444 research outputs found

    Peer-to-peer and community-based markets: A comprehensive review

    Full text link
    The advent of more proactive consumers, the so-called "prosumers", with production and storage capabilities, is empowering the consumers and bringing new opportunities and challenges to the operation of power systems in a market environment. Recently, a novel proposal for the design and operation of electricity markets has emerged: these so-called peer-to-peer (P2P) electricity markets conceptually allow the prosumers to directly share their electrical energy and investment. Such P2P markets rely on a consumer-centric and bottom-up perspective by giving the opportunity to consumers to freely choose the way they are to source their electric energy. A community can also be formed by prosumers who want to collaborate, or in terms of operational energy management. This paper contributes with an overview of these new P2P markets that starts with the motivation, challenges, market designs moving to the potential future developments in this field, providing recommendations while considering a test-case

    Swarm electrification: A comprehensive literature review

    Get PDF
    In the global North, the need to decarbonize power generation is well documented and the challenges faced are endemic to the design of the electrical grids. With networks relying on centralized generation, it can be difficult to replace fossil-fuel power plants with renewable energy sources as generation may be intermittent causing grid instability when there is no ‘spinning reserve’ [1]. In parts of the global south, however, many under-electrified nations have high levels of solar irradiance. This, combined with falling prices for solar panels, is allowing for alternative paths to electrification from costly grid extensions and has resulted in grids built from the bottom up [2]. These grids can vary considerably in scale and capacity, dubbed micro-grids, nano-grids, and pico-grids. They can utilize AC, DC, or both and generally have either a centralized or distributed topology where each design has specific advantages and disadvantages [3]. Bangladesh has seen an unprecedented proliferation of small solar home systems. After performing a case study Groh et al. [4] discovered much of the generated electricity was not being utilized

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    An analysis of selected cases

    Get PDF
    Funding Information: This work was supported by Project CESME (Collaborative & Evolvable Smart Manufacturing Ecosystem) and the Portuguese FCT program UIDB/00066/2020. Publisher Copyright: © 2022 The Author(s)The rapid proliferation of renewable energy communities/ecosystems is an indication of their potential contribution to the ongoing energy transition. A common characteristic of these ecosystems is their complex composition, which often involves the interaction of multiple actors. Currently, the notions of "networking", "collaboration", "coordination", and "cooperation", although having different meanings, are often loosely used to describe these interactions, which creates a sense of ambiguity and confusion. To better characterize the nature of interactions in current and emerging ecosystems, this article uses the systematic literature review method to analyse 34 emerging cases. The objective is threefold (a) to study the interactions and engagements between the involved actors, aiming at identifying elements of collaboration. (b) Identify the adopted technological enablers, and (c) ascertain how the composition and functions of these ecosystems compare to virtual power plants. The outcome revealed that the interactions between the members of these ecosystems can be described as cooperation and not necessarily as collaboration, except in a few cases. Regarding technological enablers, a vast panoply of technologies, such as IoT devices, smart meters, intelligent software agents, peer-to-peer networks, distributed ledger systems/blockchain technology (including smart contracts, blockchain as a platform service, and cryptocurrencies) were found. In comparison with virtual power plants, these ecosystems have similar composition, thus, having multiple actors, comprised of decentralized and heterogeneous technologies, and are formed by aggregating various distributed energy resources. They are also supported by ICT and are characterized by the simultaneous flow of information and energy.publishersversionpublishe

    Assured information sharing for ad-hoc collaboration

    Get PDF
    Collaborative information sharing tends to be highly dynamic and often ad hoc among organizations. The dynamic natures and sharing patterns in ad-hoc collaboration impose a need for a comprehensive and flexible approach to reflecting and coping with the unique access control requirements associated with the environment. This dissertation outlines a Role-based Access Management for Ad-hoc Resource Shar- ing framework (RAMARS) to enable secure and selective information sharing in the het- erogeneous ad-hoc collaborative environment. Our framework incorporates a role-based approach to addressing originator control, delegation and dissemination control. A special trust-aware feature is incorporated to deal with dynamic user and trust management, and a novel resource modeling scheme is proposed to support fine-grained selective sharing of composite data. As a policy-driven approach, we formally specify the necessary pol- icy components in our framework and develop access control policies using standardized eXtensible Access Control Markup Language (XACML). The feasibility of our approach is evaluated in two emerging collaborative information sharing infrastructures: peer-to- peer networking (P2P) and Grid computing. As a potential application domain, RAMARS framework is further extended and adopted in secure healthcare services, with a unified patient-centric access control scheme being proposed to enable selective and authorized sharing of Electronic Health Records (EHRs), accommodating various privacy protection requirements at different levels of granularity

    Analysis and selection of the simulation environment

    Get PDF
    This document provides the initial report of the Simulation work package (Work Package 4,WP4) of the CATNETS project. It contains an analisys of the requirements for a simulation tool to be used in CATNETS and an evaluation of a number of grid and general purpose simulators with respect to the selected requirements. A reasoned choice of a suitable simulator is performed based on the evaluation conducted. -- Diese Arbeit analysiert die Anforderungen an eine Simulationsumgebung für die Analyse der Katallaxie. Anhand von Kennzahlen wird die Auswahl der Simulationsumgebung bestimmt.Grid Computing

    Efficient replication of large volumes of data and maintaining data consistency by using P2P techniques in Desktop Grid

    Get PDF
    Desktop Grid is increasing in popularity because of relatively very low cost and good performance in institutions. Data-intensive applications require data management in scientific experiments conducted by researchers and scientists in Desktop Grid-based Distributed Computing Infrastructure (DCI). Some of these data-intensive applications deal with large volumes of data. Several solutions for data-intensive applications have been proposed for Desktop Grid (DG) but they are not efficient in handling large volumes of data. Data management in this environment deals with data access and integration, maintaining basic properties of databases, architecture for querying data, etc. Data in data-intensive applications has to be replicated in multiple nodes for improving data availability and reducing response time. Peer-to-Peer (P2P) is a well established technique for handling large volumes of data and is widely used on the internet. Its environment is similar to the environment of DG. The performance of existing P2P-based solution dealing with generic architecture for replicating large volumes of data is not efficient in DG-based DCI. Therefore, there is a need for a generic architecture for replicating large volumes of data efficiently by using P2P in BOINC based Desktop Grid. Present solutions for data-intensive applications mainly deal with read only data. New type of applications are emerging which deal large volumes of data and Read/Write of data. In emerging scientific experiments, some nodes of DG generate new snapshot of scientific data after regular intervals. This new snapshot of data is generated by updating some of the values of existing data fields. This updated data has to be synchronised in all DG nodes for maintaining data consistency. The performance of data management in DG can be improved by addressing efficient data replication and consistency. Therefore, there is need for algorithms which deal with data Read/Write consistency along with replication for large volumes of data in BOINC based Desktop Grid. The research is to identify efficient solutions for data replication in handling large volumes of data and maintaining Read/Write data consistency using Peer-to-Peer techniques in BOINC based Desktop Grid. This thesis presents the solutions that have been carried out to complete the research

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Sharing Economy in Local Energy Markets

    Get PDF
    With an increase in the electrification of end-use sectors, various resources on the demand side provide great flexibility potential for system operation, which also leads to problems such as the strong randomness of power consumption behavior, the low utilization rate of flexible resources, and difficulties in cost recovery. With the core idea of 'access over ownership', the concept of the sharing economy has gained substantial popularity in the local energy market in recent years. Thus, we provide an overview of the potential market design for the sharing economy in local energy markets (LEMs) and conduct a detailed review of research related to local energy sharing, enabling technologies, and potential practices. This paper can provide a useful reference and insights for the activation of demand-side flexibility potential. Hopefully, this paper can also provide novel insights into the development and further integration of the sharing economy in LEMs.</p
    corecore