60,843 research outputs found

    Separating Two-Round Secure Computation From Oblivious Transfer

    Get PDF
    We consider the question of minimizing the round complexity of protocols for secure multiparty computation (MPC) with security against an arbitrary number of semi-honest parties. Very recently, Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) constructed such 2-round MPC protocols from minimal assumptions. This was done by showing a round preserving reduction to the task of secure 2-party computation of the oblivious transfer functionality (OT). These constructions made a novel non-black-box use of the underlying OT protocol. The question remained whether this can be done by only making black-box use of 2-round OT. This is of theoretical and potentially also practical value as black-box use of primitives tends to lead to more efficient constructions. Our main result proves that such a black-box construction is impossible, namely that non-black-box use of OT is necessary. As a corollary, a similar separation holds when starting with any 2-party functionality other than OT. As a secondary contribution, we prove several additional results that further clarify the landscape of black-box MPC with minimal interaction. In particular, we complement the separation from 2-party functionalities by presenting a complete 4-party functionality, give evidence for the difficulty of ruling out a complete 3-party functionality and for the difficulty of ruling out black-box constructions of 3-round MPC from 2-round OT, and separate a relaxed "non-compact" variant of 2-party homomorphic secret sharing from 2-round OT

    Bias deconstructed: Unravelling the scale dependence of halo bias using real space measurements

    Full text link
    We explore the scale dependence of halo bias using real space cross-correlation measurements in N-body simulations and in Pinocchio, an algorithm based on Lagrangian Perturbation Theory. Recent work has shown how to interpret such real space measurements in terms of k-dependent bias in Fourier space, and how to remove the k-dependence to reconstruct the k-independent peak-background split halo bias parameters. We compare our reconstruction of the linear bias, which requires no free parameters, with previous estimates from N-body simulations which were obtained directly in Fourier space at large scales, and find very good agreement. Our reconstruction of the quadratic bias is similarly parameter-free, although in this case there are no previous Fourier space measurements to compare with. Our analysis of N-body simulations explicitly tests the predictions of the excursion set peaks (ESP) formalism of Paranjape et al. (2013) for the scale dependence of bias; we find that the ESP predictions accurately describe our measurements. In addition, our measurements in Pinocchio serve as a useful, successful consistency check between Pinocchio and N-body simulations that is not accessible to traditional measurements.Comment: 13 pages, 9 figures; v3 -- Matches published versio

    Structure and Dynamics of Solvated Polymers near a Silica Surface: On the Different Roles Played by Solvent

    Full text link
    Whereas it is experimentally known that the inclusion of nanoparticles in hydrogels can lead to a mechanical reinforcement, a detailed molecular understanding of the adhesion mechanism is still lacking. Here we use coarse-grained molecular dynamics simulations to investigate the nature of the interface between silica surfaces and solvated polymers. We show how differences in the nature of the polymer and the polymer--solvent interactions can lead to drastically different behavior of the polymer--surface adhesion. Comparing explicit and implicit solvent models, we conclude that this effect cannot be fully described in an implicit solvent. We highlight the crucial role of polymer solvation for the adsorption of the polymer chain on the silica surface, the significant dynamics of polymer chains on the surface, and details of the modifications in the structure solvated polymer close to the interface

    Precision measurement of the local bias of dark matter halos

    Full text link
    We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved "separate universe" N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth & Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b2(b1)b_2(b_1) and b3(b1)b_3(b_1), which work well over a range of redshifts.Comment: 23 pages, 8 figures; v2 : added references (sec. 1, 4, 5), results at higher redshifts on fig. 4 and updated fitting formulas (eqs 5.2-5.3), v3 : clarifications throughout, version accepted by JCA

    Knowledge-based vision and simple visual machines

    Get PDF
    The vast majority of work in machine vision emphasizes the representation of perceived objects and events: it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by artificial evolution rather than traditional engineering design techniques, and note that the task of identifying internal representations within such systems is made difficult by the lack of an operational definition of representation at the causal mechanistic level. Consequently, we question the nature and indeed the existence of representations posited to be used within natural vision systems (i.e. animals). We conclude that representations argued for on a priori grounds by external observers of a particular vision system may well be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, applying the knowledge-based vision approach in the understanding of evolved systems (machines or animals) may well lead to theories and models that are internally consistent, computationally plausible, and entirely wrong

    Conditions for one-dimensional supersonic flow of quantum gases

    Full text link
    One can use transsonic Bose-Einstein condensates of alkali atoms to establish the laboratory analog of the event horizon and to measure the acoustic version of Hawking radiation. We determine the conditions for supersonic flow and the Hawking temperature for realistic condensates on waveguides where an external potential plays the role of a supersonic nozzle. The transition to supersonic speed occurs at the potential maximum and the Hawking temperature is entirely determined by the curvature of the potential
    corecore