8. Cognitive Radio and Online Multi-user Gaming 

With the increasing number of online gamers, the games market is investing a 

lot to increase revenue potentialities. Online gaming becomes more interesting and 

challenging for ad-hoc networks where gamers change their location quickly and 

frequently. The communication amongst vehicular ad-hoc networks is not new and 

some schemes to reduce number of hops and decrease the delay for ad-hoc vehicular 

networks have been proposed [75][76]. The cognitive radio technology could make 

online gaming more interesting, versatile and appealing. CR users can search for 

available CR gamers in the vicinity and can utilize the available spectrum to play 

games in real time. It is believed that due to the searching and striving nature of CR, 

games such as chess are more appropriate candidates for online gaming amongst CR 

users. 
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1.8. Deployment of Cognitive Radios: Issues and Challenges 

There are a number of issues that should be addressed prior to deployment 

of this technology on a wide scale. These key issues and challenges could be related 

to regularization, timely coordination, complicated decision processing and hardware 

constraints.  

1.8.1. Regulatory Issues and Legal Values 

Regularization and standardization have been a vibrant point of conflict that 

needs to be addressed on urgent basis. If cognitive radios are to use the licensed 

spectrum, what would be the legal value for this usage? No wireless application 

would allow access to the proprietary spectrum for free as this may cause 

inconvenience, security vulnerability, and disruption in the services to the 

primary/licensed user. On the other hand, if cognitive radio is to use the ISM band 

than there is no need to be a cognitive radio, as unlicensed band could be used by 

any wireless application anytime. There should be a simple and widely acceptable 

regulation that could ensure proper and predictable operation of cognitive radios, but 

at the moment there is no such regulation. 

1.8.2. Sensing Abilities  

“Cognitive radios must be capable of detecting and classifying the signals in the 

vicinity to exploit spectrum opportunistically and to respond to the changes in 

environment in an efficient way. The classification between the licensed user signal 

and the unlicensed signal is the key challenging task.  Additionally, presence of 

multiple licensed users with a variety of signals in the same band imposes additional 

challenges. Researchers are now actively exploring the issue of signal detection and 

classification to extract signal information [77]. Even with the best sensing 

capabilities, there exists the possibility of failing to find the active primary devices 

(false positive). For example, in the UHF bands in the US which have been suggested 

for initial cognitive radio deployments, there are currently three primary signals that 

must be protected - analog TV, digital TV, and wireless microphones – with the 

possibility of many more to come in the future. The IEEE 802.22 standardization 

committee is currently considering requiring the maintenance of spectrum usage 

tables as a part of its standard [78].” 
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1.8.3. Knowledge Representation 

“The capability of CR to intelligently reason about the environment is subject to the 

representation of the knowledge that the radio has learnt about its environment. A 

challenging task is how to represent this knowledge.  Mitola [19], has proposed the 

use of a Radio Knowledge Representation Language (RKRL) to describe the 

information learnt by a CR device.  The xG program has developed an XML-based 

language for representing in a declarative manner the policies that govern a cognitive 

radio‟s actions [79]. Baclawski et al [80], has also proposed a language for representing 

radio knowledge in a declarative manner, but primarily for the purpose of supporting 

knowledge queries between radios. A Web-based Ontology Language has been 

proposed in [80]. However, it is uncertain how these languages will interoperate with 

each other to provide a basis for implementation of CR reasoning capabilities.”  

1.8.4. Software Radio Issues  

As cognitive radio is just an evolution of the SDR, all software radio issues will 

remain issues for cognitive radio. This includes improving frequency flexibility and 

agility, enhancing data converter technologies and careful software architecting. The 

use of field effect transistors (FETs) to implement reconfigurable antennas for 

cognitive radios has been proposed by Aberle et al [81] and Domalapally et al [82]. 

Data converter technologies could also be used to address software issues [83]. 

Developing techniques for CR are extensively being researched but no generalizable 

technique has been developed yet.  

1.8.5. Negative Impact on Network Performance  

Due to the striving nature of CR, a concern has been raised that cognitive 

radios may negatively impact network performance. While the way that a cognitive 

radio can negatively impact network performance may not be immediately apparent 

from SEAT cycle shown in Figure 1.4, CR is preliminary designed to react and 

respond to an outside world whose state is jointly determined by the adaptations of 

several cognitive radios, the existence of licensed users, and the sensing powers of a 

CR, which can make the decision-making of a CR more challenging, ultimately 

effecting the overall network performance.  Consider a centralized CR network 

where nodes have tuned their transmission parameters to listen to the centralized CR 
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device which governs the cognitive functionality. CR nodes are receiving the 

information about spectrum opportunities from the centralized CR device. Suppose 

that a pair of CR nodes have decided to use a spectrum hole whose availability was 

confirmed from the central CR device. When nodes are about to start transmission, 

the central CR device updated its information about the availability spectrum. Nodes 

in this case have to roll back any transaction and will revert to the previous state. The 

network performance in this scenario will be heavily degraded as CR devices holding 

delay sensitive data have to wait for longer and renegotiations for transmission 

parameters could cost time and mobile energy. 

1.8.6. Synchronization Amongst CR Nodes 

Cooperative communication is the main objective in cognitive radio networks. 

The CR nodes must be aware of other CR nodes in the distributed environment, and 

the services they can provide to each other. Once CR nodes learn about other CR 

nodes they can start data communication. However, network convergence and 

synchronization amongst CR nodes is the most challenging task. If there is no timely 

coordination in the CR network, nodes can miss the rare opportunity to transmit. 

1.8.7. Security Concerns 

The cognitive radio technology has appeared to be an efficient solution for 

heterogeneous networks. However, this leads to security issues because the same 

security standards could not be applied in all heterogeneous networks [33]. In GSM 

[84], WiMAX [85], WCDMA [86] and WCDMA2000 [87], the legality of terminals 

and users is controlled by a strict authentication process from the base station and 

the SIM card authentication. The differences between technologies used for 

cognitive radio and for existing wireless networks make the security incorporation a 

veiled question. The adaptive nature of cognitive radio technology imposes additional 

complications and introduces new challenges. For example, an attacker may pretend 

to be a secondary user and can intercept, without authentication, the FCL by a false 

claim of being an SU. 

1.8.8. Which Spectrum Band to Transmit  

Ideally, the cognitive radio should be capable of sensing and exploiting any 

transmission opportunities in the available spectrum band ranging from 30 KHz to 
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300GHz. However, due to their sensitive nature, police, medical and military bands 

are excluded from being sensed and cannot be used by CR. If the rest of the 

spectrum band is available to be sensed and scanned for transmission opportunities, 

then it will lead to issues such as regulatory issues, allowance from the primary user, 

and antenna constraints.  

1.8.9. Hardware Constraints  

Cognitive radios require hardware design. To make the CR capable of sensing 

and scanning most of the available spectrum bands, there are certain hardware 

constraints that need to be addressed. For example, a CR antenna capable of sensing 

and scanning unoccupied spectrum at 410MHz would be different from an antenna 

designed for 2.4GHz. The different antenna sizes and transmission power rates, 

make the CR technology more hardware constrained.  

1.9. Addressing Challenges in Cognitive Radios 

Cognitive radio has emerged as a promising technology to address spectrum 

scarcity and its inefficient utilizations. Extensive research is being carried out to make 

this technology more practical. Some of the solutions for the challenges discussed 

above are provided below: 

 Currently, FCC and other organizations such as IEEE are working towards the 

standardization of the CR technology. A first draft for centralized CR networks 

has already been proposed [88].  

 It is believed that a spectrum band with more transmission potential and less 

regulatory issues should be considered as a candidate for CR. One example 

could be the TV band which has become widely available after the TV channels 

have switched from analog to digital transmission. 

 Security in wireless ad-hoc networks has been extensively researched. The 

existing security frameworks [33][89] could be deployed to incorporate the 

security into cognitive radio networks.  

 Adapt4 [56] has developed its SRT (Spectral Reuse Transceiver) technology to 

facilitate an efficient and non-interfering method of using otherwise idle radio 

spectrum. It allows all XG1 cognitive radios within a network to monitor the 
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activities of other users in a specified band and identify unused bandwidth. The 

network generates a set of parallel carriers and transmits on these channels 

while they are not in use. When another licensed user is sensed, the network 

stops using that frequency until it again becomes dormant. 

 Different solutions have been proposed to enhance the spectrum sensing 

capabilities of CR. This includes spectrum usage tables, sharing spectrum 

occupancy information amongst CR devices, network assisted detection, and 

using beacons when primary license devices become active [78]. The IEEE 

802.22 standardization committee is currently considering the maintenance of 

spectrum usage tables as a required part of its standard. 

 The spectrum sensing range could be improved by the deployment of 

multiband antennas [90][91] in CR devices. This unique feature will enhance the 

cognition and adaptive capabilities of CR devices.   

1.10. Problem Statement  

This section refines the problem addressed by this work, and describes the 

contributions made as part of this work 

1.10.1. Research Challenges, Motivations and Problem Statement 

One of the most important aspects of cognitive radio networks is how to 

exchange the control information amongst CR nodes for subsequent 

communication? Tackling this issue requires us to handle the following three 

challenges: 

 How do the CR nodes interact with each other for cooperative 

communication, and how do nodes know which CR nodes exist in the vicinity? 

 How are the CR nodes synchronized with the same information? 

 How do we model/analyse/design an interactive, cooperative and 

synchronized cognitive radio network? 

In order to address these challenges, we develop a novel CR MAC protocol 

that establishes cooperative communication amongst CR nodes by exchanging 

control information on a common control channel which is known to all CR nodes 
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in the vicinity. This common control channel helps all the CR nodes to get 

synchronized with the same information about the network and about the other CR 

nodes. Our research contribution is to model CR functionality of the MAC layer and 

then analyse the structure and characteristics of the behaviours of CR network 

through mathematical modelling and simulation modelling.  

a) Modelling Cooperative Communication 

The communication could only take place amongst CR nodes if there is some 

cooperation in the CR network. The existing methods to exchange control 

information could not be applied as they use either the ISM band which is heavily 

congested and prone to security threats, or one of the free spaces as common control 

channel, but no clear model has been identified for CR nodes to converge on a 

common control channel.   

b)  Synchronization Amongst CR Nodes 

Timely coordination is a key challenge in CR networks. Nodes must efficiently 

utilize the unoccupied spectrum before it is claimed back by licensed users. Not all 

the nodes share the same information about the surrounding environment. There 

must be a centralized point which is accessible and readily available to all CR nodes 

all the time. Also, the centralized point must serve as an information sharing highway 

and must not be affected by the PU occupancy.  

c) Analysis and Design of a CR Network 

While analysing and designing an interactive, cooperative, and synchronized 

CR network we wish to answer following questions: 

1- How to anticipate the performance of a CR network in the presence of 

network adaptations that can change the state of the network? 

2- How to ensure the convergence of nodes in the case that the network state is 

changed? 

3- What would be the effect of wireless medium and unpredictable PU 

occupancy? 

We would answer these questions by mathematically analysing the structure and 

characteristics of the adaptive behaviour of CR network. Our goal is to model the 

CR network and analyse interactions amongst CR nodes.  
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1.10.2. Research Contributions 

A novel MAC protocol for cognitive radio networks is proposed in this 

research. The proposed protocol for cooperative cognitive radio networks enables 

the CR nodes to quickly and efficiently converge on a common control channel 

which is available to all CR nodes. The existing MAC protocols either use an ISM 

band for exchange of control information for subsequent data transmission which is 

more prone to congestions and security vulnerabilities, or assume that nodes are 

already converged. Our model is based on the MAC layer which is robust to the PU 

claims and takes into account all possible network states. Unlike other CR MAC 

protocols, nodes deploying our MAC scheme have self-reconfiguring capability and 

always remain in the state of having confidence that there is a channel available to 

exchange the control information. The mathematical analysis and simulation results 

show that our MAC protocol outperforms the existing schemes and can work best in 

all possible scenarios that can occur in a CR environment. 

Introduction

Chapter 1

Design Implementation Performance 

Optimization

Conclusion 

Chapter 7

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Literature Review

Chapter 2

 

Figure 1.10. Overview of the thesis. 
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1.10.3. Outline of the Thesis 

The outline of the thesis is organized as presented in Figure 1.10. 

 
Chapter 2: This chapter presents a thorough review of the existing work. We 

have classified the existing CR MAC protocols into different 

categories and have discussed pros and cons of each of the category. 

This has given us the motivation to draw a novel MAC protocol 

which combines the best features of each category and also 

overcomes their problems.  

 
Chapter 3: This chapter presents a novel MAC protocol developed as part of this 

work, which is suitable for modelling cooperative communication 

amongst cognitive radio nodes. The detailed architecture for our 

scheme has been presented.  The pre-transmission time that heavily 

impacts the performance of a CR MAC protocol has been computed 

and compared for different case scenarios.  

 
Chapter 4: This chapter covers an analytical model, including a Markov chain 

model, for the performance of our MAC protocol and discusses the 

performance evaluation and comparison for different parameters 

such as throughput, load and delay. The state diagram, DDH-MAC 

algorithm, and access mechanism used to model our proposed 

protocol have also been discussed in this chapter.  

 
Chapter 5:  This chapter introduces the tools and techniques that have been used 

to simulate our protocol. The implementation of the DDH-MAC 

protocol and the performance evaluation and comparison for 

parameters such as throughput, delay, and load are presented in this 

chapter.  

 
Chapter 6: This chapter describes the performance optimization of our MAC 

protocol. Security has been a major challenge in wireless ad-hoc 

networks. We have incorporated security in our MAC protocol and a 
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4-tier security model is presented in this chapter. Also, the efficiency 

of our protocol in terms of energy-efficiency has been discussed. 

Chapter 7:  Based on the modelling and analysis covered in the preceding 

chapters, this chapter draws conclusions on the design and 

implementation of cognitive radio network MAC protocols, 

summarizes the results of this dissertation, and propose directions for 

future work. 

 

The research contributions made in this PhD study are covered in detail in 

most of the chapters of this dissertation. Chapters 3, 4, 5 and 6 show main areas of 

novel contributions. First two chapters present the basic theory for application and 

implementation of cognitive radio networks. Table 1.4 lists major and novel 

contributions to the analytical modelling and design of cognitive radio networks. 

 

Table 1.4  Research Contribution in Each Chapter 

Chapter Research Contribution 

Chapter 1 Compilation of definitions, discussion about standardization, 

regularization,  applications and challenges for cognitive radio 

networks 

Chapter 2 Intensive research review on existing MAC protocols for 

cognitive radio networks. Provision of a classification model 

for CR MAC protocols.  

Chapter 3 Provision of a novel secure QoS-aware adaptive MAC protocol 

for CR networks. 

Chapter 4 Analytical Model for Cognitive Radio Network using a Markov 

chain model 

Chapter 5 Simulation experiments to evaluate the performance of the 

proposed protocol for KPIs such as throughput. 

Chapter 6 Performance enhancement of the proposed MAC protocol by 

incorporating security and making it energy-efficient.  

Chapter 7 Conclusions and provision of future work on CR MAC 

protocols.   
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Chapter 2: Related Work 

 

  Cognitive radio networks serve as a framework for accessing the spectrum 

allocation dynamically where the vacant channel can be accessed by sensing the 

spectrum. To exploit spectrum opportunities in a licensed band, cognitive radio 

devices are equipped with sensor(s) which help them to create the FCL after 

scanning the spectrum. PUs, when not transmitting creates free channels in the 

spectrum, these free channels are used by SUs opportunistically. SUs, which are by 

nature not licensed, are responsible for avoiding interference to PUs. When a PU is 

detected, SUs should immediately react by changing transmission parameters such as 

power, and rate, etc. because their transmissions should not degrade primary users‟ 

transmissions. Moreover, SUs should coordinate their access between different 

cognitive radios to avoid collisions on the available spectrum channels.  

2.1. Types of Cognitive Radio Networks 

A cognitive radio network has the capability to self-organize and self-configure 

to utilize an unoccupied band and to transmit based on the available spectrum 

resources. A cognitive radio can form its own network or it can coexist with other 

existing wireless networks. Due to its ability to coexist with other wireless networks, 

a CR network structure is heterogeneous. A cognitive radio network can adapt one 

of the following three different network architectures.  

2.2.1 Infrastructure CR Networks 

This type of CR network has a base station which usually governs the cognitive 

functions in the network. Like other Infrastructure wireless networks, the base 

station is responsible for providing information about available spectrum, security 

management and cooperation amongst CR nodes in the infrastructure network 

(Figure 2.1). Cordeiro et al [59] has presented the first worldwide wireless standard 

IEEE 802.22 for cognitive radios. The applicability and market of IEEE 802.22 is 

restricted to remote and rural areas and the TV channel bandwidths of 6, 7 and 8 

MHz have been specified as the most appropriate spectrum band for unlicensed 

users to transmit. Further enhancements on IEEE 802.22 has been presented by Carl 
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et al  [92]. Their article presents a high-level overview of the IEEE 802.22 standard 

for cognitive wireless regional area networks (WRANs) that is under development in 

the IEEE 802 LAN/MAN Standards Committee.  

CR Base Station 

 

Figure 2.1. An infrastructure-based CR network.  

 

A dynamic spectrum access (DSA) protocol (DSAP) has been presented in [93] 

which makes use of DSAP server and DSAP relay which are centralized entities that 

coordinate spectrum access requests and allow multi-hop communication between 

DSAP clients. The server accepts spectrum lease requests from clients and assigns 

the spectrum resources with certain constraints such as a time for lease. Like the 

dynamic host configuration protocol (DHCP), DSAP also makes use of a channel-

discover request which is responded to by a channel offer message and a channel 

request message. Both these messages contain the channel details and lease criteria. A 

channel ACK is sent by the DSAP server to either accept or decline clients‟ requests 

for lease. In the case that there is PU occupancy, a channel reclaim message is sent to 

the client, forcing it to terminate or reassign clients‟ lease. In spite of the dedicated 

central entity that is in DSAP, the exchange of five control frames as control 

information, prior to any data transmission, imposes a high computational cost and 

pre-transmission overheads. We suggest that the channel-discover, channel-offer and 

channel-request messages could be replaced by channel broadcast message 

containing the FCL. DSAP clients can receive a channel broadcast message and can 

start their data transmission with other DSAP clients.   
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Bolivar et al  [94] present an infrastructure-based cognitive radio network and 

use frequency-division multiplexing to divide the spectrum into predetermined 

frequency slots in which SUs communicate. The time-division multiplexing scheme is 

additionally used to determine if a PU has accessed the channel. This scheme also 

exchanges multiple control frames that consume network bandwidth. Like DSAP 

[93], no specification has been made on which spectrum band will be used by the 

server and clients to dialogue control information. Islam et al [95] consider a point-to-

multipoint CR network that shares a set of channels with a primary network. A base 

station controls and supports a set of fixed-location wireless subscribers. Two-phase 

mixed distributed/centralized control algorithms that require minimal cooperation 

between cognitive and primary devices are developed. In the first phase, a distributed 

power updating process is employed at the cognitive and primary nodes to maximize 

the coverage of the cognitive network while always maintaining the constrained 

signal-to-interference-plus-noise ratio of primary transmissions. In the second phase, 

the centralized channel assignment is carried out within the cognitive network to 

maximize its throughput. We believe that in presence of a centralized CR, the 

transmission overheads should be optimized in all possible ways. 

 

2.2.2 Ad-hoc CR Networks 

CR node

CR node

CR node

 

Figure 2.2. An infrastructure-less CR network. 

 

Unlike infrastructure-based CR networks, the CR nodes in the ad-hoc network 

are responsible for all cognitive operations and functionality. CR nodes can 

communicate directly with other CR nodes without involvement of a central entity 

like the base station (see Figure 2.2). Nodes can join and leave the network at any 
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time, and exchanging control information amongst CR nodes without the presence 

of a centralized station is a key challenge in CR ad-hoc networks.  Extensive research 

has been carried out for this category and different protocols have been presented 

for ad-hoc CR networks which address issues such as synchronization of nodes, 

authentication mechanisms for new nodes to join the network, and access 

mechanisms to dialogue control information on the common control channel. Ad-

hoc CR networks are further categorized based on whether they use the ISM band 

global common control channel (GCCC) or not. Our research is based on 

infrastructure-less CR networks and is a hybrid between GCCC and non GCCC. 

More details about GCCC and non-GCCC will be provided in the next section.  

 

2.2.3 Mesh CR Networks 

Mesh networks for cognitive radio merge the architectures of infrastructure CR 

networks and ad-hoc CR networks into one. It uses the mesh topology where 

different base stations are connected to form a single backbone. The challenge for 

route selection and spectrum decision could be efficiently addressed by mesh CR 

networks [96][97]. Figure 2.3 shows the topological design for Mesh CR network. 

CR Base Station 

Backbone

CR Base Station 

CR Base Station 

Node

Node

Node

 

Figure 2.3. Mesh CR network architecture. 

 The medium access control plays an important role in several cognitive radio 

functions: spectrum mobility, channel sensing, resource allocation, and spectrum 
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sharing [43][48][98]. Spectrum mobility allows a secondary user to vacate its channel, 

when a primary user is detected, and to access an idle band where it can re-establish 

the communication link. Channel sensing is the ability of a cognitive user to collect 

information about spectrum usage, and to maintain a dynamic picture of available 

channels. Resource allocation is employed to opportunistically assign available 

channels to cognitive users according to QoS requests. Spectrum access deals with 

contentions between heterogeneous primary and secondary users in order to avoid 

any harmful interference. Multi-channel MAC protocols for ad-hoc wireless 

networks have represented a first step in the development of MAC protocols for 

cognitive radio in unlicensed scenarios. These protocols address similar problems; 

operating in a multichannel context and facing the multiple channel hidden terminal 

problem [99]. A cognitive radio may exploit, however, increased sophisticated 

sensing functionalities; it distinguishes between primary and secondary users, and 

provides protection to licensed transmissions. The number of channels available to 

each user is fixed in a multi-channel network, while it varies with time and space in a 

cognitive network. Furthermore, the time-scale in which a cognitive radio operates is 

very different from that of an ad-hoc radio in that secondary users must exploit 

periodical sensing to be aware of the wireless environment evolution and must 

rapidly adapt their behaviour to reach QoS and comply with interference constraints. 

2.2. Types of Common Control Channel 

As previously discussed in Section 1.4.4, a common control channel is a free 

channel required by cognitive devices to exchange a FCL and to initialize 

communication among co-operating cognitive nodes. Before a pair of SUs start to 

send and receive actual data, they have to coordinate and decide by communicating 

on the CCC about the chosen white space(s) for subsequent transmission. A 

common control channel is only required by infrastructure-less CR nodes where they 

dialogue control information. 

2.2.1. GCCC and non-GCCC 

The selection criteria for the CCC could be Static or Dynamic under the static 

case, SUs use the ISM band provided by the FCC for exchange of control 

information. CCC in this case would be called a global/universal common control 
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channel. We denote this global CCC as „GCCC‟. In the dynamic case, the control 

channel is one of the empty spaces from the list of unoccupied spectrum bands or a 

channel from the FCL. This type of control channel is also called local control 

channel and is denoted as non-GCCC. Synchronization amongst CR nodes using a 

non-GCCC is one of the most challenging tasks as nodes are not aware of other 

nodes in the vicinity initially and nodes may have disparity in deciding a channel in 

FCL as non-GCCC.  

2.2.2. Advantages and Disadvantages of GCCC 

Using GCCC for control information has advantages and disadvantages. 

a) Advantages of GCCC  

•  CCC is available 24X7. Since GCCC can be any band specified in ISM, it is always 

available and can be used by any type of wireless applications. 

•  There is no need to purchase a license to use the GCCC. The GCCC is within the 

ISM band so the users do not need to pay any licensing fee or ask for permission 

to use the GCCC. 

•  The pair of SUs can find the best channel based on the policy of channel selection 

and agree on transmission parameters to transmit data; this will lead to zero or 

minimum interference with the PU. Using the GCCC to exchange RTS/CTS 

decreases to zero the probability of interfering with the PUs [100]. 

•  The multichannel hidden terminal problem in the cognitive network environment 

[101] is solved by having a GCCC. The communicating nodes get updated from 

neighbouring nodes about any hidden terminals in their vicinity through GCCC. 

b) Drawbacks of GCCC 

Some of the major drawbacks of using GCCC include: 

•  There is no traffic differentiation, with the First Come First Served (FCFS) 

mechanism to access the GCCC.  

•  The higher the saturation of GCCC, the higher will be the computational cost and 

back-off algorithm to access it, leading to a lower probability of availability of 

GCCC, which can subsequently have serious effects on the QoS requirements of 

CR devices. 
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•  The increased number of wireless applications has created huge demand for more 

radio spectrum; and in these circumstances, having a dedicated band for all 

wireless applications causes congestion. 

•  An adversary can impose a denial of service (DoS) attack on a well-known 

dedicated GCCC by intentionally flooding it, thus creating a major security flaw 

[102]. 

2.2.3. Medium Access Control Mechanism in CR networks 

In order for CR nodes to communicate with each other, they must exchange 

the control information and spectrum information through a common control 

channel. This CCC must be known and available to all CR nodes for subsequent 

transmission to take place. The medium access control (MAC) protocols help CR 

nodes to access the CCC and to access available white spaces without interfering 

with the licensed users. MAC protocols also help CR nodes with addressing and 

channel access control mechanisms that make it possible for nodes in the CR 

network to communicate within a multiple access network that employs a shared 

medium. MAC protocols for CR networks are especially designed to enable 

reconfiguration and adaptation based on spectrum sensing functions. CR MAC 

protocols could be classified on the basis of channel access mechanism, use of 

GCCC or non-GCCC, in-band or out-of-band CCC, overlay and underlay, 

synchronous and asynchronous CRN, direct access based and dynamic spectrum 

allocation based, centralized and decentralized CR networks, and whether they are 

based on cooperative or non-cooperative CR MAC protocols. A single CR MAC 

protocol can belong to different categories at the same time. For example, a MAC 

protocol presented in [32] is non-GCCC, decentralized, overlay and cooperative at 

the same time. More detail about each category will be provided in the oncoming 

sections of this chapter.  

2.3. Design Constraints of Channel Accessing for CR users 

To borrow unoccupied channels, CR users must have the ability to identify a 

channel‟s characteristics and its availabilities. Since PUs can come back to use the 

spectrum anytime, CR users should be able to detect the presence of PUs in time and 

vacate the occupied bands immediately to prevent or reduce the interference to PUs. 



- 37 - 
 

Therefore, spectrum sensing and spectrum accessing/vacating are two crucial tasks 

to realize this technique. Spectrum sensing is the task for CR users to collect 

information about the spectrum usage and the existence of PUs, and it is mostly the 

job of the physical layer; while spectrum accessing and vacating are the task for CR 

users to transmit data packets on unoccupied channels and release these channels to 

PUs as quickly as possible. We examine the design constraints of channel access for 

CR users, including the efficiency of control channel, the efficiency of data channel 

and the efficiency of vacating a channel. 

2.3.1. Efficiency of Control Channel 

This is reflected by the time required for CR nodes to discover a common 

control channel. Subsequent communication amongst CR nodes could not occur 

until CR nodes are aware of a channel that is available for all CR nodes. The control 

channel efficiency depends on the selection criteria for the control channel. The 

control channel could be either a well-known and publicly available channel, 

commonly called the GCCC or it could be one of the most reliable and available 

white spaces (non-GCCC). The former category suffers from the drawbacks such as 

saturation of the GCCC, no traffic differentiation (QoS unaware) and security attacks 

like denial-of-service (DoS). The latter category of control channel has worse 

searching efficiency, but once the control channel is discovered by all CR nodes in 

the vicinity, nodes spend less time in exchanging control information and quickly get 

ready to transmit data.  

2.3.2. Efficiency of Data Channel 

Data channel efficiency is defined as the time required for two CR nodes to 

conclude transmission on a data channel. In high traffic loads of PUs, CR users send 

only one data frame and then vacate the channel. However, when the chances of PUs 

interferences are low and CR nodes still have data to send, more than one data frame 

will be transmitted in one transaction. The data channel efficiency could be increased 

by using more than one data channel simultaneously [103][104]. On the other hand, 

determining the length of a spectrum hole could also help increase data channel 

efficiency.  
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2.3.3. Efficiency of Vacating a Channel 

CR users must vacate the occupied channel when the PU claims it in order to 

minimize the interference. The majority of the CR MAC protocols found in the 

literature assume that nodes are automatically aware of the presence of PUs [105–

112]. However, the unrealistic assumption is criticized because CR nodes cannot 

sense the PU presence when transmitting and PUs cannot generate interruptive 

signals to SUs on occupied channels. The performance of both PUs and SUs largely 

depends on whether or not the PU activity can be sensed in a timely manner. 

Equipping CR nodes with sensors in conjunction with transceivers could help 

alleviate the assumption and is less costly than transceivers [38]. 

2.4. CR MAC Protocols Classification Process. 
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Figure 2.4. Classification model for cognitive radio MAC protocols. 



- 39 - 
 

As previously discussed, MAC protocols for CR networks are especially 

designed to enable reconfiguration and adaptation due to their dependence on 

spectrum sensing functions. Numerous protocols for CR networks have been 

designed and developed. A thorough review has enabled us to classify CR MAC 

protocols as presented in Figure 2.4.  

2.4.1. Classification Based On Access Mechanisms 

Due to the classical wireless nature of cognitive radio, existing channel access 

mechanisms (e.g. random, time slotted and hybrid, a combination of random and 

time slotted) could be applied. The classification of CR MAC protocols based on 

different channel access mechanisms is further described below. 

a) Time-slotted CR MAC protocols 

Channel

CR Tx

CR Rx

Time Slot 1 Time Slot 2

Listening

Sync

Sync
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Receive

Send
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Time Slot n

Time Slot n
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….
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Figure 2.5. Structure of time slotted CR MAC protocols. 

The MAC protocols in this category divide the control channel into time slots 

of fixed length. Each time slot represents one CR node, and nodes can only 

communicate in their respective time slots. Each time slot has a listening period and 

a transceiving period. All CR nodes are synchronized in the listening period of each 

time slot. The time division multiple access (TDMA) algorithm is used to access the 

common control channel to exchange the FCL or to transmit data in data channels. 

The protocols presented in [113][114][115] and [100] logically divide the channel into 
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slots, each of which, in turn, includes a slotted listening period where nodes exchange 

information, negotiate channel usage and get synchronized, and a transceiving period 

where the actual data transmission takes place (see Figure 2.5). Each node 

transmits/receives a beacon in a listening period of its designated time slot, which 

helps deal with hidden nodes, medium reservations, and mobility. The limitation of 

this category of CR MAC protocols is that a centralized entity is required for the 

network-wide synchronization.  

b) Random Access CR MAC Protocols 

The main principle used by the CR MAC protocols in this category is carrier 

sense multiple access with collision avoidance (CSMA/CA). Each CR node contends 

for the medium to dialogue control information and then switches to a common 

channel in the FCL for subsequent data transmission. No time synchronization 

amongst CR nodes is required in this category but there is always starvation of the 

control channel. The protocols designed in [116][117][118][119][120] use traditional 

listen-before-transmission phenomenon.  Each node shall sense the carrier before 

transmission. If the channel is sensed idle, then the CR node that wants to transmit 

packets sends a RTS message on the common control channel. If the corresponding 

CTS message is received successfully, then both the sender and receiver switches to 

the data channel that was found as common during the initial RTS/CTS dialogue. 

Data packets can be transmitted on the data channel followed by an 

acknowledgement (ACK) message.  

CCC

Channel 3

Channel 2

Channel 1

RTS 1 CTS1

Data 1 ACK 1

RTS 2 CTS 2

Data 2 ACK 2

RTS 3 CTS 3

Data 3 ACK 3

Listen-before-transmit
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Figure 2.6. The behaviour of random access CR MAC protocols. 
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c) Hybrid Access MAC 

The protocols in this category make use of an approach lying between random 

access and time-slotted access mechanism. Control signals are synchronized amongst 

nodes in the CR network through time slots, and actual data transmission occurs 

following the random channel access mechanism. The OS-MAC protocol for 

cognitive wireless networks [121] dedicates one channel as a CCC, where inter-

channel control traffic takes place. In OS-MAC, devices are only required to be 

equipped with a half-duplex transceiver. OS-MAC significantly improves the 

spectrum access efficiency by balancing the traffic load over all spectrum bands, and 

it fairly treats all users by assuring them to receive an equal access time share or 

throughput share. Synchronizing amongst nodes is established by locating and 

switching nodes to the best spectrum band (which is, less loaded, and less noisy).  

Another hybrid access CR MAC protocol which has been developed is the SYN-

MAC protocol [122], which divides the network time into frames. Every frame 

includes three intervals: the contention interval, the hidden-station elimination 

interval and the data interval. These intervals help achieve a shorter synchronization 

time, and nodes within one collision domain agree on a close-enough time point for 

transmission. The major design flaw in both the OS-MAC and SYN-MAC protocols 

is the fixed duration of time-slot. The length of time-slot should vary as more nodes 

join and leave the network. 

2.4.2. Classification Based on Proactive and Reactive Approaches 

“In the proactive approaches, a CR user periodically searches for unoccupied 

channels, and maintains a table to record the characteristics of sensed channels (such 

as signal-to-noise ratio, and channel occupancy), even though it has no data to send 

immediately. A statistical channel allocation MAC protocol is proposed in [103], 

where all CR users sense the spectrum periodically. The potential transmission 

opportunities are determined by CR receivers. CR pairs tune their transceivers to 

agreed-upon channels for data transmissions. A CR user can utilize multiple 

continuously unoccupied channels to transmit data, and thus the total transmission 

time is reduced. This approach requires more message exchanges when designated 

spectrum holes are not available for CR senders. Instead of dedicating a channel for 

control message exchanges, the mechanism proposed in [100] assumes that each CR 
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user equips two transceivers to do channel sensing (named listening radio) and data 

transmission (named data radio). For each CR user, its listening radio keeps sensing 

channels sequentially. When a CR sender wants to send data, it randomly selects a 

common channel to send control frames at a specified time slot. Global 

synchronization among CR users is an implementation issue in this approach. A 

sequence-based rendezvous scheme was proposed in [123]. Two non-synchronized 

radios looking for each other will eventually be searching on the same channel 

through the use of non-orthogonal channel hopping sequences. The paper did not 

describe how to detect the presence of PUs. 

In the reactive approaches, a CR user searches for unoccupied channels only 

when it has data frames to transmit. In HC-MAC [110] time is divided into beacon 

intervals, and each beacon interval is further divided into three phases: channel selection, 

sensing, and data transmission. In the channel selection phase, a CR user informs its 

intended receiver of the selected data channel. In the sensing phase, a CR pair sense 

the availability of the selected data channel. When the selected data channel is sensed 

idle, the CR sender starts to transmit data packets. In the data transmission phase, 

CR users can transmit packets on not only data channels but also the control 

channel. Therefore, CR users still have opportunities to send data when all data 

channels are utilized by PUs. Similar to [124], the global synchronization among CR 

users is a key implementation challenge. Considering limitations of the sensing 

constraint and the transmission constraint, an optimal stopping problem was 

formulated in [125] by considering the sensing overhead and the transmission 

limitation. The derived sensing time helps a potential CR sender to achieve its 

optimal expected throughput. CR nodes which hear a cognitive-ready to send (C-

RTS) or cognitive-clear-to-send (C-CTS) on the control channel are not allowed to 

send data. As a result, only one CR pair can transmit at a time, and thus the overall 

throughput of the CRN decreases.  

A channel-hopping based cognitive radio MAC mechanism, called CH-MAC 

in this thesis, was proposed in [109]. In CH-MAC, each CR user has its own channel 

hopping sequence, which is determined by an unique ID (e.g., MAC address). All CR 

users share the same hopping-sequence generation function, and thus a potential CR 

sender can easily obtain the hopping sequence of its intended CR receiver. When a 
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CR sender has data to send, it follows its receiver‟s hopping sequence to do 

negotiation and data transmission. Though this approach does not need a dedicated 

control channel, how a potential CR sender meets its intended CR receiver on a 

specific channel efficiently, is not addressed. The sensing mechanism proposed in 

[123] aimed at exploring the channel hopping sequence to guarantee rendezvous. 

Indeed, each CR user has a pre-defined channel hopping sequence. The sequences 

are constructed in such a way to guarantee CR senders rendezvous with their 

intended CR receivers when they are not synchronized. However, the derived 

expected time-to-rendezvous is considering a CR pair, and sensing conflict is 

ignored. The multi-channel cognitive medium access control had been studied in  

[126]. The authors first formulated the problem of optimal channel sensing order and 

then proposed a dynamic programming approach to solve the optimization problem. 

Besides, some special cases are presented to show that the optimal solution does 

exist. However, the computation complexity is high when some channels cannot be 

utilized by CR users, and the channel vacating issue has not been addressed.” 

2.4.3. Classification Based on Common Control Channel 

CR MAC protocols dialogue control information on a well-known and well 

defined control channel. Based on the selection criteria of the control channel, CR 

MAC protocols could be broadly classified into three categories: GCCC CR MAC 

protocols, non-GCCC CR MAC protocols and Assumed CCC CR MAC protocols: 

a) GCCC MAC Protocols 

This category makes use of GCCC in either the ISM band e.g., 2.4GHz, or any 

other unlicensed band. Cognitive MAC protocol using the statistical channel 

allocation for wireless ad-hoc networks (SCA-MAC) [103] is a decentralized GCCC-

based CR MAC protocol that can speed up the transmission by using more than one 

channel for data transmission and can wait for some time for a channel with higher 

bandwidth to become available. A hardware-constrained cognitive MAC (HC-MAC) 

for efficient spectrum management [117] uses an unlicensed band as control channel 

and addresses the hardware issues to make CR more practical. A new MAC protocol 

with control channel auto-discovery for self-deployed cognitive radio networks 

(DUB-MAC) is presented in [118], which uses a different unlicensed spectrum band 

other than ISM and employs one frequency band as the control channel and another 
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frequency band to transmit data. These protocols emphasize on data transmission 

but ignore the pre-transmission overheads such as the time required in dialogue to 

exchange initial configuration and the time required to converge on the common 

control channel. 

b) Non-GCCC CR MAC Protocols 

Protocols in this category either use one of the white spaces as the control 

channel or use a different band other than ISM to exchange control information 

before they can actually start communication. The synchronized MAC protocol for 

multi-hop cognitive radio networks (SYNC-MAC) [100] chooses one of the channels 

common between itself and neighbours to exchange control signals while other 

channels are selected to send data. In the opportunistic-cognitive MAC (OC-MAC) 

[127], initially all nodes reside on a non-GCCC, perform three-way handshakes to 

select a data channel from the FCL, and confirm the data transmission through an 

acknowledgement. CR nodes in OC-MAC predict the length of the spectrum hole, 

but this prediction is strongly criticized because the CR network is an opportunistic 

network and it is very hard to find the exact duration during which the PU is not 

utilizing the spectrum so that the length of available spectrum hole could be 

calculated. The cognitive MAC protocol for multi-channel wireless networks [128] 

selects the so-called R channel within the white spaces and sets this channel as a 

control channel and manages the communication on the R channel. The selection 

criterion for the control channel has not been clearly defined in the above mentioned 

protocols and most importantly, the clarification about which node will set the 

control channel and how the rest of nodes will be synchronized is missing. 

A distributed cluster-based CR MAC protocol (DCP-MAC) for common 

control channel selection is proposed in [129].  The CR nodes in DCP-MAC 

searches for an existing common control channel by scanning all possible channels to 

receive a CC-BC (Common Channel Beacon) which is broadcasted periodically by a 

cluster head. A node should listen on one channel to receive CC-BC as well as 

recording available channels where there are no primary system signals during this 

scanning time. In the event that a node did not receive any CC-BC during the 

scanning procedure, it means that either there exists no CCC or the existing CCC is 

not an available channel at this node. It starts to process the cluster construction by 
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sending a CC-IVT (Common Channel Invite) message to its neighbour nodes using 

CSMA/CA. Four different types of frames, CC-BC, CC-IVT, common channel 

report (CC-RPT), and common channel advertisement (CC-ADV), are exchanged 

amongst CR nodes. Apparently, the network topology based on a cluster is formed 

by a group of neighbour nodes sharing the same common channels but DCP-MAC 

has ignored the overheads of exchanging four control frames and has not mentioned 

the time it will take for all CR nodes to complete the clustering forming process. 

There are real chances that the channel identified as control channel will be occupied 

by the time CR nodes in the network form the cluster.   

F2-MAC Protocol [42] presents an efficient channel sensing and access 

mechanism for an ad-hoc CRN. F2-MAC uses a five-way handshake to dialog control 

information. Two types of control frames, similar to traditional RTS and CTS 

frames, are delivered through a dedicated control channel. Three more control 

messages, Data Channel Idle (DCI), DCIACK and Ready-To-Vacate (RTV), are 

delivered through data channels. The proactive channel vacating phenomenon 

presented in F2-MAC lets the CR users be reactively aware of the presence of PUs, 

and the nodes vacate the licensed channel before the PU reclaims. SUs in F2-MAC 

sense the data channel, send the RTV frame and then wait for certain time. By 

transmitting multiple frames on a licensed channel, the throughput in a CR network 

is improved. However, five control frames and a certain waiting time before 

transmitting in the F2-MAC protocol impose the highest overheads. The maximum 

number of frames exchanged as control information is four for many CR-MAC 

protocols. Exchanging five control frames will not only consume more mobile 

energy but also CR nodes may miss the rare opportunity to transmit. Moreover, F2-

MAC does not specify whether the dedicated control channel is GCCC or non-

GCCC. 

c) Assumed CCC CR MAC Protocols 

The protocols [38][42][130][131] in this category do not delve into a control 

channel setup mechanism and simply assume that a control channel has already been 

established prior to any data transmission. The Cognitive radio-enabled multi-

channel MAC (CREAM-MAC) [38] is a decentralized CR MAC protocol that applies 

a four-way handshake with communicating nodes on the control channel under the 
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assumption that the control channel is always available and reliable. CREAM-MAC 

assumes that a CCC has been found and agreed upon by all CR nodes in the vicinity 

before the CREAM-MAC starts its operation. Further to the assumed existence of a 

control channel, CREAM-MAC also assumes that the control channel is always 

reliable and PU-interference free. It is strongly believed that finding a common 

channel to exchange control information is the primary task of cognitive nodes. 

Subsequent operations could not take place if the existence of a control channel has 

not been addressed. So the unrealistic assumption of an available control channel is 

not a well-built justification. Emphasis has been given to data transmission with 

complete ignorance of the overheads of determining and agreeing upon the control 

channel. 

Song et al [131] have proposed a CR MAC protocol under the property-right 

model, in which SUs are divided into several non-overlapping groups, and each 

group uses the proposed auction algorithm to bid for leasing the required channels 

from the auctioneer appointed by PUs. Based on the distributed environment, 

secondary users are divided into several non-overlapping groups. Each non-

overlapping group has a leader (who is adjusted dynamically), who is responsible for 

members‟ management, group channel‟s management and communication 

management. Also, an auctioneer, who is appointed by primary users, is used for 

auctioning vacant channels among leaders through the control channel. The 

auctioneer checks all bids and allocates the free channels to leader of the group. 

Though, the proposed MAC protocol claims for efficient spectrum usage but there 

are numerous pre-transmission overheads, e.g., those made by two different 

algorithms (an algorithm for joining/leaving the network and another algorithm for 

free channel allocation to the leaders in each SU group) which are executed prior to 

any CR transmission. The protocol also does not identify the process of FCL 

creation. 

It is strongly believed that finding a common channel to exchange control 

information is the primary task of cognitive nodes, and that subsequent operations 

could not take place if the existence of the control channel has not been well 

addressed. So the assumption of an available control channel is not a well-built 

justification.  
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To summarize, GCCC-based protocols [103][117][118] suffer from the 

drawbacks discussed previously such as the saturation of GCCC (since it is widely 

available for anyone, imposing a high computational cost from backing off) and 

security vulnerabilities. The synchronization of CR nodes on the common control 

channel is not clearly defined in non-GCCC MAC protocols. The assumption of 

existence of a control channel is too strong for subsequent data transmission which 

is heavily dependent on the control channel. Also, CR nodes must release the 

occupied spectrum to avoid interference with PUs. Most of the protocols discussed 

above assume that SUs will vacate the spectrum whenever a PU activity is detected. 

However, this assumption needs to be carefully justified because if SUs are busy 

transmitting, they cannot detect any activity of PUs and PUs cannot generate signals 

on busy channels to CR users. Emphasis should be given to the clear methodology 

for the selection of the control channel rather than on how data transmission 

amongst two CR nodes will take place (because CR nodes can only switch to actual 

data transmission once successful and secure FCL transactions have taken place). 

2.4.4. MAC Protocols Based on Direct Access 

Direct-access based MAC protocols are of two types: contention based protocols 

and coordination based protocols. In former category, the CR nodes perform a handshake. 

This handshake includes classical RTS and CTS frames followed by the FCL. After 

the exchange of FCL, nodes are able to identify the common white space which they 

both agree to select as data channel and the subsequent transmission is concluded on 

the agreed data channel.  

Sender Receiver RTS

CTS

Data

ACK

RTS: Ready-to-Send

CTS: Clear-to-Send

ACK: Acknowledgement 

 

Figure 2.7. Simple handshake process in direct-access based MAC protocols. 
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Adaptive MAC (A-MAC) [104] is a contention based non-GCCC CR MAC 

protocol. The A-MAC protocol is distributed in nature and can utilize the backup 

channel when higher throughput is required. A-MAC needs an always-available 

control channel to exchange control information amongst CR nodes. Each secondary 

user senses the licensed spectrum for a period of time. The number of channels 

sensed by each CR device is subject to a hardware constraint, i.e., the number of 

sensors per SU. When free channels are sensed, an indexed channel list (ICL) is 

created. The ICL must be renewed before Tmax time, where Tmax is the maximum 

tolerable time for the primary users to use the licensed channel. Channel indexing is 

done according to the available bandwidth. The higher the bandwidth of a channel, 

the higher will be the throughput on that channel. Other parameters that can be used 

to build a channel rank in A-MAC are SNR, queue length, frame error rate and past 

history. After the successful four-way handshake, the sender sends data frames in the 

specified channel and can also use the backup channel if (i) either there is channel 

occupancy by the PU, or (ii) when improved throughput is required, or (iii) if there 

are errors occurring in data channel. The important thing to note in A-MAC is the 

exchange of four control frames. A-MAC, being a contention-based protocol, gives 

to the contention winning node a chance to occupy the control channel for as long 

as required. This may cause severe delays to other nodes contending for the medium, 

especially when any of the control frames is lost and thus has to be retransmitted.  

A-MAC is different from the previously discussed protocols as it makes use of 

a non-GCCC. However the methodology used by CR nodes in the vicinity to 

converge on a non-GCCC is clearly missing. It is very important for nodes in the CR 

network to be well aware of the control channel because no subsequent transmission 

could occur without first finding the control channel. Also more control frames with 

a larger size for each control frame cause a higher pre-transmission time. 

Consequently CR nodes will struggle a lot in order to seize the rare opportunity to 

utilize the white spaces before a PU activity is sensed.  

In the coordination-based MAC protocols, each CR node establishes adjacency 

with its neighbours to improve sensing reliability and improve the system 

performance. This also helps CR nodes to avoid the hidden terminal problem.  
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Figure 2.8. Network architecture of a coordination based CR MAC protocol. 

 

The Opportunistic Cognitive MAC (OC-MAC) [127] is a coordination-based MAC 

protocol that co-exists with a wireless local area network (WLAN). OC-MAC 

performs the three-way handshake by employing IEEE 802.11 DCF over the 

dedicated control channel [132][133]. Each secondary user in the OC-MAC protocol 

maintains a list of all channels available for communication and creates a Channel-

State-Table (CST). The physical layer is equipped with sensors. The sensors scan the 

spectrum and look for the free channels. The statistics for channel utilization and 

average time of use of channel by the PU are maintained in the CST.  

The information contained in the CST is used to estimate the PU traffic and 

the system busy time. However, there are some vital design flaws in OC-MAC which 

make it inappropriate for CR nodes. First of all, the operation of OC-MAC is started 

with the existence of a dedicated control channel which will be used for exchange of 

RTS/CTS and CRTS, and no description of the dedicated control channel is 

provided. Secondly, CR nodes in OC-MAC predict the length of a spectrum hole. 

We strongly criticize this because a CR network is an opportunistic network and it is 

very hard to find the exact time interval during which the PU will not utilize the 

spectrum so that the time length of spectrum hole could be calculated. Lastly, the 

protocol claims to be co-existent with a WLAN, however, the justification for this is 

neither clearly presented in the paper nor do we believe that CR nodes need to 

coexist with a WLAN because WLANs use the ISM band (e.g., 2.4GHz) which is 

already freely available to any user. There is no need to seize the opportunity to 

transmit in the ISM band, and nodes only need to contend for the ISM band. 

The SCA-MAC protocol [103] intelligently senses the spectrum and 

dynamically accesses the unused or underutilized spectrum with minimum or no 

interference to PUs. Two basic control parameters are operating range and channel 
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aggregation for SCA-MAC. This protocol also uses the CSMA/CA [134] mechanism to 

achieve a higher spectrum utilization. SCA-MAC uses a cyclostationery feature 

detection [8][135] for the continuous and rapid spectrum sensing. This protocol can 

speed up transmission by using more than one channel for data transmission and can 

wait for some time for a channel with a higher bandwidth to become available.  SCA-

MAC is a global decentralized CR protocol which performs a two-way handshake by 

exchanging frames which contain the information of the best opportunity. SCA-

MAC emphasizes the data transmission, and ignores the pre-transmission overheads. 

Obviously, having more frames exchanged as control information will not only add 

to the delay for QoS aware data but it will also contribute towards inefficient energy 

consumption as nodes will have to wait longer before the actual transmission starts. 

2.4.5. MAC Protocols Based on Dynamic Spectrum Allocation (DSA) 

“The DSA-based MAC protocols make use of advanced algorithms to access 

the available spectrum opportunistically, intelligently, and fairly. The SUs in DSA-

based MAC protocols adapt their transmission parameters, such as modulation and 

coding, power transmission, and antenna configuration, to the changes of the 

wireless environment, in order to efficiently exploit the available resource. Finding 

the best transmission opportunities in this category is the most challenging task that 

requires computational cost and complex calculations to fully understand and learn 

the status of the CR network. Hence, the MAC protocols in this category suffer from 

low scalability, negotiation delay and the complexity. In order to reduce complexity 

in DSA-MAC protocols, several approaches have been considered to model network 

interactions, such as the localized variation of the island genetic algorithm [136], 

graph colouring theory [137], [138], game theory [139], [140], stochastic theory [141], 

genetic algorithms [142], and swarm intelligence algorithms [54]. 

2.4.6. MAC Protocols for Synchronous Cognitive Radio Networks 

The research community has proposed several spectrum sharing based MAC 

protocols for the synchronous cognitive radio networks. More precisely, Swami et al 

and Zhao et al [141][143] developed a cognitive-radio MAC protocol based on the 

partially observable Markov decision processes (POMDPs) framework. A 

decentralized cognitive MAC protocol has been proposed in [143]. The protocol 
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allows SUs to autonomously exploit spectrum opportunities without a central entity 

or a dedicated communication channel. 

2.4.7. MAC Protocols for Asynchronous Cognitive Radio Networks 

Several asynchronous CR MAC protocols have been proposed that initialize 

the CR operation in the network after receiving certain signals at certain time 

intervals [144 – 153]. The performance evaluation for these CR MAC protocols is 

carried out based on several parameters such as the transmit duration of SUs based 

on the sensing results to balance the interference caused to PUs and the overall 

spectrum utilization efficiency, the coexistence with multiple parallel WLANs and 

providing an innovative solution to the hidden terminal problem by using three sets 

of radios. [144][145][146][147][148][149][150][151][152][152][153].  

2.4.8. Classification Based on Overlay and Underlay 

The CR MAC protocols can also be classified as overlay or underlay.  Kim et al 

[154], proposed an underlay spectrum sharing based CR MAC protocol and 

investigated the dynamic spectrum sharing problem among PUs and SUs. The 

protocol considered a scenario where PUs exhibited on-off behaviour and SUs 

dynamically assess the PU arrival patterns. They calculated the SUs‟ transmission 

probabilities and developed a framework to maximize the number of admitted SUs 

for the given fairness constraints.  

Elezabi et al [155] proposed a scheme for the SUs in underlay cognitive radio 

networks, which aims to minimize the interference to the PUs. Wang et al  [156] 

focused on the CDMA-based underlay cognitive radio systems where the PUs can 

increase transmission  power to counter-balance the harmful interference caused by 

the SUs. Hoang et al proposed a two-phase channel and power allocation scheme for 

the underlay-based multi-cell cognitive radio networks to improve the system 

throughput [157]. Zhang et al [158] proposed a single input multiple output (SIMO) 

MAC scheme with joint beam forming and power allocation, which compares PUs‟ 

and SUs‟ power rates and lets the SUs transmit keeping in mind the PUs‟ power 

constraints.  
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Another CR MAC protocol which exploits the underlay approach is COMAC 

proposed in [159]. COMAC allows SUs to transmit in PUs‟ spectrum band at low 

power rates to avoid interference to PUs. The protocol has a major design flaw, i.e., 

when multiple SUs simultaneously access the common control channel, it causes 

collisions and furthermore, the multichannel hidden terminal problem is not solved if 

neighbouring SUs are busy in transmission.” 

“Numerous overlay CR MAC protocols have been proposed that consider 

unlicensed users (i.e., secondary users) opportunistically exploiting the spectrum 

holes in licensed frequency bands. In overlay CR networks, secondary users can only 

transmit on channels if these channels are not being used by primary users. In [160] 

the overlay access paradigm is investigated and this approach is compared with the 

classical interweave access. The assumption of the overlay model is that the 

secondary transmitter has a priori knowledge of the primary user‟s message. 

Furthermore, all channel gains are known to both transmitter and receiver. 

Simulation results presented show how the underlay technique can potentially 

outperform the achievable secondary network. However, as the knowledge of the 

licensed user message can be available at the cognitive side only if the two 

transmitters are located in close proximity, the overlay performance gain is strongly 

affected by this distance. Moreover, complicated pre-coding techniques must be 

available at the cognitive transmitter, and cooperation between primary and 

secondary systems is necessary to estimate channel gains between transmitters and 

receivers.” 

A MAC protocol for opportunistic spectrum access in cognitive radio 

networks (OSA-MAC) has been proposed in [161]. The proposed OSA-MAC 

integrates both sensing and channel access functionalities and works in a multi-

channel environment where each SU only accesses at most one channel at any time. 

The protocol also takes into account issues such as synchronized transmission, 

contention on the control channel, and the traditional hidden terminal problem. In 

addition, to avoid the possible collision with PUs, SUs perform sensing frequently 

besides doing the contention resolution as in a conventional MAC protocol. The 

protocol assumes that a dedicated control channel is always available for exchange of 

control information and thus suffers from all the drawbacks mention in Section 2.2. 
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 In [162], a cognitive MAC protocol for QoS provisioning in overlay ad-hoc 

networks is proposed which establishes a neighbour list to help a CR node recognize 

the spectrum opportunities. The protocol is different from the legacy CSMA/CA by 

introducing an algorithm with an improved contention resolution mechanism, 

consisting of a gating mechanism, a linear backoff algorithm and a stall-avoidance 

scheme. The proposed protocol maintains three different types of table: a PU 

information table (PIT), a reservation information table (RIT), and a contention 

information table. We believe that creating, populating, indexing and searching three 

different tables at each CR node will not only add processing complexities within the 

CR nodes but will also make it hardware dependent as nodes have to manage three 

different tables simultaneously.   

2.4.9. Classification Based on Single Radio And Multiple Radio 

The cognitive radio MAC protocols could also be categorized based on the 

number of transceivers/radios used. Here a single radio is used for sending and 

receiving data with the constraint that when it transmits, it cannot receive and vice 

versa. Many single-radio based MAC protocols have been proposed [99][114][163] 

[164].  

The single radio adaptive channel (SRAC) algorithm is proposed in [163] and it 

adaptively combines spectrum bands based on the CR user requirement, called 

dynamic channelization. In addition, it uses a scheme like frequency division 

multiplexing (FDM), called cross-channel communication, in which a CR user may 

transmit packets on one spectrum band but receive messages on another spectrum 

band. Although, the hardware cost could be reduced by deploying a single radio but 

it could suffer the traditional hidden terminal problem. Also, the SRAC algorithm 

makes the strong assumption and claim to be already capable of detecting PU arrival 

of the licensed spectrum bands.  

The Cognitive MAC (C-MAC) protocol proposed in [114] operates over 

multiple channels. Each channel is logically divided into recurring super frames 

which, in turn, include a slotted beaconing period (BP) where nodes exchange 

information and negotiate channel usage. Each node transmits a beacon frame in a 

designated beacon slot during the BP, which helps in dealing with hidden nodes, 

medium reservations, and mobility. For coordination amongst nodes in different 
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channels, a rendezvous channel (RC) is employed that is decided dynamically and in a 

totally distributed fashion. The functionality and the operation of the C-MAC 

protocol are heavily dependent on the rendezvous channel (RC), which is one of the 

white spaces in the FCL. If the RC is occupied or reclaimed by the PU, there are no 

mechanisms for CR nodes in C-MAC to resume the cognitive functionality on some 

other RC.  

Hyoli et al [164] propose a MAC-layer sensing scheme in cognitive radio 

networks. The proposed scheme tries to discover as many utilizable spectrum 

opportunities as possible and assumes every SU is equipped with a single identical 

antenna that can be tuned to any combination of consecutive licensed channels. 

However, equipping each SU with a single antenna will lead to the traditional hidden 

terminal problem and SUs would not be able to detect claims by PUs in a timely 

manner.  

“"When multiple transceivers are in place, the task of designing a multi-channel 

MAC protocol is significantly simplified. Issues related to hidden and exposed 

terminal problems, connectivity, and channel switching can be overcome almost 

completely. Here, it is assumed that nodes have multiple transceivers capable of 

tuning to and accessing different channels simultaneously, which is the key to 

overcoming the aforementioned challenges. Research here has mostly focused on 

channel selection strategies. In the Dynamic Private Channel (DPC) protocol 

introduced in [165] nodes are assumed to be equipped with as many transceivers as 

the number of channels. As in other protocols, one particular channel is reserved as 

the default control channel for negotiation purposes. Given that a transceiver is 

always associated with the control channel, the multi-channel hidden terminal 

problem is eliminated. Special RTS and reply-to-RTS frames are employed in this 

control channel in order to select another channel for data communication. 

 The multi-channel MAC protocol proposed in [166] also assumes that each 

node has as many transceivers as the number of available channels, but here nodes 

are capable of listening to all these channels simultaneously. Whenever a node has a 

packet to send, it selects an idle channel for transmission. In the case of multiple idle 

channels, the one employed in the last successful data transmission is preferred. This 

technique is referred to as “soft channel reservation”. An enhanced channel selection 
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strategy for this protocol has been presented in [167], and it consists in selecting the 

best channel based on the power level sensed at the transmitter. On the other hand, 

the Receiver-Based Channel Selection (RBCS) mechanism in [168] chooses the best 

channel on the basis of the signal-to-interference and noise ratio (SINR) at the 

receiver.  

The Dynamic Channel Assignment (DCA) protocol [169] operates similarly to 

RBCS. It employs a default control channel while other channels may be used for 

data transmission. A distinctive feature of DCA is that it requires exactly two 

transceivers, one of which is permanently tuned to the default control channel and 

the other of which is free to tune to any of the data channels.  

The power saving multi-channel MAC protocol (PSM-MMAC) [170] targets 

the power consumption under reduction of multi-channel operation, which is highly 

desired due to the fact that some nodes are powered by battery. However, PSM-

MMAC focuses only on the one-hop case. It is not straightforward to apply it 

directly to the multi-hop case. Finally, the Common Spectrum Coordination Channel 

(CSCC) protocol [171] is an extension of the DCA protocol, allowing different types 

of wireless devices to share the radio spectrum. This is done via negotiation through 

the CSCC.” 
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2.5. Summary 

Numerous CR MAC protocols have been designed and developed by the 

research community. There exists different parameters and characteristics that are 

considered while designing a CR MAC protocol (see Figure 2.4 for different types of 

CR MAC protocols). These design parameters include the type of infrastructure, the 

design of the common control channel, the access mechanism on the control channel 

and the access mechanism on data channels, the number of control frames 

exchanged as control information, the utilization of free spaces with and without 

coalition of a PU, the cooperation type, the number of transceivers and the selecting 

criteria for best channel. There are a few other parameters that are also taken into 

consideration during the development of a CR network such as signalling methods, 

spectrum sensing techniques, and certain physical layer parameters. 

Not all the CR MAC protocols present a similar design. In our literature review 

we have focused only on those CR MAC protocols whose design architecture match 

the design of our proposed DDH-MAC protocol. Other reasons for these protocols 

being reviewed in Chapter 2 are that these protocols are highly cited and that they are 

among the newest CR MAC protocols. A broad classification of CR MAC protocols 

is presented in Figure 2.9. 

CR MAC Protocols

De-centralized Centralized

No. of transceivers 

requested per CR
CCC Requirements IEEE 802.22

Assume Existence Non-Global CCC

Song-MAC

F2-MAC
OC-MAC SCA-MAC A-MAC

CCC: Common Control Channel SCA: Statistical Channel Allocation 

A-MAC: Adaptive /Cognitive MAC OC: Opportunistic Cognitive

DOSS: Dynamic Open Spectrum, Sharing SYNC: Synchronized MAC 

CREAM: Cognitive Radio EnAbled Multi-channel F2-MAC: Fast and Fair MAC 

Song-MAC: A Leasing Oriented MAC Protocol for High Spectrum Usage in CR Network

 

Multiple Radios

DOSS MAC SYNC-MAC

Single Radio

Channel Hopping 

based MAC

Global CCC

CREAM-MAC

Figure 2.9. Classification of CR MAC protocols. 
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All types of CR MAC protocols exchange control information over the control 

channel. This control information is a pre-requisite for any subsequent transmission 

to occur. The control information can include frames such as RTS/CTS/FCL and 

FCL ACK. The CR nodes intending to transmit to other CR nodes in the vicinity 

first exchange the control information on a well-known and well-established control 

channel. The criteria to access the control channel could be either coordination-

based or contention-based. Once there is an agreement between a pair of CR nodes 

about which white space to use for actual data transmission, the CR nodes switch to 

the data channel and if there is a PU claim on the data channel, then they have to 

vacate the data channel without interference to PUs. The generic behaviour of CR 

MAC protocols is described in Figure 2.10. 
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Figure 2. 10. Generic behaviour of CR nodes dialoguing control information on the control channel. 
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In this literature review we have discussed numerous CR MAC protocols and 

the parameters considered in their design and development process. We have 

summarized our review in the following two tables which thoroughly presents 

different features of CR MAC protocols.  

Table 2.1  Comparative evaluation of CR MAC protocols 

 

It is concluded that in order to develop a CR MAC protocol, there are certain 

parameters that a CR MAC protocol must address. In Table 2.2, we have selected 20 

CR MAC protocols and have summarized their design parameters.  

 

 

 

 

 

 

                                                           
 

3
 DSSS: Direct Sequence Spread Spectrum, A physical layer parameter of IEEE 802.11b 

Features CREAM OC-MAC SCA-MAC A-MAC F2-MAC 
DNG-

MAC 

Spectrum Sensing [12][172] 
Energy 

Detection 
Not 

discussed 
Cyclo- 

stationery 
Not 

discussed 
Not 

discussed 
Energy 

Detection 

Acknowledgement after Tx no   no no no 

Avoidance of multi-channel 
hidden terminal [118] 

no Not addressed Not addressed no  yes 

Control Channel Assumed Dedicated GCCC Non-GCCC Dedicated Non-GCCC 

Best Channel Criteria arbitrary data rate arbitrary 
Channel 

rank 
Not discussed arbitrary 

Multi-Channel MAC [94]       

Physical Layer Parameters [40] 3DSSS Not discussed Not discussed DSSS Not discussed DSSS 

Use of backup  data channel no no   no no 

Spectrum Access 802.11 DCF 
802.11 
DCF 

CSMA/CA 802.11 DCF CSMA/CA CSMA/CA 

Number of transceivers Single single single single multiple single 

Number of Control frames 4 3 4 4 5 2 
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Table 2.2 Characteristics of CR MAC Protocols 

 
Infrastructure/ 

Architecture 
Common Control 

channel 
Access Mechanism Direct Access Based 

Single/Multi 
Transceivers 

Number of 
Control channels 

Signalling Quiet period 

CREAM-MAC[38] Decentralized Assumed IEEE802.11 DCF Contention based Single  1 Not addressed No 

DOSS-MAC[173] Decentralized non-GCCC CSMA/CA Contention based Not addressed n Out-of-band Not addressed 

SYNC-MAC [100] Decentralized Local IEEE 802.11 DCF Coordination based 2 1 In-band No 

OS-MAC[121] Distributed GCCC CSMA/CA Coordination based single 1 Out-of-band Not addressed 

C-MAC[114] Distributed GCCC Time slotted Coordination based single 1 Out-of-band yes 

HC-MAC[117] Distributed GCCC IEEE 802.11 DCF Contention based single 1 Out-of-band yes 

DUB-MAC[118] Decentralized Non-GCCC CSMA/CA Contention based Not addressed 1 Not addressed No 

CO-MAC[174] Distributed GCCC Not addressed Contention based Not addressed 1 Out-of-band No 

OSA-MAC[175] Decentralized GCCC IEEE 802.11 DCF Contention based Not addressed 1 Not addressed No 

CogMesh[176] Distributed Local TDMA Coordination based single 1 Out-of-band Yes 

IEEE 802.22[92] Centralized None Random Coordination based single none In-Band Yes 

DC-MAC[177] Decentralized Local Random Contention based single 1 Not addressed no 

DCCP-MAC[94] Centralized None Not discussed Coordination Based Not addressed none Out-of-band No 

CL-MAC[178] Decentralized Assumed CSMA/CA Coordination Based 2 1 Not addressed yes 

OP-MAC[179] Decentralized Local IEEE 802.11 DCF Contention based 1 1 Not addressed No 

DCP-MAC[129] Decentralized Local CSMA/CA Coordination based Not addressed 1 Not Addressed No 

Sr.-MAC[50] Decentralized Global IEEE 802.11a Coordination based 2 1 Not addressed No 

Hu.-MAC[130] Decentralized Global Not addressed Coordination Based 2 1 Not addressed No 

DH-MAC[180] Decentralized Assumed IEEE 802.11 DCF Contention Base 1 1 Out-of Band No 

NMS-MAC[181] Decentralized Global CSMA/CA Contention Based 2 1 Not addressed no 
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Chapter 3: A Novel Adaptive MAC 
Protocol for Cognitive Radio Networks 

3.1. Introduction 

The critical and most important aspect of the cognitive radio network is how to 

advertise the FCL among the participating cognitive nodes. Some protocols 

[50][114][121][117][131][161][181] make use of GCCC for the FCL exchange and suffer 

from all the disadvantages explained in Chapter 2. The other method is to intelligently 

decide a local control channel (non-GCCC) within the available spectrum holes and 

advertise this to other nodes. This method which is already used by several proposed 

protocols [129][179][100][173][118][176], however, lacks a clear methodology of finding 

the control channel within the white spaces amongst cognitive nodes, especially how the 

synchronization is established amongst CR nodes, and how nodes are converged on a 

white space which serves the purpose of a control channel. There is another class of CR 

MAC protocols [38][178][180][182] that do not delve into common control channel 

details and simply assume the existence of control channel. It is important to note that 

no such assumption could be made because finding a control channel is the primary 

task of a CR MAC protocol and cannot be assumed as it is the fundamental 

requirement in CR nodes before any subsequent communication can take place. This 

motivated us to design a CR MAC protocol which is hybrid between GCCC and non-

GCCC.  

3.2. Design Rationale 

It is very important for CR nodes to exchange control information on a control 

channel which is known and available to all CR nodes in the vicinity. One of the design 

approaches for the control channel is to use one of the channels in the ISM band, e.g., 

2.4GHz. In this case, the control channel would be classified as GCCC because it is 

globally available. Since the ISM band is freely and widely available, its application as a 

control channel could be very advantageous as CR nodes can very quickly and 

effectively transmit the control information on the well-known and always-available 

control channel. The CR nodes using the GCCC as a control channel will avoid 

spending time in scanning and sensing for an available control channel. CR nodes only 

have to contend for the GCCC to transmit the control information. However, the 
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supplementary issues with GCCC cannot be ignored. Two of the main issues associated 

with using the ISM band as the control channel are: the saturation problem; and security 

vulnerability.   

 The higher the number of applications accessing the ISM band, the higher the 

computational cost and back-off becomes. The CR nodes holding the control 

information to transmit on the control channel will have to wait. Also, transmitting the 

FCL on GCCC will make the CR network more exposed to security threats and 

vulnerabilities. An adversary can intercept the FCL transaction on the GCCC and could 

then manipulate the communication.  

 We have proposed a novel MAC protocol for cognitive radio networks that is a 

hybrid of GCCC and non-GCCC. The proposed protocol is not only equipped with the 

best features of the GCCC-based MAC protocols but it also overcomes the saturation 

problem and certain security issues in GCCC. More details about the proposed protocol 

are provided in the following sections.  

3.3. A Dynamic Decentralized Hybrid Multichannel MAC Protocol 

The shortcomings of a GCCC can be avoided by having a dynamic local control 

channel, i.e., non-GCCC. This has led to our aims to design a dynamic,  decentralized, and 

hybrid medium access control protocol, named DDH-MAC, for overlay ad-hoc 

cognitive radio wireless ad-hoc networks. The proposed protocol is dynamic because 

whenever a PU claim happens, CR nodes efficiently agree upon a newly found control 

channel to maintain the control channel efficiency. The architecture of the protocol is 

decentralized, not infrastructure-based.  DDH-MAC is hybrid in nature, making partial 

use of both GCCC and non-GCCC families of CR MAC protocols. We have 

introduced a multi-layer reliability factor and have presented an efficient and robust 

MAC protocol that emphasizes the control channel efficiency. The CR nodes 

implementing the proposed mechanism are always in a state where they have access to 

at least one control channel even after PU interference has been sensed. CR users in the 

proposed mechanism, without renegotiations, switch to another control channel 

whenever there is a PU claim. The CR nodes have access to three control channels at 

the same time. This unique feature smartly and intelligently addresses the problem of 

the PU channel re-occupancy, and reduces the impact of re-exchange of control 

information, and leads towards reliable communication in the CRN. We have 

intelligently avoided shortcomings and have made use of some of the rare advantages of 
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the GCCC for development of our novel CR MAC protocol. Detailed explanation of 

DDH-MAC is given in the following section. 

3.3.1. Design Constraints for DDH-MAC 

Design constraints for DDH-MAC include the efficiency of discovering a common 

control channel, the efficiency of data transmission on a data channel and efficiency of 

vacating a channel.  

a) The Efficiency of Discovering a Common Control Channel 

The CR nodes implementing the DDH-MAC protocol require some time to 

discover a common control channel. Subsequent communication amongst CR nodes 

will only occur if the CR nodes are aware of a control channel that is available and 

accessible for all CR nodes to exchange control information amongst the 

communicating partners. The efficiency of discovering a control channel depends on 

the selection criteria for the control channel, i.e., GCCC, non-GCCC or assumed. 

DDH-MAC makes use of both the GCCC and non-GCCC families of CR protocols 

and uses the GCCC to launch a beacon frame (BF). Making use of both the categories 

give several advantages to DDH-MAC which other protocols found in the literature 

cannot have. Launching a BF in GCCC provides the best searching efficiency as GCCC 

is globally available and is well-known to all CR nodes. No time needs to be spent in 

discovering a control channel and converging upon a control channel. The BF is 

broadcast on the GCCC by the first node in DDH-MAC which contains the IDs of the 

primary control channel (PCCH) and the backup control channel (BCCH). PCCH and 

BCCH will actually serve the purpose of the control channel in DDH-MAC and control 

information is exchanged by CR nodes through PCCH or BCCH. The framing 

structure of PCCH and BCCH is provided in section 3.6.  

b) The Efficiency of Transmitting Data 

Once the control channel is discovered by all CR nodes in the vicinity, nodes 

switch to the PCCH and spend less time in exchanging control information and 

efficiently transmit data on some common white space. Data channel efficiency is 

defined as the time required for two CR nodes to conclude the transmission on a data 

channel. In high traffic loads of PUs, the CR users in DDH-MAC can send only one 

data frame and then vacate the channel. However, when the chances of PU claiming are 

low and the CR nodes still have data to send, more than one data frame will be 
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transmitted in one transaction. The data channel efficiency in DDH-MAC could also be 

increased by the length of time a white space would remain unoccupied by the PU. 

c) Efficiency of Vacating a Data Channel when PUs Arrive 

It is not unusual in cognitive radio networks that a white space is re-claimed by 

the licensed user. In this case, the CR users must vacate the occupied channel whenever 

there is PU occupancy to minimize the interference. The majority of the CR MAC 

protocols found in the literature assume that nodes are aware of the presence of PUs. 

However, this unrealistic assumption is criticized because CR nodes cannot sense the 

presence of PUs when transmitting and SUs cannot automatically detect channel 

occupancy. This SUs‟ assumption about the awareness of PUs‟ arrival on a licensed 

channel is smartly addressed in DDH-MAC. Each CR node in DDH-MAC is equipped 

with a sensor which detects the PU activity in a timely manner.  

3.4. Full Operation of DDH-MAC 

In this section we provide in detail the functionality and the operation of DDH-

MAC. We first make some assumptions and then describe the DDH-MAC operation 

with the help of flow chart and timing diagrams. 

3.4.1. Assumptions in DDH-MAC Protocol 

The protocol makes the following assumptions:  

 Each CR node is equipped with two transceivers: G-Transceiver (GT) to 

continuously and rapidly scan the global control channel, and D-Transceiver (DT) to 

transmit data [42], [100], [121], [130], [150].  

 The CR nodes utilize the CSMA/CA mechanism to access the control channel [71], 

[118], [121], [173], [181].  

 Spectrum has been sensed by the physical layer and the FCL has been populated by 

each CR node [12], [38], [43], [92], [104], [109], [113–115], [117], [120], [121], [127], 

[130], [159], [161], [173], [179], [180], [183–197] .  

 Each CR node is equipped with a sensor that senses the PU activity on the data 

channel [38] [198][189]. 

3.4.2. Levels of selection  

DDH-MAC presents a novel design for the cognitive radio MAC protocol which 

offers two levels of selection.   
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a) Level 1  

DDH-MAC makes partial use of GCCC to launch a BF. BF is a control frame 

containing a small piece of information about sending node_id, PCCH and BCCH. The 

BF is launched by the first node in the CR network. The BF is a broadcast frame that is 

received by all CR nodes. Launching the BF in GCCC is the first level of selection and 

it is used to let other CR nodes in the vicinity know that two local control channels (i.e., 

PCCH and BCCH) have been established. Primarily the PCCH will be used as a point 

of contact for all CR nodes and any control information that needs to be exchanged will 

be transmitted through the PCCH. However, since the PCCH is one of the free 

channels in the FCL, it is not unusual for a PU to reclaim it. In this case, the CR nodes 

will simply switch to the BCCH and resume the control information dialogue on the 

BCCH. The BF is periodically broadcast by the node in the GCCC so that any node 

that joins or leaves the network has the latest information about PCCH and BCCH.  

b) Level 2 

 Once the BF has been received and both PCCH and BCCH have been selected 

as local control channels, level 2 selection becomes operational where nodes actually 

start contending for the PCCH to exchange control information. The nodes employ the 

CSMA/CA mechanism to gain access to the control channel. Multiple frames are 

exchanged as control information in DDH-MAC of which the detail will be provided in 

Section 3.6. After the successful exchange of control information, the CR 

communicating pairs switch to data channels and conclude data transmission. If during 

the control information dialogue, PU activity has been sensed on both PCCH and 

BCCH, nodes will eventually switch to GCCC and the level 1 operations will be 

executed.  

3.5. Flow chart 

In this section, the full operation of the DDH-MAC is explained with the help of a 

flow chart drawn in Figure 3.17. At start up, the cognitive nodes are in a steady state and 

the FCL is already established. Upon initialization, cognitive nodes implementing DDH-

MAC use the GT to scan the GCCC for a BF. If the node does not find any BF then 

the node is responsible for the following three operations:  

i) Deciding which white spaces are to be used as PCCH and BCCH 

ii) Formation of a BF  

iii) Launching the BF in the GCCC.  
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Figure 3.1. Flow chart DDH-MAC. 
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Any CR node which is going to launch a BF in DDH-MAC must meet the following 

constraint: 

               (3.1) 

where µ is the minimum number of available empty spaces within a CR node. One of 

the empty spaces will be used as PCCH, another as BCCH, and the last one for the 

actual data transmission. It is important to note that the BCCH in DDH-MAC protocol 

is a reserved/secondary control channel and is used only when there is a PU re-claim on 

the PCCH. Dedicating a white space as BCCH may firstly give an impression of a loss 

of a white space, but actually it improves the overall network convergence time by 

simply switching to BCCH if required, and it thus help reduce the computational cost of 

the protocol and avoids the rescanning of the GCCC which in turn can also help CR 

nodes conserve energy.  

Let N represent a set of cognitive nodes in the network 

                      (3.2a) 

and C be a set of white spaces within each node 

                          (3.2b) 

then, the FCL which the CR nodes may have can be represented as: 

∑   
   ∑          

 
        (3.2c) 

where     ,     represents the channel   sensed by node  . The criterion to set one of 

the channels in the FCL as PCCH or BCCH can be arbitrary or it can satisfy the 

following equation. 

        ∑    
 
                

               ∑    
 
      (3.3) 

where           is the function to calculate the channel grade and is defined as: 

fn (CHG) =Max AB, SNR, FER {NiCh1+NiCh2 + .... NiChm | NiCh1⋂ NiCh2 ⋂ .... NiChm }i=1, 2,…,n  (3.4) 

 where AB is the available bandwidth, SNR is the signal-to-noise ratio and FER is the 

frame error rate. This implies that the Equation 3.4 will be used by a CR node to find 

the best channel amongst the channels available in its FCL with optimal values for AB, 

SNR and FER.   
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Once the node decides about the PCCH and the BCCH, it waits for a time T before 

launching the BF in the GCCC, where T is the time in micro seconds and is equivalent 

to the time required by a node to sense at least three white spaces (Equation 3.2). This 

waiting time of T is there just to avoid doubling of the BF in the GCCC which might be 

launched by another CR node (see Figure 3.1). If the node finds the BF after scanning 

the GCCC, it reads the information about PCCH and BCCH, update its FCL and 

switches to the PCCH for exchange of subsequent control information. Otherwise, it 

considers itself as the starting node and launches the BF in the GCCC. More discussion 

on the waiting time which will be called the Pre-Transmission time, denoted as TPT , is 

given in the Section 3.9.1. 

During the initial scanning, if the BF is successfully found by a CR node in the 

GCCC, it decrypts the information using the relevant decryption scheme to learn about 

the chosen PCCH and BCCH. Once equipped with this information, the node 

accordingly updates its FCL by setting the PCCH and BCCH for control information 

exchange and the rest of the white spaces as data channels for the subsequent data 

transmission. In addition to the flow chart shown in Figure 3.1 which provides a 

complete operation of DDH-MAC, the process of BF launch/scanning and the later 

FCL update by other CR nodes are shown in Figure 3.2. The communicating CR nodes 

always verify the re-claim of PCCH by the PU before they actually switch to it for 

further exchange of the FCL. After a successful exchange of the FCL on the chosen 

PCCH, the CR nodes eventually switch to the agreed empty space to be used as a data 

channel for the actual data transmission. The CR nodes may come up with a case when 

there is a re-claim by PU(s) on both PCCH and BCCH; and in this case the nodes have 

to go to the initial state where they scan the GCCC for a new BF. 

Figure 3.1 provides the framework for the DDH-MAC protocol in the form of a 

flow chart; and Figure 3.2 explains the scenario where three CR nodes are continuously 

sensing the GCCC for a BF. When the CR nodes find a BF, they read the information 

about PCCH and BCCH, update their FCL and switch to the newly set-up PCCH for 

the exchange of control information in the form of RTS and CTS packets with other 

cooperative communicating nodes. A BCCH has also been reserved to back up cognitive 

functions because it is not unusual for a PU to interfere on the PCCH. 
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Figure 3.2. The CR nodes in DDH-MAC, receiving the BF in GCCC and switching to PCCH for the 

subsequent control information dialogue. 

 In the previous section, the operation of DDH-MAC has been discussed in 

detail. The next section describes the very important aspect of cognitive radio network, 

the time CR nodes take to exchange control information, agree on a set of 

communication rules and start data transmission. This time will be called pre- 

transmission time and will be denoted as TPT. 

3.6. Control Frames in DDH-MAC Protocol 

Like other CR MAC protocols, DDH-MAC also exchanges control information 

on the control channel. Four control messages are exchanged in DDH-MAC. One 

control message (of the BF) is delivered through GCCC.  

3.6.1. BF 

The BF is launched in the GCCC as a management frame by the first node in the 

CRN to inform all the other CR nodes about the PCCH and the BCCH. Both PCCH 

and BCCH use one of the white spaces as a local control channel. Since DDH-MAC 

will use one of the white spaces as a control channel, it is a non-GCCC. Two 
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parameters are carried in each BF: channel ID of the PCCH and channel ID of the 

BCCH. Channel IDs are arbitrarily selected by the first CR node, and they refer to the 

first two channels that the CR node has sensed. The channel ID is a non-negative 

number,  

where 0 ≼ Channel ID ≺ N 

The BF is the first frame which is launched by the first node in the DDH-MAC 

protocol and it gives the primary information about the control channels which will be 

used in the subsequent exchange of control frames. The BF structure has been derived 

from IEEE 802.11b. Figure 3.3 shows the structure of a BF. 
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Figure 3.3.  The BF in DDH-MAC. 

 

Protocol version 

The protocol version is shown as 0 in Figure 3.3 because that is currently the only 

version. Other versions may exist in the future. 

Type 

Control frames are assigned the Type Identifier 01. By definition, all control 

frames use this identifier. 

Subtype 

This field indicates the subtype of the control frame that is being transmitted. 

ToDS and FromDS  

Control frames arbitrate access to the wireless medium and thus can only 

originate from wireless stations. The distribution system does not send or receive 

control frames, so these bits are always 0. 

More Fragments  

Control frames are not fragmented in DDH-MAC, so this bit is always set to 0. 
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Retry  

Control frames are not queued for retransmission like management or data 

frames, so this bit is always 0. 

Power Management  

This bit is set to indicate the power management state of the sender after 

conclusion of the current frame exchange. 

More Data  

The More Data bit is used only in management and data frames, so this bit is set 

to 0 in control frames. 

Protected Frame 

Control frames may not be encrypted. Thus, for control frames, the Protected 

Frame bit is mostly set to 0. 

Order  

Control frames are used as components of atomic frame exchange operations in 

DDH-MAC and thus cannot be transmitted out of order. Therefore, this bit is set 

to 0. 

Control frames assist in the delivery of data frames. They administer the access to 

the wireless medium (but not the medium itself) and provide MAC-layer reliability 

functions. The local control channel (PCCH or BCCH) delivers three types of control 

frames: DMCF, FCL, and ACK. 

3.6.2. DDH-MAC Control Frame (DMCF) 

DMCF is one of the control frames broadcast by a potential CR sender to inform 

all the CR nodes in the vicinity that it is ready for communication. DMCF acts like a 

classical RTS frame in wireless networks and which is used by all decentralized CR 

MAC protocols. DMCF serves two purposes. Initially, it lets the CR nodes know that it 

is ready for any communication, and secondly, it indicates that the medium has been 

occupied and the DMCF is followed by another frame, i.e. FCL. The FCL will contain a 

list of free channels that are available to communicate over. Like other control frames, 

DMCF is used to gain control of the medium for the transmission. Access to the 

medium can be reserved only for unicast frames, and broadcast and multicast frames are 

simply transmitted without reservation. The format of the DMCF frame is shown in 

Figure 3.4.  
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Bits   2 2 4 1 1111111
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Id/MAC

 

Figure 3.4. DMCF (DDH-MAC Control Frame). 

Frame Control 

There are two fields that make a header of a DMCF frame different from that of 

a BF frame type and frame subtype. The frame type indicates that it is a control frame 

and the frame subtype is set to 1011 to indicate a DMCF frame. Otherwise, it has 

all the same fields as fields in a BF frame. 

Sending Node Id 

The 48-bit (6 bytes) MAC address of the device that is transmitting the DMCF.  

Destination Node Id 

The MAC address of the station that is the intended recipient of the DMCF. 

Usually, it is the broadcast address of FF:FF:FF:FF:FF:FF. 

DDH-MAC Control Information (DMCI) 

 This field is specific to the DMCF. It contains the supplementary information 

about the time that would be required to complete the process of transmitting the 

DMCF followed by a FCL frame. The sender of the DMCF frame calculates the 

time needed for the frame exchange sequence after the DMCF frame ends. The 

entire exchange, which is depicted in Figure 3.5, requires two SIFS periods, the 

duration of one FCL. Note that the final ACK, plus the time needed to transmit 

the frame or the first fragment. Fragmentation bursts use subsequent fragments 

to update the Duration field. The number of microseconds required for the 

transmission is calculated and placed in the DMCI field. If the result is fractional, 

it is rounded up to the next microsecond.  
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Figure 3.5. Duration in DMCI. 

3.6.3. Free Channel List (FCL) 

The FCL is another control frame utilized by the same CR sender which recently 

broadcasted the DMCF. The FCL includes the channel ID of all channels that could 

possibly be used as data channels for subsequent transmission. The FCL is always sent 

in conjunction with the DMCF and cannot be sent individually. The FCL also serves 

the purpose of letting CR nodes be aware that the node which launched the DMCF will 

be transmitting the FCL, and finishing the transmission of the FCL, it will have no 

more frames to transmit over the control channel and will be releasing the medium, and 

lastly, will expect an ACK frame from the CR node which is interested in establishing 

the communication over the data channel. The pair of DMCF and FCL are also used to 

avoid the traditional hidden terminal problem in wireless networks. The framing 

structure for the FCL is provided in Figure 3.6. 

Bits   2 2 4 1 1111111
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ToDS Order
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Frame
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Data

Pwr.
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More
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Bytes    2 6 2 4
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Destination Node

Id/MAC

 

Figure 3.6. Frame structure of an FCL frame. 

Frame Control 

There is nothing special about the Frame Control field of the FCL. The frame 

subtype is set to 1100 to indicate an FCL frame, but otherwise, it has all the same 

fields as other control frames. 
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Destination Node Id 

The FCL is also a broadcast frame. The Destination Node Id will be the 

broadcast MAC address which will be received by all CR nodes in the vicinity. 

Free Channel List 

 The values in this field are subject to the information provided by the physical 

layer which senses the spectrum, indexes the channels list and assigns a numeric 

value to each channel that is sensed empty.  

3.6.4. ACK Frame 

The ACK frame is utilized by a CR receiver who wins the contention on the 

PCCH. The receiver replies with its own FCL identifying the channels common 

between the CR pair for possible data transmission. ACK is used to answer DMCF and 

FCL frames, and it will never be generated without the preceding DMCF and FCL. The 

ACK frame format is shown in Figure 3.7. The moment a DMCF is received (Figure 

3.5), the nodes set their network allocation vector (NAV) for the duration of the 

handshake process, and will not attempt to access the PCCH until the end of NAV.   

The three-way handshake over the PCCH/BCCH in DDH-MAC efficiently avoids the 

hidden terminal problem in a multi-channel environment. The MAC addresses of the 

sender and the receiver and their FCLs help avoid any collisions amongst the CR nodes 

because the nodes which are listening to the PCCH/BCCH learn that the sender will 

become busy in data transmission. The FCL of the transmitting node is also included in 

the acknowledgement field of an ACK frame which is overheard by all CR nodes.  
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Figure 3.7. Frame structure of an ACK frame. 
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Frame Control 

The frame type is set to control and the subtype is set to 1100 to indicate an ACK 

frame, and the rest of the fields are similar to the frame control of DMCF and 

FCL.  

Sending Node Id 

This is the MAC address of the node which is transmitting the ACK frame.  

Destination Node Id 

The receiver of a FCL frame is the transmitter of the previous DMCF and FCL 

frames, so the node which is transmitting the ACK frame copies the Sending 

Node Id of the DMCF frame into the Destination Node Id of the ACK frame. 

3.7. Phase I and Phase II operations  

The most important aspect of cognitive radio (CR) network is to search, scan, and 

access the control channel to advertise the FCL amongst the participating CR nodes. 

Subsequent communication could not take place until there is an access to a well-known 

and agreed upon control channel to dialogue the initial configuration. Our proposed 

DDH-MAC protocol searches, scans, and accesses the control channel in a very 

efficient and intelligent way. The protocol performs two-phase (Phase I and Phase II) 

operations, i.e., rapid channel accessing and reliable channel accessing respectively. In 

rapid channel accessing, nodes quickly and efficiently converge to a newly found control 

channel.  In reliable channel accessing, switching to the backup control channel is 

performed when necessary. Furthermore, our reliable channel accessing allows CR 

nodes to access more than one control channel simultaneously. 

3.7.1. Phase 1 Operation: Rapid Channel Accessing 

When a CR node wants to transmit data, it first scans the GCCC for a BF. There 

are two possibilities: 

1- If any BF is found (Fig. 3.8), the information about PCCH and BCCH is learnt. 

This also means that the node has to join an existing CRN and now the PCCH 

needs to be scanned to learn more about the network.  

2- If the CR sender does not find any BF in the GCCC, then this node becomes the 

first CR node in the CRN and is responsible for three functions: setting one of 

the white spaces in its FCL as the PCCH and another as the BCCH; forming and 
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launching the BF in the GCCC (Fig. 3.8); and continuing to transmit copies of 

the BF at regular intervals (Fig. 3.8). To make the model traceable we consider 

that it is not possible for two DDH-MAC nodes to attempt to launch BF at the 

same time. 

In both cases, the CR node starts scanning the PCCH and observes the 

activities on the local control channel (Fig. 3.8). The CR sender and the CR receiver 

then exchange three control information frames through the PCCH. Firstly, DMCF is 

launched (Fig. 3.8), followed by the transmission of the FCL (Fig. 3.8). DMCF and 

ACK also serve to avoid the hidden terminal problem which is traditional in ad-hoc 

networks. The intended recipient checks its FCL to see if a common channel exists. If a 

common channel is found, a reply with an ACK is sent to the sender (Fig. 3.8). The 

pair then switch to the identified common data channel and start transmitting data using 

DT (Fig. 3.8). All the data frames are acknowledged using the data ACK (Fig. 3.8). 

Other nodes will wait for the PCCH to become idle and will contend to dialogue the 

control information after it is sensed free. The GT will be used by all the CR nodes in 

the network to scan the local control channel to have knowledge about all the activities 

carried out by other CR nodes in the network.  
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DCH
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DCH
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CRreceiver

CRsender
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Figure 3.8. An example of Phase I operations. 

 

The CR pair which just finished communication could remain unaware of the status of 

other CR nodes, and thus continuously scanning the control channel helps track the 
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record of the activities of other CR nodes. This ultimately avoids the hidden terminal 

problem. In rapid channel accessing, nodes can access the control channel efficiently  

PCCH

DCH

PCCH

BCCH

CRreceiver

CRsender

DMCF FCL PU claim

Data ACK

DMCF FCL ACK

Data ACK

2
1

3

54

6

BCCH
DMCF FCL

DMCF FCL ACK

ACK

DCH

CRreceiver

Figure 3.9. An example of Phase II operations. 

and rapidly. Any new node joining the network first searches for a BF which could be 

read for information about the local control channel(s). After this, nodes simply switch 

to the newly discovered control channel for the most crucial part of communication, 

i.e., the FCL transactions, which lead to the transmission of data frames. 

3.7.2. Phase II Operation: Reliable Channel Accessing  

Both the PCCH and the BCCH make use of the most readily available white 

spaces scanned and setup by a CR user. Unlike when using the GCCC, which is 

publically available to everyone and thus more prone to security vulnerabilities, the FCL 

could be exchanged privately and secretly amongst CR nodes through the PCCH after 

the nodes in the vicinity have converged on this local control channel. Since a PU can 

claim any occupied channel at any moment of time, the PCCH could also be claimed, 

and as a result, nodes using the PCCH for exchange of control information would have 

to either abort the configuration dialogue or renegotiate on other white spaces. The 

proposed mechanism efficiently deals with this situation by using the BCCH to resume 

the exchange of control information, if there is a PU claim on the PCCH. Figure 3.9 

illustrates an example of Phase 2 operations where the CR sender is transmitting the 

control information on the PCCH (see Fig. 3.9) and is awaiting ACK from the 

recipient. Meanwhile, a PU claim is sensed on the PCCH (see Fig. 3.9) due to which 

the ACK could not be delivered (Fig. 3.9). The CR nodes can switch to the BCCH 

without re-negotiations and re-searching a control channel, and thus can resume 

transceiving the control information (see Fig. 3.9), followed by the data 

transmission on an agreed data channel (see fig. 3.9). In the worst-case scenario, if the 
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BCCH is also claimed by the PU, then the CRN will execute operations of Phase 1 and 

will converge on a new PCCH and a new BCCH. This dynamicity of local control 

channels provides the nodes an extra security feature. An adversary, planning to attack 

the PCCH or the BCCH and manipulating the information on the control channel, has 

to re-compile the attack every time when a new PCCH and a new BCCH are set up. 

More discussion on security aspects of DDH-MAC is provided in Chapter 6. The 

reliable channel access gives the CR nodes the assurance that they always have access to 

three control channels simultaneously and any of these three control channels could be 

used for subsequent exchange of control information. 

3.8. Four Case Scenarios in the Proposed Protocol 

In this section, we first discuss different case scenarios and then model the 

process of rapid channel access and reliable channel access, and finally calculate the time 

it takes for exchange of the control information. DDH-MAC needs to perform a few 

operations before the network becomes fully converged.  These operations include 

scanning/sensing the GCCC, exchanging the FCL on PCCH or BCCH (if there is a PU 

claim on the PCCH), and lastly concluding transmission on the agreed white space(s). 

Each of the above listed operations requires time for its completion such as the time 

required to sense/scan a BF in the GCCC, the time required to launch the BF, the time 

to read BF and the time required to exchange the FCL on PCCH or BCCH.  All these 

operations form part of the pre-transmission time which heavily affects the throughput 

and the QoS as nodes holding delay-sensitive data will be highly affected through varied 

values of the pre-transmission time.  Let TX denote the time required for operation X, 

for one of the above-mentioned operations and          
        represent the pre-

transmission time which is further expressed in Equation 3.5. 

      
        = { TBS ,TBF , T3 ,          

        
    ,       ,      }  (3.5) 

where TBS  is the time required to scan the GCCC for BF, TBF is the time to read the BF 

or launch the BF in the GCCC, T3 is the waiting time before a CR node can launch the 

BF.            
    and      

     are the amount of time a CR node takes to broadcast its FCL in 

PCCH or BCCH if there is a PU re-claim.       and      are control frames similar to 

RTS/CTS and are used to avoid the traditional hidden terminal problem. They are 

exchanged between communicating nodes before actual transmission can take place.  
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Not all the operations are performed by cognitive nodes in DDH-MAC, and the 

number of operations performed depends on the role of a CR node and the case 

scenario. There are 4 cases in DDH-MAC. 

3.8.1. CASE I: Network Initialization and Launch of a BF 

Case I represents the network initialization phase where no control channels have been 

found and the CR nodes scan the GCCC to search any BF. If a BF is not found then 

any node which takes the initiative becomes responsible for the following four 

operations:  

i) To decide which white spaces to be used as PCCH and BCCH from the list of 

channels available in its own FCL.  

ii) To create a BF containing the information about the chosen PCCH and BCCH.  

iii) To launch the BF in the GCCC.   

iv) To transmit copies of BF periodically. 

 

Figure 3.10 presents the first case in DDH-MAC where all the CR nodes initially scan 

the GCCC using their GT for any BF. Here we consider the scenario where no BF is 

found and the BF is launched by a node. All the CR nodes, continuously listening to the 

GCCC, are programmed to receive this BF because the destination address in the MAC 

header of a BF is a broadcast address. The nodes learn the information about the 

selected PCCH and BCCH and then switch to the PCCH for subsequent control 

information exchange.  

After switching to the PCCH, nodes use both of their transceivers, i.e., GT and DT. 

Initially, the GT is used to scan the control channel and to contend to exchange the 

DMCF followed by the FCL. However, once the control information is exchanged, the 

node starts using its DT for possible data communication. The GT always keeps 

scanning the control channel, and in this way, if a CR node is busy in data transmission, 

all activities are observed and noticed using the GT. So, the probability for hidden 

terminal collision is efficiently reduced.  

We have calculated the pre-transmission (TPT ) time for all scenarios in DDH-MAC. The 

TPT , for this scenario case, is given by 

         
        = { TBS    T3   TBF                       

           } (3.6) 
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where TBS is time required to scan the GCCC for the BF; T3 is the waiting time to avoid 

duplication of the BF by different CR nodes in the same network; and TDMCF, TFCL and 

TACK are the time required to transmit the corresponding control frame.  Accurate values 

using IEEE 802.11b as a bench mark have been derived and are shown in Table 3.1. 

  

Table 3.1 The Parameters for the Proposed DDH-MAC Protocol 

Parameter Assigned Value 

BF 14Byte 

DMCF 20Byte 

FCL 20Byte 

ACK 14Byte 

TBS 10.181μs 

TBF 10.181μs 

TDMCF 14.545μs 

          
     14.545μs 

          
     14.545μs 

T3 30.543μs 

TACK 10.181μs 

DIFS 50μs 

SIFS 20μs 

 

3.8.2. Case II: Receiving the BF 

 The second DDH-MAC case considers a scenario where the network has 

already been initialized and both PCCH and BCCH have been established. In this case, 

the CR nodes will simply receive the BF and switch to the PCCH for possible exchange 

of control information. The number of operations performed in Case II in DDH-MAC 

has been derived as Equation 3.7 and is presented in Figure 3.11 

 

         
        =                         

                (3.7)
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Figure 3.10. Case I of DDH-MAC: Network initialization phase with launch of a BF.
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Figure 3.11. Case II of DDH-MAC. After network initialization; the CR nodes receive the BF and then switch to the PCCH for control information.
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3.8.3. Case III: Network Initialization, Launch of a BF and Claim on the PCCH 

The cognitive radio technology deals with the usage of licensed spectrum when it is 

not used by a PU with a condition that the spectrum band would be released if the PU 

claims its channel. In case III of DDH-MAC, we represent the PU occupancy on the 

PCCH. Usually, the nodes have to search again for some common control channel if 

one is occupied, but in DDH-MAC, the BCCH is used to resume any control 

information exchange.  

In case III, besides the network initialization phase, we further consider the PU 

occupancy on the PCCH. Nodes in DDH-MAC are prepared to deal with this situation 

simply switching to the BCCH and resuming the exchange of control information. 

Figure 3.12 presents the timing diagram where the first node executes four operations 

and launches the BF in the GCCC. Other nodes learn the information about the PCCH 

and the BCCH through the BF and start scanning the PCCH. Consequently, if there is a 

PU claim on the PCCH then the nodes switch to the BCCH and resume the exchange 

of control information in BCCH. The operations performed in this case are included in 

Equation 3.8 and presented in Figure 3.12. 

     
        = {TBS  T3  TBF                

                        
          }  (3.8) 

3.8.4. Case IV: Receiving the BF and Claim on the PCCH 

This case is an extended version of Case III in DDH-MAC where the PU 

interference on a local control channel (PCCH) is considered after the network was 

already initialized. As described earlier, the usual response of CR MAC protocols in this 

case is to abort transmission, and search and scan another control channel where the 

control information dialogue could be re-imitated. However, in the proposed scheme, 

nodes have already had a backup control channel in case the PCCH needs to be 

vacated. The set of operations performed in Case IV of DDH-MAC are expressed in 

Equation 3.9 below and the timing diagram is presented in Figure 3.13.  

     
        = { TBF                      

                                
           }  (3.9) 
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Figure 3.12. Case III Network initialization phase, launch of the BF and the PU claim on the PCCH.
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Figure 3.13. Case IV Network initialized, PU Interference on PCCH, and switching to BCCH.
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3.9. DDH-MAC Key Performance Indicator 

A cognitive radio network is an opportunistic network. Timely coordination 

amongst the CR nodes is very important to utilize the unoccupied spectrum before 

there is a PU claim. The CR nodes must exchange control information over the control 

channel which is a pre-requisite for any subsequent data transmission to occur. 

However, sometimes the CR nodes take longer in dialogue the control information, and 

the rare opportunity to transmit may be missed. The time spent over the exchange of 

control information heavily contributes towards the higher throughput of a CR MAC 

protocol. We call this amount of time the pre-transmission time (TPT). In this section, 

we calculate and compute TPT for different cases of DDH-MAC and will compare this 

time with other CR MAC protocols.  

3.9.1. Pre-Transmission Time 

Using Equations 3.6 – Equation 3.9, the pre-transmission time for Cases I to IV of 

DDH-MAC has been computed. We have used IEEE 802.11b [199][200] as a 

benchmark to calculate values for TPT . For simplicity, we have considered a static size 

for the contention window, and assume that the channel conditions have been set to 

ideal. The DIFS and SIFS values are constant for every protocol following the IEEE 

802.11b standard i.e., 50μs and 20μs respectively.  A total of 124 Bytes, 68 Bytes, 178 

Bytes and 122 Bytes are exchanged in Cases I to IV of the proposed protocol 

respectively which feed the values of TPT in Table 3.2. 

3.9.2. Comparison of Pre-Transmission Times 

The network convergence in a cognitive radio network is of significant 

importance as CR nodes holding delay-sensitive data have to quickly start transmission. 

Fast network convergence is only possible if nodes can access the control channel and 

quickly exchange the control information. We believe that the pre-transmission time is 

an overhead, and that CR MAC protocols should be designed in a way to minimize this 

time as much as possible. Unfortunately, this parameter in a CR network has been 

largely neglected. The proposed protocol has been designed by aiming to lower the 

values of pre-transmission time. The pre-transmission time could be efficiently reduced 

by: i) rapid channel accessing; ii) reliable channel accessing; and iii) reducing the number 

and size of control frames.  

 



- 86 - 
 

 

Table 3.2 Pre-Transmission Time for Different Cases in DDH-MAC 

DDH-MAC 
Case I 

DDH-MAC 
Case II 

DDH-MAC 
Case II 

DDH-MAC 
Case II 

TBS 
14 Bytes 
10.181μs 

TBS 
14 Bytes 
10.181μs 

TBS 
14Bytes 
10.181μs 

TBS 
14Bytes 
10.181μs 

T3 
Time length of  
3 BF 30.543μs 

TDMCF 
20 Bytes 
14.545μs 

T3 
Time length of  
3 BF 30.543μs 

TDMCF 
20Bytes 
14.545μs 

TBF 
14 Bytes 
10.181μs           

     
14 Bytes 
10.181μs 

TBF 
14Bytes 
10.181μs           

     
14Bytes 
10.181μs 

TDMCF 
20 Bytes 
14.545μs 

TACK    
20 Bytes 
14.545μs 

TDMCF 
20Bytes 
14.545μs 

TACK    
20Bytes 
14.545μs 

          
     

14 Bytes 
10.181μs 

            
     

14Bytes 
10.181μs 

TDMCF 
20Bytes 
14.545μs 

TACK    
20 Bytes 
14.545μs 

  TACK    
20Bytes 
14.545μs           

     
14Bytes 
10.181μs 

    TDMCF 
20Bytes 
14.545μs 

TACK    
20Bytes 
14.545μs 

              
     

14Bytes 
10.181μs 

  

    TACK    
20Bytes 
14.545μs 

  

          
        

124 Bytes 
90.178μs           

        
68 Bytes 
49.454μs           

        
178Bytes 
129.447μs           

        
122Bytes 
88.727μs 

 

a) Comparison of Pre-Transmission Time for DDH-MAC in Case I 

For the performance evaluation of the proposed DDH-MAC protocol, we have 

calculated and then compared the pre-transmission time for different CR MAC 

protocols [38][127][101]. The reasons for selecting these MAC protocols for our 

comparison are that these protocols are highly cited, that they are the newest CR MAC 

protocols, and that their design architecture matches the design of our proposed DDH-

MAC protocol. Each protocol exchanges specific control information prior to the data 

transmission. The classical RTS/CTS, FCL and ACK are mostly exchanged by all CR 

MAC protocols. A few other frames specific to each protocol are also exchanged as 

control information. For example, CREAM-MAC exchanges four types of packets, 

namely RTS, CTS, Channel-State-Transmitter (CST) and Channel-State-Receiver (CSR). 

OC-MAC uses the typical exchange of RTS/CTS, followed by Control-Channel-

Request-to-Send (CRTS) and ACK. The four control frames exchanged in A-MAC are 

indexed-channel-list (ICL), indexed-common-channel-list (ICCL), channel-reservation-

control-packet (CRCP) and CRCP-ACK. We first compare the pre-transmission time 

with the help of timing diagrams (Figure 3.14), then we compute the values for each of 
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the operations performed by these MAC protocols and lastly, we present the results 

obtained based on our calculations (Table 3.3). 

Table 3.3 Pre-Transmission Time Comparison of DDH-MAC for Scenario Case I 

DDH-MAC CREAM-MAC OC-MAC A-MAC 

TBS        14Bytes 

10.181μs 

TRTS  20Bytes 

14.545μs 

TBS     : 14Bytes 

10.181μs 

TBS  : 14Bytes 

    10.181μs 

T3          time length 

of 3 BF  30.543μs 

TCTS   20Bytes 

 14.545μs 

TRTS    : 20Bytes 

14.545μs 

TICL  : 20Bytes 

    14.545μs 

TBF              14Bytes 

10.181μs 

TCST 20Bytes 

14.545μs 

TCTS       : 14Bytes 

10.181μs 

TICCL : 20Bytes 

14.545μs 

TDMCF    20Bytes 

14.545μs 

TCSR 20Bytes 

14.545μs 

TCRTS    : 20ByBytes 

14.545μs 

TCRCP  : 20Bytes 

14.545μs 

          
     14Bytes 

10.181μs 

 TACK     :  14Bytes 

10.181μs 

TACK :14Bytes 

10.181μs 

TACK          20Bytes 

14.545μs 

   

         
        

124Bytes= 90.178μs 

         
        

80Bytes=58.18μs 

         
        

82Bytes=59.633μs 

         
       

88Bytes=63.997μs 

Figure 3.14 below presents the timing structure of the DDH-MAC protocol and 

compares the behaviour of different CR MAC protocols when the network is initialized.  
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(GCCC)
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Figure 3.14. Case I- timing diagram comparison with other MAC protocols. 
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Figure 3.15. Comparison of pre-transmission values for DDH-MAC Case I. 

TPT has been calculated for other CR MAC protocols for performance 

comparison and evaluation. Figure 3.15 shows the TPT in Case I. In this case DDH-

MAC protocol has the worst rapid channel accessing. The obvious reason for the high 

value of TPT is because the network is in the initialization phase and the first CR node 

has to wait for certain amount of to time to avoid the BF duplication. Since other 

protocols do not wait to launch a BF and the network is initialized through the scanning 

activity (or under the assumption of the existence of available control channel) followed 

by exchange of control frames, TPT is smaller for other protocols in Case I.  

b) Comparison of Pre-Transmission Time for DDH-MAC in Case II 

Here, we consider the state of a cognitive radio network where a control channel 

has already been established and CR nodes only have to learn the information about 

PCCH and BCCH through the BF. The CR nodes scan the GCCC, receive the BF, and 

eventually switch to the PCCH for subsequent exchange of control information. DDH-

MAC Case II has the best rapid channel accessing. In this case, DDH-MAC has the 

lowest pre-transmission when compared with other CR MAC protocols. It could be 

observed through the timing diagram in Figure 3.16 that BF is received to learn that the 

PCCH and the BCCH have been established. Now, nodes simply have to scan the 

PCCH and contend for the exchange of control information. The pre-transmission time 

has been computed in Table 3.4.  
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Figure 3.16. Case II- timing diagram comparison with other MAC. 

The numerical results obtained for Case II have been plotted in Figure 3.17 which 

clearly shows that in case of network establishment, DDH-MAC outperforms other 

MAC protocols. 

Table 3.4 Pre-Transmission Time Comparison of DDH-MAC for Case Scenario II 

DDH-MAC CREAM-MAC OC-MAC A-MAC 

TBF            14Bytes  
10.181μs 

TRTS        20Bytes 
14.545μs      

TBF        14Bytes  
10.181μs 

TBF       14Bytes 
10.181μs 

TDMCF    20Bytes  
14.545μs      

TCTS           20Bytes 
14.545μs      

TRTS    20Bytes 
14.545μs      

TICL    20Bytes 
14.545μs      

           
     14Bytes 

10.181μs 

TCST       20Bytes 
14.545μs      

TCTS       14Bytes  
10.181μs 

TICCL     20Bytes  
14.545μs      

TACK          20Bytes 
14.545μs 

TCSR           20Bytes 
14.545μs      

TCRTS   20Bytes 
14.545μs      

TCRCP  20Bytes 
14.545μs      

  TACK    14Bytes 
10.181μs      

TACK   14Bytes 
10.181μs      

         
        : 68Bytes   

49.454μs     
         

      : 80Bytes 
58.18μs 

         
       : 82Bytes 

59.633μs     
         

      : 88Bytes 
        63.997μs     
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Figure 3.17. Comparison of pre-transmission values for DDH-MAC case II. 

c) Comparison of Pre-Transmission Time for DDH-MAC in Case III 

The reliability of our scheme is revealed in Cases III and IV. The PU claim on the 

control channel is efficiently addressed in DDH-MAC by switching to the BCCH and 

resuming the exchange of control information. Unlike other protocols, the CR nodes in 

our protocol do not need to search for the control channel, or to re-dialogue the entire 

configuration whenever the PU occupancy is detected. Table 3.5 shows the efficiency of 

our scheme in Case III and also reveals that the larger number of control frames 

exchanged in CREAM-MAC, OC-MAC and A-MAC yield high values of TPT . 

Table 3.5 Pre-Transmission Time Comparison of DDH-MAC for Case Scenario III 

 
DDH-MAC 

 

 
CREAM-MAC 

 
OC-MAC 

 
A-MAC 

TBS         : 14Bytes  
10.181μs 

TRTS :20Bytes 
14.545μs      

TBS     : 14Bytes 
10.181μs 

TBS  : 14Bytes= 
10.181μs 

T3         : time length of 3 BF   
30.543μs 

TCTS   :20Bytes 
14.545μs      

TRTS    : 20Bytes 
14.545μs      

TICL  : 20Bytes 
14.545μs 

TBF              : 14Bytes   
10.181μs 

TCST :20Bytes 
14.545μs      

TCTS       : 14Bytes  
10.181μs 

TICCL : 20Bytes 
14.545μs 

TDMCF    : 20Bytes  
14.545μs      

TCSR:20Bytes 
14.545μs      
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14.545μs      
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Figure 3.18. Case III- Timing Diagram Comparison with other CR MAC protocols.
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Figure 3.19 Comparison of Pre- transmission values for DDH-MAC case III. 

We can see in Figure 3.19 that TPT is significantly lower when compared with other CR 

MAC protocols and the reason is that reliable channel access mechanism in our 

protocol gives extra efficiency by avoiding re-transmission of the control information.  

d) Comparison of pre-transmission time for DDH-MAC in Case IV 

 The proposed scheme outperforms other MAC protocols in Case IV and 

consumes the least amount of time before the nodes finish exchanging control 

information and start transmitting data on a data channel (see Figure 3.20). The TPT 

values have been computed in Table 3.6. 

Table 3.6 Pre-transmission time comparison of DDH-MAC for case scenario IV 

DDH-MAC CREAM-MAC OC-MAC A-MAC 

TBF              : 14Bytes   
10.181μs 

TRTS :20Bytes 
14.545μs      

TBS     : 14Bytes 
10.181μs 

TBS  : 14Bytes 
10.181μs 

TDMCF    : 20Bytes  
14.545μs      

TCTS   :20Bytes 
14.545μs      

TRTS    : 20Bytes 
14.545μs      

TICL  : 20Bytes 
14.545μs 

          
    : 14Bytes  

10.181μs 

TCST :20Bytes 
14.545μs      

TCTS       : 14Bytes  
10.181μs 

TICCL : 20Bytes 
14.545μs 

TACK           : 20Bytes  
14.545μs 

TCSR:20Bytes 
14.545μs      

TCRTS    : 20Bytes 
14.545μs      

TCRCP  : 20Bytes 
14.545μs 

          
    : 14Bytes  

10.181μs 

TRTS :20Bytes 
14.545μs      

TACK     :  14Bytes 
10.181μs      

TACK    : 14Bytes 
10.181μs 
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14.545μs 
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14.545μs      
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  TCRTS    : 20Bytes 
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14.545μs 

  TACK     : 14Bytes 
10.181μs      

TACK    :14Bytes 10.181μs 

         
        : 102Bytes   

                      74.178μs     
         

      :160Bytes 
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Figure 3.20. Case IV- Timing Diagram Comparison with other CR MAC protocols.
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Figure 3.21. Comparison of Pre- transmission values for DDH-MAC case IV. 

The numerical values obtained from Table 3.6 have been plotted in Figure 3.21. It can 

be observed that DDH-MAC saves the maximum of pre-transmission time and 

performs best even if PU claim has been sensed.  

3.9.3. Average Pre-transmission Time  

Now we discuss the average pre-transmission time of DDH-MAC when 

compared with other CR MAC protocols. Rapid channel accessing and reliable channel 

accessing are the two main features of the DDH-MAC protocol which provides the 

efficiency and the robustness to the cognitive radio network. The CR nodes 

implementing the DDH-MAC protocol remain in the state of always keeping access to 

at least one control channel. The process of exchanging control information over the 

control channel is always possible through the existence of more than one control 

channel.  The performance of CR MAC protocols can be analysed by observing the 

behaviours of CR networks with and without PU interference. We provide the 

behaviours of the DDH-MAC protocol with the aid of time diagrams and framing 

structures. The pre-transmission time for four cases of DDH-MAC has been derived, 

computed, plotted and compared in previous sections, and the average pre-transmission 

time of the different scenario cases is computed in Table 3.6 and compared in Figure 

3.22. 
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Table 3.7. Comparison of average pre-transmission time for all case scenarios 

 DDH-MAC CREAM-MAC OC-MAC A-MAC 

CASE I           
        : 124Bytes 

90.178μs 

          
      : 80Bytes 

58.185μs 

         
       : 82Bytes 

59.633μs 

         
      : 88Bytes 

63.997μs 

CASE II           
        : 68Bytes 

49.454μs 

         
      : 80Bytes 

58.185μs 

         
       : 82Bytes 

59.633μs 

         
      : 88Bytes 

63.997μs 

CASE 

III 

          
        : 158Bytes 

114.902μs 

        
      : 160Bytes 

116.36μs 

        
       : 164Bytes 

119.272μs 

         
      : 176Bytes 

127.994μs 

CASE 

IV 

          
        : 102Bytes 

74.178μs 

         
      : 160Bytes 

116.36μs 

         
       : 164Bytes 

119.272μs 

         
      : 176Bytes 

127.994μs 

Average           
        : 82.178μs           

      :87.272μs           
       : 89.452μs           

      :95.995μs 

It can be seen from Table 3.7 that pre-transmission time for DDH-MAC is 

better in all cases except Case I. The reason for this higher TPT in Case I is that the 

network remains in the initialization phase and the first node waits for a time long 

enough for transmitting 3 BFs in order to avoid duplication of a BF possibly launched 

by other CR nodes. The detail of this waiting time has already been discussed in Section 

3.9. The lower pre-transmission time values in Case II to Case IV of DDH-MAC are 

because of the number of control and management frames that are exchanged between 

cognitive nodes and more importantly the mechanism to respond when there is PU 

interference. CREAM, OC and A-MAC have no mechanism to deal with PU 

interference during the control information exchange process but to re-exchange all the 

control and management frames, which increases the pre-transmission time especially in 

Cases III and IV. 

 

 

Figure 3.22. Average pre-transmission time for all scenario cases. 
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3.10. Summary 

In this chapter, we provided the framework and detailed architecture of our novel 

CR MAC protocol. We believe that pre-transmission time plays a very important role in 

any CR MAC protocol. It is an overhead that each MAC protocol must aim to minimize 

in all possible ways. The pre-transmission time for different DDH-MAC scenarios has 

been computed and compared with several other MAC protocols when taking IEEE 

802.11b as benchmark. Clearly, the pre-transmission time for DDH-MAC is on average 

15% lesser while compared to other MAC protocols. It is important to note that a 

reduced pre-transmission time not only results in less energy consumption but also 

helps DDH-MAC to achieve better QoS as CR nodes holding delay-sensitive data will 

have to wait for less time before the actual communication takes place.   

It is worth mentioning that the optimal values of pre-transmission time are subject 

to a design constraint, i.e., an initial wait time is required prior to launch a BF. This 

implies that CR nodes deploying DDH-MAC must have at least three white spaces, or 

else it could not take part into the DDH-MAC operation, and any node launching BF in 

the start-up must wait for T3 .  
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Chapter 4: Mathematical Modelling of  
the DDH-MAC Protocol 

4.1. Communication Model for Cognitive Radio Networks 

The cognitive radio network has proven to be the smartest technology in wireless 

networking to resolve the spectrum scarcity issues. Communication is established after 

certain operations are performed in a CRN as shown in the communication model in 

Figure 4.1. Since the inception of CRN, a lot of research has been carried out in this 

technology which covers a wide range of areas such as spectrum sensing and sharing, 

and MAC protocols for exchange of free channel list. These are the areas which have 

been explored extensively while QoS, security and energy efficiency in cognitive radio 

networks are still challenging tasks that require expertise from researchers.  

 

Scanning, Searching & 

Creating FCL

Contention for 

Control Channel

Exchanging FCL 

Switching

Concluding Tx in 

agreed White Space

if PU claim

 

Figure 4.1. Communication model for CR networks. 

 

It is believed that the most important aspect of a cognitive radio network is the 

exchange of the FCL, because the follow-up communication between two cognitive 

nodes cannot take place unless and until cognitive nodes have agreed upon white spaces 

which are common between the communicating partners. Reaching the agreed common 

white spaces could only be accomplished through the FCL transaction on the control 

channel. Therefore the primary operation that a CR node must perform prior to any 

communication is to scan and search its environment to create a list of all available WS, 
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also called the FCL. After all the CR nodes have created their individual FCLs, they 

contend for exchange of control information on some common medium. This 

exchange of FCL could take place in two ways: centralized if there is a central entity that 

is responsible for governing the cognitive functionality, e.g., IEEE 802.22 or decentralized 

where it is mandatory to have a common control channel which will be used by all 

cognitive nodes to setup an initial communication dialogue. After two CR nodes agree 

upon common white spaces, they conclude transmission and then rescan the 

environment if changes have occurred. Figure 4.1 shows the generalized 

communication model for CR networks.  

A novel CR MAC protocol has been presented, which makes partial use of GCCC 

to advertise the information about establishment of a control channel within the white 

spaces amongst CR nodes. The protocol offers a reliable and secure exchange of 

control information amongst nodes by making simultaneous use of more than one 

control channel, i.e., PCCH and BCCH, in case there is a PU claim on the PCCH. 

Having more than one control channel provides the proposed protocol some unique 

features such as security, energy efficiency, reliability and time efficiency. In this chapter, 

we explain the mathematical modelling and evaluate the performance of the DDH-

MAC protocol.  

4.2. A State Model for DDH-MAC Protocol 

DDH-MAC has a novel design of MAC protocol for CRNs which not only benefits 

from the anytime license-free availability of GCCC but also enjoys the secure 

communication by privately exchanging the FCL over one of the white spaces. The best 

features of a decentralized family of MAC protocols have been combined to make the 

proposed protocol efficient, dynamic, decentralized and hybrid. A detailed explanation 

in the operations of the protocol including 2 levels of selection has already been 

presented in Chapter 3.  The protocol takes into account four case scenarios in the 

cognitive radio environment and tunes its parameters efficiently and intelligently 

according to the current situation of the network, which makes the protocol adaptive, 

secure and energy efficient. We have defined these case scenarios in the following 

section and will represent all the states with a 2n binary function (where n = 2). All the 

possible states of DDH-MAC are 00, 01, 10 and 11, as specified below: 
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Network Initialization and launch of BF    00 

Reading BF and contending for exchange of FCL   01 

Concluding transmission on agreed WS and scanning PCCH  10 

Concluding transmission on agreed WS and scanning BCCH  11 

The operation of the proposed protocol, with the help of state diagram, has been 

presented in Figure 4.2. As mentioned earlier, the CR nodes implementing DDH-MAC 

are equipped with 2 transceivers, GT and DT. The GT continuously scan the GCCC 

for the BF. Periodic copies of BF in GCCC are launched at regular intervals. The DT 

performs two operations: (1) scanning and sensing the PCCH for control information, 

and exchanging the FCL; and (2) after successful exchange of the FCL, transmitting 

data with the partner node over the agreed data channel(s). Like other CR MAC 

protocols, nodes in DDH-MAC also perform a 3-way handshake in the PCCH. The 

sender node contends for the PCCH and broadcasts the DMCF followed by the FCL. 

The receiving nodes update their FCL, find a common data channel and contend to 

send an ACK in the PCCH. The node which is successful in sending the ACK then 

switches to the agreed-upon data channel for data transmission and conclusion with the 

communicating partner.   

00 01

Scan GCCC 

for T Read BF

Launch BF

BF not found

PU claim, Switch to 

BCCH

Switch to 

PCCH

FCL 

Exchange

10 11

Conclude 

Transmission

Conclude 

Transmission

PU claim on BCCH

Switc
h to

 

PCCH

 

Figure 4.2. States of the DDH-MAC protocol. 

 

Figure 4.2 shows different states of DDH-MAC protocol and the transitions which 

cause the network to change the states. The CR nodes in DDH-MAC are always certain 
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that they have access to at least one control channel all the time, and thus the exchange 

of control information would be minimally affected by PU interference. Having more 

than one control channel gives the DDH-MAC extra reliability. Unlike DDH-MAC, 

other CR MAC protocols use non-GCCC and thus have to re-negotiate the entire 

dialogue in the case of PU interference. Whenever PU interference is sensed, nodes in 

DDH-MAC resume the exchange of control information by simply performing a switch 

operation. Moreover, the protocol is dynamic because every time there is a PU claim, 

nodes switch to a newly found and agreed-upon control channel.  

To help observe and evaluate the performance of the protocol, a mathematical 

analysis has been done under a model, which has been developed and is provided in 

Section 4.3. 

4.3.  Mathematical Modelling for the Proposed Protocol 

Another important key performance indicator of MAC protocols that have been 

computed by most of the developers in the relevant studies is throughput, which is 

briefly defined as data transmitted per unit time. However, throughput is heavily 

affected by multiple factors. Consider an example of calculating the throughput 

between two CR nodes which have agreed on a common white space to transmit after 

exchanging their FCL on a common channel. The throughput in this case could only be 

calculated if all the factors that can affect the communication process have been 

considered. One of these factors could be the probability that a node will win the 

contention to exchange the FCL. The other factors could be how many white spaces are 

common between intended communication partners, the number of other secondary 

users that are also contending for the control channel, and the time required to setup 

the initial configuration dialogue. The overall performance of the proposed protocol is 

also affected by many similar factors. Table 4.1 has been created that lists those 

parameters and their relationship with throughput, which may bring up or down the 

performance of DDH-MAC. Some of the factors are co-related with each other. For 

example, the pre-transmission time is comprised of a number of frames that are 

exchanged as control information, which ultimately contributes towards delay. The 

probability that a SU will launch the BF in the GCCC heavily depends upon the 

congestion which causes an increased size of contention window. 
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Table 4.1 Factors Influencing Throughput of the DDH-MAC Protocol 

Parameter 
Notation & 

Proportionality 
Relationship with Throughput 

Number of Transceivers α TRx 

More no. of transceivers, more rapid 

sensing and searching, more rapid data 

transmission 

Number of Control 

Channels 
α CCH 

More no. of control channels, more 

frequent exchange and update of FCL  

Number of WS α WS More no. of WS, more data transmissions 

Payload α PL 
Larger amount of data to be sent, higher 

throughput 

Number of SUs α  
 

  
 

More no. of SUs contending for control 

channel and white space, less chance to 

seize the opportunity to transmit 

Pre-Transmission Time α 
 

     
   

Less       time, faster network 

convergence, less wait before actual 

transmission starts  

BF Launch Probability α ℙBF 

Higher the probability of successful 

launch of BF, quicker network 

initialization 

PU Interference 

Probability 
α 

 

   
 

Higher PU interference, fewer chances 

that CR nodes will seize the opportunity 

to transmit 

 

The mathematical analysis of DDH-MAC is further discussed below: 

4.3.1. CCC Access and SU transmission Probabilities 

Since the cognitive radio network is an opportunistic technology, the probability 

to seize the opportunity to transmit heavily effects the performance. There are three 

types of probabilities that influence the performance of the proposed protocol. 

 SU Probability to launch the BF in GCCC, denoted by ℙBF . 

 SU Probability to find and access a white space when PU was in silent mode, 

denoted by ℙPU . 

 SU probability to be interfered by a PU during an actual transmission also called 

PU-reclaim probability, denoted by δ. 

 

To calculate ℙPU , we compute the channel utilization of PU. Figure 4.3 shows two 

states of a PU, i.e., a PU is in the “On” state when transmitting, or else (when not 
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transmitting), the PU is in the “Off” state. In fact, PU-Off is the state which is 

opportunistically used by a SU. 

OffOn Off OffOn On

 Figure 4.3.  Random occupancy of PU in different time intervals. 

The Markov chain model for the channel idle-busy periods has been used to find the 

probability of SUs using a spectrum opportunistically. Let Pα represent the probability 

that a PU will change its state from On to Off. Then, the probability that a PU will 

remain in The On state can be expressed by 1- Pα. The probability that SUs can utilize 

and keep utilizing the white space is shown in Figure 4.4 below: 

PU-On PU-Off

Pα1 - Pα

Pβ

1 - Pβ

 

Figure 4.4. Markov chain model of the spectrum opportunity for SUs. 

 

Let Ch = { Ch1. Ch2, .... Chn} be the set of channels owned by a PU, that could become 

white spaces, and let  SU = {SU1, SU2, ... SUn} be the set of secondary users, then the 

channel utilization of  a PU, denoted as δ, could be derived as: 

δ  = 
      

       (    )
     (4.1) 

       

 

where 1 < i < n. Then the total probability that SU will have white spaces to utilize can 

be calculated as: 

  

 α

α β

 

(1 –  P )
1

(1 –  P ) (1 –
  

 
   

P )
WS 




 
P     (4.2) 
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In a contention-based wireless environment, all nodes use the same medium to 

transmit. So there is a contest among all the participating nodes to win the medium. The 

higher the number of users, the higher will be the probability of collision in the 

network. With DDH-MAC, a node has to contend for GCCC to launch the BF. Since 

the GCCC is in the ISM band, its free availability to any type of user makes it more 

saturated. It is uncertain whether or not the CR node will collide with each other when 

launching BF in the GCCC. We denote this collision probability of launching the BF in 

the GCCC by, ℙCF  which has been derived as [201]: 

    ( − 
 

  
)
   

     

(4.3) 

where CW is the size of contention window and CW = {16, 32,…512} and n  

represents the number of users contending for the control channel in the cognitive 

radio environment. It is a normal behaviour of nodes in IEEE 802.11 that the more the 

number of users, the fewer will be the chances to access the medium, which ultimately 

results in an increased size of contention window up to its maximum possible size, i.e., 

CWmax. If Equation 4.3 represents the probability for nodes not to gain access to GCCC 

and probably collide with other nodes to launch the BF, then the probability that the 

nodes may not collide and successfully launch the BF in the GCCC would be 

represented as: 

     − (( −
 

  
)
   

)     (4.4) 

4.3.2. Continuous Time Markov Chain (CTMC) Model  

In this section, a continuous time Markov chain model (CTMC) [202][203][204] 

has been used to determine the coalition of a single SU and a single PU (Figure 4.5). Let 

ℙSU represent the probability that only SU will be using the spectrum, then (1 – ℙSU) will 

be the probability that the SU will remain in an Off state. Let ℙPU be the probability that 

the PU will become On after an Off state, then (1 - ℙPU ) will be the probability that the 

PU will remain in the Off state. The CTMC model is given in Figure 4.5 and the 

description of each state is given in Table 4.2. 
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 ℙ
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ℙSU

ℙPU1 - ℙPU

 

Figure 4.5. A pair of SU and PU CTMC model. 

Table 4.2 Description of SU and PU states 

States Description 

Idle No user is accessing the spectrum 

SU A secondary user is accessing the spectrum 

PU A primary user is accessing the spectrum 

PSU 
Both primary and secondary users are 

accessing the spectrum 

Assume that SUi is the first CR node to acquire the spectrum, and the CTMC 

moves from the idle state to the SU state with the probability ℙSU . SUi returns to its idle 

state with probability (1- ℙSU). Now suppose that a PU arrives and acquires the 

spectrum, so the CTMC will change its state from idle to PU state with probability ℙPU. 

We further enhance our CTMC by considering the scenario that the spectrum was 

already in the PU state when SUi arrived, then SUi seizes any opportunity to share the 

PU spectrum and the CTMC changes its state to PSU with probability (ℙSU + ℙSU), 

which means that both SUi and the PU are in coalition. In the negative case where the 

PU has no spectrum to share, there is no coalition and SUi has to wait. We will model 

this scenario in Section 4.5. The CTMC works similarly if SUi was using the spectrum 

when the PU arrived, but here, due to the nature of CR network, the SU always shares 

the spectrum with the PU so that the PU always has access to its own spectrum.  
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The infinitesimal generator matrix [205][206][207], M, which describes various state 

transitions of the 1SU and 1PU CTMC model is presented in Figure 4.6 

 

Figure 4.6. One single SU in coalition with one single PU in the CTMC model. 

The balance equations with a equalling rate of flow-out are given below: 

(1 )
 (1 ) ((1 )   )   

( (1 ))

idle SU PSU PU
idle SU PSU PU i SU PU SU

PU SU

 
   

 
      

 

P P
P P P P

P P
  

(4.5a)   
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 (1 ) (1 ) )  

( (1 ))
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SU PU
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P P P P

P P
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   ((1 )  (1 ))  
((1 )  (1 ))
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SU PU

 
   


      

  

P P
P P P P

P P
           

(4.5d) 

 

       1idle SU PU PSU        (4.5e) 

where π represents the existence in any of the 4 possible states { idle, SU, PU, PSU }. 

Supposing that ℙSU = ℙPU = ℙ and (1 - ℙSU) = (1 - ℙPU) = (1 – ℙ), and solving 

Equations 4.5a to 4.5e inclusive, we get the following state probabilities: 

πidle  = (1 –   ) 1

(1 –   )
2      

(1 –   )
 

 
 
 
 
 
 

P

P PP

P P

   (4.6a) 

States idle SU PU PSU 

idle -((1 - ℙSU) + (1 - ℙPU)) ℙSU ℙPU 1 

SU 1 - ℙSU -( ℙSU + (1 - ℙPU)) ((1 - ℙSU) +  ℙPU) ℙSU + ℙPU 

PU 1 - ℙPU ((1 - ℙPU) + ℙSU) -( ℙPU + (1 - ℙSU)) ℙPU + ℙSU 

PSU 0 ℙSU ℙPU -( ℙSU + ℙPU)+( ℙPU + ℙSU)) 

 

M = 
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(1 –   )
2      

(1 –   )

1
   SU PU   

 


P P

P P

           (4.6b) 

πPSU = 1

(1 –   )(1 –   )
2      

(1 –   )
 

 
 
 
 
 
 

P

P PP

P P

            (4.6c) 

 

An important performance metric using the CTMC model for access networks is 

the blocking probability (ℙBLK). When using one SU in coalition with one PU, the third 

secondary user is blocked, because the coalition is only possible at maximum between 

two users, i.e. between a SU and a PU in Figure 4.5. Formally, for a newly arriving 

secondary user, ℙBLK in one pair of SU and PU under CTMC is given by: 

ℙBLK (1SU and 1PU) = πPSU                       (4.7) 

4.3.3.  The CTMC with Multiple SUs Transmitting in Coalition with Multiple PUs  

For multiple SUs transmitting in coalition with PUs, a continuous time Markov 

chain model can be drawn similarly to the case of one single SU and one single PU 

CTMC. That is, for N SUs and M PUs, we have: 

SU1 = SU2 = SU3 =….. SUK  =….. SUN-1 = SUN = SU s-1 and  

PU1 = PU2 = PU3 =….. PUK =….. PU M-1 = PUM = PU s-1, respectively. 

where SU s-1 and PU s-1 represents SU and PU being in any of the possible states 

respectively. 

One SU is required to form a coalition with a PU, and after that several 

requesting SUs can join the coalition. The requesting SU can interact with multiple SUs 

(in its neighbourhood) and can form multiple coalitions, simultaneously.  

Additionally, let m= {1, 2, 3…….. N} represent the size of a coalition. For example, 

when m=2, then any Secondary User 1 can form a coalition of size 2 with any other 

Secondary User k being expressed in the form of (1, k). Similarly, when m=3, then any 

Secondary User 1 can form a coalition of size 3 with any two other Secondary Users k 

and o in the form as (1, k, o). This pattern continues until m=N. The number of states 

(SN) in multiple SUs, which transmit in coalition with PUs under CTMC at each value of 

m, follows the pattern given below: 

M =  
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 This implies          ∑   
      

       (4.8)

 

 

 

where  !

(( )!* !)

m

N

N
C

N m m


    

For example,  when N=4, by Equation 4.8, we have,  

1 2 3 4

4 4 4 4 41 16S C C C C       

Equations 4.5 and Equation 4.6 can be combined to obtain the blocking probabilities 

for N users [203]. 

ℙBLK (Multiple SUs and Multiple PUs) =  π(SU1, PU1, SU2, PU2,…., SUN,PUN )  (4.9) 

 

where π = { π idle, π SU, π PU, π PSU} 

4.3.4.  Single-SU and Single-PU CTMC Model with Queuing 

As discussed in Section 4.3.2, we now consider the scenario where a PU has 

occupied the spectrum and is unable to share the spectrum with SUi. In this case, SUi 

has to wait and temporarily queue the packets [208][209]. A Single-SU and Single-PU 

CTMC model with queuing for DDH-MAC has been presented in Figure 4.7, and the 

description of each state is provided in Table 4.3. 

 

Table 4.3 Description of SU and PU States 

States Description 

Idle No user is accessing the spectrum 

SU Secondary User is accessing the spectrum 

PU Primary User is accessing the spectrum 

PSU 
Both Primary and Secondary users are accessing the 

spectrum 

WSU 
SU waiting until spectrum becomes available (does 

not have spectrum to share) 
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1 - ℙSU
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 ℙPU +ℙSU

ℙSU

ℙPU

1 - ℙPU

WSU
ℙ
′ PU

ℙ
′SU

1- ℙ′PU

Figure 4.7. A Single-SU and Single-PU CTMC model with queuing. 

 

 

In Figure 4.7, an additional waiting state for SUi has been added to represent the 

scenario where the PU has occupied the spectrum and is unable to share the spectrum 

with SUi. In this case, CTMC goes to state WSU with probability P′SU where SUi has to 

wait until spectrum becomes available. If the PU vacates the spectrum or is able to 

share, CTMC moves to the state PSU with the probability (1- ℙ′PU), such that (1- PSU) = 

(1- ℙ′PU) where both the users form a coalition and utilize the spectrum. The 

infinitesimal generator matrix for the Single-SU and Single-PU CTMC model with 

queuing is shown in Figure 4.8 below. 
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States idle SU PU WSU PSU 

idle -((1 - ℙSU) + (1 - ℙPU)) ℙSU ℙPU 0 1 

SU 1 - ℙSU -( ℙSU + (1 - ℙPU)) ((1 - ℙSU) +  ℙPU) 0 ℙSU + ℙPU 

PU 1 - ℙPU ((1 - ℙPU) + ℙSU) -( ℙPU + (1 - ℙSU)) ℙ′ SU ℙPU + ℙSU 

WSU 0 1 - ℙPU 0 -ℙ′SU 1 - ℙ′PU 

PSU 0 ℙSU ℙPU 0 -( ℙSU + ℙPU)+( ℙPU + ℙSU) 

(1- ℙ′SU)) 

 

 

 

Figure 4.8. Single-SU in coalition with Single-PU CTMC model with queuing. 

The balance equations with a equalling rate of flow-out are given below: 

πidle =  πSU (1-PSU) + πPU (1-PPU) / (PSU + PPU)    (4.10a) 

πSU = πidle PSU + πPSU (1-PPU) + πWSU (1-PPU) / (PPU + P′PU + (1-PSU)) (4.10b) 

πPU = πidle PPU + πPSU (1-PSU) + (1-PSU) / (PSU + P′SU + (1-PPU))  (4.10c) 

πPSU = πSU PPU + πPU PSU + πWSU (1-P′SU) + (1-P′PU) / ((1-PSU) + (1-PPU)) (4.10d) 

πWSU = P′SU πPU / ((1-PPU) + (1-P′PU)     (4.10e) 

πidle + πSU + πPU + πPSU + πWSU = 1     (4.10f) 

 

Solving Equation 4.10a to Equation 4.10f, we get  

πidle = 
   

 
(

 

   
  

      
   

   

 
 
)      (4.11a) 

πSU = πPU = π = 
 

   
  

      
   

   

 
 
      (4.11b) 

πWSU = πW = 
 

      
 (

 

   
  

      
   

   

 
 
)    (4.11c) 

Mqueue 
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πPSU = 
  

      
 (

 

   
  

      
   

   

 
 
)     (4.11d) 

The ℙBLK  in this case could be derived in a similar way to Equation 4.7 

ℙBLK (1SU and 1PU) = πPSU                               (4.12) 

For multiple SUs transmitting in coalition with multiple PUs with queuing, the CTMC 

state model, infinitesimal generator matrix and blocking probability can be obtained 

similarly to the derivation of Equation 4.8 and Equation 4.9.  

4.4. Performance Evaluation 

For the convenience of presentation, Table 4.4 lists the important parameters for 

the design and analysis of the proposed DDH-MAC protocol. Let [SU] be the number 

of secondary users and [WS] be the number of available white spaces in a cognitive radio 

environment. ℙSU is the probability that the SU will utilize the white spectrum when it is 

not used by the primary user, and ℙBF is the probability that the initiating node will 

launch a BF in the GCCC. Clearly ℙBF depends on the level of saturation on the GCCC 

as derived in Equation 4.4. The aggregated throughput denoted by Ŧ is proportional to 

multiple factors as mentioned in Table 4.1, Ŧ is derived as: 

 

CH BF

PU

TRx C  PL 
 

Pre TxSU



 Ŧ

P

P

      (4.13)  

 

CH BF

PU

TRx C  PL  [ ] 
 

Pre Tx

Ř

SU 
 =Ŧ

P

P

     (4.14)  

where Ř is the data rate of the licensed channel and is set as a constant     time has 

been computed in section 3.9 and is given below: 

2

[ ]

DMCF FCL Ack SIFS DIFS
Pre Tx

Ř

     
   

   

(4.15) 

where DMCF, FCL, and ACK are the control frames sizes 20 Bytes, 14 Bytes and 20 

Bytes respectively, exchanged as control information.  
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4.4.1. Aggregated Throughput 

The parameters used to evaluate the DDH-MAC protocol are summarized in 

Table 4.4. We first investigate the aggregate throughput for the saturated network case 

where, apart from PU interference probability there is a contention among SUs to launch 

the BF in GCCC. Let δ be the PU interference probability and ℙSU be the probability 

that SU will utilize white spaces. Assume that the number of transceivers and the 

number of control channels are both equal to 2 and Ř is set to 11Mbps.  

Table 4.4 Parameters for the Proposed Scheme 

Parameter Assigned Value 

[SU] Number of secondary users 

[WS] Number of white spaces for each SU 

ℙSU The probability that SU will utilize the white 
spectrum 

ℙBF Probability of launching BF 

ℙCF Probability that SU will utilize WS 

Tx Number of transceivers = 02 

CCCH Number of control channels = 02 

      Pre-transmission time 

PĿ Payload = 2000Bytes 

Ř Data Rate of the channel, 11Mbps 

CWmin 16 

CWmax 512 

δ PU Interference Probability 

BF 14Byte 

DMCF DDH-MAC Control Frame 20Byte 

FCL Free Channel List 14Byte 

ACK 20Byte 

 

Using Equation (4.12) we plot the aggregate throughput (Ŧ) against the BF 

launching probability (Equation 4.3) in Figure 4.9. 
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Figure 4.9. The aggregate throughput against the probability (ℙBF). Note that BF will be 

launched with the average number of white spaces [WS] for each SU.       is 128µs; the 

number of control channels and the number of transceivers (Tx) are 2. 

 

Figure 4.9 shows that the highest aggregate throughput changes with different 

numbers of contending secondary users. This is expected because the higher the 

probability of launching the BF by a secondary user, the higher the aggregate 

throughput. The aggregate throughput of the DDH-MAC protocol depends on the pre-

transmission time which could be different for different case scenarios and on the time 

to launch BF over the control channel which is ultimately determined by the IEEE 

802.11 DCF parameters such as CWmin and Ř.  

After setting the optimal values for the BF launching probability, the average 

number of white spaces with each SU and the pre-transmission time, we have used 

Equation 4.14 to determine the aggregate throughput of the DDH-MAC protocol 

against the PU interference probability. The numerical values obtained from Equation 

4.12 have been plotted in Figure 4.10. It is observed that the aggregate throughput 

reaches the highest when there is no or minimal PU interference. Nodes will only have to 

wait to read/launch the BF in the control channel and with two frames exchanged as 

control information, nodes will immediately start utilizing white spaces 

opportunistically. The aggregate throughput decreases and reaches zero as the PU 

interference probability increases. 

 

BF launching Probability by SU (ℙBF) 
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Figure 4.10. The aggregated throughput against the PU interference probability (δ) with the 

average number of white spaces [WS] for each SU,       being 128µs; and the number of 

control channels and the number of transceivers (Tx) being both 2. 

We further proceed to the relationship between throughput and vacant channels. 

Clearly, the opportunity for the SU to transmit depends heavily on the available white 

spaces. Fewer white spaces imply lesser opportunity for the transmission. With the 

average values for the BF-launching probability (ℙBF) and the PU-interference probability 

(δ), we again use Equation 4.12 to obtain numerical values which have been plotted in 

Figure 4.11. It is observed that the aggregate throughput of the CR nodes significantly 

reaches its highest value when there are maximum available white spaces. The aggregate 

throughput decreases as the channel utilization of PU increases, which implies that the 

secondary users get fewer opportunities to transmit their own packets if the primary user 

utilizes the licensed channels more intensively. Another way to really improve the 

throughput which has been deployed in the DDH-MAC protocol is, to rigor the 

hardware cost constraint and use more than one transceiver, and to increase the number 

of control channels. For example, consider Scenario III of the DDH-MAC protocol 

where one transceiver is continuously scanning the control channel (PCCH) for control 

information as well as PU claim, and the other transceiver is used to transmit data. The 

PU interference is efficiently addressed on the control channel without any network 

convergence issues by simply switching to the backup control channel (BCCH).  Using 

more than one transceiver and more than one control channel can significantly improve 

throughput under the DDH-MAC. 
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Figure 4.11. The aggregated throughput against the PU interference probability (δ) with the 

average number of white spaces [WS] for each secondary user.       is 128µs; average value of 

BF transmit probability having been considered, and the number of control channels and the 

number of transceivers (Tx) are both set to 2. 

As shown in Figure 4.11, the aggregate throughput linearly increases as the number 

of white spaces available to a secondary user increases before reaching the maximum. 

This is expected by the relationship of throughput and white spaces mentioned in Table 

4.1. More precisely, when secondary users can access all the available white spaces 

simultaneously without any primary user claim, sufficient transmission takes place 

between secondary users, which ultimately results in higher aggregate throughput. 

4.4.2. DDH-MAC Throughput Performance Comparison  

In this section we compare the performance of the DDH-MAC protocol with a 

highly cited CR MAC protocol reported in the literature i.e., CREAM-MAC [38]. For 

the purpose of comparison, we have considered the same DSSS physical layer 

parameters for all three protocols. The aggregate throughput for 30 SUs is plotted in 

Figure 4.12 for the DDH-MAC and CREAM-MAC protocols, against the average value 

of the probability that SUs will utilize the spectrum, average number of white spaces 

[WS] available to each SU, and       set to 82µs, and 87 µs, for DDH-MAC and 

CREAM-MAC respectively. The obvious reason for the better throughput of DDH-

MAC is the number of control channels used, which significantly reduces the overhead 
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of network convergence, ultimately improving the pre-transmission time spent on the 

exchange of control information whenever there is a PU activity. We also observe that 

despite fewer opportunities to use unoccupied spectrum, the aggregated throughput for 

DDH-MAC is notably higher than the CREAM-MAC protocol. This means that ℙPU is 

affected by the PU claims on data channel. Higher PU claims will imply more re-

negotiations, more computational cost and backoff to access control channel, and the 

exchange of more control frames which will ultimately increase or decrease the 

aggregated throughput.  
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Figure 4.12. The aggregate throughput for SU = 30, against the probability that 

SU will utilize vacant channel.  ℙBF has been fixed at 0.5; average number of 

white spaces [WS] with each SU. 

  

A
g
g
re

g
at

ed
 T

h
ro

u
g
h
p
u
t 

in
 M

b
p

s 



- 116 - 
 

4.5. Summary 

The cognitive radio technology has emerged as an effective solution to address the 

problem of spectrum scarcity. The cognitive nodes adapt the environment and 

intelligently seize the opportunity to communicate with other CR nodes. Different 

MAC protocols have been designed to setup an initial configuration dialogue, but 

unrealistic assumptions or unclear methodology has been used to deal with the very 

critical part of CR networks, i.e., exchanging the FCL on a common channel. A novel 

CR MAC protocol has been proposed in this PhD study. To the best of our knowledge, 

DDH-MAC is the first CR MAC protocol lying between the GCCC and non-GCCC 

families of protocols, using the GCCC for the BF transmission and intelligently 

selecting one of the channels as the primary control channel and another as the backup 

channel. PU claims, which are not unusual in the CR network, are efficiently dealt with 

by performing a switch channel activity in DDH-MAC. The CR nodes remain always in 

the state of being able to access at least one control channel. The protocol is dynamic 

because the CR nodes either switch to the backup channel or find a new channel to 

exchange control information whenever there is a PU claim. More control channels lead 

to the exchange of fewer frames for agreeing upon transmission rules. This makes the 

proposed protocol more time efficient and performs better than any of other CR MAC 

protocol, especially when a PU activity is sensed (and when this happens, nodes do not 

need to spend time on finding and synchronizing on a new control channel, they simply 

switch to backup channels). The results obtained from the mathematical modelling 

reveal that the proposed protocol performs better in terms of aggregated throughput.  
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Chapter 5: Simulation of  the Proposed 
Adaptive Multi-access Multi-channel 
MAC Protocol 

5.1. Introduction  

Simulation Modelling is the most important method for network performance 

analysis; and in general, there are two kinds of network modelling: i) analytical modelling 

and ii) computer simulation [210]. The first is by mathematical analysis that characterizes a 

network as a set of mathematical equations. The main disadvantages are a one-

dimensional view of the network and an inability to simulate the dynamic nature of a 

network as nodes join or leave the network. The second type of computer simulator is 

broadly classified as either a continuous time simulator (CTS) or a discrete event simulator 

(DES). Therefore, the study of a complex system necessarily requires a computer 

simulation package that is able to compute the time that is associated with real events in 

a real-life situation 

In this chapter, we develop simulation experiments to investigate the system 

performance of our proposed DDH-MAC protocol. For our simulation experiments we 

have used OPNET Modeler [211], which is a kind of DES. OPNET provides a 

comprehensive development environment for the specification, simulation and 

performance analysis of communication networks. A large range of communication 

systems from a single LAN to global satellite networks are supported. OPNET Modeler 

is a powerful tool which evaluates the network efficiently and accurately. OPNET is a 

new and widely used technology which is equipped with all the features needed to 

design, model and simulate all types of networks systematically such as home, corporate 

and wide area networks. OPNET with its unique approach can provide an objective, 

reliable and quantitative basis for network planning and designing and it could shorten 

the network construction period, improve the precision of decision making on network 

building and reduce the risk of network construction investment. Some of the salient 

features of OPNET are: 

 Modelling and Simulation: OPNET uses 3 phases for simulating any project, i.e., 

build model, execute simulation, and analyse results which assists the user in final 

decision making. 
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 Hierarchical Modelling: OPNET adopts a hierarchical structure to build small and 

simple to large and complex networks. The bottom layer is „the process model‟ 

which consists of state transition diagrams (STD) that specify a variety of 

protocols, algorithms and queuing policies. The middle layer is the „node model‟ 

which makes different modules that have pre-defined characteristics and built-in 

parameters such as packet generators, radio transmitter and receiver etc., and the 

top layer is the „network model‟ which specifies the physical topology of the 

communication network (e.g., specification of Ethernet, node type). 

 Abundant Communication Network: OPNET provides abundant network models 

such as, ATM, x.25, WiMAX, WLAN and Ethernet etc. and also has equipment 

for different vendors such as CISCO, 3COM and Sun etc. to allow researchers to 

either modify existing models or develop new communication models of their  

own. 

 Generation of Statistical Data: OPNET provides the opportunity for a user to obtain 

customized statistical data and detailed network performance analysis. 

 

5.2. A Pseudo Code Algorithm  for DDH-MAC Protocol 

To help fully understand and also to help facilitate the implementation of our 

proposed DDH-MAC protocol, we summarize our algorithm by providing its pseudo 

code in Figure 5.1. In Figure 5.1, the BF represents the first management frame that is 

launched in the GCCC to initialize the network. The size and the structure of the BF 

have already been described in Section 3.6.1. The algorithm defines two main features 

of the DDH-MAC protocol, i.e., rapid channel accessing and reliable channel accessing, 

both of which reflect the efficiency of DDH-MAC in accessing the GCCC. The 

implementation of DDH-MAC is further described below. 

As mentioned earlier, OPNET considers a system as a finite machine which has 

states and transitions. We first developed the STD (also called the process model) of the 

DDH-MAC protocol and then developed the node model to incorporate MAC features 

of DDH-MAC into the node model.  
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DDH-MAC algorithm 

//Phase 1: Rapid channel accessing 

BF = node_id + PCCH + BCCH;   //fields of a BF 

1   while 

2   begin (the action of the secondary user) 

3   {  case join group: 

4      listen to GCCC; 

5 if { 

6      at least receive a BF in GCCC   

7      read the BF; 

8       case 1 

9       PCCH in FCL             //white space already known 

10        If { 

11 no claim on PCCH, go to PCCH and exchange control information;   

12 agree on white space for data transmission; 

13 conclude transmission with partner node;    

14 } 

//Phase 2: Reliable channel accessing 

15  else  { 

16 if { 

17 claim on PCCH AND no claim on BCCH; go to BCCH; 

18 exchange control information; 

19 agree on white space for data transmission; 

20 conclude transmission with partner node; 

21     } 

22                else 

23    {  

24    listen to GCCC;  

25    } 

26   }                   

27     case 2 

28  PCCH not in FCL:    //white space not known 

29  update the FCL; 

30  go to case 1; 

31      } 

32     else { 

33  if {  

34   no. of white spaces > 3 //threshold to make itself 1st node 

35           wait till T expires;   //time required to scan 3white spaces 

36            create group and make itself first node;//launch BF in GCCC 

37           choose PCCH and BCCH; 

38           create BF; 

39           launch BF in GCCC;                  

40           the network converges;       

41   go to case 1; 

42     } 

43  else  

44             {  

45   listen to GCCC; 

46   } 

47 } 

48   end while; 

 

 

Figure 5.1. The pseudo code of DDH-MAC. 
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5.3. Access Mechanism Implementation 

Cognitive Radio is a special type of wireless network. The classical features of ad-

hoc wireless networks could be deployed. In our research, we have used the distributed 

coordination function (DCF) which is based on the CSMA/CA mechanism. We have 

used IEEE 802.11b [212] as a benchmark to implement our protocol. The reasons for 

using IEEE 802.11b as a benchmark are:  

 this model is extensively researched by the research community 

 this model is widely deployed and implemented; and it has been widely accepted 

and used by the industry 

 support is available for IEEE 802.11b modelling in many simulation tools such as 

OPNET [211], ns-2 [213] and OMNeT++ [214].  

 most of the existing CR MAC protocols have been developed using the same 

802.11b standard [38][191]. 

 

5.3.2 Detail of the Network Topology 

In our network scenario, we have considered 4 to 30 numbers of SUs. Uniform 

distribution has been used to place the fixed wireless CR nodes over a simulation area 

of 150m2. PU arrival has a Poisson distribution. Figure 5.2 provides the topological 

network scenario deployed for our proposed DDH-MAC protocol. 
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Figure 5.2. A network scenario of DDH-MAC protocol. 
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5.4. Results and Discussion 

 Performance is evaluated for the proposed DDH-MAC protocol by simulating a 

secondary users‟ session during which a primary signal appears in the band. In our 

simulation, there are 6 channels in total. Three of them are control channels i.e., GCCC, 

PCCH and BCCH, and the others are data channels. One of the channels is in the 

2.4GHz spectrum band, and thus is not affected by the PU claim and is always 

available. The remaining data channels are occupied by the primary users with Poisson 

data arrival distribution. There are 4 pairs of CR nodes which always have data to 

transmit. A summary of the setting of simulation parameters are given in Table 5.1 

below: 

Table 5.1 Simulation Parameters for DDH-MAC Protocol. 

Parameter Assigned Value 

Number of secondary users 4 - 30 

Number of channels available for each SU 6 

Payload 2048 Bytes 

Channel capacity 11 Mbps 

Simulation time 60s 

Seed value 128 

PHY layer Characteristics DSSS 

PU arrival rate Poisson distribution 

Slot Time 20 µs  

SIFS 10 µs 

DIFS 2 x slot time + SIFS 

Transmission Switch time ≤ 5 µs 

 

In the next section, we discuss the performance evaluation for different 

parameters such throughput, traffic sent/received per unit time, queuing delay and 

collisions on the control channel. 

5.4.1. Global Statistics  

In this section, we discuss simulation experiments to investigate the system 

throughput of a CR network. The performance of DDH-MAC is dependent on several 

attributes such as the number of CR nodes, the number of vacant channels to be 

utilized by CR nodes and the probability of the primary user‟s claim. We first obtain the 

global statistics of the average throughput values for a CR network deploying the 

DDH-MAC protocol.  
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a) Throughput of DDH-MAC for different numbers of SUs 

In our simulation experiment, there are 6 vacant channels available with each CR 

node. To make the model traceable, we consider the case where the number of vacant 

channels available with each CR node is greater than or equal to three (Equation 3.1). 

We further suppose that data packets of SUs arrive as a Poisson process with a mean 

arrival rate and that the size of each data packet is equal to 2048 Bytes.  In the first 

experiment, we have used 4, 15 and 30 CR nodes. Note that in this case the total 

number of bits sent by a CR node is dependent on a few parameters. Firstly, the 

number of common channels available with each CR pair; secondly, the total number of 

CR users in the vicinity that are candidates for network resources; and lastly, the 

utilization of vacant channels by SUs in the CR network (ℙPU). This means that there 

could be different values of throughput for data transmission among SUs from time to 

time.  

We first obtain the average traffic sent by each CR node for different numbers of 

available SUs in the vicinity. Figure 5.3 shows that the traffic sent is higher when there 

are fewer SUs. The average rate of traffic sent degrades when the numbers of SUs 

become higher. The obvious reason for this is utilization of six vacant channels by 4 

SUs and utilization of the same number of vacant channels by 6 and 15 SUs. This 

implies that there is a contention between SUs which lead them to wait for certain white 

spaces to become available.    
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Figure 5.3. Average traffic sent against the simulation time of 50s, under CWmin= 32, and ℙPU is set 

to 0.3, and when the number of SUs is set to 4, 15, and 30, the number of available white spaces is 6. 

N
u
m

b
er

 o
f 

b
it

s 
se

n
t 

p
er

 s
ec

o
n

d
 



- 123 - 
 

b) Throughput of DDH-MAC for different values of simulation time 

In this experiment, we investigate the throughput of a non-saturated network for 

a fixed number of SUs in different values of simulation time. The parameters used to 

evaluate the DDH-MAC protocol have been summarized in Table 5.1. Let the number 

of contending SUs in the CR network be 4 and the number of white spaces with each 

SU be equal to 6. We then run our simulation for different time periods. The 

throughput (bits/sec) obtained is plotted in Figure 5.4. Note that throughput increases 

as the simulation time increases. This shows that with the passage of time the CR 

network is converged and nodes become aware of the control channel to be utilized. 

The highest value of throughput is obtained when the simulation is run for the longest 

period of time. We present the behaviour of this simulation experiment in two different 

forms of output that are provided by OPNET. These are the output based on average 

values that are obtained through the total simulation time called „average‟, and the 

output that is drawn as they are retrieved during the simulation time, called „as-is‟. The 

output in both forms for this simulation experiment is plotted in Figure 5.3 and Figure 

5.4 respectively.  
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ℙPU is set to 0.5, and when the number of SUs is 4 and the number of white spaces with each SU is 6, 
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The „as-is‟ output for the different lengths of simulation time for a fixed number 

of SUs and white spaces has been plotted in Figure 5.5 below. It can be observed that 

when the simulation is run for one second, the CR network is not fully converged and 

the average throughput varies between 0.5Mbps to 4.4Mbps.  This is expected because 

with the passage of time, CR nodes become aware of the available network resources 

and the available CR nodes in the range. The throughput is heavily dependent on the 

time spent on launching the BF and the time spent to accomplish the 

DMCF/FCL/ACK three-way handshakes over the local control channel. It can be 

noted that each SU pair of nodes utilize one data channel at the same time, but a 

simultaneous data transmission on more than one data channel could significantly 

improve the throughput of the DDH-MAC protocol. However, simultaneous data 

transmission will require equipping each SU with additional sensors to detect the PU 

claim and will impose an additional hardware cost.    
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 Figure 5.5. As-Is throughput of the DDH-MAC protocol against different lengths of simulation 

time, when CWmin= 32, and ℙPU is set to 0.5, the number of SUs is 4 and the number of white 

spaces with each SU is 6. 
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5.4.2. Object Statistics 

We extend our simulation experiments to investigate the behaviour of SUs when 

there are many other SUs also contending for network resources. In this experiment we 

consider two different scenarios for the DDH-MAC network. We first deploy a 

topology where there are 15 SUs all contending for network resources, and observe the 

throughput by calculating the average traffic sent during a simulation interval of 50 

seconds. We then double the number of SUs to 30 in scenario 2, and all 30 CR nodes in 

this case are contending for the same network resources. Note that the total number of 

available white spaces will remain the same. The average throughput values in both 

scenarios have been plotted in Figure 5.6. It could be observed that the average 

throughput of a CR node, when there are 30 SUs, is half the average throughput when 

there are a total of 15 SUs contending in a CR network. This implies that all the CR 

nodes are resource hungry and are struggling to gain network resources. This also 

means that the performance of a CR network is not only constrained by the interference 

from PUs but is also subject to the contending SUs in the vicinity.   
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Figure 5.6. Average throughputs in bps of DDH-MAC protocol against two different 
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a) Delay of a Node in the DDH-MAC Protocol 

This simulation experiment investigates the performance of the DDH-MAC 

protocol for queuing delay, for the case where the SUs always have data to transmit and 

may not have empty queues. After setting the optimal CWmin to be 256 for the case 

where numbers of SUs are 4, 10 and 30 respectively, we investigate the queuing delay. 

To make the model traceable, we randomly select a node and observe its average delay 

on a data channel. We observe that the queuing delay is below 25µs when the numbers 

of SUs are fixed to 4 and 10. For the same network resources when there are 30 SUs, 

the queuing delay fluctuates to 45µs in first few seconds of the network initialization 

and then settles to approx. 32µs after the network is converged. This difference on the 

values of queuing delay is expected because in this experiment we are assuming the 

saturated network case where there are other SUs contending for network resources. 

This queuing delay could be minimized if we consider the case where there is no 

network saturation and congestion, and the primary network resource, i.e. data 

channels, are available in large number. 
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Figure 5.7. Average queuing delay of a node in the DDH-MAC protocol against simulation 

time, under the assumptions that there are six data channels available, that the network is 

saturated, that there is congestion amongst SUs, and that the numbers of SUs are set to 

minimum (4) and maximum (30). 
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b) The Number of Backoff Slots in DDH-MAC Protocol 

We further extend our investigation of the DDH-MAC protocol and observe the 

behaviour of CR nodes for the average number of backoff slots for different numbers 

of SUs. We again consider the case of a saturated network where there is a contention 

for transmission amongst all SUs. The collision amongst SUs to access the local control 

channel is not unusual in the saturated network case. More precisely, all SUs have the 

same PCCH to exchange control information for subsequent data transmission to take 

place. As a result, the PCCH becomes saturated. That is, the more the number of SUs 

contending for PCCH, the higher will be the number of collisions and higher will be the 

computational cost and backoff. Figure 5.8 below reveals that the average number of 

backoff slots remains less than 5 when there are 4 SUs in the range. The number of 

backoff slots fluctuates between 2 to 23 when there is the maximum number of SUs, 

and it gradually settles as the simulation proceeds. This is obvious because when the 

simulation is launched, all SUs are contending for the same PCCH to dialogue control 

information, causing higher numbers of collisions and backoff slots.  
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 Figure 5.8. The number of backoff slots in the DDH-MAC protocol against the simulation time 

of 50 sec., there are total of six data channels available., the network is saturated, there is 

congestion amongst SUs and the numbers of SUs are set to minimum (4) and maximum (30).  
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c) Signal-to-noise Ratio in the DDH-MAC Protocol 

We further proceed to the saturated network case and investigate the signal-to-

noise ratio (SNR) on a fixed channel. Note that part 11 of the IEEE 802.11 standard 

[200] suggests the SNR to be in range of 1db-100db for data frames. Also, the SNR for 

received beacon frames ranges between 1db-100db. The DDH-MAC protocol launches 

the BF in the GCCC which is in the ISM band and is saturated by other unlicensed 

applications. So, a higher value of SNR for BF is expected. Using Equation 5.1 the SNR 

of the received data frames in db has been computed and plotted in Figure 5.9 for 

different numbers of SUs.   

SNRdb = 10log10 (
       

      
) = Psignal,db – Pnoise,db   (5.1) 

The average values of SNR vary between 73.56db to 75.58db. This is expected 

because unlike classical wireless networks, if one pair of SUs starts data transmission, it 

will not stop another SU pair from transmitting data. The data transmission of one SU 

pair on a certain data channel can cause some interference to another SU pair on some 

other data channel. Ultimately, more pairs of SUs lead to a slightly higher value of SNR.  
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 Figure 5.9. Average SNR in the DDH-MAC protocol against the simulation time, over a specific 

data channel when there are 3, 4 and 6 SUs, and when the data rate is 11Mbps and simulation is 

run for 50sec.  
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d) Collisions on the Primary Control Channel 

Due to the nature of the CR technology, secondary nodes appear to be always 

striving for network resources. There is always contention amongst SUs to avail 

themselves of the transmission opportunities on priority bases. Secondary users always 

have data to transmit, for which they contend on the control channel. In this 

experiment, we elaborate this behaviour of SUs and observe the collisions on the 

control channel. Note that our simulation model is based on the traditional IEEE 

802.11 DCF parameters which deploy the CSMA/CA function. Like a traditional 

wireless network, collisions are expected in DDH-MAC. We consider a network 

scenario which consists of 6 SUs, all contending to win the PCCH to start to exchange 

the control information. The scenario has been described in detail in Section 3.8 of 

Chapter 3. Figure 5.10 shows the collisions on the primary control channel when the 

network is initialized and all SUs have learnt about the newly established PCCH through 

the BF. This is expected because all SUs want to access the PCCH to start the exchange 

of control frames which has led to a few collisions on PCCH.  
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 Figure 5.10. Collisions on the primary control channel when there are 6 SUs and the data 

rate is 11Mbps. Simulation is run for 10sec and the results are captured for the first second. 
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e) Evaluating DDH-MAC in Noisy Channel Conditions 

We have evaluated our proposed DDH-MAC protocol in ideal channel 

conditions. Now, we extend our simulation and investigate the performance of DDH-

MAC in noisy channel conditions. In this experiment we examine the impact of the 

queuing delay in DDH-MAC with ideal and noisy channel conditions. We simulate the 

external interference on a specific data channel. In Figure 5.11 we observe that the 

queuing delays have notably increased as the result of the noisy data channel. It is 

obvious that the noisy transmission medium causes the loss of data packets and 

increases the number of retransmissions. SUs holding data in the queue have to wait for 

slightly longer. The queuing delay in noisy channel conditions could be reduced by 

transmitting data packets at lower threshold values which can cause minimum 

interference to the data signal.  Another way to minimize the queuing delay due to 

channel errors could be simultaneous transmission on more than one data channel. 

However, at this point we do not consider incorporating simultaneous data 

transmission on more than one data channel.  
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Figure 5.11. Queuing delay in DDH-MAC protocol, with and without channel errors 

when there are 3 SUs.  
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5.5. Performance Evaluation and Comparison 

 In this section, we compare the performance of our proposed DDH-MAC 

protocol with another CR MAC protocol. For our simulation experiments we compare 

the DDH-MAC protocol with the CREAM-MAC [38] protocol. This protocol is highly 

cited and is the latest in the literature. A performance comparison of the DDH-MAC 

protocol for the pre-transmission time and the analytical aggregated throughput has 

already been provided in Chapter 3 and Chapter 4 respectively. In this section, we 

present some simulation experiments to compare the performance of the DDH-MAC 

protocol for throughput, the number of frames exchanged as control information, and 

the number of frames exchanged when a PU claim is detected.  

 We evaluate our proposed DDH-MAC protocol in the saturated network case.  

Figure 5.11 shows the simulation results for DDH-MAC and CREAM-MAC protocols, 

given that the number of available data channels is 6 and that the total number of SUs is 

10. Figure 5.12 shows the average throughput in bits/sec of a secondary user as the 

mean of the results of 20 simulations each running for 50 seconds. We observe that the 

throughput of DDH-MAC is higher and thus better when compared with other CR 

MAC protocols. 

 

 

Figure 5.12. Performance comparison between DDH-MAC and CREAM-MAC on the average 

throughput in bits/sec of an SU pair on a data channel. 
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The very first reason for a higher throughput value of DDH-MAC is the pre-

transmission time which heavily affects the performance of a CR MAC protocol. As 

discussed in detail in Chapter 3, DDH-MAC has the least amount of the pre-

transmission time which is advantageous for DDH-MAC. The pre-transmission time 

itself depends on several elements. The most important is how easy it is to find and 

access a control channel.  

The second reason for the higher throughput in DDH-MAC is re-dialoguing on control 

information if the primary control channel becomes unavailable. Nodes deploying the 

DDH-MAC protocol always have access to a backup control channel and can easily 

converge on the backup control channel by performing channel-switching. Switching 

from the primary control channel to the backup control channel consumes a time less 

than 5µs. However, the other CR protocols have to first find a common control 

channel, and then disseminate the information about the newly found control channel 

in the CR network, and last exchange control information. 

The third reason for the DDH-MAC to outperform other CR MAC protocols is the 

number of control frames. Each data transaction amongst any pair of SUs is subject to 

successful exchange of control frames over the control channel. This control 

information is an overhead in the CR network and should be minimized in all possible 

ways.  Since, CREAM-MAC protocol exchange 4 control frames for each data 

transmission, while DDH-MAC only exchanges 3 control frames, the overall 

throughput in DDH-MAC is greater.  

In order to observe the behaviour of the CR MAC protocols while exchanging the 

control information, we ran another simulation experiment. Figure 5.13 presents the 

number of frames exchanged as control information on the control channel by DDH-

MAC and CREAM-MAC protocols. We strongly believe that a smaller number of 

frames exchanged as control information can be beneficial in several aspects, e.g., i) it 

reduces the MAC layer overheads and thus CR nodes can quickly start data 

transmission; ii) nodes holding delay-sensitive data have to wait less, which will 

ultimately contribute towards better QoS; and iii) fewer number of control frames 

exchanged will make the CR network more secure and more energy efficient4.  

 

                                                           
 

4
 We discuss both security and energy efficiency in CR networks in Chapter 6 
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 Figure 5.13. Performance comparison of DDH-MAC with CREAM-MAC on the number 

of control frames re-exchanged when the control channel becomes unavailable.  

We further extend our experiment on performance evaluation and comparison by 

investigating the response of SUs when a PU claim is sensed on a control channel and 

thus the control channel becomes unavailable. Also, the CR node that first detects the 

PU claim on the control channel is unable to propagate the information about 

unavailability of control channel by any means. In this case, all other CR MAC 

protocols have to re-exchange the entire configuration dialogue and all frames need to 

be retransmitted. However, DDH-MAC is specially designed to handle this situation, 

and any node which first detects the PU occupancy on a control channel will launch a 

single frame which lets all CR nodes in the vicinity start using the backup control 

channel. Hence, there is no need to find the control channel and then re-dialogue the 

whole control information.  

Clearly, DDH-MAC has to broadcast only one management frame to let other 

CR nodes know to switch onto the BCCH which has already been established and all 

CR nodes are aware of, while the protocol design of CREAM-MAC has to broadcast 4 

control frames.  
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We also examine the performance of DDH-MAC in terms of queuing delay with 

another protocol and simulate an experiment when a PU claim has been sensed. By 

comparison, the re-exchange of the entire configuration dialogue forces the SUs 

deploying CREAM-MAC protocol to wait for longer. We capture this scenario in our 

simulation experiment and plot the results obtained in Figure 5.14. It can be clearly 

observed that more time spent re-exchanging the control information results in high 

values of queuing delay.  
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 Figure 5.14. Performance comparison between DDH-MAC and CREAM-MAC on the queuing 

delay in milliseconds when a control channel becomes unavailable  
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5.6. Verifying Analytical and Simulation Results 

The parameters used to analytically and experimentally evaluate the DDH-MAC 

protocol are summarized in Table 4.4 and Table 5.1. In this section we verify the 

consistency of our analytical model and simulation model.   

5.6.1. The Aggregated Throughput Against PU Interference Probability 

We first investigate the aggregated throughput for the saturation network case. 

Let the number of Tx with each SU be 2, and the channel utilization Ř be equal to 

11Mbps. Using Equation 4.12, we plot the aggregated throughput against the PU 

interference probability δ in Figure 5.15. The experiment is run for two different 

numbers of SU, i.e., when SU is equal to 15 and 30 respectively.   
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Figure 5.15. Aggregated throughput in analytical analysis and simulation experiment for two 

different numbers of SUs against the PU interference probability (δ), under the assumption that 

the number of transceivers is 2, that the channel data rate has been set to 11Mbps, and that the 

number of available data channels is 15. 

 

The highest aggregated throughput of approximately 300Mbps is achieved when 

there is no PU interference and thus SUs can fully utilize all the available data channels. 

The aggregated throughput for the two numbers of SUs degrades linearly as the PU is 

more likely to claim the licensed data channels. This is expected because, given that 

there are sufficient licensed channels available, the aggregated throughput only depends 

on the δ. The same applies to the simulation experiment where we know the number of 
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contending SUs in advance and thus we select the optimal value of CWmin which results 

in the highest throughput. For different numbers of SUs, the CWmin could be adjusted 

accordingly. This will help achieve the optimal performance. 

5.6.2. The Aggregated Throughput against the Number of Available Data Channels 

After setting the number of SUs equal to 15 and 30, we use Equation 4.12 to get 

the numerical results of the aggregated throughput against the number of available 

white spaces. From Figure 5.16, it can be observed that if fewer data channels are 

shared amongst more SUs, the aggregate throughput (Г) linearly decreases, which 

implies that the SUs get less transmission opportunities to communicate with other CR 

nodes in the vicinity. Note that in this experiment we are considering the unavailability 

of the data channel due to their usage by other SUs. Another reason for DDH-MAC to 

achieve such a high throughput is the number of transceivers which continuously 

monitor any network changes through rapidly scanning the control channel while 

simultaneously taking opportunities for data transmission. The aggregated throughput 

for both the mathematical and simulation experiments reveals that DDH-MAC is 

resilient against any abrupt network changes due to a PU claim on either a control 

channel or a data channel. 
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Figure 5.16. Aggregated throughput in analytical analysis and simulation experiment for two different 

numbers of SUs against the PU interference probability (δ), under the assumption that the number of 

transceivers is 2. That the channel data rate has been set to 11Mbps, and that the number of available data 

channels is 15.  
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5.6.3. Mathematical and Simulation Results of Aggregated Throughput with and 

without Noisy Channel Conditions 

 In our last experiment, we combine both the simulation and numerical results 

on the aggregated throughput against number of white spaces. We consider a non-

saturated network case and obtain the aggregated throughput of 4 SUs with ideal 

channel conditions and without ideal channel conditions against the SU transmission 

probability (ℙCF) on the control channel. In this experiment, we investigate the SUs‟ 

data transmission after network convergence. The throughput performance is shown in 

Figure 5.17. Here, we assume that SUs have sufficient data channels and observe that 

aggregated throughput rapidly increases with the increase of SU transmission 

probability. This means that the network is fully converged and the SU pair are 

exchanging data on available and agreed upon white spaces. The aggregated throughput 

as reflected from both the mathematical result and the simulation result decreases as 

channel errors are introduced in the network. Unlike other CR MAC protocols, our 

scheme has low usage of the GCCC and thus improves the over-all network 

performance. Delivering the control information over the local control channel, which 

is less saturated, is a feasible solution to improve the aggregated throughput. Of course 

a lower number of SUs in the network is another reason for higher aggregated 

throughput values.  
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 Figure 5.17. Aggregated throughput in analytical analysis and simulation experiment for 4-SUs against the 

SU transmission probability (ℙCF), under the assumption that the number of transceivers is 2, that the 

channel data rate has been set to 11Mbps, and that the number of available data channels is 6.  
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5.7. Summary 

In this chapter, we developed simulation experiments to investigate the system 

throughput of a CR network, and a few other elements that impact the system 

performance. We have simulated different scenarios under both the saturated network 

case and non-saturated network case. We first examine the performance of DDH-MAC 

for parameters such as throughput, queuing delay, signal-to-noise ratio, and collisions 

on the control channel. We then compare the DDH-MAC protocol with the CREAM-

MAC protocol for performance parameters such as throughput, the number of packets 

exchanged as control information, and the behaviour of each MAC protocol if a PU 

claim is sensed. We then extend our experiments by validating the simulation results 

with the mathematical results. We also examine the performance of DDH-MAC 

protocol under introduced errors on channels, and observe that the system throughput 

is directly proportional to the channel conditions.  

We observe that in some cases, the compared protocols can achieve better 

throughput performance. This is because these protocols set an unrealistic assumption 

that a control channel is always available and reliable. However, this assumption of 

perfection does not reflect the real performance of a CR network. The simulation 

results have revealed that the performance of a CR MAC protocol is heavily dependent 

on the successful exchange of control information which can only be carried out on a 

control channel. Moreover, multiple control channels can significantly improve the 

network performance and the nodes deploying the DDH-MAC protocol can always 

have access to more than one control channel.  
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Chapter 6: Performance Enhancement 
of  DDH-MAC Protocol 

6.1. Introduction 

DDH-MAC is a novel CR MAC protocol that efficiently and smartly makes use 

of the GCCC to initialize the operation of launching the BF. The CR nodes, after 

receiving the BF, switch to the PCCH and adjust their transmission parameters to use 

the BCCH if there is a PU claim. This unique feature of partially using the GCCC and 

then switching to the PCCH or further to the BCCH (if there is a PU occupancy) 

provides the DDH-MAC protocol with a few encouraging features in security, energy 

efficiency and QoS. CR nodes deploying the proposed MAC protocol always have 

access to one control channel. There are two most important functions of a CR MAC 

protocol: i) finding and agreeing upon a common control channel that is secure, reliable 

and always available; and ii) transmitting the control information over the control 

channel. Any subsequent data transmission amongst CR nodes is subject to a successful 

FCL transaction on a well-known, available and secure common control channel. 

DDH-MAC has been specially designed to perform the functionalities mentioned 

above. In this chapter, we further improve the performance of our proposed DDH-

MAC protocol by incorporating new features which make DDH-MAC more efficient, 

more energy effective, and more secure and resilient against security threats and 

vulnerabilities. The performance optimization of DDH-MAC is discussed below. 

6.2. Incorporating Security into DDH-MAC 

The cognitive radio technology that consists of nodes, architecture and control 

strategies, appeared to be an efficient solution for heterogeneous networks. However, 

this leads to security issues because the same security standards could not be applied in 

all heterogeneous networks. The CR technology merges a core network with access 

networks in a heterogeneous environment. Wireless standards have different security 

strategies. For example, in a WLAN and a personal area network (PAN), the only 

mechanism to incorporate the security is identity authentication. In GSM [84], WiMAX 

[85], WCDMA [86] and WCDMA2000 [87], the legality of terminals and users is 

controlled by an authentication process from base station and SIM card authentication. 

The differences between technologies used for cognitive radio networks and for existing 
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wireless networks make the security incorporation a difficult question. The adaptive 

nature of cognitive radio technology imposes additional complications and introduces 

new challenges. For example, an attacker may pretend to be a secondary user and 

intercept without authentication the FCL by a false claim of being an SU, or in another 

case, it can mimic the behaviour of a licensed user and then increase the probability of 

false alarm detection. This is a special type of denial-of-service (DoS) attack in CR 

networks and is commonly known as the primary user emulation (PUE) attack [215] 

[216] [217]. Another type of attack specific to CR networks is the jamming attack [218] 

that can push the nodes in the vicinity to select a specific spectrum band for control 

information exchange where another attacker seizes the control information. 

Physical layer techniques have been intensively focused in recent studies to 

detect the anomalous usage of spectrum [216][217][219][220]. The detection of an 

unauthorized usage of the spectrum in zone-based networks has been investigated in 

[219]. Authorized users do not impose interference on each other because at most one 

authorized user, i.e., either none or one authorized user, can exist in each network zone. 

Received signal powers of unknown signals are measured to detect unauthorized 

spectrum usage. Chen et al [216] have proposed a mechanism to verify a transmitter 

which assumes that the Primary Signal Transmitter (PST) location is known in advance 

and that a PUE attacker cannot duplicate the energy of the legitimate signal. If the 

suspicious signal is being transmitted outside the range of PST, it is considered as a 

PUE attack. If the transmission of the suspicious signal is received in the PST vicinity, 

energy detection is used to authenticate the signal. A protocol for mitigating PUE 

attacks has been proposed in [221] where each SU uses a centralized spectrum decision 

to decrease the probability of false alarm. Goergen et al [222] present a method in which 

a watermark is added to the PU signal. The CR nodes retrieve the watermark to 

authenticate the transmitted signal. These tasks make use of the physical layer 

information only, and either PU signals are modified or prior information about the PU 

is required to detect the PUE and jamming attacks. Jamming attacks have also been 

studied in several recent studies[220][223][224]. A primary number sequence code has 

been used by the scheme proposed in [220], in which a jammer could not compute 

which channel to jam at a given time. A game theoretic approach is presented in [224] 

to model the jamming and its contravention in cognitive radio multichannel networks. 

One-stage and multi-stage games are obtained by a Nash equilibrium and a stochastic 

control strategy respectively. Xu et al [225] discuss signal measurement for jammer 
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detection and argue that smart jamming attacks are a new trend in the CR networks and 

new artefacts need to be developed to efficiently address these issues.  

To summarize, the work published so far mostly emphasizes the physical layer 

to address the security vulnerabilities in cognitive radio networks. MAC layer security 

for cognitive radio networks has been investigated only in [102]. It is believed that, apart 

from the security measurements at the physical layer, mechanisms must be derived to 

incorporate the security at MAC layer in the CR networks. This motivates us to 

incorporate security at multiple levels in the DDH-MAC protocol. The next section 

discusses the framework of the proposed security model for CR networks. 

DDH-MAC has a novel design of MAC protocol for CRNs which not only 

benefits from the anytime license-free availability of the GCCC but also enjoys the 

secure communication by privately exchanging the FCL over one of the white spaces. 

The best features of the decentralized family of MAC protocols have been combined to 

make the proposed hybrid protocol efficient, dynamic, and decentralized. A detailed 

operation of the protocol, including a 2-level selection process, has already been 

presented in Section 3.4.  The protocol takes into account different case scenarios in the 

cognitive radio environment and tunes its parameters efficiently and intelligently 

according to the current situation of the network, which makes the protocol adaptive, 

secure and energy efficient. 

6.3. A Multi-Level Security Framework for DDH-MAC 

The proposed protocol provides multiple levels of security. Each level provides an 

unique feature which, altogether with other features from other levels, makes the 

proposed protocol more secure and less vulnerable against threats.  

6.3.1. Level 1-Encrypting the BF 

 As mentioned earlier, DDH-MAC makes a partial use of the GCCC which is in 

the ISM band and publicly available to all wireless applications. The free public 

availability of GCCC can make it more exposed to security vulnerabilities and threats. 

Since DDH-MAC also uses the GCCC, it is very important to secure the GCCC 

transactions. The first level of security is achieved by encrypting the BF before 

launching it in the GCCC. We have used bits transposition cryptography [226][227], 

which is a rather simple but efficient encryption scheme. The block cipher is encrypted 

by inverting the bits in the BF. The information about the PCCH and the BCCH is 
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contained in the BF (1 byte is used to represent the channel ID of the PCCH and 

another 1 byte to represent the BCCH). Suppose that the PCCH is represented by a 

channel ID whose binary code is “10110011”. Using the bits transposition 

cryptography, the bits will be inverted and the encrypted cipher which will read as 

“01001100” will be launched. The receivers of the BF, which are the CR nodes 

deploying the DDH-MAC protocol, will use the relevant decryption scheme to read the 

information about the PCCH and the BCCH. The relevant decryption scheme is only 

known to the legitimate DDH-MAC nodes. Suppose, the BF has been sniffed and read 

by a malicious user who can easily access the GCCC. In this case, the malicious user will 

retrieve a channel ID for the PCCH and the BCCH which is different from the original 

one. 

6.3.2. Level 2-Secure FCL Transaction 

 Most of the reported CR protocols [38][103][104][127][128] exchange the FCL 

through the GCCC which is publically available to everyone and more prone to security 

vulnerabilities and threats. DDH-MAC uses one of the white spaces as the PCCH and 

exchanges the FCL secretly on the chosen control channel which is only known to the 

legitimate CR nodes in the vicinity. Exchanging the FCL not in the GCCC but secretly 

through a white space which is known only to CR nodes after performing scanning and 

searching, adds another security level which is not available in other CR MAC protocols.  

6.3.3. Level 3-Inclusion of Time Stamp in Data Transmission  

The man-in-the-middle attack is not unusual in the cognitive radio environment 

and any type of information could be retrieved by the intruders. The DDH-MAC 

smartly and efficiently addresses the criticality of the situation by adding a time stamp in 

each data transmission. Data is expected to reach the destination in a specified time. An 

estimation about the data arrival time helps protect the data and ensures the integrity of 

data. If the data does not reach the intended recipient in a specified time, with an 

unusual amount of delay (considering any reasonable delays such as the propagation 

delay and processing delay), means that the integrity of the data could have been 

compromised and therefore the data is no longer trustworthy. 
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Figure 6.1: The DDH-MAC multi-fold security framework for CR networks. 

6.3.4. Level 4-Dynamicity of the Control Channel  

Since the DDH-MAC uses one of the white spaces as the PCCH and another as the 

BCCH, the PU claim on these local control channels could happen at any time. If the 

PCCH has been reclaimed by the PU, the CR nodes implementing the DDH-MAC will 

switch to the BCCH to continue exchanging control information. If, in the worst case, 

the BCCH has also been reclaimed by the PU, then nodes will have to switch to the 

GCCC to search for any BF. The PU claim on the PCCH and the BCCH is beneficial to 

DDH-MAC and it actually provides another level of security to the CR nodes. An 

attacker targeting the PCCH/BCCH through smart jamming and PUE attacks will have 

to re-compile the attack strategy from time to time. The dynamicity of control channels 

(PCCH/BCCH) offers the CR nodes the highest level of security. 
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6.4. Control Channel Efficiency in DDH-MAC 

The CR technology aims to integrate the human intelligence in radio devices by 

making them aware, adaptive, smart, and decision making capable. In order to 

effectively perform the CR functionality, nodes must interact and cooperate with one 

another. This cooperation amongst CR nodes could only be established if they are adept 

at exchanging the knowledge learnt with other nodes on a well-known and centrally 

available common control channel.  Robustness and security of the control channel are 

the two most challenging parameters of a CR MAC protocol. The existing design 

constraints for the common control channel are not smart enough to cope with the real 

time demands on cognitive radios. For example, there is no SUs‟ last resort in case of a 

PU occupancy on control channel. Also, if one control channel design category is used, 

the benefits of other categories could not be utilized. In other words, avoiding the 

drawbacks of one category creates certain limitations in the selected category.  

To make cognitive radio fully functional and equipped to fulfil the real time 

demands of a cognitive radio network, we have proposed a novel MAC scheme which 

integrates the best features of all design strategies for control channel. The proposed 

scheme is robust against PU occupancy. The security of the proposed scheme has 

already been discussed in Section 5.2. We will briefly review some of the features of the 

control channel that make the proposed scheme more efficient.   

6.4.1. Availability of More than One Control Channel  

Equipping the CR with more than one control channel is a novel idea which has 

not been previously discussed. The existing literature either uses an assumed control 

channel, or spends more time on finding and converging on a local control channel. 

The CR network deploying our proposed scheme will have access to more than one 

control channel simultaneously. The access to any control channel by any CR node is 

without obligation and nodes can operate and cooperate independently. Also, the 

network initialization is not subject to any parent node or master node and the 

operation can be performed by any node instantly.   

a) Control Channel GCCC 

Due to the nature of the ISM band, the GCCC is primarily available to all CR 

nodes. In our scheme, we only access the GCCC for BF transmission. Apart from the 

BF, all the communication is established over the local channels (control/data). The 

GCCC is scanned and searched by other CR nodes in a few extreme cases. For example, 
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when network initialization is required, GCCC will be used to launch a BF by a CR 

node, and when there is a worst case scenario where both PCCH and BCCH are 

occupied, GCCC would be used to launch a new BF containing the information about 

the newly established PCCH and BCCH. 

b) Control Channel PCCH 

 The core part of DDH-MAC protocol is the PCCH. Once the network is 

initialized, the CR nodes can dialogue the control information over the control channel. 

Any communication which is carried out on the PCCH is overheard by all CR nodes. 

This keeps all the nodes well synchronized about network adaptions. Nodes must have 

access to the PCCH in order to become part of the DDH-MAC functionality.  

c) Control Channel BCCH 

To back up the core functionality of DDH-MAC, a BCCH is always there as a 

standby control channel. If there is a claim on the PCCH, nodes remain calm and 

consistent, and simply switch to the BCCH and resume the exchange of control 

information. We optimize the performance of DDH-MAC by discussing the following 

two extreme cases: 

Case I: Both the PCCH and the BCCH are amongst the white spaces sensed by the 

CR nodes. It is not unusual for a PU to arrive at any time, and in this circumstance, a 

PU activity is always sensed prior to switching onto the PCCH or the BCCH. We have 

enhanced the functionality of DDH-MAC by adding the PU-activity-sensing feature. A 

sensor is added that continuously senses the control channel and reports any PU claims. 

Equipping this feature in DDH-MAC enhances the overall performance as nodes will 

spend less time in re-negotiations.  This feature is depicted in Figure 6.2.  

Case II: As previously discussed in Chapter 3 Section 3.4.2, nodes will switch to the 

BCCH if there is a PU claim on the PCCH. What if the BCCH is claimed by a PU 

before a PU claim is made on the PCCH? To address this issue, we modify the 

framework of the DDH-MAC protocol. The first node in DDH-MAC is responsible 

for launching the BF and then periodically broadcasting the BF in GCCC at regular 

intervals. This node is assigned with an additional operation, i.e., observing the PU 

activity on the BCCH when it is not transmitting the copy of the BF in the GCCC. If 

some PU activity is sensed on the BCCH, this node will quickly select another white 

space as a BCCH and broadcast an updated copy of the BF in the GCCC which will be 

received by all CR nodes in the vicinity. The receiving nodes will eventually update the 
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information about the newly established BCCH and will resume the exchange of 

control information as usual.  
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Figure 6.2. Optimized flow chart of DDH-MAC. 
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6.5. Energy Efficiency in DDH-MAC 

The mobile nature of wireless devices always imposes new challenges for 

researchers and developers. One of the challenges that all wireless technologies face is 

energy efficiency. It is inconvenient for wireless devices to replace or recharge the 

battery. The development of a wider range of applications for wireless devices is making 

the issue of energy efficiency more challenging. Saving mobile energy has become more 

demanding in a cognitive radio network, which is a special type of wireless network, 

where nodes consume a lot of energy in scanning and searching the environment. In 

this section, we discuss the performance optimization of the DDH-MAC protocol by 

making our proposed scheme energy efficient.   

6.5.1. A Multi-mode Energy Efficiency Model for DDH-MAC 

Different techniques have been proposed to minimize energy consumption in 

wireless ad-hoc networks[228][229]. These schemes aim to save energy at the physical 

layer by using different techniques such as turning the transceivers into sleep mode if 

they are idle, or using the TDMA scheme to avoid collisions at the physical layer.  A few 

CR protocols have been proposed that introduce energy saving at the MAC layer [230] 

[231][232]. DDH-MAC has been specially designed to save energy in the following 

ways. 

a) Reducing the Number of Control Frames 

Every data transaction in a CR network is constrained by successful exchange of 

control information. Most of the protocols exchange a minimum of 4 control frames to 

dialogue the control information [38][113][127]. The F2-MAC protocol presented in 

[42], exchanges the highest number of frames as control information in a CR network. 

DDH-MAC saves a significant amount of energy by exchanging only three MAC 

frames as control information. The framework of DDH-MAC has been designed to 

achieve the same functionality without compromising the effectiveness of cognitive 

behaviours by exchanging three frames of DMCF, FCL and ACK prior to any data 

transaction.  

b) Minimizing Size of Control Frames 

 We believe that energy efficiency could also be better achieved if the sizes of 

control frames are reduced. This could be achieved by avoiding unnecessary fields in 

the control frames.  The CR MAC protocols [38][42][127], used for the comparison and 
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performance evaluation, emphasize the data transmission and ignore the very important 

phase of the CR functionality, i.e. exchanging control information. These protocols 

therefore not only take a high amount of time for exchanging the control information 

but also make their antennas consume more power. For example, F2-MAC [42] 

exchanges five types of control frames and the size of each control frame is 20 bytes, 

and CREAM–MAC [38] exchanges 4 control frames with each frame 20 bytes. So, a 

total of 100 bytes and 80 bytes respectively are exchanged as control information in 

these protocols. In contrast to this, DDH-MAC exchanges a total of 4 frames being 

sized 14 bytes, 20 bytes, 14 bytes and 20 bytes respectively. Also, one of the frames, i.e., 

BF, does not need to be exchanged for every control information transaction. 

Therefore, minimizing the size of control frames in DDH-MAC saves more energy.  

c) Avoiding the Retransmission of Frames 

The cognitive radio aims to use the spectrum band of a licensed user when it is 

not being used, provided the condition that there will be no interference to the licensed 

user. So, a reclaim of the licensed user on spectrum bands when cognitive radio has 

started using it is not unusual. A cognitive radio must be capable of finding other 

spectrum opportunities if there is a return of a licensed user. The CR MAC protocols 

must be designed to address this scenario efficiently. If a MAC protocol is not able to 

handle the PU claim, ultimately it would result in re-searching and scanning of other 

available spectrum bands and re-transmission of control information. This will not only 

be more time consuming but also the CR nodes holding the data will have to consume 

more energy.  

As previously discussed, DDH-MAC deals with the return of a licensed user on 

the spectrum band effectively and it does not re-search and re-scan for other available 

spectrum bands. Instead, it simply switches to a backup control channel and resumes 

the control information exchange on the backup control channel. This gives an 

advantage to DDH-MAC protocol which other protocols lack. Transmitting no or 

minimal frames after a PU claim ultimately save mobile energy as nodes have to wait 

less for actual data transmission.  

d) Avoiding Control Channel Re-negotiation 

For CR nodes to converge and start to negotiate the transmission rules, a 

control channel is mandatory. In any CR MAC protocol, the design and selection 

criteria of a control channel are of significant importance. It is strongly believed that the 
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CR nodes cannot simply start data transmission until a common control channel is 

found and agreed upon. Unfortunately, this very important aspect of a CR MAC 

protocol has not been intensively researched, and the pre-existence of a common 

control channel and the CR nodes‟ awareness about the control channel have been 

assumed. It is strongly stated that any data transmission in a CR network is subject to 

successful exchange of control information on a well-known, available, and secure 

common control channel.  A control channel must also be capable of handling any 

claims by licensed users (if it has been selected amongst one of the white spaces).  

DDH-MAC has been optimally designed to be readily and rapidly available to 

the CR nodes, and, if there is any PU occupancy on the control channel, the backup 

control channel is always there to stand by the primary control. So the CR nodes 

deploying the DDH-MAC protocol do not need to re-negotiate and re-search the 

control channel.   

6.6. A Numerical Example  

In this section, we have first developed a numerical example to analyse the system 

energy consumption. We have simulated the example to investigate the energy 

efficiency. We have compared DDH-MAC with CREAM-MAC protocol [38]. 

In our mathematical analysis, we have derived numerical equations to calculate the 

energy consumption of DDH-MAC and compare it with other CR MAC protocols. We 

first calculate the time taken in exchanging the control information by following the 

standard parameters mentioned in IEEE802.11b [212]. The time spent in exchanging 

the control information for DDH-MAC and CREAM-MAC has been computed using 

Equations 6.1 to 6.2. 

 

TDDH-MAC = TDIFS + TDMCF + TFCL + TACK + 2 × SIFS    (6.1) 

TCREAM-MAC = TDIFS + TRTS + TCTS + TCST + TCSR + 3 × SIFS  (6.2) 

 

We now calculate the energy (Ë) consumed for Equations 6.1 to 6.5 using the universal 

energy formula below:  

Ë = P × T      (6.3) 

where P represents the power used for transmission, and T is obtained from Equations 

6.1 and Equation 6.2, and represents the time it takes to exchange the corresponding 
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control frames. The DSSS PHY layer parameters used to calculate the energy 

consumption have been summarized in Table 6.1. 

Table 6.1: Parameters Used to Calculate the Energy Efficiency of DDH-MAC 

Parameter Value 

DIFS 2 × Slot_Time + SIFS 

SIFS 10µs 

Tx Power 1.5W 

Data Rate 11Mbps 

CWmin 32 

CWmax 1024 

Slot_Time 20µs 

 

The numerical results obtained using the Equations 6.5 and parameters in Table 

6.1 have been plotted in Figure 6.3. Clearly, the total energy consumed by DDH-MAC 

is less when compared with CREAM-MAC protocol. The obvious reason for less 

energy consumption in DDH-MAC is the difference in the number of control frames 

and the size of each control frame. The larger the size and the number of control 

frames, the higher will be the energy consumed by transmitting antenna of a CR node.  
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Figure 6.3: Energy consumption of DDH-MAC when compared with CREAM-MAC protocol. 

In our simulation experiment, there are 4 control frames of size 20B each for the 
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Table 6.2: Simulation Parameters for Calculating the Energy Efficiency of DDH-MAC. 

Parameter Value 

DIFS 2 × Slot_Time + SIFS 

SIFS 10µs 

Tx Power 1.5W 

Rx Power 1W 

RTS, CTS, FCL, ACKother 20Bytes 

BFDDH-MAC, FCLDDH-MAC 14Bytes 

DMCFDDH-MAC, ACKDDH-MAC 20Bytes 

PHY Header 24 Bytes 

Data Rate 11Mbps 

CWmin 32 

CWmax 1024 

Slot_Time 20µs 

Channel Bit rates 1.2Mbps 

 

We now describe the result obtained from the simulation. The energy efficiency 

of the average control information exchange time of CR users has been presented in 

Figure 6.4. We observe that DDH-MAC consumes less energy. Clearly, the low energy 

consumption of DDH-MAC as compared with other two CR MAC protocols is the 

result of a few number of smaller sized control frames. It is further observed that the 

energy consumption has it highest values for all MAC protocols, including DDH-MAC, 

when the network is initialized. This is because when the network is initialized so many 

background operations are running. For example, all nodes contend for control to 

access a control channel which can cause collisions ultimately resulting in high energy 

consumption. The exchange of more control frames in other MAC protocols cause 

them to consume higher amounts of energy. It is worth mentioning that for this 

particular experiment, we did not delve into data transmissions. The statistics obtained 

through this simulation experiment only show the amount of energy consumed by 

different CR MAC protocols while exchanging the control information. 
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As we can see from Figure 6.4, DDH-MAC outperforms CREAM-MAC protocol 

in terms of energy efficiency. On average, DDH-MAC is about 40% more energy 

efficient when compared with CREAM-MAC protocol while exchanging the control 

information. 

Figure 6.4. Simulation result of energy consumption of DDH-MAC when compared with 

CREAM-MAC protocol. 
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6.7. Summary 

In this chapter, we optimized the performance of our proposed DDH-MAC 

protocol. The performance optimization is achieved in several different ways. We first 

incorporate a 4-fold security model to make our scheme resilient against security threats 

and vulnerabilities. To the best of our knowledge, this is the first security model in CR 

MAC protocols which provides 4-fold security at the MAC layer. We first encrypt the 

BF so that the information containing in the BF is only meaningful for legitimate CR 

nodes. The FCL is not broadcast on the GCCC which provides our protocol another 

level of security. The integrity of data is ensured by inclusion of a time stamp in each 

data transmission. The dynamicity of the control channel gives our protocol the fourth 

level of security. 

We have further optimized the performance of our scheme by making 3 control 

channels always available to dialogue control information. In case, there is a PU reclaim 

on the control channel, the backup control channel standby is the core operation of 

DDH-MAC. We have further optimized the performance of DDH-MAC by 

considering the case where the BCCH becomes unavailable prior to PCCH. In this case, 

if a PU occupancy is detected on BCCH, an update copy of the BF will be launched 

which will have the information about the newly established BCCH. 

DDH-MAC has been specially designed to address the energy efficiency issues in 

CR MAC protocols. The CR nodes consume a significant amount of energy on 

exchanging control information before any data transaction takes place. The CR nodes 

deploying our protocol can save energy by transmitting fewer control frames, by 

exchanging smaller sized control frames, and by avoiding researching and rescanning 

the control channel if it becomes unavailable. A reduced number of smaller sized 

control frames and the backup control channel are the keys to make the DDH-MAC 

protocol 40% more energy efficient.  
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Chapter 7: Conclusions and Future 
Work 

 

Did we really make software radios more personal…..?  

Yes, we did….. 

 

By incorporating the features of opportunistic spectrum access and making 

software radios more context aware, the cognitive radio technology has emerged as a 

promising technology to address the spectrum scarcity issue. The objective of this thesis 

was to design, develop and analyse an opportunistic MAC protocol for decentralized, 

underlay, and cooperative cognitive radio networks. This chapter concludes the 

discussion and summarizes the achieved research goals and proposes some 

enhancements in the research for future work.  

7.1. Summary 

In Chapter 1, a detailed introduction of CR technology is presented and many 

definitions for CR are proposed. The industry standards and regularization of CR also 

form part of this chapter. We have explained how the unoccupied spectrum band could 

be utilized by cognitive radio and be applied in existing mobile networks, industry, 

disaster management, and public safety. We continue our discussion and highlight the 

issues and limitations of CR that are acting as a red flag in this technology. We explain 

why this technology, even after having been extensively researched, has not yet been 

widely accepted and implemented. In Chapter 2, we reviewed opportunistic MAC 

protocols for cognitive radio networks, which integrate the cooperation and scheduling 

amongst CR nodes.  

Our findings in the literature motivated us to design a hybrid CR MAC protocol 

that accumulates the advantages of existing CR MAC protocols of both GCCC and 

non-GCCC families and is able to efficiently discover, recover and converge on a 

common control channel. In Chapter 3, we provide detailed architecture and 

description of our scheme, named as Dynamic, Decentralized and Hybrid MAC (DDH-

MAC) protocol. Our protocol is dynamic because whenever there is a PU claim on a 
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control channel, nodes adapt according to the environment and switch to another 

backup channel.  

Defining cognitive radio, exploring its limitations and providing solutions to the 

faced challenges, have been our major achievement in this Chapter 1. Our contributions 

in Chapter 2 are the identification and the classification of existing CR MAC protocols. 

Our achievement in this chapter was providing a new feature to classify the existing CR 

MAC protocols and developing a model for classification of different MAC protocols 

for cognitive radio networks.  

Using mathematical modelling, we analyse the performance of our proposed 

DDH-MAC protocol, we used the Markov chain model in Chapter 4 for two different 

approaches and determined the desirability of the CR network deploying our protocol. 

Each SU joins the network by receiving the BF and learning the network status through 

overhearing the control information over the control information. Our first approach 

evaluates the system performance with coalition amongst PUs and SUs. This means that 

both the PU and the SU can simultaneously access the spectrum subject to SUs‟ 

constraints. We extend our model in the second approach by considering a network 

scenario where SUs could not transmit until the PU vacated the occupied spectrum. 

Using these modelling techniques, we developed our protocol which enabled us to 

envision the performance of our MAC protocol.  

Our main contributions in Chapter 5 are two-fold: first, implementation and 

simulation of our proposed DDH-MAC protocol; and second, combining two 

modelling techniques (analytical evaluation plus simulation) to observe and verify its 

correctness. We built our own simulation model for DDH-MAC. In this model, we 

enabled a SU to create a new CR network (if it was the first SU in the vicinity), and 

allowed other SUs to join an existing CR network after receiving the BF which is 

periodically broadcasted in the 2.4GHz spectrum band. Our protocol particularly 

addressed the unavailability or the saturation problem of the control channel. The 

suitability and correctness of our framework were further revealed after obtaining the 

global and local (object) statistics for parameters such as throughput, traffic sent, 

collision on control channel, queuing delay, signal-to-noise ratio, and network 

performance with and without ideal channel conditions etc. For our comparative 

performance evaluation with other CR MAC protocols, the aggregated throughput of 

DDH-MAC protocol was demonstrated to be better than CREAM-MAC protocol.  
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In Chapter 6, our main contribution was to enhance the performance of the 

DDH-MAC protocol. We optimized the DDH-MAC performance in two aspects: 

firstly, we incorporated a multi-fold security in DDH-MAC; and secondly, we made the 

DDH-MAC protocol energy efficient. We have presented a 4-tier security model and 

have incorporated security in DDH-MAC in all possible ways, which is the first part of 

our contributions in this chapter. At first level of security, we avoid using the GCCC 

and secretly transmit the FCL on a local control channel so that only the SUs deploying 

DDH-MAC can retrieve the FCL. At second level, we encrypt the BF and then launch 

it in the GCCC. The third level of security is achieved by inclusion of a time-stamp in 

outgoing data frames. The dynamicity of the control channel serves as the fourth level 

of security in DDH-MAC.  

Our second contribution in Chapter 6 is making DDH-MAC protocol energy 

efficient. Note that the vital reason for a high amount of energy consumption is the 

frame re-transmission after any PU claim. DDH-MAC saves a significant amount of 

energy by avoiding frame re-transmission. Secondary users always have access to a 

backup channel, so SUs simply switch to the backup channel and avoid the transmission 

of those frames for rediscovering and recovering the control channel. Switching to a 

backup control channel not only saves time but also enables nodes with delay-sensitive 

data to quickly utilize the unoccupied spectrum band, which is another remedy for 

achieving a better energy efficiency in DDH-MAC. 

7.2. Conclusions 

To make cognitive radios technology more practical and widely acceptable we 

conclude our findings in literature by providing possible solutions to a few of the 

challenges faced by CR. We believe that FCC and IEEE standards for CR, switching to 

digital TV, using spectrum usage databases, and deploying multi-band antennas in CR 

are some of the key areas that will make the CR technology widely being used in daily 

life. 

Our research on existing CR MAC protocols enables us to identify the problems 

and limitations in the literature. We conclude that the major classification of CR MAC 

protocols is based on whether they use the control channel in the ISM band (GCCC) or 

use a local control channel (non-GCCC). We find that both the GCCC and non-GCCC 

based CR MAC protocols have advantages specific to their own class but on the other 
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hand, both suffer from certain disadvantages. For example, the CR MAC protocols 

which use the GCCC as a control channel enjoy the benefits of being always available 

and license-free, but contrary to this, the GCCC based CR MAC protocols are more 

prone to congestion and security threats. The non-GCCC CR MAC protocols are 

resilient to security threats, but it is difficult and time consuming for the CR nodes to 

discover non-GCCC. 

Any CR MAC protocol that needs to be developed must be equipped with the 

design features provided in Table 7.1. For example, a MAC protocol could be either 

centralized or decentralized, contention-based or coordination-based (contention free), 

equipped with a single transceiver or multi-transceiver, etc. We conclude our findings 

through a table in which we list the characteristics of twenty CR MAC protocols 

reported in the literature. 

Table 7.1 Design Features of a CR MAC Protocol 

Common Control Channel 

 GCCC 

 Non-GCCC 

 Assumed 

 Hybrid (DDH-MAC) 

Direct Access 

 Contention based 

 Coordination based 

Dynamic Spectrum Access 

 Genetic 

 Game Theoretic  

Access Mechanism 

 Time slotted 

 Random 

 Hybrid Access 

Number of Radios 

 Single transceiver 

 Multiple Transceivers 

Synchronous 

Asynchronous 

 

 

Overlay/Underlay 

 

Proactive/Reactive 

 

Centralized/Decentralized 

We believe that in order to analyse the PU behaviour in a CR network accurately, 

a CR MAC protocol must be investigated in different possible network scenarios. We 

have proposed four network case-scenarios that deal with different possibilities of the 

PU claim on a control channel. Under an ideal network scenario, the secondary user 

scans the GCCC for a BF, and after reading the information, switches to the PCCH to 

dialogue the control information. In the worst network scenario, if a PU claim has been 

sensed, then, unlike other CR MAC protocols, secondary users do not have to re-

negotiate the control information and can simply resume the conversation on a backup 

control channel. In this way, the pre-transmission time and other network overheads are 
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significantly reduced. We compute the pre-transmission time for all network scenarios 

and discover that the average pre-transmission time of DDH-MAC is smaller when 

compared with other CR MAC protocols. We strongly argue that pre-transmission time 

plays a very important role in any CR MAC protocol. It is an overhead which each 

MAC protocol must aim to minimize in all possible ways.  

Introducing the concept of more than one control channel, and enabling the 

nodes to exchange control information safely and efficiently, are novel ideas in 

developing the CR MAC protocols, which are our major contributions in this study.  In 

this chapter, our other contributions are discussing and evaluating the pre-transmission 

time. We show that the pre-transmission time plays an important role and a smaller pre-

transmission time helps to yield a higher throughput as nodes have to wait for less time 

before the actual transmission starts.  

A system performance could not be validated until one or more of the following 

modelling techniques have been applied: i) analytical modelling; ii) 

implementation/simulation modelling; iii) combining both analytical and simulation 

modelling; and iv) testbeds. We have used first three techniques to observe the 

behaviour of our proposed MAC protocol. Different parameters such as throughput, 

PU interference probability, SUs‟ transmission opportunities to utilize available white 

spaces, and contention amongst CR nodes were evaluated. The framework achieved the 

desired results by ensuring that the network constitutes an exact CR network that has 

the potential to respond to external events and has the capability to adapt and 

reconfigure according to network scenario. 

It is concluded that equipping each SU with two radios helps avoid the hidden 

terminal problem and also keeps nodes rapidly updated about any network change that 

occurs in the CR network. This task is accomplished by using both the radios 

simultaneously (one radio to scan and observe network activities on the control 

channel, and the other radio to transmit data). We have revealed main advantages of our 

scheme: i) more than one control channel is supplied; ii) two transceivers efficiently 

solve the hidden terminal problem in a multi-channel environment; iii) the control 

channel saturation problem is overcome.  In particular, when a SU is exchanging the 

control information and the channel become unavailable, SUs simply switch to a 

backup control channel and thus avoid re-dialoguing the control information. We 

quantitatively identified the trade-off between the network aggregated throughput and 
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the channel utilization, which provided us some useful guidelines to improve the QoS 

parameters in CR networks. 

7.3. DDH-MAC Limitations 

The DDH-MAC protocol has been specially designed to address the limitations 

of existing decentralized CR MAC protocols. Some of the promising features of DDH-

MAC are reliability of control channel, energy efficiency and security at multiple levels. 

However, it is worth mentioning that DDH-MAC has certain limitations.  

The CR nodes deploying the DDH-MAC protocol must have at least three 

available white spaces (Equation 3.1) or else DDH-MAC will not be operational. We 

believe that having at least three white spaces is not a serious issue as it is the nature of 

CR nodes to search and scan all possible white spaces in the vicinity. For example, if the 

CR network operates in 2.4 GHz, there are at least 14 channels available in this band 

which could be used for communication amongst CR nodes.   

The optimal values of the pre-transmission time are subject to a design constraint, 

i.e., the initial waiting time (T3) is required to launch the BF. This implies that the first 

CR node responsible for launching the BF must wait for T3 . Also, it is not possible for 

two DDH-MAC nodes to attempt to launch the BF at the same time. Initially, this gives 

an impression that this wait time in DDH-MAC will degrade the network performance 

when compared with other CR MAC protocols. However, different analytical and 

simulation results have shown that the overall network performance significantly 

increases even if the first node waits for certain time to launch BF. And this is because 

the initial wait time helps with efficient network convergence and reliable exchange of 

control information.  

Simulation modelling was the most complex and time consuming part of this 

research. From installing OPNET to obtaining its license, numerous difficulties were 

faced. It had been quite usual that some pieces of programme codes were running and 

producing output at one time but failed to run another time or produced strange 

outputs. The more complex the simulation model becomes, the more complex was it to 

troubleshoot. Also, simulating the complete functionality of DDH-MAC recorded 

approximately 5000 events, and not all the events could be used for output. It was even 

more complex to select the appropriate and relevant outputs. 
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7.4. Overall Research Contributions 

The primary objective of this research is to develop a novel secure adaptive 

MAC protocol for cognitive radio networks. Achieving this goal requires the 

enhancement of existing CR MAC protocols and the development, analysis and 

simulation of a new protocol that satisfy the needs of a CR network.  

The research contributions from this doctorate research are presented in each chapter 

of this thesis and are summarized in Table 7.2. 

Table 7.2 Summary of research contributions 

Chapter 1 
Exploring Cognitive Radios in terms of definitions, regularization 

applications and challenges.  

Chapter 2 

A new model for classification of existing CR MAC protocols. 

Identifying new parameters to classify the existing CR MAC. 

Exploring all the features that existing CR MAC protocols are equipped 

with. 

Chapter 3 

Design of a CR MAC protocol with the following novel features 

 hybrid between GCCC and non-GCCC family of CR 

 emphasis on exchange of control information 

 use of more than one control channel 

 incorporating reliable channel access and rapid channel access 

 convergence analysis for the pre-transmission time 

Chapter 4 

Analytical modelling of our MAC protocol. 

Implementation of a Markov chain model for queuing and non-queuing 

network case scenarios. 

Analysing the network performance for different parameters. 

Performance evaluation for aggregated throughput in different 

scenarios. 

Performance comparison with other CR MAC protocols.  
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Chapter 5 

Implementation and simulation of our scheme. 

Using analytical modelling, simulation modelling and combination of 

both modelling techniques. 

Performance evaluation for parameters such as throughput, queuing 

delay, SNR.  

Observing network behaviour in channel conditions. 

Performance comparison with other CR MAC protocols. 

 

Chapter 6 

Performance optimization of our scheme. 

Making the DDH-MAC protocol energy efficient. 

 Novel 4-tier security model for DDH-MAC. 

7.5. Future Work 

Extensive research has been carried out each chapter area of this thesis, which 

gave birth to more research ideas. The following areas deserve further investigation and 

will form part of our future work. 

7.5.1. Making the PCCH More Versatile and Dynamic 

As another idea to enhance the existing framework for DDH-MAC, the CR 

nodes can select their own primary control channel that can remain valid for one FCL 

transaction. This means that once the control information has been exchanged on the 

PCCH by one SU pair, the next SU pair can elect a new PCCH using the same BF 

transmission in the GCCC. This will make the CR network more secure and dynamic. 

The validity of the PCCH will last for one FCL transaction. 

7.5.2. A TDMA-based Variation of the DDH-MAC Protocol 

Currently, the DDH-MAC protocol is contention-based. SUs have to contend for 

the control channel and data channel for transmission. We are considering the proposal 

of a TDMA-based version of the DDH-MAC protocol in which each SU will be given a 

time slot to access the control channel. This will avoid contention amongst SUs for the 

important resource, i.e., control channel in a CR network will be fairly allocated to each 

SU. The concept of a TDMA-based CR MAC protocol is not new, but converging on a 

control channel is a challenging task. We will combine the GCCC based BF launching 
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concept and will merge with the TDMA concept in an existing CR MAC protocol to 

develop a much enhanced CR MAC protocol. We have briefly worked on this protocol 

and have obtained some preliminary simulation results which are provided in Figure 7. 

1. However, when more SUs join the network, they have to wait for longer to access 

their allocated time slot. We believe this idea needs more sophisticated investigation and 

could be an exciting future work. 

Time in seconds
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Figure 7.1. Traffic sent amongst SU pair in a TDMA-based DDH-MAC protocol.  

7.5.3. Improving the Security with More Enhanced Security Features 

 More complex encryption schemes could be deployed to encrypt the BF and the 

FCL. This will make the CR network more secure against security threats. However, this 

will add more complexity and processing delays in the network. So far, no significant 

research has been carried out for authentication in decentralized CR networks. 

Incorporating the authentication mechanism in CR is of significant importance and 

could be another exciting research direction. Another level of security that could be 

added in the existing 4-tier security model is to add a self-destructive mechanism in data 

frames if the time stamp has expired. This idea is based on the TTL (time to live) value 

in a network packet which is discarded by a router if the TTL value has reached to zero. 

This means that if a data frame is sniffed during a transmission, it should be capable of 

destroying all its contents so that the information is not available to the sniffer.   These 

areas need further investigation and exploration. 
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7.5.4. Adding a Back-up Data Channel and Simultaneous Parallel Data Transmission 

The idea of the backup data channel and the simultaneous data transmission on 

more than one data channel in CR networks is not new as an effective way to achieve 

higher throughputs. However, this concept is constrained by certain design parameters 

such as availability of a minimum number of channels with each SU which can only be 

assumed in ideal scenario. Another constraint is the number of additional transceivers 

that would be required to send the data on more than one data channel. As a future 

work, simultaneous data transmission will be incorporated in DDH-MAC and the trade-

offs for this feature will be investigated.   

7.5.5. Introducing the Sleep Mode of SU in DDH-MAC to Save More Energy 

The CR nodes in DDH-MAC have to set their NAV if the control channel is 

sensed busy or if a DMCF frame has been received. SUs in this case are not allowed to 

contend for any transmission and have to wait until the ACK frame has been received. 

Receiving the ACK frame means that the pair of SU has completed the exchange of the 

control information and the medium is now free for other SUs to contend for the 

control information dialogue. We can propose an idea that instead of setting their NAV, 

SUs should change their state from listening to sleep mode (putting the nodes into sleep 

mode is well-established in wireless ad-hoc networks research). This can save some 

energy at the mobile terminal. The amount of energy saved per transaction by an 

individual node may not be significant but the aggregated amount of energy saved by all 

CR nodes during all transactions will surely be significant. We aim to thoroughly 

investigate this in future as part of our future work. 
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