454 research outputs found

    The cognitive neuroscience of visual working memory

    Get PDF
    Visual working memory allows us to temporarily maintain and manipulate visual information in order to solve a task. The study of the brain mechanisms underlying this function began more than half a century ago, with Scoville and Milner’s (1957) seminal discoveries with amnesic patients. This timely collection of papers brings together diverse perspectives on the cognitive neuroscience of visual working memory from multiple fields that have traditionally been fairly disjointed: human neuroimaging, electrophysiological, behavioural and animal lesion studies, investigating both the developing and the adult brain

    Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain

    Get PDF
    Magnetoencephalography (MEG) is a noninvasive technique for investigating neuronal activity in the living human brain. The time resolution of the method is better than 1 ms and the spatial discrimination is, under favorable circumstances, 2-3 mm for sources in the cerebral cortex. In MEG studies, the weak 10 fT-1 pT magnetic fields produced by electric currents flowing in neurons are measured with multichannel SQUID (superconducting quantum interference device) gradiometers. The sites in the cerebral cortex that are activated by a stimulus can be found from the detected magnetic-field distribution, provided that appropriate assumptions about the source render the solution of the inverse problem unique. Many interesting properties of the working human brain can be studied, including spontaneous activity and signal processing following external stimuli. For clinical purposes, determination of the locations of epileptic foci is of interest. The authors begin with a general introduction and a short discussion of the neural basis of MEG. The mathematical theory of the method is then explained in detail, followed by a thorough description of MEG instrumentation, data analysis, and practical construction of multi-SQUID devices. Finally, several MEG experiments performed in the authors' laboratory are described, covering studies of evoked responses and of spontaneous activity in both healthy and diseased brains. Many MEG studies by other groups are discussed briefly as well.Peer reviewe

    Neural manifold analysis of brain circuit dynamics in health and disease

    Get PDF
    Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynamics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-dimensional neural subspaces are referred to as “neural manifolds”, and may potentially provide insight linking neural circuit dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complexity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of Alzheimer’s Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences of molecular and cellular neuropathology

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Probabilistic models for neural populations that naturally capture global coupling and criticality

    Get PDF
    Advances in multi-unit recordings pave the way for statistical modeling of activity patterns in large neural populations. Recent studies have shown that the summed activity of all neurons strongly shapes the population response. A separate recent finding has been that neural populations also exhibit criticality, an anomalously large dynamic range for the probabilities of different population activity patterns. Motivated by these two observations, we introduce a class of probabilistic models which takes into account the prior knowledge that the neural population could be globally coupled and close to critical. These models consist of an energy function which parametrizes interactions between small groups of neurons, and an arbitrary positive, strictly increasing, and twice differentiable function which maps the energy of a population pattern to its probability. We show that: 1) augmenting a pairwise Ising model with a nonlinearity yields an accurate description of the activity of retinal ganglion cells which outperforms previous models based on the summed activity of neurons; 2) prior knowledge that the population is critical translates to prior expectations about the shape of the nonlinearity; 3) the nonlinearity admits an interpretation in terms of a continuous latent variable globally coupling the system whose distribution we can infer from data. Our method is independent of the underlying system’s state space; hence, it can be applied to other systems such as natural scenes or amino acid sequences of proteins which are also known to exhibit criticality

    Tomografia estendida : do básico até o mapeamento de cérebro de camundongos

    Get PDF
    Orientador: Mateus Borba CardosoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb WataghinResumo: Esta tese apresentará uma introdução a imagens de raios-x e como adquirir e processar imagens usando linhas de luz síncrotron. Apresentará os desafios matemáticos e técnicos para reconstruir amostras em três dimensões usando a reconstrução de Tomografia Computadorizada, uma técnica conhecida como CT. Esta técnica tem seu campo de visão limitado ao tamanho da câmera e ao tamanho da iluminação. Uma técnica para ampliar esse campo de visão vai ser apresentada e os desafios técnicos envolvidos para que isso aconteça. Um \textit{pipeline} é proposto e todos os algoritmos necessários foram empacotados em um pacote python chamado Tomosaic. A abordagem baseia-se em adquirir tomogramas parciais em posiçoes pré definidas e depois mesclar os dados em um novo conjunto de dados. Duas maneiras possíveis são apresentadas para essa mescla, uma no domínio das projeções e uma no domínio dos sinogramas. Experimentos iniciais serão então usadas para mostrar que o método proposto funciona com computadores normais. A técnica será aplicada mais tarde para pesquisar a anatomia de cérebros de camundongo completos. Um estudo será apresentado de como obter informação em diferentes escalas do cérebro completo do rato utilizando raios-xAbstract: This thesis will present an introduction to x-ray images and how to acquire and thread images using synchrotron beamlines. It will present the mathematical and technical challenges to reconstruct samples in three dimensions using Computed Tomography reconstruction, a technique known as CT. This technique has a field of view bounded to the camera size and the illumination size. A technique to extended this field of view is going to be presented and the technical challenges involved in order for that to happen will be described. A pipeline is proposed and all the necessary algorithms are contained into a python packaged called Tomosaic. The approach relies on acquired partial tomogram data in a defined grid and later merging the data into a new dataset. Two possible ways are presented in order to that: in the projection domain, and in the sinogram domain. Initial experiments will then be used to show that the pipeline works with normal computers. The technique will be later applied to survey the whole anatomy of whole mouse brains. A study will be shown of how to get the complete range of scales of the mouse brain using x-ray tomography at different resolutionsDoutoradoFísicaDoutor em Ciências163304/2013-01247445/2013, 1456912/2014CNPQCAPE

    Pathway and biomarker discovery in a posttraumatic stress disorder mouse model

    Get PDF
    Posttraumatic stress disorder (PTSD), a prevalent psychiatric disorder, is caused by exposure to a traumatic event. Individuals diagnosed for PTSD not only experience significant functional impairments but also have higher rates of physical morbidity and mortality. Despite intense research efforts, the neurobiological pathways affecting fear circuit brain regions in PTSD remain obscure and most of the previous studies were limited to characterization of specific markers in periphery or defined brain regions. In my PhD study, I employed proteomics, metabolomics and transcriptomcis technologies interrogating a foot shock induced PTSD mouse model. In addition, I studied the effects of early intervention of chronic fluoxetine treatment. By in silico analyses, altered cellular pathways associated with PTSD were identified in stress-vulnerable brain regions, including prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala (BLA), central nucleus of amygdala(CeA), nucleus accumbens (NAc) and CA1 of the dorsal hippocampus. With RNA sequencing, I compared the brain transcriptome between shocked and control mice, with and without fluoxetine treatment. Differentially expressed genes were identified and clustered, and I observed increased inflammation in ACC and decreased neurotransmitter signaling in both ACC and CA1. I applied in vivo 15N metabolic labeling combined with mass spectrometry to study alterations at proteome level in the brain. By integrating proteomics and metabolomics profiling analyses, I found decreased Citric Acid Cycle pathway in both NAc and ACC, and dysregulated cytoskeleton assembly and myelination pathways in BLA, CeA and CA1. In addition, chronic fluoxetine treatment 12 hours after foot shock prevented altered inflammatory gene expression in ACC, and Citric Acid Cycle in NAc and ACC, and ameliorated conditioned fear response in shocked mice. These results shed light on the role of immune response and energy metabolism in PTSD pathogenesis. Furthermore, I performed microdialysis in medial prefrontal cortex and hippocampus to measure the changes in extracellular norepinephrine and free corticosterone (CORT) in the shocked mouse and related them to PTSD-like symptoms, including hyperaroual and contextual fear response. I found that increased free CORT was related to diate stress response, whereas norepinephrine level, in a brain region specific manner, predicted arousal and contextual fear response one month after trauma. I also applied metabolomics analysis to investigate molecular changes in prefrontal microdialysates of shocked mice. Citric Acid Cycle, Glyoxylate and Dicarboxylate metabolism and Alanine, Aspartate and Glutamate metabolism pathways were found to be involved in foot shock induced hyperarousal. Taken together, my study provides novel insights into PTSD pathogenesis and suggests potential therapeutic applications targeting dysregulated pathways

    Sparse reduced-rank regression for imaging genetics studies: models and applications

    Get PDF
    We present a novel statistical technique; the sparse reduced rank regression (sRRR) model which is a strategy for multivariate modelling of high-dimensional imaging responses and genetic predictors. By adopting penalisation techniques, the model is able to enforce sparsity in the regression coefficients, identifying subsets of genetic markers that best explain the variability observed in subsets of the phenotypes. To properly exploit the rich structure present in each of the imaging and genetics domains, we additionally propose the use of several structured penalties within the sRRR model. Using simulation procedures that accurately reflect realistic imaging genetics data, we present detailed evaluations of the sRRR method in comparison with the more traditional univariate linear modelling approach. In all settings considered, we show that sRRR possesses better power to detect the deleterious genetic variants. Moreover, using a simple genetic model, we demonstrate the potential benefits, in terms of statistical power, of carrying out voxel-wise searches as opposed to extracting averages over regions of interest in the brain. Since this entails the use of phenotypic vectors of enormous dimensionality, we suggest the use of a sparse classification model as a de-noising step, prior to the imaging genetics study. Finally, we present the application of a data re-sampling technique within the sRRR model for model selection. Using this approach we are able to rank the genetic markers in order of importance of association to the phenotypes, and similarly rank the phenotypes in order of importance to the genetic markers. In the very end, we illustrate the application perspective of the proposed statistical models in three real imaging genetics datasets and highlight some potential associations
    • …
    corecore