59 research outputs found

    Transcriptomic Shock Generates Evolutionary Novelty in a Newly Formed, Natural Allopolyploid Plant

    Get PDF
    SummaryNew hybrid species might be expected to show patterns of gene expression intermediate to those shown by parental species [1, 2]. “Transcriptomic shock” may also occur, in which gene expression is disrupted; this may be further modified by whole genome duplication (causing allopolyploidy) [3–16]. “Shock” can include instantaneous partitioning of gene expression between parental copies of genes among tissues [16–19]. These effects have not previously been studied at a population level in a natural allopolyploid plant species. Here, we survey tissue-specific expression of 144 duplicated gene pairs derived from different parental species (homeologs) in two natural populations of 40-generation-old allotetraploid Tragopogon miscellus (Asteraceae) plants. We compare these results with patterns of allelic expression in both in vitro “hybrids” and hand-crossed F1 hybrids between the parental diploids T. dubius and T. pratensis, and with patterns of homeolog expression in synthetic (S1) allotetraploids. Partitioning of expression was frequent in natural allopolyploids, but F1 hybrids and S1 allopolyploids showed less partitioning of expression than the natural allopolyploids and the in vitro “hybrids” of diploid parents. Our results suggest that regulation of gene expression is relaxed in a concerted manner upon hybridization, and new patterns of partitioned expression subsequently emerge over the generations following allopolyploidization

    A low-coverage 3′ RNA-seq to detect homeolog expression in polyploid wheat

    Full text link
    Although allopolyploid species are common among natural and crop species, it is not easy to distinguish duplicated genes, known as homeologs, during their genomic analysis. Yet, cost-efficient RNA sequencing (RNA-seq) is to be developed for large-scale transcriptomic studies such as time-series analysis and genome-wide association studies in allopolyploids. In this study, we employed a 3′ RNA-seq utilizing 3′ untranslated regions (UTRs) containing frequent mutations among homeologous genes, compared to coding sequence. Among the 3′ RNA-seq protocols, we examined a low-cost method Lasy-Seq using an allohexaploid bread wheat, Triticum aestivum. HISAT2 showed the best performance for 3′ RNA-seq with the least mapping errors and quick computational time. The number of detected homeologs was further improved by extending 1 kb of the 3′ UTR annotation. Differentially expressed genes in response to mild cold treatment detected by the 3′ RNA-seq were verified with high-coverage conventional RNA-seq, although the latter detected more differentially expressed genes. Finally, downsampling showed that even a 2 million sequencing depth can still detect more than half of expressed homeologs identifiable by the conventional 32 million reads. These data demonstrate that this low-cost 3′ RNA-seq facilitates large-scale transcriptomic studies of allohexaploid wheat and indicate the potential application to other allopolyploid species

    Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution?

    Full text link
    The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed “genome shock,” as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species

    Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Tragopogon mirus </it>and <it>T. miscellus </it>are allotetraploids (2<it>n </it>= 24) that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA) following the introduction of the diploids <it>T. dubius</it>, <it>T. porrifolius</it>, and <it>T. pratensis </it>(2<it>n </it>= 12) from Europe. In most natural populations of <it>T. mirus </it>and <it>T. miscellus</it>, there are far fewer 35S rRNA genes (rDNA) of <it>T. dubius </it>than there are of the other diploid parent (<it>T. porrifolius </it>or <it>T. pratensis</it>). We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids.</p> <p>Results</p> <p>Using Southern blot hybridization and fluorescent <it>in situ </it>hybridization (FISH), we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic <it>T. mirus </it>(110 individuals) and four lines of synthetic <it>T. miscellus </it>(71 individuals). Variation among diploid parents accounted for most of the observed gene imbalances detected in F<sub>1 </sub>hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either <it>T. porrifolius </it>or <it>T. pratensis</it>-type units, and only 7% had more rDNA copies of <it>T. dubius</it>-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids.</p> <p>Conclusions</p> <p>Uniparental reductions of homeologous rRNA gene copies occurred in both synthetic and natural populations of <it>Tragopogon </it>allopolyploids. The extent of these rDNA changes was generally higher in natural populations than in the synthetic lines. We hypothesize that locus-specific and chromosomal changes in early generations of allopolyploids may influence patterns of rDNA evolution in later generations.</p

    A Recently Formed Triploid Cardamine insueta Inherits Leaf Vivipary and Submergence Tolerance Traits of Parents

    Get PDF
    Contemporary speciation provides a unique opportunity to directly observe the traits and environmental responses of a new species. Cardamine insueta is an allotriploid species that appeared within the past 150 years in a Swiss village, Urnerboden. In contrast to its two progenitor species, Cardamine amara and Cardamine rivularis that live in wet and open habitats, respectively, C. insueta is found in-between their habitats with temporal water level fluctuation. This triploid species propagates clonally and serves as a triploid bridge to form higher ploidy species. Although niche separation is observed in field studies, the mechanisms underlying the environmental robustness of C. insueta are not clear. To characterize responses to a fluctuating environment, we performed a time-course analysis of homeolog gene expression in C. insueta in response to submergence treatment. For this purpose, the two parental (C. amara and C. rivularis) genome sequences were assembled with a reference-guided approach, and homeolog-specific gene expression was quantified using HomeoRoq software. We found that C. insueta and C. rivularis initiated vegetative propagation by forming ectopic meristems on leaves, while C. amara did not. We examined homeolog-specific gene expression of three species at nine time points during the treatment. The genome-wide expression ratio of homeolog pairs was 2:1 over the time-course, consistent with the ploidy number. By searching the genes with high coefficient of variation of expression over time-course transcriptome data, we found many known key transcriptional factors related to meristem development and formation upregulated in both C. rivularis and rivularis-homeolog of C. insueta, but not in C. amara. Moreover, some amara-homeologs of these genes were also upregulated in the triploid, suggesting trans-regulation. In turn, Gene Ontology analysis suggested that the expression pattern of submergence tolerant genes in the triploid was inherited from C. amara. These results suggest that the triploid C. insueta combined advantageous patterns of parental transcriptomes to contribute to its establishment in a new niche along a water-usage gradient

    Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica

    Get PDF
    Coffea arabica is an allotetraploid of high economic importance. C. arabica transcriptome is a combination of the transcripts of two parental genomes (C. eugenioides and C. canephora) that gave rise to the homeologous genes of the species. Previous studies have reported the transcriptional dynamics of C. arabica. In these reports, the ancestry of homeologous genes was identified and the overall regulation of homeologous differential expression (HDE) was explored. One of these genes is part of the FRIGIDA-like family (FRL), which includes the Arabidopsis thaliana flowering-time regulation protein, FRIGIDA (FRI). As nonfunctional FRI proteins give rise to rapid-cycling summer annual ecotypes instead of vernalization-responsive winter-annuals, allelic variation in FRI can modulate flowering time in A. thaliana. Using bioinformatics, genomic analysis, and the evaluation of gene expression of homeologs, we characterized the FRL gene family in C. arabica. Our findings indicate that C. arabica expresses 10 FRL homeologs, and that, throughout flower and fruit development, these genes are differentially transcribed. Strikingly, in addition to confirming the expression of FRL genes during zygotic embryogenesis, we detected FRL expression during direct somatic embryogenesis, a novel finding regarding the FRL gene family. The HDE profile of FRL genes suggests an intertwined homeologous gene regulation. Furthermore, we observed that FLC gene of C. arabica has an expression profile similar to that of CaFRL genes9FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP2013/17544-

    Genome-wide quantification of homeolog expression ratio revealed nonstochastic gene regulation in synthetic allopolyploid Arabidopsis

    Get PDF
    Genome duplication with hybridization, or allopolyploidization, occurs commonly in plants, and is considered to be a strong force for generating new species. However, genome-wide quantification of homeolog expression ratios was technically hindered because of the high homology between homeologous gene pairs. To quantify the homeolog expression ratio using RNA-seq obtained from polyploids, a new method named HomeoRoq was developed, in which the genomic origin of sequencing reads was estimated using mismatches between the read and each parental genome. To verify this method, we first assembled the two diploid parental genomes of Arabidopsis halleri subsp. gemmifera and Arabidopsis lyrata subsp. petraea (Arabidopsis petraea subsp. umbrosa), then generated a synthetic allotetraploid, mimicking the natural allopolyploid Arabidopsis kamchatica. The quantified ratios corresponded well to those obtained by Pyrosequencing. We found that the ratios of homeologs before and after cold stress treatment were highly correlated (r = 0.870). This highlights the presence of nonstochastic polyploid gene regulation despite previous research identifying stochastic variation in expression. Moreover, our new statistical test incorporating overdispersion identified 226 homeologs (1.11% of 20 369 expressed homeologs) with significant ratio changes, many of which were related to stress responses. HomeoRoq would contribute to the study of the genes responsible for polyploid-specific environmental response

    Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics

    Get PDF
    Open Access Journal; Published online: 22 Jan 2018The fate of doubled genes, from allopolyploid or autopolyploid origin, is controlled at multiple levels, resulting in the modern day cultivars. We studied the root growth of 3 different triploid banana cultivars under control and osmotic stress conditions. The root growth of the allopolyploid ABB cultivar was 42% higher under control and 61% higher under osmotic stress. By integrating transcriptomics and proteomics, we studied the gene expression of all 3 cultivars, resulting in 2,749 identified root proteins. 383 gene loci displayed genotype specific differential expression whereof 252 showed at least one Single Amino Acid Polymorphism (SAAP). In the ABB cultivar, allele expressions supposedly follow a 1/3 and 2/3 pattern for respectively the A and the B allele. Using transcriptome read alignment to assess the homeoallelic contribution we found that 63% of the allele specific genes deviated from this expectation. 32 gene loci even did not express the A allele. The identified ABB allele- specific proteins correlate well with the observed growth phenotype as they are enriched in energy related functions such as ATP metabolic processes, nicotinamide nucleotide metabolic processes, and glycolysis

    Cis–trans controls and regulatory novelty accompanying allopolyploidization

    Get PDF
    Allopolyploidy is a prevalent process in plants, having important physiological, ecological, and evolutionary consequences. Transcriptomic responses to genomic merger and doubling have been demonstrated in many allopolyploid systems, encompassing a diversity of phenomena including homoeolog expression bias, genome dominance, expression‐level dominance, and revamping of co‐expression networks. Notwithstanding the foregoing, there remains a need to develop a conceptual framework that will stimulate a deeper understanding of these diverse phenomena and their mechanistic interrelationships. Here we introduce considerations relevant to this framework with a focus on cis–trans interactions among duplicated genes and alleles in hybrids and allopolyploids. By extending classic allele‐specific expression analysis to the allopolyploid level, we distinguish the distinct effects of progenitor regulatory interactions from the novel intergenomic interactions that arise from genome merger and allopolyploidization. This perspective informs experiments designed to reveal the molecular genetic basis of gene regulatory control, and will facilitate the disentangling of genetic from epigenetic and higher‐order effects that impact gene expression. Finally, we suggest that the extended cis–trans model may help conceptually unify several presently disparate hallmarks of allopolyploid evolution, including genome‐wide expression dominance and biased fractionation, and lead to a new level of understanding of phenotypic novelty accompanying polyploidy
    corecore