22 research outputs found

    Holographic Algorithm with Matchgates Is Universal for Planar #\#CSP Over Boolean Domain

    Full text link
    We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#\#CSP) over Boolean variables into exactly three categories: (1) Polynomial-time tractable; (2) #\#P-hard for general instances, but solvable in polynomial-time over planar graphs; and (3) #\#P-hard over planar graphs. The classification applies to all sets of local, not necessarily symmetric, constraint functions on Boolean variables that take complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in category (2).Comment: 94 page

    On the Complexity of Holant Problems

    Get PDF
    In this article we survey recent developments on the complexity of Holant problems. We discuss three different aspects of Holant problems: the decision version, exact counting, and approximate counting

    Complexity dichotomies for approximations of counting problems

    Get PDF
    Αυτή η διπλωματική αποτελεί μια επισκόπηση θεωρημάτων διχοτομίας για υπολογιστικά προβλήματα, και ειδικότερα προβλήματα μέτρησης. Θεώρημα διχοτομίας στην υπολογιστική πολυπλοκότητα είναι ένας πλήρης χαρασκτηρισμός των μελών μιας κλάσης προβλημάτων, σε υπολογιστικά δύσκολα και υπολογιστικά εύκολα, χωρίς να υπάρχουν προβλήματα ενδιάμεσης πολυπλοκότητας στην κλάση αυτή. Λόγω του θεωρήματος του Ladner, δεν μπορούμε να έχουμε διχοτομία για ολόκληρες τις κλάσεις NP και #P, παρόλα αυτά υπάρχουν μεγάλες υποκλάσεις της NP (#P) για τις οποίες ισχύουν θεωρήματα διχοτομίας. Συνεχίζουμε με την εκδοχή απόφασης του προβλήματος ικανοποίησης περιορισμών (CSP), μία κλάση προβλήμάτων της NP στην οποία δεν εφαρμόζεται το θεώρημα του Ladner. Δείχνουμε τα θεωρήματα διχοτομίας που υπάρχουν για ειδικές περιπτώσεις του CSP. Στη συνέχεια επικεντρωνόμαστε στα προβλήματα μέτρησης παρουσιάζοντας τα παρακάτω μοντέλα: Ομομορφισμοί γράφων, μετρητικό πρόβλημα ικανοποίησης περιορισμών (#CSP), και προβλήματα Holant. Αναφέρουμε τα θεωρήματα διχοτομίας που γνωρίζουμε γι' αυτά. Στο τελευταίο και κύριο κεφάλαιο, χαλαρώνουμε την απαίτηση ακριβών υπολογισμών, και αρκούμαστε στην προσέγγιση των προβλημάτων. Παρουσιάζουμε τα μέχρι σήμερα γνωστά θεωρήματα κατάταξης για το #CSP. Πολλά ερωτήματα στην περιοχή παραμένουν ανοιχτά. Το παράρτημα είναι μια εισαγωγή στους ολογραφικούς αλγορίθμους, μία πρόσφατη αλγοριθμική τεχνική για την εύρεση πολυωνυμικών αλγορίθμων (ακριβείς υπολογισμοί) σε προβλήματα μέτρησης.This thesis is a survey of dichotomy theorems for computational problems, focusing in counting problems. A dichotomy theorem in computational complexity, is a complete classification of the members of a class of problems, in computationally easy and computationally hard, with the set of problems of intermediate complexity being empty. Due to Ladner's theorem we cannot find a dichotomy theorem for the whole classes NP and #P, however there are large subclasses of NP (#P), that model many "natural" problems, for which dichotomy theorems exist. We continue with the decision version of constraint satisfaction problems (CSP), a class of problems in NP, for which Ladner's theorem doesn't apply. We obtain a dichotomy theorem for some special cases of CSP. We then focus on counting problems presenting the following frameworks: graph homomorphisms, counting constraint satisfaction (#CSP) and Holant problems; we provide the known dichotomies for these frameworks. In the last and main chapter of this thesis we relax the requirement of exact computation, and settle in approximating the problems. We present the known cassification theorems for cases of #CSP. Many questions in terms of approximate counting problems remain open. The appendix introduces a recent technique for obtaining exact polynomial-time algorithms for counting problems, namely the holographic algorithms

    New Planar P-time Computable Six-Vertex Models and a Complete Complexity Classification

    Full text link
    We discover new P-time computable six-vertex models on planar graphs beyond Kasteleyn's algorithm for counting planar perfect matchings. We further prove that there are no more: Together, they exhaust all P-time computable six-vertex models on planar graphs, assuming #P is not P. This leads to the following exact complexity classification: For every parameter setting in C{\mathbb C} for the six-vertex model, the partition function is either (1) computable in P-time for every graph, or (2) #P-hard for general graphs but computable in P-time for planar graphs, or (3) #P-hard even for planar graphs. The classification has an explicit criterion. The new P-time cases in (2) provably cannot be subsumed by Kasteleyn's algorithm. They are obtained by a non-local connection to #CSP, defined in terms of a "loop space". This is the first substantive advance toward a planar Holant classification with not necessarily symmetric constraints. We introduce M\"obius transformation on C{\mathbb C} as a powerful new tool in hardness proofs for counting problems.Comment: 61 pages, 16 figures. An extended abstract appears in SODA 202

    FKT is not universal — A planar Holant dichotomy for symmetric constraints

    Get PDF

    Clifford Gates in the Holant Framework

    Get PDF
    We show that the Clifford gates and stabilizer circuits in the quantum computing literature, which admit efficient classical simulation, are equivalent to affine signatures under a unitary condition. The latter is a known class of tractable functions under the Holant framework.Comment: 14 page

    Planar 3-way Edge Perfect Matching Leads to A Holant Dichotomy

    Full text link
    We prove a complexity dichotomy theorem for a class of Holant problems on planar 3-regular bipartite graphs. The complexity dichotomy states that for every weighted constraint function ff defining the problem (the weights can even be negative), the problem is either computable in polynomial time if ff satisfies a tractability criterion, or \#P-hard otherwise. One particular problem in this problem space is a long-standing open problem of Moore and Robson on counting Cubic Planar X3C. The dichotomy resolves this problem by showing that it is \numP-hard. Our proof relies on the machinery of signature theory developed in the study of Holant problems. An essential ingredient in our proof of the main dichotomy theorem is a pure graph-theoretic result: Excepting some trivial cases, every 3-regular plane graph has a planar 3-way edge perfect matching. The proof technique of this graph-theoretic result is a combination of algebraic and combinatorial methods. The P-time tractability criterion of the dichotomy is explicit. Other than the known classes of tractable constraint functions (degenerate, affine, product type, matchgates-transformable) we also identify a new infinite set of P-time computable planar Holant problems; however, its tractability is not by a direct holographic transformation to matchgates, but by a combination of this method and a global argument. The complexity dichotomy states that everything else in this Holant class is \#P-hard.Comment: arXiv admin note: text overlap with arXiv:2110.0117

    The Complexity of Contracting Planar Tensor Network

    Full text link
    Tensor networks have been an important concept and technique in many research areas such as quantum computation and machine learning. We study the complexity of evaluating the value of a tensor network. This is also called contracting the tensor network. In this article, we focus on computing the value of a planar tensor network where every tensor specified at a vertex is a Boolean symmetric function. We design two planar gadgets to obtain a sub-exponential time algorithm. The key is to remove high degree vertices while essentially not changing the size of the tensor network. The algorithm runs in time exp(O(V))\exp(O(\sqrt{|V|})). Furthermore, we use a counting version of the Sparsification Lemma to prove a matching lower bound exp(Ω(V))\exp(\Omega(\sqrt{|V|})) assuming \#ETH holds
    corecore