1,030 research outputs found

    Robustness Analysis of Holonic Multi-Agent Systems: Application to Traffic Signals Control

    Get PDF
    Multi-Agent Systems (MASs) provide a powerful tool to model distributed systems. Large-scale systems contain many autonomous agents, and therefore, the agents should be able to work in a group and collaborate toward common objectives. Holonic Multi-Agent Systems (HMASs) present a suitable organization, especially in large-scale systems. The idea behind HMASs is a division of a system into smaller sub-systems in a recurrent way. A holon is defined as a self-similar structure that comprises holons as sub-structures. Therefore, a holarchy is a hierarchy of holons that act as autonomous wholes in super-ordination to their parts and as dependent parts in sub-ordination to controls on higher levels. There are two main attributes for a holarchy, the first attribute ensures that holons are in stable forms, which are robust against disturbances. The second one confirms that the holons are in intermediate forms, which provide the proper functionality for the whole. In this paper, we study the robustness of a holarchy for traffic signals control. Robustness is an essential feature for providing reliable solutions, especially in real world applications. We show that holonic MAS can be effectively used for traffic signals control as a robust modeling method

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    New Shop Floor Control Approaches for Virtual Enterprises

    Get PDF
    The virtual enterprise paradigm seems a fit response to face market instability and the volatile nature of business opportunities increasing enterprise’s interest in similar forms of networked organisations. The dynamic environment of a virtual enterprise requires that partners in the consortium own reconfigurable shop floors. This paper presents new approaches to shop floor control that meet the requirements of the new industrial paradigms and argues on work re-organization at shop floor level.virtual enterprise; networked organisations

    Design and implementation of a function block-based holonic control architecture for a new generation flexible manufacturing system

    Get PDF
    In this research work a control architecture which gives response to the requirements of new generation of flexible manufacturing systems in terms of flexibility, reconfigurability, robustness and autonomy is designed and implemented. To do so the main principles of the Holonic Manufacturing paradigm are applied using the IEC61499 function block (FB) technology. Unlike other similar research proposals, in this work FBs are not relegated to low-level control but are used to model manufacturing execution and control high-level control tasks. This is done with the objective of evaluating the viability of using FBs to develop holonic architectures in comparison to more established technologies like multi-agent systems. Moreover, the proposed control architecture also focuses on better integrating and exploiting the products’ information to enhance its flexibility and adaptability. For this STEP-NC (ISO14649) is used to model richer process plans which include manufacturing alternatives and could be easily integrated in the control itself

    Holonic multi-agent systems

    Get PDF
    A holonic multi-agent paradigm is proposed, where agents give up parts of their autonomy and merge into a super-agent"(a holon), that acts - when seen from the outside - just as a single agent again. We explore the spectrum of this new paradigm, ranging from definitorial issues over classification of possible application domains, an algebraic characterization of the merge operation, to implementational aspects: We propose algorithms for holon formation and on-line re-configuration. Based on some general criteria for the distinction between holonic and non-holonic domains, we examine domains suitable for holonic agents and sketch the implementation of holonic agents in these scenarios. Finally, a case study of a holonic agent system is presented in detail: TELETRUCK system is a fleet management system in the transportation domain
    corecore