10 research outputs found

    Positioning buried utilities in difficult environments

    Get PDF
    Recently an increasing number of underground pipes have been established, particularly in city centres, for different applications such as sewage, electricity, gas, water and drainage. How to detect and make a precise 3-dimensional survey of buried pipelines has become a focused issue. This paper first of all reviews four trenchless technologies for locating buried utilities with an emphasis on describing their application and limitations. It is found that there is no single technology, which is able to locate all underground utility service infrastructures, particularly for deep buried plastic pipes. Meanwhile, these trenchless detection technologies need to be integrated with positioning technologies to create maps for buried utilities. One of the most attractive positioning technologies for providing absolute global position is Global Navigation Satellite Systems (GNSS). However a large percentage of buried utilities are in urban areas, where is not ideal for GNSS positioning technology. This paper evaluates the performance of single and multi GNSS constellations by carrying out a test in a controlled environment. The results show that using combined GNSS systems improve availability in urban canyons compared with using GPS alone. In addition, this paper describes an inertial based pipeline positioning technology called ‘Ductrunner’, which can locate and position the buried objects in spite of the material and depth without extra positioning systems. An approximately 30m long test pipeline has been established to evaluate the performance of Ductrunner. The maximum positioning errors are found to be 8cm in plan and 4cm in height. This shows that this technology is very promising for measuring deep pipes over relatively short distances

    How Many GNSS Satellites are Too Many?

    No full text

    Design and development of a technological demonstrator for the study of high dynamics GNSS receivers

    Full text link
    [ES] En el marco de esta tesis se van a estudiar, principalmente, los efectos del movimiento de alta dinámica en receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término alta dinámica es un término utilizado para referirse al movimiento de los vehículos en los que van embarcados receptores GNSS, los cuales se mueven lo suficientemente rápido como para causar un gran desplazamiento en frecuencia de la portadora debido al efecto Doppler. Se identificarán los problemas inherentes a este tipo de entornos y se estudiarán y propondrán soluciones. Para poder efectuar el estudio de estos fenómenos, se diseñará un demostrador tecnológico (conjunto de hardware y software para prueba y prototipado de tecnologías) en el que desarrollar el estudio de los casos de interés. Con el fin de trabajar en un entorno repetible, se utilizará un generador de señal GNSS. La señal generada se traslada a un receptor de radiofrecuencia definido por software, Software Defined Radio (SDR). Este tipo de receptor únicamente se encarga de digitalizar la señal de entrada y de llevar las muestras digitales a un ordenador, de modo que todo el procesado de señal se implementa en dicho ordenador. Este esquema de trabajo es ideal habida cuenta de su simplicidad y flexibilidad. Dicha flexibilidad conlleva la posibilidad de sintonizar el demostrador para poder estudiar una amplia gama de arquitecturas de receptor GNSS. Una vez se haya ensamblado el demostrador, se comprobará su correcto funcionamiento en escenarios conocidos usando los algoritmos más utilizados a día de hoy en receptores GNSS. Asegurado el correcto funcionamiento, se comparará el rendimiento de algoritmos de referencia con los algoritmos a estudiar y se extraerán conclusiones.[CA] En aquest treball s'estudiaran, principalment, els efectes del moviment d'alta dinámica en receptors de Navegació per Satèl.lit GNSS (Global Navigation Satellite System). La denominació alta dinámica, s'utilitza per a descriure el moviment dels vehicles dins dels quals hi han receptors GNSS. El moviment d'aquests vehicles és suficientment ràpid com per a causar un gran desplaçament en freqüència de la freqüència portadora. Aquest desplaçament és consqüència de l'efecte Doppler. S'identificaran els problemes inherents d'aquest tipus de entorns GNSS i es propsararàn solucions. Per a estudiar l'efecte de l'alta dinàmica, es dissenyarà un demostrador tecnològic (conjunt de maquinari i software per a proves i prototipat de tecnologies) en que es pot desenvolupar l'estudi dels casos d'interès. Amb l'objectiu d'aconseguir treballar en un entorn repetible s'utilitzarà un generador de senyal GNSS. El senyal es processarà mitjançant un receptor SDR (Software Defined Radio). Aquest tipus de receptor s'encarrega del processat que fa un receptor GNSS en un PC. Aquesta filosofia de treball és idónia per la seua flexibilitat i simplicitat. Quan s'haja ensamblat el demostrador, és comprovarà el seu correct funcionament en escenaris de prova utilitzant els algoritmes implementats en receptors GNSS comercials. En aquest moment, el demostrador estarà preparat per a estudiar el casos d'alta dinàmica, que és l'objectiu fonamental d'aquest treball.[EN] The study of the effects of the high dynamics on Global Navigation Satellite System (GNSS) receivers constitute the main matter of study in this work. The term high dynamics refers to the movement of vehicles that carry GNSS embedded receivers, which move fast enough to generate a large carrier frequency drift caused by the Doppler effect. The problems linked to these environments will be characterized and solutions to counteract possible signal impairments will be discussed. In order to correctly characterize these problems, a technological demonstrator (set of hardware components interacting with software tools enabling fast prototyping) will be designed and constructed. Using this technological demonstrator, different case studies will be developed. With the aim of achieving experimental repeatability, a GNSS signal generator will be used. The generated GNSS signal is fed to a Software Defined Radio (SDR) GNSS receiver. This receiver type is in charge of digitizing the analog RF signal and carrying the resulting samples to a computer in which signal processing tasks implementing the functions of GNSS receivers, take place. The main advantage linked to the usage of this work scheme is that by changing the software part, different receiver architectures can be implemented in a simple manner. Furthermore, by taking advantage of the flexible architecture it is possible to tune the detector in such a manner that it is possible to implement many different architecture types. Once the technological demonstrator is assembled, tests to assure its correct operation will be conducted by performing comparisons with the behaviour of well-known GNSS receivers in known scenarios. Later on, comparative tests using signals from high dynamics scenarios will take place. Insight and analysis of comparative performance will be given.Alcaide Guillén, C. (2019). Design and development of a technological demonstrator for the study of high dynamics GNSS receivers [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/131697TESI

    Conception d'un système d'antennes pour la localisation en temps réel avec réseau de capteurs sans fils.

    No full text
    Real-Time Locating Systems (RTLS) have been increasingly employed by the industry. They allow the automation of several tasks such to identify and track objects throughout the supply chains, to watch equipment under surveillance in factories and to secure goods. These systems are usually based on low-power and low-cost wireless electronic sensors with integrated antennas. In our context, two types of sensors are used. The reference tags are generally fixed on the walls whereas mobile tags are fixed on objects that must be tracked. In particular, our RTLS uses the Received Signal Strength Indication (RSSI) to compute the location of mobile tags at 2.4GHz frequency band. However, the performance of such system can be influenced by several factors. On the one hand, the non-uniformity of the radiation pattern and the antenna polarization mismatch can affect the received signal power. On the other hand, the impact of the environment results in multipaths, which degrade the localization precision. In the first part of this thesis, we propose an approach based on a metal plane reflector to improve the radiation pattern of reference tags. We performed several experiments using a microwave simulator and we show that the metal plane reflector considerably improves the localization accuracy of our system. In the second part, we propose to use antenna diversity techniques on mobile tags to minimize multipath effects while improving the radiation pattern. Our three solutions are based on integrated antennas fixed on the tag's plastic case, combining pattern and polarization diversity. Firstly, we propose a structure composed of three Planar Inverted-F Antennas (PIFAs) manufactured and fixed outside of the plastic case. Secondly, we propose a system composed of two Inverted-F Antennas (IFAs). Then, we propose a system composed of a triangular patch antenna on a substrate that allows it to be fixed inside the plastic case. We simulated those systems in different scenarios to analyze and validate the localization improvements brought by our solutions. Finally, we performed real experiments to compare the efficiency of the proposed systems in a real environment. Our results show that the localization error was reduced approximately by a factor of three in comparison to the original system.Les systèmes de localisation en temps réel (Real-Time Locating System - RTLS) sont de plus en plus employés dans l'industrie. Ils permettent l'automatisation de diverses tâches telles que l'identification et le suivi des objets au long de la chaîne d'approvisionnement, la surveillance d'équipements dans les usines et la sécurisation des biens. Ces systèmes sont basés sur des capteurs électroniques sans fil à faible puissance et à faible coût avec des antennes intégrées. Dans notre contexte, deux types de capteurs sont utilisés. Les tags de référence sont généralement fixés sur les murs tandis que les tags mobiles sont fixés sur les objets qui doivent être suivis. Notre système RTLS (Real Time Localisation System) exploite la puissance du signal reçu (Received Signal Strength Indication - RSSI) pour calculer la localisation des tags mobiles. Toutefois, la performance de ce système peut être influencée par plusieurs facteurs. Tout d'abord, par rapport à l'antenne, la non-uniformité du diagramme de rayonnement et le non-alignement de la polarisation des antennes peuvent affecter la puissance du signal reçu. De plus, l'impact de l'environnement résulte sur des multi-trajets qui dégradent la précision de la localisation. Dans la première partie de ce travail, nous proposons une solution pour le tag de référence en utilisant un plan réflecteur en métal pour améliorer son diagramme de rayonnement. Nous avons effectué plusieurs expériences utilisant un logiciel de simulation et nous démontrons que l'utilisation d'un plan réflecteur en métal améliore considérablement la précision de la localisation de notre système. Dans la deuxième partie, nous proposons d'utiliser des techniques de diversité d'antenne pour le tag mobile afin de minimiser les effets des multi-trajets et d'améliorer le diagramme de rayonnement afin de couvrir tout l'espace souhaité pour la localisation. Nos solutions se composent de trois antennes intégrées sur le boîtier en plastique du tag, alliant la diversité de diagramme et de polarisation. Nous proposons une première structure avec trois antennes PIFAs manufacturées et fixées à l'extérieur du boîtier, un deuxième système avec deux antennes IFAs et enfin une antenne patch triangulaire sur un substrat permettant de plier les antennes, de façon à pouvoir rentrer la structure dans le boîtier du tag. Ces systèmes ont été simulés dans différents configurations de scénario afin de valider l'amélioration apportée par nos solutions. Finalement, des expérimentations ont été menées afin de comparer les systèmes proposés dans un environnement réel. Les résultats montrent que l'erreur de localisation a été divisée par un facteur proche de trois par rapport au système d'origine

    Conception d'un système d'antennes pour la localisation en temps réel avec réseau de capteurs sans fils.

    Get PDF
    Les systèmes de localisation en temps réel (Real-Time Locating System - RTLS) sont de plus en plus employés dans l'industrie. Ils permettent l'automatisation de diverses tâches telles que l'identification et le suivi des objets au long de la chaîne d'approvisionnement, la surveillance d'équipements dans les usines et la sécurisation des biens. Ces systèmes sont basés sur des capteurs électroniques sans fil à faible puissance et à faible coût avec des antennes intégrées. Dans notre contexte, deux types de capteurs sont utilisés. Les tags de référence sont généralement fixés sur les murs tandis que les tags mobiles sont fixés sur les objets qui doivent être suivis. Notre système RTLS (Real Time Localisation System) exploite la puissance du signal reçu (Received Signal Strength Indication - RSSI) pour calculer la localisation des tags mobiles. Toutefois, la performance de ce système peut être influencée par plusieurs facteurs. Tout d'abord, par rapport à l'antenne, la non-uniformité du diagramme de rayonnement et le non-alignement de la polarisation des antennes peuvent affecter la puissance du signal reçu. De plus, l'impact de l'environnement résulte sur des multi-trajets qui dégradent la précision de la localisation. Dans la première partie de ce travail, nous proposons une solution pour le tag de référence en utilisant un plan réflecteur en métal pour améliorer son diagramme de rayonnement. Nous avons effectué plusieurs expériences utilisant un logiciel de simulation et nous démontrons que l'utilisation d'un plan réflecteur en métal améliore considérablement la précision de la localisation de notre système. Dans la deuxième partie, nous proposons d'utiliser des techniques de diversité d'antenne pour le tag mobile afin de minimiser les effets des multi-trajets et d'améliorer le diagramme de rayonnement afin de couvrir tout l'espace souhaité pour la localisation. Nos solutions se composent de trois antennes intégrées sur le boîtier en plastique du tag, alliant la diversité de diagramme et de polarisation. Nous proposons une première structure avec trois antennes PIFAs manufacturées et fixées à l'extérieur du boîtier, un deuxième système avec deux antennes IFAs et enfin une antenne patch triangulaire sur un substrat permettant de plier les antennes, de façon à pouvoir rentrer la structure dans le boîtier du tag. Ces systèmes ont été simulés dans différents configurations de scénario afin de valider l'amélioration apportée par nos solutions. Finalement, des expérimentations ont été menées afin de comparer les systèmes proposés dans un environnement réel. Les résultats montrent que l'erreur de localisation a été divisée par un facteur proche de trois par rapport au système d'origine.Real-Time Locating Systems (RTLS) have been increasingly employed by the industry. They allow the automation of several tasks such to identify and track objects throughout the supply chains, to watch equipment under surveillance in factories and to secure goods. These systems are usually based on low-power and low-cost wireless electronic sensors with integrated antennas. In our context, two types of sensors are used. The reference tags are generally fixed on the walls whereas mobile tags are fixed on objects that must be tracked. In particular, our RTLS uses the Received Signal Strength Indication (RSSI) to compute the location of mobile tags at 2.4GHz frequency band. However, the performance of such system can be influenced by several factors. On the one hand, the non-uniformity of the radiation pattern and the antenna polarization mismatch can affect the received signal power. On the other hand, the impact of the environment results in multipaths, which degrade the localization precision. In the first part of this thesis, we propose an approach based on a metal plane reflector to improve the radiation pattern of reference tags. We performed several experiments using a microwave simulator and we show that the metal plane reflector considerably improves the localization accuracy of our system. In the second part, we propose to use antenna diversity techniques on mobile tags to minimize multipath effects while improving the radiation pattern. Our three solutions are based on integrated antennas fixed on the tag's plastic case, combining pattern and polarization diversity. Firstly, we propose a structure composed of three Planar Inverted-F Antennas (PIFAs) manufactured and fixed outside of the plastic case. Secondly, we propose a system composed of two Inverted-F Antennas (IFAs). Then, we propose a system composed of a triangular patch antenna on a substrate that allows it to be fixed inside the plastic case. We simulated those systems in different scenarios to analyze and validate the localization improvements brought by our solutions. Finally, we performed real experiments to compare the efficiency of the proposed systems in a real environment. Our results show that the localization error was reduced approximately by a factor of three in comparison to the original system.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Wearable Technology in Football Further Education Settings in the United Kingdom

    Get PDF
    The prevalence of wearable technology in association football (or soccer) has been prominent in top professional teams for over a decade and is employed by coaches and sport science practitioners to quantify and help improve the performance of either the individual player or team. Educational settings have also witnessed an exponential rise in the application of wearable technology in formal learning environments. The increased number of football industry related qualifications offered by Further Education (FE) and Higher Education (HE) establishments has probably been the driver for this expansion. There is, however, a dearth of research on the educational application of wearable technology in FE and HE. There is also some conjecture as to whether the current wearable technology products on the market, are designed for an educational purpose. The aim therefore of this professional doctorate project was to investigate the use of wearable technology in football related further and higher education settings, and to develop a wearable technology product tool that was deemed appropriate for a FE environment. Thus, the aim of Study 1 (Chapter 4) was to establish the extent, wearable technology was being used in FE and HE environments. Using a mixed-method research design the initial survey established the type of technology and how they were being employed in FE and HE settings. The study identified that Global Positioning System (GPS) vests and Heart rate chest strap are the most prominent wearable technology. Qualitative findings suggested there are pedagogic challenges and barriers to using this kind of technology, a lack of understanding, and poor feedback and communication. Having established some preliminary findings Study 2 (Chapter 5) explored these barriers and challenges within contextualised settings in more depth. It identified a disconnect between coaching performance and coaching education, highlighting a lack of knowledge surrounding the uses and capabilities of wearable technology used in football related FE settings. Furthermore, participant responses suggested the current wearable technology products on the market were not fit for educational purposes. By designing and developing (Study 3) a bespoke wearable technology product (Chapter 6) provided an industry-specific solution to the issues presented in Chapter 5. Adopting a unique collaboration between academia and industry, recruiting experts in various fields, thus enabled the design and development of a novel bespoke system, including the hardware and software requirements reported in Chapter 4 and Chapter 5. Since the purpose of Study 3 was the development of the wearable technology hardware and software, the aim of Study 4 (Chapter 7) was to evaluate the product and system in an applied real-world setting. Findings suggest student engagement increased, and attainment improved. Additionally, it also demonstrated a more accessible and user-friendly platform for use in FE by eliminating technological features captured in Chapter 5. By using a mobile application and cloud-based system that enabled cross pollination to other curriculum areas suggested college staff and coaches were becoming more engaged with wearable technology. Evidence also suggested students displayed attributes of independent learning and demonstrated engagement outside of formal learning environments. In summary, the research data and product development presented in this thesis suggest the wearable technology system is fit for purpose and can be deployed in FE environments. From a practitioner perspective, this doctoral thesis has also laid the foundations for education, football, and wearable technology communities the impetus to work in collaboration. This doctoral thesis demonstrates that it is possible for academia, business and commercial enterprise to work collectively to elucidate and solve real world industry problem
    corecore