4,331 research outputs found

    A Renewable Energy Plan for Mozambique

    Get PDF
    Mozambique has among the lowest uses of electricity in the world. Yet virtually all of the electricity it does produce from Cahora Bassa Dam on the Zambezi is shipped to its wealthy neighbor, South Africa. As the government prepares to build another costly large dam on the Zambezi that will also power South Africa rather than homes and businesses in Mozambique, a new report lays out a saner plan for developing renewable energy sources across the nation that would share the energy wealth more equitably; diversify the national electricity grid to help the nation adapt to climate change (which is expected to significantly affect large hydro), and build a clean energy sector that would also spare the Zambezi

    Attitudes expressed in online comments about environmental factors in the tourism sector: an exploratory study

    Get PDF
    The object of this exploratory study is to identify the positive, neutral and negative environment factors that affect users who visit Spanish hotels in order to help the hotel managers decide how to improve the quality of the services provided. To carry out the research a Sentiment Analysis was initially performed, grouping the sample of tweets (n = 14459) according to the feelings shown and then a textual analysis was used to identify the key environment factors in these feelings using the qualitative analysis software Nvivo (QSR International, Melbourne, Australia). The results of the exploratory study present the key environment factors that affect the users experience when visiting hotels in Spain, such as actions that support local traditions and products, the maintenance of rural areas respecting the local environment and nature, or respecting air quality in the areas where hotels have facilities and offer services. The conclusions of the research can help hotels improve their services and the impact on the environment, as well as improving the visitors experience based on the positive, neutral and negative environment factors which the visitors themselves identified

    Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter

    Get PDF
    Microbial carbon use efficiency (CUE) is a critical regulator of soil organic matter dynamics and terrestrial carbon fluxes, with strong implications for soil biogeochemistry models. While ecologists increasingly appreciate the importance of CUE, its core concepts remain ambiguous: terminology is inconsistent and confusing, methods capture variable temporal and spatial scales, and the significance of many fundamental drivers remains inconclusive. Here we outline the processes underlying microbial efficiency and propose a conceptual framework that structures the definition of CUE according to increasingly broad temporal and spatial drivers where (1) CUEP reflects population-scale carbon use efficiency of microbes governed by species-specific metabolic and thermodynamic constraints, (2) CUEC defines community-scale microbial efficiency as gross biomass production per unit substrate taken up over short time scales, largely excluding recycling of microbial necromass and exudates, and (3) CUEE reflects the ecosystem-scale efficiency of net microbial biomass production (growth) per unit substrate taken up as iterative breakdown and recycling of microbial products occurs. CUEE integrates all internal and extracellular constraints on CUE and hence embodies an ecosystem perspective that fully captures all drivers of microbial biomass synthesis and decay. These three definitions are distinct yet complementary, capturing the capacity for carbon storage in microbial biomass across different ecological scales. By unifying the existing concepts and terminology underlying microbial efficiency, our framework enhances data interpretation and theoretical advances

    The adaptation continuum: groundwork for the future

    Get PDF
    The focus of the program was to understand the challenges posed by climate change and climate variability on vulnerable groups and the policies needed to support climate adaptation in developing countries. The aim of the book is to share this experience in the hope that it will be helpful to those involved in shaping and implementing climate change policy

    Scraping social media photos posted in Kenya and elsewhere to detect and analyze food types

    Full text link
    Monitoring population-level changes in diet could be useful for education and for implementing interventions to improve health. Research has shown that data from social media sources can be used for monitoring dietary behavior. We propose a scrape-by-location methodology to create food image datasets from Instagram posts. We used it to collect 3.56 million images over a period of 20 days in March 2019. We also propose a scrape-by-keywords methodology and used it to scrape ∼30,000 images and their captions of 38 Kenyan food types. We publish two datasets of 104,000 and 8,174 image/caption pairs, respectively. With the first dataset, Kenya104K, we train a Kenyan Food Classifier, called KenyanFC, to distinguish Kenyan food from non-food images posted in Kenya. We used the second dataset, KenyanFood13, to train a classifier KenyanFTR, short for Kenyan Food Type Recognizer, to recognize 13 popular food types in Kenya. The KenyanFTR is a multimodal deep neural network that can identify 13 types of Kenyan foods using both images and their corresponding captions. Experiments show that the average top-1 accuracy of KenyanFC is 99% over 10,400 tested Instagram images and of KenyanFTR is 81% over 8,174 tested data points. Ablation studies show that three of the 13 food types are particularly difficult to categorize based on image content only and that adding analysis of captions to the image analysis yields a classifier that is 9 percent points more accurate than a classifier that relies only on images. Our food trend analysis revealed that cakes and roasted meats were the most popular foods in photographs on Instagram in Kenya in March 2019.Accepted manuscrip

    Predictive modeling of die filling of the pharmaceutical granules using the flexible neural tree

    Get PDF
    In this work, a computational intelligence (CI) technique named flexible neural tree (FNT) was developed to predict die filling performance of pharmaceutical granules and to identify significant die filling process variables. FNT resembles feedforward neural network, which creates a tree-like structure by using genetic programming. To improve accuracy, FNT parameters were optimized by using differential evolution algorithm. The performance of the FNT-based CI model was evaluated and compared with other CI techniques: multilayer perceptron, Gaussian process regression, and reduced error pruning tree. The accuracy of the CI model was evaluated experimentally using die filling as a case study. The die filling experiments were performed using a model shoe system and three different grades of microcrystalline cellulose (MCC) powders (MCC PH 101, MCC PH 102, and MCC DG). The feed powders were roll-compacted and milled into granules. The granules were then sieved into samples of various size classes. The mass of granules deposited into the die at different shoe speeds was measured. From these experiments, a dataset consisting true density, mean diameter (d50), granule size, and shoe speed as the inputs and the deposited mass as the output was generated. Cross-validation (CV) methods such as 10FCV and 5x2FCV were applied to develop and to validate the predictive models. It was found that the FNT-based CI model (for both CV methods) performed much better than other CI models. Additionally, it was observed that process variables such as the granule size and the shoe speed had a higher impact on the predictability than that of the powder property such as d50. Furthermore, validation of model prediction with experimental data showed that the die filling behavior of coarse granules could be better predicted than that of fine granules

    Economic, Environmental, and Social Assessments of Raw Materials for a Green and Resilient Economy

    Get PDF
    This book addresses pre-conditions for developing a sustainable and resilient economy and society, emphasizing resources used in future-oriented technologies. With the in-depth analysis of assessments for primary and secondary raw materials, the different contributions meet the need of researchers in the fields of Industrial Ecology, Life Science, and Materials Engineering. Thought-out resource strategies are crucial, establishing a well-designed Circular Economy with sophisticated cascading use stages and reducing emissions to air, water and soil. So, sustainable mining, smelting, and refining processes for metals and minerals have to be improved and new material processes—coming from waste—in the field of the bioeconomy have to be implemented. This book discusses criticality assessments and other classification schemes to quantify supply risks and environmental and social burdens. With tools such as Life Cycle Assessments, the authors identify critical resources and processes in several case studies
    corecore