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This paper provides a decomposition of output growth among olive-growing farms in Greece

during the period 1987–1 993 by integrating Bauer’s ( 1990) and Bravo- Ureta and Rieger’s

( 1991) approaches. The proposed methodology is based on the use of self-dual production

frontier functions. Output growth is attributed to the size effect, technical change, changes in

technical and input allocative inefficiency, and the scale effect. Empirical results indicate that

the scale and the input allocative inefficiency effects, which were not taken into account in
previous studies on output growth decomposition analysis, have caused a 7.3% slowdown and

a I I .O% increase in output growth, respectively. Technical change was found to be the main

source of TFP growth while both technical and input al locative inefficiency decreased over

time. Still though, a 56.5% of output growth is attributed to input growth,

Several recent studies have attempted to explain
and to identify the sources of output growth in
agriculture. By using a stochastic production fron-
tier approach, Fan (199 1), Ahmad and Bravo-Ureta
(1995), Wu (1995), Kalirajan, Obwona and Zhao
(1996), and Kalirajan and Shand (1997) have at-
tributed output growth into size effect (input
growth), technical change and improvements in
technical efficiency. Within such a framework it is,
however, implicitly assumed that technical change
and changes in technical efficiency are the only
sources of total factor productivity (TFP) changes.
Bureau, Fare and Grosskopf ( 1995), Arnade
(1998), Fulginiti and PetTin (1998), Lambert and
Parker (1998) and Tauer (1998) have used a simi-
lar decomposition of TFP changes based on the
Malmquist TFP index. In contrast to all the above
studies using the parametric approach, there have
been some studies based on the Malmquist TFP
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index that have also taken into account scale ef-
fects (i.e., Piesse, Thirtle and van Zyl 1996; Piesse,
Thirtle and Turk 1996; Thirtle, Piesse and Turk
1996; Fulginiti and Perrin 1997),

It is well recognized that returns to scale and
allocative efficiency may also be significant
sources of TFP growth. Scale economies stimulate
output growth even in the absence of technical
change and improvements in technical et%ciency
as long as input use increases. However, disecono-
mies of scale, which are more likely in agriculture,
could slow down output growth under similar cir-
cumstances. The scale effect can correctly be omit-
ted in the decomposition of TFP growth only in the
case of constant returns to scale (Lovell 1996).
However, since the range of scale economies is not
known a priori, itseems appropriate to proceed by
statistically testing the hypothesis of constant re-
turns to scale. If this hypothesis is rejected, the
scale effect is present and should be taken into
account. 1 Its relative contribution to output growth

1From all the above studies only few have treated the scale effect
properly. Piesse, Thinle and Turk ( 1996) and Thirtle, Piesse and Turk
( 1996) have correctly included it in TFP me~surement as they presented
empirical evidence for increasing returns to scale, Tauer ( 1998), how-
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depends on both the magnitude of scale economies
and the rate of input growth.

Output gains may also be achieved by improv-
ing allocative efficiency, As noticed by Bravo-
Ureta and Rieger (1991), focusing only on techni-
cal efficiency understates the benefits that could be
derived by producers from improvements in over-
all performance. However, in a highly protected
sector, such as agriculture, allocative inefficiency
tends to be an important source of TFP slowdown
(Fulginiti and Perrin 1993; Kalaitzandonakis
1994). Except for output price support schemes,
input prices susceptible to government policy
could also be a serious cause of failure on the part
of farmers to minimize cost, by affecting input mix
and thus the extent of allocative inefficiency.2
Nevertheless, the magnitude of allocative effi-
ciency and the relative contribution of its improve-
ment on output growth remain an open empirical
question.

In both parametric and non-parametric ap-
proaches there are some problems in accounting
simultaneously for the effect of scale economies
and allocative efficiency in TFP changes. First, de-
spite its flexibility in modeling the structure of
technology, the nonparametric approach based on
the Malmquist TFP index cannot account for the
extent of allocative inefficiency since the Malm-
quist index is a primal concept (Tauer 1998). Sec-
ond, the primal stochastic frontier approach cannot
incorporate accurately the effects of returns to
scale and input allocative inefficiency. In particu-
lar, these cannot be separated from each other
within a production frontier framework, even if
there are available information on input prices
(Lovell 1996). Indeed, the effect of returns to scale
can only be identified if input allocative efficiency
is assumed, and in this case there is no need for
input price data. However, the effect of input al-
locative inefficiency cannot be identified even if
the assumption of constant returns to scale is main-
tained. Third, even though cost frontiers can satis-
factorily deal with input allocative efficiency and
non-constant returns to scale technologies when
panel data are available (Kumbhakar and Lovell
2000, pp. 166–75), they do so through the estima-

ever, has excluded it based on previous evidence (Tauer 1993) for con-
stant returrrs to scale.

2 [n the present study case of olive-growing fwms in Greece allocative
inefficiency is not policy-induced but is the outcome nf farmers’ failure
to minimize cost. However, it was a long period of seed and fertilizer
subsidization in Greek agriculture that ended in 1986, since it was in-
compatible with the spirit of the Common Agricultural Policy. Our
analysis covers tbe period 1987-1993 but the lower degree of input
allocative inefficiency found for 1987 and 1988 (see table 3 below) may,
in part, be due to an adjustment period following aforementioned policy
changes.

tion of a system of equations which is a more com-
plicated econometric problem than the single-
equation estimation of production frontiers, and
a~o requires more data (i.e., input prices).

The aim of this paper is to propose Bravo-Ureta
and Rieger’s (1991) approach as an alternative
within the primal stochastic frontier approach to
handle se~aratelv the effect of returns to scale and. .
input allocative efficiency (along with input
growth, technical change and technical efficiency)
in output growth decomposition analysis. This ap-
proach relies on self-dual production frontiers
(e.g., Cobb-Douglas) to provide estimates of out-
put-oriented technical efficiency, input-oriented
technical efficiency, input allocative efficiency and
cost efficiency by using single-equation estimation
procedures. Then this information along with those
related to technical change and scale economies
can be incorporated into a cost function framework
for decomposing TFP changes (see Bauer 1990) by
simply exploiting the self-duality property. The di-
rect outcome of integrating properly Bauer’s
(1990) and Bravo-Ureta and Rieger’s (1991) ap-
proaches would be a complete and accurate analy-
sis of the sources of output growth at the extra cost
of information on input price data, which are nec-
essary to identify the effect of input allocative ef-
ficiency.

In Bravo-Ureta and Rieger’s (1991) approach,
the use of self-dual production frontier functions is
necessary in deriving an analytical (closed form)
solution of the corresponding cost frontier. The
inflexibility of self-dual frontiers may, however,
lead to biased estimates of the output-oriented
measure of technical efficiency as the unmodeled
complexity of production technology will appear
in the composed error term (Kumbhakar and Lov-
ell 2000, p. 143). In the present study, this short-
coming is partially overcome by using a general-
ized Cobb-Douglas (or quasi translog) frontier pro-
duction function, proposed by Fan (1991). This
functional specification allows for variable returns
to scale, input-biased technical change, and time
varying production and substitution elasticities, but
it restricts the latter to be unchanged over farms.
Nevertheless, it permits statistical tests for the hy-
potheses of zero rate of technical change and con-
stant returns to scale. Thus, this specification rem
resents a reasonably flexible altern~tive to appro~i-
mate the underlying technology.

Bravo-Ureta and Rieger’s (1991) approach has
however two main advantages, First, the resulting
output-oriented technical efficiency estimates are
unbiased from statistical noise as the restricted as-
sumption of the deterministic frontier models (i.e.,
any deviation from the frontier is attributed to in-
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efficiency), used initially by Kopp and Diewert
( 1982), has been relaxed.3 Instead, a composed er-
ror term is used to account for both statistical noise
and output-oriented technical inefficiency. Second,
it enables simultaneous derivation of input-
oriented technical, input allocative, and cost effi-
ciency based solely on the econometric estimation
of a production frontier function by single-
equation methods, under the assumption of ex-
pected profit maximization.4 If, instead, Schmidt
and Lovell’s (1979, 1980) approach is used to es-
timate the Cobb-Douglas production frontier, then
a system-of-equations estimation method should
be employed.

The rest of this paper is organized as follows:
the theoretical framework is presented in the next
section. The empirical model discussed in the third
section is based on Battese and Coelli’s (1995)
inefficiency effects model. Data and their sources
are described in the fourth section. A discussion of
empirical findings and a comparison with previous
parametric studies’ forms of output growth decom-
position are given in the fifth section. Concluding
remarks follow in the last section.

Theoretical Framework

The present study differs from all previous studies
using stochastic production frontiers to decompose
output growth in a distinct respect. The proposed
analysis relies on the input-oriented, Farell-type
measures of technical efficiency, while all previous
studies have used the output-oriented, Timmer-
type measures of technical efficiency.s The use of

‘ Specification (4) below ensures the stochastic nature of’ the produc-
tion frontier and distinguishes Bravo-Ureta and Riger’s ( 199 I) approach
from Kopp and Diewert’s (1982) deterministic model. Another distin-
guished feature between them is that the former is based on tbe estima-
tion of a production (primal) t’rontier while the latter on a dual (cost)
frontier. As a result, tbe input-based measure of allocative inefficiency is
obtained residually in the former case, while the input-based measure of
technical inefficiency is calculated residually in the latter.

4 The assumption of expec[ed profit maxim imtion, which allows the
single-equation estimation of the production frontier (Zellner, Kment~
and Dreze 1966), ilmplies cost minimization under price uncervdint y
(Batra and UIIah 1974) and thas allows us to go hack and forth between
the stochas~ic production and cost frontiers in a theoretical Iy consistent
way. Notice that expected profit maximization was also a maintained
assump~ ion in all previously mentioned studies using the parametric
approach.

‘ Following Kopp (198 I ), tbe output-oriented Tlmmer-type measure
of technical efficiency is defined as the ratio of observed uutput to
maximum feasible output mrd the input-oriented Farrell-type measure is
defined as the maximum amount by which an input vector can be de-
creased proportionally and still producing the same amount of output.
Fare and Lovell (1978) shown that the output- and the input-oriented
measures of technical efficiency are equal under constant returns to
scale, while the former is greater (less) than tbe latter under decreasing
(increasing) returns to scale.

the input-oriented measure of technical efficiency
is necessary in integrating properly Bauer’s (1990)
and Bravo-Ureta and Rieger’s (1991) approaches
as the output-oriented measure of technical effi-
ciency allows for a separate (from input growth)
measurement of the scale effect only in the pres-
ence of input allocative efficiency (Lovell 1996).
In such a case, perfect competition, in both input
and output markets, ensures that production elas-
ticities and factor cost shares are equal to each
other (Chan and Mountain 1983). Otherwise, a
price adjustment effect should also be included to
account for input allocative inefficiencies (Bauer
1990).

Cost efficiency is defined as E(Q,w,x,t) =
C(Q,w,t)/C = W’X?(Q,w,t)/w’x (Bauer 1990; Lov-
ell 1996), where O < E(Q,w,x,t) s 1, C(Q,w;t) is a
well-defined cost frontier function, C is the ob-
served cost, Q is output quantity, w is a vector of
input prices, t is a time index that serves as a proxy
for technical change, and XE and x are the cost
minimizing and the observed input vectors, respec-
tively. E(Q,w, x,t) is independent of factor prices
scaling and has a cost interpretation in the sense
that 1 – E(Q,w, x,t) indicates the percentage reduc-
tion in cost associated with the removal of all in-
efficiencies (Kopp, 1981 ).6 In addition, E(Q,w, x, r)
= T(Q, x,t).A(Q,w, x,t) (Farrell 1957), where
T(Q,x,t) = w’xT/w’x is the input-oriented mea-
sure of technical efficiency with O < T(Q,x,t) s 1,
A(Q,w,xJ) = w’~ (Q,w,t)/w’xT is input allocative
efficiency with O < A(Q,w,xJ) s 1, and XT is the
technically efficient input vector. Moreover,
7’(Q,x,t) and A(Q,w,xJ) are both independent of
factor prices scaling (Kopp 1981).

Following Bauer (1990), by taking the loga-
rithms of each side of E(Q,w, x,t) = C(Q,w;t)/C
and totally differentiate it with respect to tresults
in:

m

,@,w,x,t) = .scQ(Q,w,t)Q + ~ ~j(Q,w,t)tij
(1) , j=l

+ C(q,w,t) – c,
where a dot over a variable or function indicates a
time rate of change, ECQ(Q,WJ) = dlnC(Q,w,t)/
dlp Q, sj(Q, w,t) = dln C(Q, w,t)/dlnw,i, and
–C(Q,w,t) = dlnC(Q,w,t)/dt is the rate of cost

‘ That is, scaling all Factor prices equally or each factor price indi-
vidually WIII have no effect on the input-oriented memure of ineffi-
ciency. This property of input-oriented measures is due to their radial
nature and it will be proved important in panel data studies where there
are no price ddta for individual producers. Apparently, it allows regional,
or even national, price data to be used in measuring efficiency without
altering the final outcome.
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diminution. However, by taking the logarithm of
C = W’Xand totally differentiating with respect to
tyields:

m

(2) c=~sjxj+ i Sj Wj.
j= 1 j= 1

Substituting (2) into (1) and using the conventional
Divisia index of TFP growth (TFP = Q - ~~.,
Sd ij) and the relation E(Q,w,x,t) = T(Q, x,t) +
A(Q,w,x,t) results in:

(3) Q=~ Sj .ij + [1 - &cQ(Q,w,t)]d - C(Q>w,t)

j= I

+ i(Q,x,t)
,,.

+ A(Q,w,x,t) +
z

[:j - sj(Q, W,t)]wj,
]=

which is an output growth representation of the
decomposition relationship developed by Bauer
( 1990).

The first term in (3) captures the contribution of
aggregate input rowth on output changes over

?time (size effect). The more essential an input is in
the production process the higher its contribution is
on the size effect. The second term measures the
relative contribution of scale economies on output
growth (scale effect). This term vanishes under
constant returns to scale as SCQ(Q,w,t) = 1, while
it is positive (negative) under increasing (decreas-
ing) returns to scale, as long as aggregate input
increases. and vice versa. The third term refers to
the dual rate of technical change (i.e., cost dimi-
nution), which is positive under progressive tech-
nical change,

The fourth and the fifth terms in (3) are positive
(negative) as technical and input allocative effi-
ciency increases (decreases) over time. There is no
a priori reason for both types of efficiency to in-
crease or to decrease simultaneously (Schmidt and
Lovell 1980), or that their relative contribution
should be of equal importance for output growth.
More importantly, in output growth decomposition
analysis what really matters is not the degree of
efficiency itself, but its rate of change over time.
That is, even at low levels of efficiency, output
gains may be achieved by improving either tech-
nical or input allocative efficiency, or both. It
seems difficult though to achieve substantial out-

7 Aggregate input growth is measured as a Divisia index; this follows
directly from the standard definition of TFP, The fact that actual (ob-
served) factor cost shares are used as weights of individual input growth
gives rise to the sixth term in (3).

put growth gains at very high levels of technical
and/or input allocative efficiency.

The last term in (3) is the price adjustment effect
(Bauer 1990). The existence of this term is closely
related to the definition of TFP, which is based on
observed input and output quantities. It indicates
that the aggregate measure of inputs is biased in
the presence of input allocative inefficiency, The
price adjustment effect is equal to zero if there is
no input allocative inefficiency as Sj = sj(Q,w,t).
Otherwise, its magnitude is inversely related to the
degree of input allocative efficiency. The price ad-
justment effect is also zero if input prices change at
the same rate; in this case Z[sj – sj(Q,w,t)] = O.

To obtain quantitative measures of each term in
(3), Bravo-Ureta and Rieger’s (1991) approach is
based on the estimation of a self-dual production
frontier function and the resulting cost frontier.
Specifically, consider the following general sto-
chastic production frontier function:

where ~(*) represents its functional form, Qil is the
observed output produced by the ith farm at year t,
xjir is the quantity of the jth input used by the ith
farm at year t,a is the vector of parameters to be
estimated, and eif = Vir– Uit is a stochastic com-
posite error term, The vi, depicts a symmetric and
normally distributed error term (i.e., statistical
noise), which represents those factors that cannot
be controlled by farmers and left-out explanatory
variables. The Uit is a one-side, non-negative, error
term representing the stochastic shortfall of the ith
farm output from its production frontier, due to the
existence of technical inefficiency. The uir captures
farm-specific output-oriented technical efficiency.
It is further assumed that Vit and Uit are indepen-
dently distributed from each other,

Farm-specific estimates of input-oriented tech-
nical efficiency are obtained by computing the
technically efficient input vector XT.This is derived
by combining the estimated production frontier
and the observed factor ratios at actual output lev-
els, and by solving simultaneously the following
system of equations for each farm in the sample:

(5) QX =,f(*) - Uit

= Qir - Vit and Xlit/xjit

= kjit(j > 1),

where Q: is the maximum output that can be pro-
duced by the i’h farm given its production technol-
ogy and input use (Q} is also equal to observed
output adjusted for the statistical noise), and kji, is
the ratio of observed inputs Xii,and Xjitat Q~. Then,
T = w’x~/w’x. However, farm-specific estimates
of cost efficiency are derived by using the resulting
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cost frontier, evaluated at Q~. Given that ~(*) is
self-dual there is a closed form solution for the
cost fron~er and then the cost efficient input
vector, x , is obtained by applying Shephard’s
lemma. Finally, farm-specific estimates of input
allocative inefficiency are obtained by using Far-
rell’s (1957) decomposition, i.e., E(Q,w,x,t) =
7’(Q,x,t).A(Q,w, x,t).

Empirical Model

For the purposes of the present study, the under-
lying production frontier function is approximated
by the generalized Cobb-Douglas form (Fan 1991),
i.e.,:

This may also be viewed as a translog specification
without cross terms, i.e. a strongly separable-in-
inputs translog production frontier function. As-
suming that all regularity conditions hold, a closed
form solution of the cost minimization problem
subject to (6) yields the following (dual) cost fron-
tier function:

j= 1

m

j=I

where B = l/~~( l/~k + ~k~t) – ~Jrn=z ln(~j + ~jltJ~k

+ ~ktt)(~j + ~jrt) – PO fork # J! @j = aj@Q! ~Q =

li~~= I (aj + ~j$), @jt = aj#Q$ ~t = ar~Q~ BH =

~t,~Q and ~CI = ~Q ko.

Battese and Coelli (1995) suggested that the
technical inefficiency effects, Uit, in the stochastic
production frontier model (4) could be replaced by
a linear function of explanatory variables, reflect-
ing farm-specific characteristics. The technical in-
efficiency effects are assumed to be independent,
non-negative truncations (at zero) of normal distri-
butions with unknown variance and mean. Specifi-
cally,

(8)

M

Ui, = F50+ ~ Smzmi,+ @if,

where qi~ are farm and time specific explanatory
variables (e.g., functions of farms and management

characteristics) associated with technical ineffi-
ciencies; 80 and ~~ are parameters to be esti -
mated;8 and Wit is a random variable with zero
mean and variance w:, defined by the truncation of
the normal distribution such that coil =–(?Io +
~~~z~if). Equation (8) implies that the means, pi,
= 80+ ~?inz~if, of the Ui,are different for different
farms but the variances, (r: are assumed to be the
same.

After substituting (6) and (8) into (4) the result-
ing model is estimated by a single-equation esti-
mation procedure using the maximum likelihood
method and the FRONTIER (version 4.1 a) com-
puter program developed by Coelli (1992). The
variance parameters of the likelihood function are
estimated in terms of U2 = U: + u: and y =
cr~/u2, where the -y-parameter has a value between
zero and one. The closer the estimated value of the
y-parameter is to one, the higher the probability of
the technical inefficiency effect to be significant in
the stochastic frontier model, thus the average re-
sponse production function is not an adequate rep-
resentation of the data.

Several hypotheses can be tested by using the
generalized likelihood-ratio statistic, h =
–2{ 1nL(Zfo) - in L(H1 ) }, where L(HO) and L(H1 )
denote the values of the likelihood function under
the null (Ho) and the alternative (Hl ) hypothesis,
respectively,9 First, if -y = O technical inefficiency
effects are non-stochastic and (4) reduces to the
average response function in which the explana-
tory variables in the technical inefficiency model
are also included in the production function. Sec-
end, ify = 130= 8~ = Ofor all m, the inefficiency
effects are not present. Consequently, each farm in
the sample is operating on the frontier, thus the
systematic and random technical inefficiency ef-
fects are zero. Third, if t3~ = O for all m, the
explanatory variables in the model for the technical
inefficiency effects have zero coefficients. In this
case, farm-specific factors do not influence tech-
nical inefficiency and (5) reduces to Stevenson’s
(1980) specification, where Ui, follow a truncated
normal distribution. Fourth, if 80 = 8* = O the
original Aigner, Lovell and Schmidt’s (1977)
specification is obtained, where Uif follow a half-
normal distribution.

n Biased estimates of 8., parameters may be obtained by not including
an intercept parameter 80 in the mean, p,,, and in such a case tbe shape
of the distribution of the inefficiency effects is unnecessarily restricted
(Battese and Coelli 1995),

g If the given null hypothesis is true, the genemlized Iikelibood-mtio
statistic has approximately a X2 distribution, except the case where the
null hypothesis involves also y = 0, Then, the asymptotic distribution of
A is a mixed X2 (Coelli 1995) and the appropriate critical values are
obtained from Kodde and Palm ( 1986).
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Table 1. Maximum Likelihood Estimates of a Cobb-Douglas Production Frontier Function for
Olive-Growing Farms in Greece, 1987-1993

Standard Standard
Parameter Estimate Error Parameter Estimate Error

Stochastic Frontier

~o 0.505 0.064”
~Fr

-0.007 0,016

~L 0.118 0.017*
%X

-0,013 0,009

% 0.024 0.014*
aAT

-0.060 0,040

% 0.010 0.007**
~T

0.055 0,038**

aA 0.650 0.046”
%-r

0,026 0.014**

aLT 0.001 0.020

Ineflcienty Effects Model
80 -6.947 5.155**
8

8,0c’,r,on
~.461 O.71O*

age -0.274 0.206
Z&,

(x.
0,902 0.688

0.003 0.002** ,mp’<)”t’m,n,
8 -0,747

8
0.333**

-0.334 0.239 t,.,,
,d,,c at,<m

0.860 0.087’ w’ 1.163 0.667”
&O) = -546.578

Note: L refers to labor, F to fertilizer, O to other cost, and A to land.
*Significant at 190 level of significance

**Significant at 5% level of significance

Data Description

The data used in this study were extracted from a
survey undertaken by the Institute of Agricultural
Economics and Rural Sociology, Greece. Our
analysis focuses on a sample of 110 olive-growing
farms, located in the four most productive regions
of Greece (Peloponissos, Crete and Sterea Ellada).
Observations were obtained on an annual basis
during the period 1987–1993, The sample was se-
lected with respect to production area, the total
number of farms within the area, the number of
olive trees on the farm, the area of cultivated land
and the share of olive oil production in farm out-
put.

The dependent variable is the annual olive oil
production measured in kilograms. The aggregate
inputs included as explanatory variables are: (a)
total labor, comprising hired (permanent and ca-
sual), family and contract labor, measured in work-
ing hours, It includes all farm activities such as
plowing, fertilization, chemical spraying, harvest-
ing, irrigation, pruning, transportation, administra-
tion and other services; (b) fertilizers, including
nitrogenous, phosphate, potash, complex and oth-
ers, measured in kilograms; (c) other cost ex-
penses, consisting of pesticides, fuel and electric
power, irrigation taxes, depreciation, interest pay-
ments, fixed assets interest, taxes and other mis-
cellaneous expenses, measured in drachmas (con-
stant 1990 prices); (d) land, including only the
share of farm’s land devoted to olive-tree cultiva-

tion measured in stremmas (one stremma equals
0.1 ha).

The following variables are included in the in-
efficiency effect model: first, farmer’s age and its
square measured in years. Second, farmer’s educa-
tion measured in years of schooling. Third, a
dummy variable determining the location of olive-
oil farms, which takes the value of one if the farm
locates in less-favored area and zero otherwise.
Fourth, a dummy variable indicating the existence
of an improvement plan taking place in the farm, It
takes the value of one if any improvement plan is
in order and zero otherwise. Fifth, a time trend to
capture the temporal
ciency.

Empirical Results

pattern of technical ineffi-

The estimated parameters of the stochastic quasi-
translog production frontier function are presented
in table 1, The estimated first-order parameters (CYj)
are having the anticipated (positive) sign and mag-
nitude (being between zero and one), and the bor-
dered Hessian matrix of the first and second-order
partial derivatives is negative semi-definite indi-
cating that regularity conditions hold at the point of
approximation (i.e., sample mean). That is, mar-
ginal products are positive and diminishing and the
production frontier is locally quasi-concave. The
estimated variance of the one-side error term is
found to be a; = 1.001 and that of the statistical



174 October 2001

noise U; = 0.162. The logarithm of the likelihood
function indicates a satisfactory fit for the quasi-
translog specification. Finally, given (7), the cor-
responding cost frontier is:

(9) in Cif = 18.811 + 1.2281nQi, + O.1451nw~,,
+ 0.0291 nwFi, + 0.0121 nW~if

+ 0.7981 nw~it + 0.068t + 0.032t2
+ 0.001 lnw~i~t– 0.0091 nwFitt
– 0.0 161nwoitt – t).t)741nwAi~t!

where L stands for labour, F for fertilizer, O
other costs, and A for land.

for

Hypotheses testing concerning model represen-
tation are reported in table 2.10 It is evident that the
conventional average production does not repre-
sent adequately the structure of olive-growing
farms inthesample. Thenull hypothesis thaty =
O is rejected at the 570 level of significance indi-
cates that the technical inefficiency effects are in
fact stochastic, as it isalsodepicted from thesta-
tistical significance of the y-parameter.’] Thus, a
significant part of output variability is explained by
the existing differences in the degree of technical
inefficiency. In addition, the hypothesis that the
inefficiency effects are absent from the model (i.e.,
-y = 80 = i3~ = O)isalso rejected atthe5’% level
of significance. This indicates that the majority of
farms in the sample operate below the technically
efficient frontier. Finally, notice that specification
(4) cannot be reduced either to Aigner, Lovell and
Schmidt’s (1977) or to Stevenson’s (1980) model,
as, respectively, the null hypothesis that 80 = S~
= Oand S~ = OVnzare rejected atthe5% level
of significance.

The age of the farmer, as a proxy of experience
and learning-by-doing, is one of the factors en-
hancing technical efficiency, while the positive
sign of the squared term supports the notion of
decreasing returns to experience (see table 1). Edu-
cation also has a positive impact on technical ef-
ficiency. Schooling helps farmers to use informa-
tion efficiently since a better educated farmer ac-
quires more information and is able to produce
more from a given input vector. However, the lo-
cation of farms in less favored areas negatively
affect their technical efficiency scores, while un-
dertaking an improvement plan within the farm
does not seem to affect technical efficiency as the

IaA1lhYPOth~S~St~s~i~gis conducted in terms of the estimated PrO-

ductirm front]er function and the results reported in table 1. Given the
self-duality of the estimated production frontier, all tests concerning the
structure of production are equivalent in terms of information provided
each time, regardless of the function used to conduct these tests.

‘‘ Notice [hat the probability the technical inefficiency effects to be
significant in the stochastic frontier model is high since the estimated
value of the y-parameter is close to one (see table t),
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Table 2. Model Specification Tests

Critical Value
Hypothesis A-Statistic (a = 0.05)

~=() 37.82 x; = 7.05*
y = 8,, = 6,,, = () Vm

=1, ...,6
49,33 x; = 14,85*

8,)=8m, =OVm=l, .,,6 41,72 x; = 14.10
8,,, =OVrn=l, ..,6 35.20 xi = 12,60

8,,,.. =0 9.10 X; = 3.84

~,, = a, = a,, = OVj
=1. ,..4

15.07 x: = 12,60

aJr=ov/= 1,...4 12.29 x; = 9.49

~J, = ~1 = ~1, = 6,,,,,<,
=ovj=l, ...4

17.1 x; = 14.10

,,,
~a, =lVj=l,...,4 21.42 x; = 3.84

*These values are taken from Kodde and Palm ( 1986)

corresponding estimated parameter is statistically
insignificant at the 570 level of significance. The
hypothesis that technical inefficiency is time-
invariant is rejected as the null hypothesis that ST
= O is rejected at the 5% level of significance (see
table 2), During the period 1987–1 993, output-
oriented technical efficiency tended to increase
over time as the estimated i3~parameter is negative
(see table 1).

Mean input-oriented technical efficiency in-
creased rather slowly from 76.6% in 1987 to
80.2% in 1993 (see table 3), implying that its con-
tribution to output growth would be relatively
small. However, most farms in the sample (77–
84%) have consistently achieved technical effi-
ciency scores greater than 70% during the period
under consideration. More importantly, this por-
tion of farms increased over time. The estimated
mean input-oriented technical efficiency was
found to be 78.6% during the period 1987-1993.
Thus, on average, a 21.4% decrease in total cost
could have been achieved during this period by
decreasing proportionally the quantity of inputs
used and without altering the total volume of pro-
duction.

The estimated mean input allocative efficiency
was found to be 74.1 ~o (see table 3), implying that
Greek olive-growing farms in the sample have
achieved a relatively good allocation of existing
resources. The great majority of farmers in the
sample (88–92910) have consistently achieved
scores of input allocative efficiency greater than
70% during the period 1987–1 993. Thus, it seems
that olive-growing farmers have shown a satisfac-
tory reaction and adjustment to market price sig-
nals. Nevertheless, mean input allocative effi-
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Table 3. Measures of Cost Eftlciency and Returns to Scale for Greek Olive Growing
Farms, 1987-1993

1987 1988 1989 1990 1991 1992 1993 1987-1993

<20
20-30
30-40
4&50
5G60
60-70
70-80
80-90
>90

0
0
2
5
5

13
32
49

4

0
0
I
5
3

13
33
54

2

0
0
1
1
6

10
32
57

3

Technical Efficiency

o 0 0
0 0 0
1 I o
1 1 1
4 4 5

12 13 14
37 37 34
46 45 46

9 9 10

0
0
1
1
7
8

29
53
11

0
0
0
0
0
8

55
47

0

Mean 76,6 77.5 78.2 78.8 79.2 79.8 80,2 78.6

Allocative Efficiency

<20
2&30
3040
40-50
50-60
60-70
7&80
80-90
>90

0
0
4
3
6

21
53
23

0

0
0
(1
6
6

20
48
30

0

0
0
1
2
8

19
41
38

1

0
0
1
2
8

20
50
25

4

0
0
1
2
6

23
43
29

6

(1
o
0
1
9

17
45
34

4

0
0
1
1
8

15
41
35

9

0
0
0
0
1

20
75
14
0

Mean 71.6 72.8 74.6 73.7 74.5 75.4 76.2 74.1

Productive Efficiency

<20
2&30
30-40
40-50
50-60
60-70
70-80
80-90
>90

5
3
6

15
29
37
15
0
0

2
5
7

14
26
35
21

0
0

1
3
8

14
24
36
21

2
1

1
4
8

10
34
27
19
7
0

2
3
4

17
31
21
22

9
1

0
2
8

14
28
24
25

7
2

I
4
7
9

24
28
28

1
8

0
0
1
8

46
49

6
0
0

Mean 56.2 57.3 59.1 59.1 60.1 61,1 62.4 59.3

Returns to Scale

0.838 0.824 0.816 0.811 0.806 0.803 0.800 0.814

ciency is smaller than corresponding point estimate
of input-oriented technical efficiency, indicating
that olive-growing farms did better in achieving
the maximum attainable output for given inputs
than in allocating existing resources. However, the
average annual rate of increase of input allocative
efficiency is greater than that of input-oriented
technical efficiency, thus its relative contribution
to output growth is expected to be relatively
greater.

The estimated mean cost efficiency was found to
be around 59% (see table 3), This figure represents
the ratio of minimum to actual cost of production
and implies that significant cost savings (41 %)
may be achieved by improving both technical and

allocative efficiency. Given the estimates of input-
oriented technical efficiency and of input alloca-
tive efficiency, it seems that cost inefficiency is
almost equally due to technical and allocative in-
efficiency. Cost efficiency increased over time
from 56.2?i0 in 1987 to 62.4% in 1993. Neverthe-
less, only a very small portion of farms in the
sample attended a score greater than 80%.

The hypothesis of a linearly homogeneous pro-
duction frontier is rejected at the 5% level of sig-
nificance (see table 2), implying the existence of
non-constant returns to scale. As a result, the scale
effect is a significant (in statistical grounds) source
of output growth and it should be taken into ac-
count in (3), According to the results reported in
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Table 4. Decomposition of Output Growth for Greek Olive-Growing Farms, 1987-1993

(I) (II) (III) (Iv)

Output Growthb 6.88
(100.0)

Aggregate Input Growth 3.89 4.54
(56.5) (68.0)

of which Labor 0.82
Fertilizer 1.22
Other Cost 0.38
Land 1.48

Total Factor Productivity Growth 2.28 2.16 3.59 2,16
(33.1) (31.4) (52.2) (32.0)

Of which Rate of Technical Change 1.57 1.57 3.00 I .57
(22.8) (22.8) (43,6) 22,8)

Autonomous part 0.66
Biased part 0.91

Scale Effect -0.52
(-7.6)

Change in Technical Efficiency 0.59 0,59 0.59 0,59
(8,6) (8.6) (8.6) (8.6)

Change in AUocative Efficiency 0.76
(11.0)

Price Adjustment Effect -0,12
(-1.7)

Unexplained Residual 0.72 0.83
(10.5) (12.1)

Notes: ‘Each column in table presents the estimates obtained from (I) present formulation; (11)Ahmad and Bravo-Ureta ( 1995); (III)
Fan (199 1); (IV) Kalirajan Obwona and Zhao (1996).
bNumbers in parentheses are percentages.

table 3, production is characterized by decreasing
returns to scale, which on average was 0.814 dur-
ing the period 1987–93. This implies that the con-
tribution of the scale effect to output growth would
be negative as far as output increases and vice
versa.

The decomposition analysis results are reported
in table 4. Those presented in the first column are
based on (3), An average annual rate of 6.88% is
observed for output growth during the period
1987–1 993, Our empirical findings suggest that
most of the output growth (56.5%) is due to input
increases. Only a portion of 33. 19Z0is attributed to
productivity growth, which grew with an average
annual rate of 2.2890. These results imply that,
during the period under consideration, Greek olive-
growing farmers have chosen the most expensive
way to expand production, namely the increase of
input use. Thus, substantial output increases may
still be achieved ceteris paribus by improving
TFP; this has important policy implications as far
as sources of productivity growth are identified.

Technical change was found to be the main
source of TFP growth accounting for about 22.8Y0.
The average annual rate of technical change is
found to be 1.57%, and its largest portion was
caused by the biased, rather than the autonomous,
counterpart. The scale effect, however, is negative

as olive-growing farms in Greece exhibited de-
creasing returns to scale and the aggregate input
increased over time. On average, diseconomies of
scale slowed down annual output growth by a rate
of 7.6%, and TFP by almost 23Y0. These rather
significant figures would have been omitted if con-
stant returns to scale were falsely assumed. In such
a case, TFP and output growth would have been
overestimated.

Both technical and allocative efficiencies have
enhanced TFP and output growth, Their relative
contribution to output growth depends on their rate
of change over time, rather than their absolute
magnitude. As shown in table 4, the relative con-
tribution of input allocative efficiency on output
growth (11 %), is greater than that of input-oriented
technical efficiency (8.670), as the average annual
rate of increase of the former was found to be
greater than that of the latter, By combining their
effects, it can be seen that improvements in cost
efficiency account for 19.6% of average annual
output growth. Notice also that the contribution of
cost efficiency on TFP growth is comparable with
that of technical change (see table 4).

The price adjustment effect was found to have a
very small impact on TFP and output growth. On
average, the price adjustment effect accounted for
1.7% of output change. However, given the exis-
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tence of allocative inefficiency, its impact cannot
be neglected in obtaining an accurate measure of
TFP growth rate. After accounting for all theoret-
ically proposed sources of TFP growth and for the
size effect, 10.5% of observed output growth re-
mained unexplained. Nevertheless, the unex-
plained portion of output growth is smaller than the
unexplained residual obtained by using Ahmad and
Bravo- LJreta’s (1995) approach (see table 4),
which does not account for the scale and the al-
locative inefficiency effects. ]2

The results of the present study indicate that the
contribution of input allocative efficiency and
scale economies into output growth cannot by any
means be negligible as 3 .4?lo of annual output are
attributed to their combined effect. If, for any rea-
son, these two effects were not incorporated into
output growth decomposition analysis, as in Ah-
mad and Bravo-Ureta (1995), the contribution of
TFP on output growth would be underestimated. 13
The corresponding figures are reported in column
H on table 4; the estimated average annual rate of
TFP decreases from 2.28% to 2. 16Y0. If, however,
technical change was calculated residually, as in
Fan (199 1), its contribution to TFP would be over-
estimated. In this case the estimated rate of tech-
nical change would be 3% instead of 1.57%, and
the average annual rate of TFP would be 3 ,59’?70
(see column III on table 4). The latter accounts for
52.2% of output growth. Finally, if the allocative
efficiency and the scale effects were not incorpo-
rated in decomposition analysis, and the size effect
was measured residually, as in Kalirajan, Obwona
and Zhao (1995), then the relative contribution of
input growth would be overestimated (see column
IV on table 4),

Concluding Remarks

This paper proposes an alternative methodology
for decomposing observed output growth by inte-
grating Bauer’s (1990) and Bravo-Ureta and Rieg-
er’s (1991) approaches. Within this framework,
output growth is decomposed into input growth,
technical change, scale economies, technical and
allocative efficiency, and a price adjustment effect
by relying on the econometric estimation of a self-

Iz A ~imilar ~omParison with Fan ( 1991) or Kalirajarr, ObwOna and

Zhao ( 1996) and Kalirajan and Shand (1997) approaches is not possible
as technical change and the size effect are respectively calculated in a
residual manner in these stud] es,

I~ [t ~hould be noticed that these comparison resuhs are data sPecific

and they cannot be affirmative generalizations. This holds for all the
results related with the comparison with previous studies,

dual production frontier. This methodology is ap-
plied to a panel data set for olive-growing farms in
Greece during the period 1987-1993. Empirical
findings indicate that both the scale and the (input)
allocative efficiency effects, which have not been
analyzed in previous studies, have a significant
role in explaining output growth; it is found that,
on average, they have caused a 7.6% slowdown
and a 11YOenhancement, respectively. Thus, there
may be significant differences in TFP growth by
not accounting simultaneously for these two ef-
fects.

Despite any errors that may arise by not ac-
counting for the allocative inefficiency and scale
effects when parametrically measuring TFP
growth, misconceptions also arise about the poten-
tial sources of TFP and output growth. This incom-
plete identification of TFP sources of growth, both
in terms of the factors that affect its evolution over
time and their relative contribution. voses some. .
concerns about the efficacy of various measures
used by policy makers to enhance productivity. In
the case-of olive-growing farmers- in Greece; for
example, quite a significant source of output
growth is excluded from the development policy
agenda when the effect of allocative inefficiency is
not taken into consideration in decomposition
analysis.
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