8,258 research outputs found

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Harnessing the Power of Digital Twins for Enhanced Material Behavior Prediction and Manufacturing Process Optimization in Materials Engineering

    Get PDF
    The advent of Industry 4.0 and the digital revolution have brought forth innovative technologies such as digital twins, which have the potential to redefine the landscape of materials engineering. Digital twins, virtual representations of physical entities, can model and predict material behavior, enabling enhanced design, testing, and manufacturing of materials. However, the comprehensive utilization of digital twins for predictive analysis and process optimization in materials engineering remains largely uncharted. This research intends to delve into this intriguing intersection, investigating the capabilities of digital twins in predicting material behavior and optimizing manufacturing processes, thereby contributing to the evolution of advanced materials manufacturing. Our study will commence with a detailed exploration of the concept of digital twins and their specific applications in materials engineering, emphasizing their ability to simulate intricate material behaviors and processes in a virtual environment. Subsequently, we will focus on exploiting digital twins for predicting diverse material behaviors such as mechanical properties, failure modes, and phase transformations, demonstrating how digital twins can utilize a combination of historical data, real-time monitoring, and sophisticated algorithms to predict outcomes accurately. Furthermore, we will delve into the role of digital twins in optimizing materials manufacturing processes, including casting, machining, and additive manufacturing, illustrating how digital twins can model these processes, identify potential issues, and suggest optimal parameters. We will present detailed case studies to provide practical insights into the implementation of digital twins in materials engineering, including the advantages and challenges. The final segment of our research will address the current challenges in implementing digital twins, such as data quality, model validation, and computational demands, proposing potential solutions and outlining future directions. This research aims to underline the transformative potential of digital twins in materials engineering, thereby paving the way for more efficient, sustainable, and intelligent material design and manufacturing processes

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Towards Developing a Digital Twin Implementation Framework for Manufacturing Systems

    Get PDF
    This research studies the implementation of digital twins in manufacturing systems. Digital transformation is relevant due to changing manufacturing techniques and user demands. It brings new business opportunities, changes organizations, and allows factories to compete in the digital era. Nevertheless, digital transformation presents many uncertainties that could bring problems to a manufacturing system. Some potential problems are loss of data, cybersecurity threats, unpredictable behavior, and so on. For instance, there are doubts about how to integrate the physical and virtual spaces. Digital twin (DT) is a modern technology that can enable the digital transformation of manufacturing companies. DT works by collecting real-time data of machines, products, and processes. DT monitors and controls operations in real-time helping in the identification of problems. It performs simulations to improve manufacturing processes and end-products. DT presents several benefits for manufacturing systems. It gives feedback to the physical system, increases the system’s reliability and availability, reduces operational risks, helps to achieve organizational goals, reduces operations and maintenance costs, predicts machine failures, etc. DT presents all these benefits without affecting the system’s operation. xv This dissertation analyzes the implementation of digital twins in manufacturing systems. It uses systems thinking methods and tools to study the problem space and define the solution space. Some of these methods are the conceptagon, systemigram, and the theory of inventive problem solving (TRIZ in Russian acronym). It also uses systems thinking tools such as the CATWOE, the 9-windows tool, and the ideal final result (IFR). This analysis gives some insights into the digital twin implementation issues and potential solutions. One of these solutions is to build a digital twin implementation framework Next, this study proposes the development of a small-scale digital twin implementation framework. This framework could help users to create digital twins in manufacturing systems. The method to build this framework uses a Model-Based Systems Engineering approach and the systems engineering “Vee” model. This framework encompasses many concepts from the digital twin literature. The framework divides these concepts along three spaces: physical, virtual, and information. It also includes other concepts such as digital thread, data, ontology, and enabling technologies. Finally, this dissertation verifies the correctness of the proposed framework. The verification process shows that the proposed framework can develop digital twins for manufacturing systems. For that purpose, this study creates a process digital twin simulation using the proposed framework. This study presents a mapping and a workflow diagram to help users use the proposed framework. Then, it compares the digital twin simulation with the digital twin user and system requirements. The comparison finds that the proposed framework was built right

    Digital Twins:An enabler for digital transformation

    Get PDF
    Digital Twins are a virtual representation of anything of value for an organization that create a link between the real and virtual worlds by a continuous bidirectional data/information exchange. In this chapter we present the origins of the concept and how it evolved with the advent of new technological trends. In addition, we describe the main characteristics of a Digital Twin, the benefits of its use, and real-world examples of the usage of digital twins’. Finally, the challenges for its adoption, and the elements to be considered for managing the quality of the Digital Twin are presented to give a complete overview of this new technology.Full book available: https://www.rug.nl/gdbc/the-gdbc-book

    Towards a Cyber-Physical Manufacturing Cloud through Operable Digital Twins and Virtual Production Lines

    Get PDF
    In last decade, the paradigm of Cyber-Physical Systems (CPS) has integrated industrial manufacturing systems with Cloud Computing technologies for Cloud Manufacturing. Up to 2015, there were many CPS-based manufacturing systems that collected real-time machining data to perform remote monitoring, prognostics and health management, and predictive maintenance. However, these CPS-integrated and network ready machines were not directly connected to the elements of Cloud Manufacturing and required human-in-the-loop. Addressing this gap, we introduced a new paradigm of Cyber-Physical Manufacturing Cloud (CPMC) that bridges a gap between physical machines and virtual space in 2017. CPMC virtualizes machine tools in cloud through web services for direct monitoring and operations through Internet. Fundamentally, CPMC differs with contemporary modern manufacturing paradigms. For instance, CPMC virtualizes machining tools in cloud using remote services and establish direct Internet-based communication, which is overlooked in existing Cloud Manufacturing systems. Another contemporary, namely cyber-physical production systems enable networked access to machining tools. Nevertheless, CPMC virtualizes manufacturing resources in cloud and monitor and operate them over the Internet. This dissertation defines the fundamental concepts of CPMC and expands its horizon in different aspects of cloud-based virtual manufacturing such as Digital Twins and Virtual Production Lines. Digital Twin (DT) is another evolving concept since 2002 that creates as-is replicas of machining tools in cyber space. Up to 2018, many researchers proposed state-of-the-art DTs, which only focused on monitoring production lifecycle management through simulations and data driven analytics. But they overlooked executing manufacturing processes through DTs from virtual space. This dissertation identifies that DTs can be made more productive if they engage directly in direct execution of manufacturing operations besides monitoring. Towards this novel approach, this dissertation proposes a new operable DT model of CPMC that inherits the features of direct monitoring and operations from cloud. This research envisages and opens the door for future manufacturing systems where resources are developed as cloud-based DTs for remote and distributed manufacturing. Proposed concepts and visions of DTs have spawned the following fundamental researches. This dissertation proposes a novel concept of DT based Virtual Production Lines (VPL) in CPMC in 2019. It presents a design of a service-oriented architecture of DTs that virtualizes physical manufacturing resources in CPMC. Proposed DT architecture offers a more compact and integral service-oriented virtual representations of manufacturing resources. To re-configure a VPL, one requirement is to establish DT-to-DT collaborations in manufacturing clouds, which replicates to concurrent resource-to-resource collaborations in shop floors. Satisfying the above requirements, this research designs a novel framework to easily re-configure, monitor and operate VPLs using DTs of CPMC. CPMC publishes individual web services for machining tools, which is a traditional approach in the domain of service computing. But this approach overcrowds service registry databases. This dissertation introduces a novel fundamental service publication and discovery approach in 2020, OpenDT, which publishes DTs with collections of services. Experimental results show easier discovery and remote access of DTs while re-configuring VPLs. Proposed researches in this dissertation have received numerous citations both from industry and academia, clearly proving impacts of research contributions
    • …
    corecore