42 research outputs found

    Construction of spherical cubature formulas using lattices

    Full text link
    We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidian lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on the sphere of dimension n-1 for n=4, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming

    MHV, CSW and BCFW: field theory structures in string theory amplitudes

    Full text link
    Motivated by recent progress in calculating field theory amplitudes, we study applications of the basic ideas in these developments to the calculation of amplitudes in string theory. We consider in particular both non-Abelian and Abelian open superstring disk amplitudes in a flat space background, focusing mainly on the four-dimensional case. The basic field theory ideas under consideration split into three separate categories. In the first, we argue that the calculation of alpha'-corrections to MHV open string disk amplitudes reduces to the determination of certain classes of polynomials. This line of reasoning is then used to determine the alpha'^3-correction to the MHV amplitude for all multiplicities. A second line of attack concerns the existence of an analog of CSW rules derived from the Abelian Dirac-Born-Infeld action in four dimensions. We show explicitly that the CSW-like perturbation series of this action is surprisingly trivial: only helicity conserving amplitudes are non-zero. Last but not least, we initiate the study of BCFW on-shell recursion relations in string theory. These should appear very naturally as the UV properties of the string theory are excellent. We show that all open four-point string amplitudes in a flat background at the disk level obey BCFW recursion relations. Based on the naturalness of the proof and some explicit results for the five-point gluon amplitude, it is expected that this pattern persists for all higher point amplitudes and for the closed string.Comment: v3: corrected erroneous statement about Virasoro-Shapiro amplitude and added referenc

    SELF-DUAL STOCHASTIC PRODUCTION FRONTIERS AND DECOMPOSITION OF OUTPUT GROWTH: THE CASE OF OLIVE-GROWING FARMS IN GREECE

    Get PDF
    This paper provides a decomposition of output growth among olive-growing farms in Greece during the period 1987-1993 by integrating Bauer's (1990) and Bravo-Ureta and Rieger's (1991) approaches. The proposed methodology is based on the use of self-dual production frontier functions. Output growth is attributed to the size effect, technical change, changes in technical and input allocative inefficiency, and the scale effect. Empirical results indicate that the scale and the input allocative inefficiency effects, which were not taken into account in previous studies on output growth decomposition analysis, have caused a 7.3% slowdown and a 11.0% increase in output growth, respectively. Technical change was found to be the main source of TFP growth while both technical and input allocative inefficiency decreased over time. Still though, a 56.5% of output growth is attributed to input growth.Production Economics,

    Subject Index Volumes 1–200

    Get PDF

    Cubature formulas, geometrical designs, reproducing kernels, and Markov operators

    Full text link
    Cubature formulas and geometrical designs are described in terms of reproducing kernels for Hilbert spaces of functions on the one hand, and Markov operators associated to orthogonal group representations on the other hand. In this way, several known results for spheres in Euclidean spaces, involving cubature formulas for polynomial functions and spherical designs, are shown to generalize to large classes of finite measure spaces (Ω,σ)(\Omega,\sigma) and appropriate spaces of functions inside L2(Ω,σ)L^2(\Omega,\sigma). The last section points out how spherical designs are related to a class of reflection groups which are (in general dense) subgroups of orthogonal groups
    corecore