1,434 research outputs found

    Pentagon-Match (PMatch): Identification of View-Invariant Planar Feature for Local Feature Matching-Based Homography Estimation

    Full text link
    In computer vision, finding correct point correspondence among images plays an important role in many applications, such as image stitching, image retrieval, visual localization, etc. Most of the research works focus on the matching of local feature before a sampling method is employed, such as RANSAC, to verify initial matching results via repeated fitting of certain global transformation among the images. However, incorrect matches may still exist. Thus, a novel sampling scheme, Pentagon-Match (PMatch), is proposed in this work to verify the correctness of initially matched keypoints using pentagons randomly sampled from them. By ensuring shape and location of these pentagons are view-invariant with various evaluations of cross-ratio (CR), incorrect matches of keypoint can be identified easily with homography estimated from correctly matched pentagons. Experimental results show that highly accurate estimation of homography can be obtained efficiently for planar scenes of the HPatches dataset, based on keypoint matching results provided by LoFTR. Besides, accurate outlier identification for the above matching results and possible extension of the approach for multi-plane situation are also demonstrated.Comment: arXiv admin note: text overlap with arXiv:2211.0300

    Automated Mobile System for Accurate Outdoor Tree Crop Enumeration Using an Uncalibrated Camera.

    Get PDF
    This paper demonstrates an automated computer vision system for outdoor tree crop enumeration in a seedling nursery. The complete system incorporates both hardware components (including an embedded microcontroller, an odometry encoder, and an uncalibrated digital color camera) and software algorithms (including microcontroller algorithms and the proposed algorithm for tree crop enumeration) required to obtain robust performance in a natural outdoor environment. The enumeration system uses a three-step image analysis process based upon: (1) an orthographic plant projection method integrating a perspective transform with automatic parameter estimation; (2) a plant counting method based on projection histograms; and (3) a double-counting avoidance method based on a homography transform. Experimental results demonstrate the ability to count large numbers of plants automatically with no human effort. Results show that, for tree seedlings having a height up to 40 cm and a within-row tree spacing of approximately 10 cm, the algorithms successfully estimated the number of plants with an average accuracy of 95.2% for trees within a single image and 98% for counting of the whole plant population in a large sequence of images

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    A mask-based approach for the geometric calibration of thermal-infrared cameras

    Get PDF
    Accurate and efficient thermal-infrared (IR) camera calibration is important for advancing computer vision research within the thermal modality. This paper presents an approach for geometrically calibrating individual and multiple cameras in both the thermal and visible modalities. The proposed technique can be used to correct for lens distortion and to simultaneously reference both visible and thermal-IR cameras to a single coordinate frame. The most popular existing approach for the geometric calibration of thermal cameras uses a printed chessboard heated by a flood lamp and is comparatively inaccurate and difficult to execute. Additionally, software toolkits provided for calibration either are unsuitable for this task or require substantial manual intervention. A new geometric mask with high thermal contrast and not requiring a flood lamp is presented as an alternative calibration pattern. Calibration points on the pattern are then accurately located using a clustering-based algorithm which utilizes the maximally stable extremal region detector. This algorithm is integrated into an automatic end-to-end system for calibrating single or multiple cameras. The evaluation shows that using the proposed mask achieves a mean reprojection error up to 78% lower than that using a heated chessboard. The effectiveness of the approach is further demonstrated by using it to calibrate two multiple-camera multiple-modality setups. Source code and binaries for the developed software are provided on the project Web site

    Mosaics from arbitrary stereo video sequences

    Get PDF
    lthough mosaics are well established as a compact and non-redundant representation of image sequences, their application still suffers from restrictions of the camera motion or has to deal with parallax errors. We present an approach that allows construction of mosaics from arbitrary motion of a head-mounted camera pair. As there are no parallax errors when creating mosaics from planar objects, our approach first decomposes the scene into planar sub-scenes from stereo vision and creates a mosaic for each plane individually. The power of the presented mosaicing technique is evaluated in an office scenario, including the analysis of the parallax error

    What can be done with an embedded stereo-rig in urban environments?

    Get PDF
    International audienceThe development of the Autonomous Guided Vehicles (AGVs) with urban applications are now possible due to the recent solutions (DARPA Grand Challenge) developed to solve the Simultaneous Localization And Mapping (SLAM) problem: perception, path planning and control. For the last decade, the introduction of GPS systems and vision have been allowed the transposition of SLAM methods dedicated to indoor environments to outdoor ones. When the GPS data are unavailable, the current position of the mobile robot can be estimated by the fusion of data from odometer and/or Inertial Navigation System (INS). We detail in this article what can be done with an uncalibrated stereo-rig, when it is embedded in a vehicle which is going through urban roads. The methodology is based on features extracted on planes: we mainly assume the road at the foreground as the plane common to all the urban scenes but other planes like vertical frontages of buildings can be used if the features extracted on the road are not enough relevant. The relative motions of the coplanar features tracked with both cameras allow us to stimate the vehicle ego-motion with a high precision. Futhermore, the features which don't check the relative motion of the considered plane can be assumed as obstacles

    A Geometrically Constrained Point Matching based on View-invariant Cross-ratios, and Homography

    Full text link
    In computer vision, finding point correspondence among images plays an important role in many applications, such as image stitching, image retrieval, visual localization, etc. Most of the research worksfocus on the matching of local feature before a sampling method is employed, such as RANSAC, to verify initial matching results via repeated fitting of certain global transformation among the images. However, incorrect matches may still exist, while careful examination of such problems is often skipped. Accordingly, a geometrically constrained algorithm is proposed in this work to verify the correctness of initially matched SIFT keypoints based on view-invariant cross-ratios (CRs). By randomly forming pentagons from these keypoints and matching their shape and location among images with CRs, robust planar region estimation can be achieved efficiently for the above verification, while correct and incorrect matches of keypoints can be examined easily with respect to those shape and location matched pentagons. Experimental results show that satisfactory results can be obtained for various scenes with single as well as multiple planar regions

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    So you think you can track?

    Full text link
    This work introduces a multi-camera tracking dataset consisting of 234 hours of video data recorded concurrently from 234 overlapping HD cameras covering a 4.2 mile stretch of 8-10 lane interstate highway near Nashville, TN. The video is recorded during a period of high traffic density with 500+ objects typically visible within the scene and typical object longevities of 3-15 minutes. GPS trajectories from 270 vehicle passes through the scene are manually corrected in the video data to provide a set of ground-truth trajectories for recall-oriented tracking metrics, and object detections are provided for each camera in the scene (159 million total before cross-camera fusion). Initial benchmarking of tracking-by-detection algorithms is performed against the GPS trajectories, and a best HOTA of only 9.5% is obtained (best recall 75.9% at IOU 0.1, 47.9 average IDs per ground truth object), indicating the benchmarked trackers do not perform sufficiently well at the long temporal and spatial durations required for traffic scene understanding
    • 

    corecore