136 research outputs found

    Near-Optimal Motion Planning Algorithms Via A Topological and Geometric Perspective

    Get PDF
    Motion planning is a fundamental problem in robotics, which involves finding a path for an autonomous system, such as a robot, from a given source to a destination while avoiding collisions with obstacles. The properties of the planning space heavily influence the performance of existing motion planning algorithms, which can pose significant challenges in handling complex regions, such as narrow passages or cluttered environments, even for simple objects. The problem of motion planning becomes deterministic if the details of the space are fully known, which is often difficult to achieve in constantly changing environments. Sampling-based algorithms are widely used among motion planning paradigms because they capture the topology of space into a roadmap. These planners have successfully solved high-dimensional planning problems with a probabilistic-complete guarantee, i.e., it guarantees to find a path if one exists as the number of vertices goes to infinity. Despite their progress, these methods have failed to optimize the sub-region information of the environment for reuse by other planners. This results in re-planning overhead at each execution, affecting the performance complexity for computation time and memory space usage. In this research, we address the problem by focusing on the theoretical foundation of the algorithmic approach that leverages the strengths of sampling-based motion planners and the Topological Data Analysis methods to extract intricate properties of the environment. The work contributes a novel algorithm to overcome the performance shortcomings of existing motion planners by capturing and preserving the essential topological and geometric features to generate a homotopy-equivalent roadmap of the environment. This roadmap provides a mathematically rich representation of the environment, including an approximate measure of the collision-free space. In addition, the roadmap graph vertices sampled close to the obstacles exhibit advantages when navigating through narrow passages and cluttered environments, making obstacle-avoidance path planning significantly more efficient. The application of the proposed algorithms solves motion planning problems, such as sub-optimal planning, diverse path planning, and fault-tolerant planning, by demonstrating the improvement in computational performance and path quality. Furthermore, we explore the potential of these algorithms in solving computational biology problems, particularly in finding optimal binding positions for protein-ligand or protein-protein interactions. Overall, our work contributes a new way to classify routes in higher dimensional space and shows promising results for high-dimensional robots, such as articulated linkage robots. The findings of this research provide a comprehensive solution to motion planning problems and offer a new perspective on solving computational biology problems

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Machine learning and privacy preserving algorithms for spatial and temporal sensing

    Get PDF
    Sensing physical and social environments are ubiquitous in modern mobile phones, IoT devices, and infrastructure-based settings. Information engraved in such data, especially the time and location attributes have unprecedented potential to characterize individual and crowd behaviour, natural and technological processes. However, it is challenging to extract abstract knowledge from the data due to its massive size, sequential structure, asynchronous operation, noisy characteristics, privacy concerns, and real time analysis requirements. Therefore, the primary goal of this thesis is to propose theoretically grounded and practically useful algorithms to learn from location and time stamps in sensor data. The proposed methods are inspired by tools from geometry, topology, and statistics. They leverage structures in the temporal and spatial data by probabilistically modeling noise, exploring topological structures embedded, and utilizing statistical structure to protect personal information and simultaneously learn aggregate information. Proposed algorithms are geared towards streaming and distributed operation for efficiency. The usefulness of the methods is argued using mathematical analysis and empirical experiments on real and artificial datasets

    Statistical Query Complexity of Manifold Estimation

    Full text link
    This paper studies the statistical query (SQ) complexity of estimating dd-dimensional submanifolds in Rn\mathbb{R}^n. We propose a purely geometric algorithm called Manifold Propagation, that reduces the problem to three natural geometric routines: projection, tangent space estimation, and point detection. We then provide constructions of these geometric routines in the SQ framework. Given an adversarial STAT(τ)\mathrm{STAT}(\tau) oracle and a target Hausdorff distance precision ε=Ω(τ2/(d+1))\varepsilon = \Omega(\tau^{2 / (d + 1)}), the resulting SQ manifold reconstruction algorithm has query complexity O(npolylog(n)εd/2)O(n \operatorname{polylog}(n) \varepsilon^{-d / 2}), which is proved to be nearly optimal. In the process, we establish low-rank matrix completion results for SQ's and lower bounds for randomized SQ estimators in general metric spaces.Comment: 81 page

    Computational Topology Methods for Shape Modelling Applications

    Get PDF
    This thesis deals with computational topology, a recent branch of research that involves both mathematics and computer science, and tackles the problem of discretizing the Morse theory to functions defined on a triangle mesh. The application context of Morse theory in general, and Reeb graphs in particular, deals with the analysis of geometric shapes and the extraction of skeletal structures that synthetically represents shape, preserving the topological properties and the main morphological characteristics. Regarding Computer Graphics, shapes, that is a one-, two- or higher- dimensional connected, compact space having a visual appearance, are typically approximated by digital models. Since topology focuses on the qualitative properties of spaces, such as the connectedness and how many and what type of holes it has, topology is the best tool to describe the shape of a mathematical model at a high level of abstraction. Geometry, conversely, is mainly related to the quantitative characteristics of a shape. Thus, the combination of topology and geometry creates a new generation of tools that provide a computational description of the most representative features of the shape along with their relationship. Extracting qualitative information, that is the information related to semantic of the shape and its morphological structure, from discrete models is a central goal in shape modeling. In this thesis a conceptual model is proposed which represents a given surface based on topological coding that defines a sketch of the surface, discarding irrelevant details and classifying its topological type. The approach is based on Morse theory and Reeb graphs, which provide a very useful shape abstraction method for the analysis and structuring of the information contained in the geometry of the discrete shape model. To fully develop the method, both theoretical and computational aspects have been considered, related to the definition and the extension of the Reeb graph to the discrete domain. For the definition and automatic construction of the conceptual model, a new method has been developed that analyzes and characterizes a triangle mesh with respect to the behavior of a real and at least continuous function defined on the mesh. The proposed solution handles also degenerate critical points, such as non-isolated critical points. To do that, the surface model is characterized using a contour-based strategy, recognizing critical areas instead of critical points and coding the evolution of the contour levels in a graph-like structure, named Extended Reeb Graph, (ERG), which is a high-level abstract model suitable for representing and manipulating piece-wise linear surfaces. The descriptive power of the (ERG) has been also augmented with the introduction of geometric information together with the topological ones, and it has been also studied the relation between the extracted topological and morphological features with respect to the real characteristics of the surface, giving and evaluation of the dimension of the discarded details. Finally, the effectiveness of our description framework has been evaluated in several application contexts
    corecore