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Abstract
In this article we survey recent developments on the complexity of Holant problems. We discuss
three different aspects of Holant problems: the decision version, exact counting, and approximate
counting.
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1 Introduction

Ladner’s theorem [53] states that if P 6= NP then there is an infinite hierarchy of intermediate
problems that are not polynomial time interreducible. For certain restrictions of these classes,
however, dichotomy theorems can be achieved. For NP a dichotomy theorem would state
that any problem in the restricted subclass of NP is either in P or NP-complete (or both, in
the eventuality that NP equals P.)

The restrictions for which dichotomy theorems are known can be framed in terms of local
constraints, most importantly, Constraint Satisfaction Problems (CSP) [58, 28, 4, 5, 6, 33,
38, 27, 37], and Graph Homomorphism Problems [34, 42, 8]. Explicit dichotomy results,
where available, manifest a total understanding of the class of computation in question,
within polynomial time reduction, and modulo the collapse of the class.

In this article we survey dichotomies in a framework for characterizing local properties
that is more general than those mentioned in the previous paragraph, namely the so-called
Holant framework [18, 19]. A particular problem in this framework is characterized by a set
of signatures as defined in the theory of Holographic Algorithms [65, 64]. The CSP framework
can be viewed as a special case of the Holant framework in which equality relations of any
arity are always assumed to be available in addition to the stated constraints. The extension
from CSP to Holant problems enables us to express certain important problems such as graph
matchings, which escape CSP [40] but are expressible in the Holant framework. Moreover,
for the same constrain language, Holant problems contain potentially more structure than
CSP. Indeed, in the Holant framework, new tractable cases emerge, the most notable among
which is holographic algorithms [65].
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The graph matching problem plays an important role in the studies of complexity theory,
leading to many exciting developments. Here is an (incomplete) list of related complexity
and algorithmic results:

There is a polynomial time algorithm to decide if a given graph has a perfect matching or
not. This is the remarkable blossom algorithm by Edmonds [35]. In fact, in that paper,
Edmonds proposed the complexity class P as the class of tractable problems.
Counting perfect matchings is #P-Complete. This is proved by Valiant [60], right after
he defined the class #P [61]. This problem is interesting since it shows that counting
version may be much harder than the decision version for the same problem.
Counting Perfect Matchings for planar graph is polynomial time solvable. This is the
famous FKT algorithm [48, 59, 49]. It also serves as the computational primitive for
Holographic algorithms [65].
There is a polynomial time algorithm to compute the parity of the number of (perfect)
matchings. The algorithm utilizes the fact that the value of permanent and determinate
is the same modular 2. Thus matching problems have an interesting complexity transition
from P and ⊕P to #P.
There is a fully polynomial-time randomized approximation scheme (FPRAS) for approx-
imately counting matchings. This is one of the first canonical examples of approximate
counting [45]. The known algorithm is randomized. Deterministic algorithm is known for
bounded degree graphs but open for general graphs [1].
There is a FPRAS for approximately counting perfect matchings for bipartite graphs. The
same algorithm can be used to approximate the permanent of nonnegative matrixes [47].
However it is a long-standing open question to generalize this algorithm to arbitrary
graphs (or to show the impossibility for such an algorithm to exist).

From this list, we can see that the graph matching problem often sits right at the boundary
between tractability and intractability. In order to understand the boundary of polynomial-
time computation through the lens of dichotomy theorems, it is intrinsically important to
include matching problems into consideration. Hence the natural framework to express
matching problems, namely Holant problems, are more desirable (and more challenging at
the same time) to understand than the conventional CSP framework. In this survey, we
summarize results for both decision version and counting version of Holant problems with a
focus on counting problems, since there is a lot of great progress in the last several years.

The Holant framework is strongly influenced by the development of holographic algorithms
and holographic reductions [65, 64, 16, 18]. Indeed, holographic reductions are developed and
applied as one of the primary techniques, which has not been used in the study of counting
CSP (#CSP) previously. One advantage of the Holant framework is its flexibility. The
conventional #CSP can be viewed as a special sub-framework of Holant by assuming that all
equality functions are freely available. It is natural to assume other freely available classes
of functions, such as the set of unary functions. When all unary functions are present, the
framework becomes similar to the “conservative” case of CSP. We emphasize that the Holant
framework is more flexible as a priori it assumes less freely available functions than the CSP.

In this survey, we put our attention mainly on Holant problems that cannot be expressed
in the CSP framework. We will assume some familiarity to CSP as well as basic and classical
dichotomy theorems for the CSP framework. Hence we can focus on new and interesting
phenomena which are unique for the Holant framework.
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Organization of the Survey
In Section 2, we formally define the framework of Holant Problems and some other basic
notations. Section 3 summarizes some results for the decision version of Holant problems.
Section 4 is the main section. We carefully discuss complexity dichotomies for the (exact)
counting version of the Holant framework. Section 5 surveys some approximate counting
results.

2 Definitions and Background

A signature grid Ω = (G,F , π) is a tuple, where G = (V,E) is a graph, F is a set of functions,
and π is a mapping from the vertex set V to F . A function f ∈ F with arity k is a mapping
[q]k → C, and the mapping π satisfies that the arity of π(v) (which is a function f ∈ F) is
the same as the degree of v for any v ∈ V . Here we may consider any function with the
range of a ring rather than just C, but we choose C in this survey for clarity. Let fv := π(v)
be the function on v. An assignment σ of edges is a mapping E → [q]. The weight of σ
is the evaluation

∏
v∈V fv(σ |E(v)), where E(v) denotes the set of incident edges of v. The

(counting version of) Holant problem on the instance Ω is to compute the sum of weights of
all assignments; namely,

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)). (1)

We also write Holant(Ω;F) when we want to emphasize the function set F .
The term Holant was first coined by Valiant in [65] to denote an exponential sum of the

above form. Cai, Xia and Lu first formally introduced this framework of counting problems
in [18, 19]. We can view each function fv as a truth table, and then we can represent it by a
vector in Cqd(v) , or a tensor in (Cq)⊗d(v). The vector or the tensor is called the signature
of a function. When we say “function”, we put a slight emphasis on that it is a mapping.
When we say “signature”, we put a slight emphasis on that it is ready to go through linear
transformations. However most of the time in this survey, we use the two terms “function”
and “signature” interchangeably without special attention.

A Holant problem is parameterized by a set of functions.

I Definition 1. Given a set of functions F , we define a counting problem Holant(F):
Input: A signature grid Ω = (G,F , π);
Output: HolantΩ.

We will use Pl-Holant(F) to denote the problem where the input graph is planar.
The main goal here is to characterize what kind of function set F makes the problem

Holant(F) tractable (or hard).
The main focus of this survey is for functions over the Boolean domain {0, 1}, which

we call Boolean functions. We use the following notations to denote some special functions.
Let =k denote the equality function of arity k. Let ∆s denote the constant unary function
which gives value 1 on inputs s ∈ [q], and 0 on all other inputs. Let ExactOnek denote the
function that is one if the input has Hamming weight 1 and zero otherwise. Let EO be the
set of ExactOnek functions for all integers k. Then Holant(EO) is the same as the problem
of counting perfect matchings.

A function is symmetric iff its function value is preserved under any permutation of
its inputs. A symmetric function f on Boolean variables can be expressed by a compact
signature [f0, f1, . . . , fk], where fi is the value of f on inputs of Hamming weight i. For the
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Boolean domain [2] = {0, 1}, =k function has the signature [1, 0, . . . , 0, 1] with k + 1 entries
and ∆0 has [1, 0]. Moreover, ExactOnek has signature [0, 1, 0, . . . , 0] of k + 1 entries.

Multiplying a signature f ∈ F by a scaler c 6= 0 will not change the complexity of
Holant(F). So we always view f and cf as the same signature. In other words, we consider
the projective space of vectors or tensors.

Another important property of signatures is degeneracy.

I Definition 2. A signature is called degenerate iff it can be decomposed into a tensor
product of unary signatures.

In particular, a symmetric signature over a Boolean domain is degenerate iff it can be
expressed as λ[x, y]⊗k.

We use Holant (F | G) to denote the Holant problem over signature grids with a bipartite
graph H = (U, V,E), where each vertex in U or V is assigned a signature in F or G,
respectively. Signatures in F are considered as row vectors (or covariant tensors); signatures
in G are considered as column vectors (or contravariant tensors) (see, for example [30]).
In this setting we sometimes write the Holant sum as Holant(Ω;F | G) for input Ω. Let
Pl-Holant (F | G) denote the Holant problem over signature grids with a planar bipartite
graph.

2.1 Holographic Reductions
One key technique for Holant problems is holographic reductions. To introduce the idea, it is
convenient to consider bipartite graphs. For a general graph, we can always transform it into
a bipartite graph while preserving the Holant value as follows. For each edge in the graph,
we replace it by a path of length two. (This operation is called the 2-stretch of the graph and
yields the edge-vertex incidence graph.) Each new vertex is assigned the binary Equality
signature (=2) = [1, 0, 1]. Recall that Holant (F | G) denotes the Holant problem over
signature grids with a bipartite graph H = (U, V,E), where each vertex in U or V is assigned
a signature in F or G, respectively. Hence we have that Holant(F) ≡T Holant (=2| F).

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity
n, g = T⊗nf}, and similarly for FT . Whenever we write T⊗nf or TF , we view the
signatures as column vectors; similarly for fT⊗n or FT as row vectors. In the special case
that T =

[ 1 1
1 −1

]
, we use F̂ to denote TF .

Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T is
the following operation: given a signature grid Ω = (H,π) of Holant (F | G), for the same
bipartite graph H, we get a new grid Ω′ = (H,π′) of Holant

(
FT | T−1G

)
by replacing each

signature in F or G with the corresponding signature in FT or T−1G.

I Theorem 3 (Valiant’s Holant Theorem [65]). If T ∈ C2×2 is an invertible matrix, then we
have Holant(Ω;F | G) = Holant(Ω′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity of the
Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic
transformation, the orthogonal transformation, that preserves the binary equality and thus
can be used freely in the standard setting.

I Theorem 4 (Theorem 2.6 in [20]). If T ∈ O2(C) is an orthogonal matrix (i.e. TT T = I2),
then Holant(Ω;F) = Holant(Ω′;TF).

We frequently apply a holographic transformation defined by the matrix Z = 1√
2

[ 1 1
i −i

]
(or sometimes without the nonzero factor of 1√

2 since this does not affect the complexity). This
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matrix has the property that the binary Equality signature (=2) = [1, 0, 1] is transformed
to [1, 0, 1]Z⊗2 = [0, 1, 0] = (6=2), the binary Disequality signature.

By Theorem 3, we have that

Holant(F) ≡ Holant
(
[1, 0, 1]T⊗2 | T−1F

)
Pl-Holant(F) ≡ Pl-Holant

(
[1, 0, 1]T⊗2 | T−1F

)
,

where T ∈ GL2(C) is nonsingular. This leads to the notion of C-transformable.

I Definition 5. Let F and C be two sets of signatures. We say F is C-transformable if there
exists a T ∈ GL2(C) such that [1, 0, 1]T⊗2 ∈ C and F ⊆ TC.

The following lemma is immediate.

I Lemma 6. If F is C-transformable, then we have the following reductions.

Holant(F) ≤T Holant(C);
Pl-Holant(F) ≤T Pl-Holant(C).

Clearly, if Holant(C) or Pl-Holant(C) is tractable, then Holant(F) or Pl-Holant(F) is tractable
for any C-transformable set F .

2.2 Counting Constraint Satisfaction Problems
An instance of counting constraint satisfaction problems (#CSP(F)) has the following
bipartite view. We have a set of vertices standing for variables and another set for functions
(or constraints). Connect a variable vertex to a constraint vertex if the variable appears in
the constraint. This bipartite graph is also known as the constraint graph. Moreover, each
variable can be viewed as an Equality function, as it forces the same value for all adjacent
edges. Under this view, we see that

#CSP(F) ≡T Holant (EQ | F) ,

where EQ = {=1,=2,=3, . . . } is the set of Equality signatures of all arities.
The relationship between #CSP and Holant problems is the following:

#CSP(F) ≡T Holant(EQ ∪ F);
Pl-#CSP(F) ≡T Pl-Holant(EQ ∪ F).

Reductions from left to right are trivial. For the other direction, we take a signature grid
Ω for the problem on the right and create a bipartite signature grid Ω′ for the problem on
the left such that both signature grids have the same Holant value. We simply create the
equivalent bipartite grid Ω′′ of Ω by replace each edge with a path of length 2 with =2 in
the middle point, as described earlier. Then we contract all Equality signatures that are
connected with each other, resulting in Ω′ where Equality signatures are on one side and
signatures from F on the other.

3 Decision Version

In the decision version, we focus on the functions taking values in {0, 1} and ask the question
if the Holant value (as defined in (1)) is zero or not, or equivalently ask if there exists an
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assignment to satisfy all constraints or not. In this case, a function is a relation and it can
also be viewed as a subset of all the possible assignments.

For the decision version of the CSP framework, it is a long standing open question to
prove a dichotomy in general. But if we restrict to the Boolean domain, a classification is
given by Schaefer [58] as one of the first computational complexity dichotomy theorems. The
same dichotomy holds even if we restrict to the instances where each variable appears in at
most three constraints. On the other hand, the decision version of Holant is equivalent to
CSP where each variable appears at most twice. Its complexity classification, even for the
Boolean domain, is still wide open and very interesting. To see why this is challenging, note
that the perfect matching problem is a Holant problem defined by the ExactOnek function
(with signature [0, 1, 0 . . . , 0]). Deciding the existence of a perfect matching is polynomial
time solvable due to Edmonds’s remarkable blossom algorithm [36]. However Edmonds’s
algorithm is highly non-trivial. Indeed it is much more complicated than any of the tractable
cases in Schaefer’s dichotomy for the CSP framework, and utilizes a lot of special structures
intrinsic to the problem. It is hard to rule out the possibility of other similar tractable
problems. The following family of ∆-matroid relations turn out to be the main obstacle. Let
ei denote the unit vector which is 0 on all indices other than i, on which its entry is 1.

I Definition 7. Let M be a subset of {0, 1}d. It is called a ∆-matroid if for any pair of
vectors x, y ∈M that differ on some index i, either x⊕ ei ∈M , or there exists another index
j 6= i on which x and y also differ and x⊕ ei ⊕ ej ∈M .

We say a relation R (or a {0, 1} valued function f) is a ∆-matroid if the set of allowed
assignments of R (or the set of inputs x such that f(x) = 1) is a ∆-matroid.

It is easy to verify that the perfect matching function (ExactOnek function) is a ∆-
matroid according to the definition, but there are many more functions that are ∆-matroids.
In particular, it was shown that there are functions in this family which cannot be expressed
by composition of ExactOnek functions. Feder showed the following hardness result:
unless all relations in F are ∆-matroids, the decision Holant(F) has the same complexity as
CSP(F) [39]. Based on this hardness result, we have the following classification result.

I Theorem 8. All decision Holant(F) problems are divided into three classes according
to F :
1. Every function in F is a ∆-matroid;
2. If CSP(F) is tractable according to the dichotomy classification of Schaefer [58], then

Holant(F) is also tractable;
3. Otherwise, Holant(F)is NP-complete.

The only remaining open case is the complexity of ∆-matroid functions in the Holant
framework. A number of tractable classes of ∆-matroids have been identified [26, 39, 29, 41,
50], but it seems to be still quite challenging to settle the complexity for the whole class. A
recurring theme is the connection between ∆-matroids and matching problems. Here we
mention two known tractable classes of ∆-matroids.

For a symmetric relation [f0, f1, . . . , fk] where fi ∈ {0, 1}, the number of consecutive 0’s
between two 1’s is called a gap. For example, [0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0] have two gaps with
length 2 and 3 respectively, while the one 0 in the beginning and two 0’s at the end are not
viewed as gaps. It is not difficulty to verify that, a symmetric relation is a ∆-matroid if and
only if it has no gap with length larger than one. For all symmetric ∆-matroid relations, the
decision Holant problem is tractable [26].

I Theorem 9. If all the relations in F are symmetric and ∆-matroid, i.e. the largest gap of
any relation in F has length 1, then there is a polynomial time algorithm to decide Holant(F).
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Another broad family of tractable functions is called even ∆-matroid relations, shown
recently by Kazda, Kolmogorov, and Rolínek [50]. A ∆-matroid relation M is called even if
all vectors in M have the same parity of their Hamming weights; that is, they all have even
Hamming weights or all have odd Hamming weights.

I Theorem 10. If F contains only even ∆-matroid relations, then decision Holant(F) can
be solved in polynomial time.

This tractability result for even ∆-matroid relations leads to a complete complexity
dichotomy of Boolean CSP on planar graphs (see [31, 50]).

4 Exact Counting

There has been a lot of progress in understanding the complexity of computing the Holant
sum exactly. In particular, we have a thorough understanding of Holant problems defined by
Boolean symmetric functions, even if the input is restricted to planar graphs and the weights
are complex.

The following theorem is a combination of [11, 9], the culminating results from a long
line of research [23, 19, 21, 51, 52, 15, 14, 13, 44]. We are interested in general input graphs
as well as planar graphs. The Holant framework was first proposed to systematically study
the power of Valiant’s holographic algorithms [65], which was designed to solve counting
problems in planar graphs. When inputs are planar graphs, the problem is denoted by
Pl-Holant(F).

I Theorem 11. Let F be a set of Boolean symmetric functions with complex weights.
Holant(F) either has a polynomial time algorithm, or is #P-hard to compute. This dichotomy
also holds for Pl-Holant(F) (but the tractable criterion is different).

In fact, we know more than merely that the dichotomy holds. (This is non-trivial due to
Ladner’s Theorem [53]) We have a complete explicit criteria for tractable sets of functions
in Theorem 11. In order to describe the criteria, we will first introduce some families of
functions that appear as tractable cases in the dichotomy theorem.

4.1 Tractable Families
We summarize several known sets of tractable Boolean functions with complex weights.
The first one is very simple. If all signatures are degenerate or binary, then the problem is
tractable.

For a binary signature, define its matrix as

Mf :=
[
f(00) f(01)
f(10) f(11)

]
. (2)

Connecting f to g via one edge gives another signature h with the matrix Mh = MfMg.

I Lemma 12. Let F be a set of complex weighted symmetric signatures in Boolean variables.
Then Holant(F) is computable in polynomial time if all non-degenerate signatures in F are
of arity at most 2.

Proof. We first replace degenerate signatures by a bunch of equivalent unary signatures.
Then any instance of Holant(F) can be decomposed into paths and cycles. The Holant is a
product of all paths and cycles.
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For a path, we remove the two endpoints, leaving a binary signature f composed by a
series of binary signatures. Compute the signature matrix Mf of f by multiplying all binary
signatures along the path. Then the Holant is vMfu

T, where v and u are the two unary
signatures at endpoints.

For a cycle, we arbitrarily break an edge getting a path with two dangling edges. Similar
to the above case, we multiply matrices of all binary signatures along this path, getting M .
The trace of M is the Holant. J

We further note that for a binary signature f and T ∈ C2×2, let g = fT⊗2. Then

Mg = TMfT
T. (3)

This can be seen by viewing T as a binary, and then treating g as connecting T , f , and T T

sequentially.

4.1.1 Affine Signatures
I Definition 13 (Definition 3.1 in [25]). A k-ary function f(x1, . . . , xk) is affine if it has the
form

λ · χAx=0 · i
∑n

j=1
〈vj ,x〉,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over F2, vj is a vector over F2, and χ is a
0-1 indicator function such that χAx=0 is 1 if and only if Ax = 0. Note that the dot product
〈vj , x〉 is calculated over F2, while the summation

∑n
j=1 on the exponent of i =

√
−1 is

evaluated as a sum mod 4 of 0-1 terms. We use A to denote the set of all affine functions.

The matrix A defines an affine space which is the support of the signature f (and hence
the name). Notice that there is no restriction on the number of rows in the matrix A. It is
permissible that A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent way
to express the exponent of i is as a quadratic polynomial where all cross terms have an even
coefficient (cf. [7]).

It is known that the set of non-degenerate symmetric signatures in A is precisely the
nonzero signatures (λ 6= 0) in F1 ∪ F2 ∪ F3 with arity at least 2, where F1, F2, and F3 are
three families of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, (4)

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list these signatures up to an arbitrary constant multiple from C, see Table 1.
The tractability of A is first shown in [25]. It was later generalized to arbitrary domain

size using Gauss sums [7]. Together with Lemma 6, we have the following.

I Lemma 14. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is A-transformable, then Holant(F) is computable in polynomial time.

4.1.2 Product-Type Signatures
I Definition 15 (Definition 3.3 in [25]). A function is of product type if it can be expressed
as a product of unary functions, binary equality functions ([1, 0, 1]), and binary disequality
functions ([0, 1, 0]). We use P to denote the set of product-type functions.
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Table 1 List of all non-degenerate affine signatures.

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)
10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

An alternate definition for P, implicit in [22], is the tensor closure of signatures with
support on two complementary bit vectors. It is easily shown (cf. Lemma A.1 in the
full version of [44]) that if f is a symmetric signature in P, then f is degenerate, binary
Disequality 6=2, or [a, 0, . . . , 0, b] for some a, b ∈ C.

The tractability of P is due to a straightforward propagation algorithm (see, for example
[25]). Together with Lemma 6, we have the following.

I Lemma 16. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is P-transformable, then Holant(F) is computable in polynomial time.

4.1.3 Vanishing Signatures
Vanishing signatures define Holant problems where the Holant sum is always 0.

I Definition 17. A set of signatures F is called vanishing if Holant(Ω;F) = 0 for every
signature grid Ω. A signature f is called vanishing if the singleton set {f} is vanishing.

A useful way to understand vanishing signatures is via a low rank tensor decomposition.
To state these decompositions, we use the following definition.

I Definition 18. Let Sn be the symmetric group of degree n. Then for positive integers t
and n with t ≤ n and unary signatures v, v1, . . . , vn−t, we define

Symt
n(v; v1, . . . , vn−t) =

∑
π∈Sn

n⊗
k=1

uπ(k),

where the ordered sequence (u1, u2, . . . , un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

With this notation we can define the vanishing degree.

I Definition 19. A nonzero symmetric signature f of arity n has positive vanishing degree
k ≥ 1, denoted by vd+(f) = k, if k ≤ n is the largest positive integer such that there exists
n− k unary signatures v1, . . . , vn−k such that

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If f is the
all zero signature, define vd+(f) = n+ 1.

We define negative vanishing degree vd− similarly, using −i instead of i.
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It is possible that both vd+(f) and vd−(f) are nonzero. For example, vd+(=2) =
vd−(=2) = 1.

The following theorem completely characterizes symmetric vanishing signatures. It is
proved in [11]. For σ ∈ {+,−}, let Vσ := {f | 2 vdσ(f) > arity(f)}.

I Theorem 20. Let F be a set of symmetric signatures. Then F is vanishing if and only if
F ⊆ V+ or F ⊆ V−.

Obviously, vanishing signatures define tractable Holant problems. The algorithm is simple
– just output 0! However, vanishing signatures can be combined with other functions and
remain tractable. The following two lemma are shown in [11].

I Lemma 21. Let σ = + or −. Let F be a set of complex weighted symmetric signatures
in Boolean variables. Then Holant(F) is computable in polynomial time if F ⊆ Vσ ∪ {f |
vdσ(f) ≥ 1& arity(f) = 2}.

I Lemma 22. Let σ = + or −. Let F be a set of complex weighted symmetric signatures in
Boolean variables. Then Holant(F) is computable in polynomial time if any non-degenerate
signature f ∈ F satisfies that vdσ(f) ≥ arity(f)− 1.

Lemma 21 can be understood as putting vanishing signatures and certain kind of binary
signatures together remain tractable. Lemma 22 can be understood as highly vanishing
signatures (vdσ(f) ≥ arity(f)− 1) can be put together with all unary signatures and remain
tractable, since unary signatures automatically satisfy the condition vdσ(f) ≥ arity(f)−1 = 0.

4.1.4 Matchgate Signatures
Matchgates were introduced by Valiant [63, 62] to give polynomial-time algorithms for a
collection of counting problems over planar graphs. As the name suggests, problems express-
ible by matchgates can be reduced to computing a weighted sum of perfect matchings. The
latter problem is tractable over planar graphs by Kasteleyn’s algorithm [49]. Historically the
algorithm was first found by Temperley and Fisher for Z2 [59] and independently by Kasteleyn
[48]. It was later generalized to general planar graphs by Kastelyn [49]. Hence sometimes
it is also called the FKT algorithm. These counting problems are naturally expressed in
the Holant framework using matchgate signatures, denoted by M. Thus Pl-Holant(M) is
tractable.

Formally, recall that EO is the set of ExactOnek functions for all integers k. Let WEO
be the set of weighted ExactOnek functions for all k. Then M contains signatures that
can be realized as an WEO-gate (realizable by functions in the set WEO). Holographic
transformations extend the reach of the FKT algorithm even further by Lemma 6, as stated
below.

I Lemma 23. Let F be any set of symmetric, complex-valued signatures in Boolean variables.
If F is M-transformable, then Pl-Holant(F) is computable in polynomial time.

Matchgate signatures are characterized by the matchgate identities (for an up-to-date
treatment, see [10] for the identities and a self-contained proof). Any matchgate signature f
must satisfy the parity condition, which asserts that the support of f has to contain entries
of only even or odd Hamming weights, but not both. For symmetric matchgates, they have
0 for every other entry and form a geometric progression with the remaining entries. We
explicitly list all the symmetric signatures in M (see [10]).
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I Proposition 24. Let f be a symmetric signature in M. Then there exists a, b ∈ C and
n ∈ N such that f takes one of the following forms:
1. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n ≥ 2);
2. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 1 ≥ 1);
3. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n+ 1 ≥ 1);
4. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n+ 2 ≥ 2).
In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any multiple
of these is also a matchgate signature.

Note that perfect matching signatures, [0, 1, 0, · · · , 0], and their reversal are special cases
when b = 0 or a = 0 in the last two cases.

Similar to vanishing signatures, signatures in M have low rank decompositions as well.

I Proposition 25. Let f be a symmetric signature in M of arity n. Then there exist
a, b, λ ∈ C such that f takes one of the following forms:

1. [a, b]⊗n + [a,−b]⊗n =
{

2[an, 0, an−2b2, 0, . . . , 0, bn] n is even,
2[an, 0, an−2b2, 0, . . . , 0, abn−1, 0] n is odd;

2. [a, b]⊗n − [a,−b]⊗n =
{

2[0, an−1b, 0, an−3b3, 0, . . . , 0, abn−1, 0] n is even,
2[0, an−1b, 0, an−3b3, 0, . . . , 0, bn] n is odd;

3. λ Symn−1
n ([1, 0]; [0, 1]) = [0, λ, 0, . . . , 0];

4. λ Symn−1
n ([0, 1]; [1, 0]) = [0, . . . , 0, λ, 0].

The understanding of matchgates was further developed in [17], which characterized,
for every symmetric signature, the set of holographic transformations under which the
transformed signature becomes a matchgate signature.

4.1.5 An Extra Planar Tractable Case
In [9], towards a complete planar dichotomy theorem, a new tractable case was found for
planar graphs.

Recall that EO is the set of functions ExactOnek for all arities k, and Z =
[ 1 1
i −i

]
. Let

EO′ be the set of inverses of ExactOnek for all arities k. Namely, f ∈ EO′ requires the input
to have hamming weight exactly (arity−1). Let WEQ denotes the set of weighted equality
functions. Moreover, let F∗ denote F with all degenerate signatures [a, b]⊗m replaced by
unary [a, b]. Then we have the following lemma [9].

I Lemma 26. Let F be a set of symmetric Boolean functions. If F ⊆ ZP ∪ Z(EO) or
F ⊆ ZP ∪ Z(EO′), and the greatest common divisor of the arities of the signatures in
F∗ ∩ Z(WEQ) is at least 5, then Holant(F) is tractable.

The algorithm of this special case is a recursive procedure to find edges that either have
to be a particular value, or do not have satisfying assignments. We can show that either
these edges show up in the graph, or the instance falls into one of the tractable cases above.
The existence of these edges (namely, when the instance is not solvable by previous cases) is
due to the degree rigidity of a planar graph. (For example, the average degree of a planar
graph cannot be more than 6.)

4.2 The Full Dichotomy
After introducing tractable families, we can finally state the dichotomy theorem in full detail.
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I Theorem 27. Let F be any set of symmetric, complex-valued functions in Boolean variables.
Then Pl-Holant(F) is #P-hard unless F satisfies one of the following conditions:
1. All non-degenerate signatures in F are of arity at most 2;
2. F is A-transformable;
3. F is P-transformable;
4. F ⊆ Vσ ∪ {f | vdσ(f) ≥ 1& arity(f) = 2} for some σ ∈ {+,−};
5. Any non-degenerate signature f ∈ F satisfies arity(f)− vdσ(f) ≤ 1 for some σ ∈ {+,−}.
6. F is M-transformable;
7. F ⊆ ZP ∪ Z(EO) or F ⊆ ZP ∪ Z(EO′), and the greatest common divisor of the arities

of the signatures in F∗ ∩ Z(WEQ) is at least 5.
In each exceptional case, Pl-Holant(F) is computable in polynomial time. If F satisfies
conditions 1 to 5, then Holant(F) is computable in polynomial time without planarity;
otherwise Holant(F) is #P-hard.

4.3 Beyond Boolean and Symmetric Functions
In full generality, we would like to understand the complexity of Holant problems defined
by any set of functions, rather than just symmetric Boolean functions. However, the
understanding of those Holant problems is far from complete.

Still in the Boolean domain, the best dichotomy result we know of regarding asymmetric
functions is [22]. A crucial constraint for the result of [22] is that it requires unary functions
to be available freely. This corresponds to the “conservative” case in the study of CSP
problems. We use Holant∗(F) to denote these problems.

For asymmetric functions, we need to be careful to state the result. Let 〈F〉 of a set
F denote its tensor closure; namely, 〈F〉 is the minimum set containing F , closed under
tensor product. This closure exists, being the set of all functions obtained by taking a finite
sequence of tensor products from F .

Let T be the set of all unary and binary functions. Let E be the set of all functions
f such that f is zero except on two inputs (x1, . . . , xn) and (1− x1, . . . , 1− xn). In other
words, f ∈ E iff its support is contained in a pair of complementary points. We think of E as
a generalized form of equality functions. LetM be the set of all functions f such that f is
zero except on n+ 1 inputs whose Hamming weight is at most 1, where n is the arity of f .
We think ofM as a generalized form of matchings.

Recall that Z =
[ 1 1
i −i

]
. Let Z ′ =

[ 1 1
−i i

]
. Then we have the following theorem [22].

I Theorem 28. Let F be any set of complex valued functions in Boolean variables. The
problem Holant∗(F) is polynomial time computable, if (1) F ⊆ 〈T 〉, or (2) there exists an
orthogonal matrix H such that F ⊆ H, or (3) F ⊆ 〈ZE〉 or F ⊆ 〈Z ′E〉, or (4) F ⊆ 〈ZM〉
or F ⊆ 〈Z ′E〉. In all other cases, Holant∗(F) is #P-hard. The dichotomy is still true even
if the inputs are restricted to planar graphs.

Going beyond the Boolean domain, [24] gives a dichotomy theorem regarding Holant∗

problems defined by a single ternary symmetric function over a domain of size 3. The
statement is rather technical and we refer the interested readers to [24] for details.

For even larger domain sizes, we know the complexity of counting k-edge-colourings over
(planar) d-regular graphs for any pair of integers (k, d) [12]. Edge colourings are special cases
of Holant problems where the domain size is k and the constraint on the vertex requires that
all inputs are distinct. Following this path a dichotomy is known for Holant problems defined
by ternary functions and with certain high symmetry [12]. This symmetry requirement is
inspired by the All-Distinct constraint of edge colorings. For simplicity here we only
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state the edge coloring result and refer the reader to [12] for the more technical dichotomy
theorem.

I Theorem 29. Counting k-edge-colourings is #P-hard over planar d-regular (multi-)graphs
if k ≥ d ≥ 3.

Note that if d ≤ 2 the problem is trivial, and if k < d there is no such colourings.

5 Approximate Counting

In this last section, we study the approximation version of counting problems. For any given
parameter ε > 0, the algorithm outputs a number Ẑ such that (1 − ε)Z ≤ Ẑ ≤ (1 + ε)Z,
where Z is the accurate Holant summation of the input instance. We also require that the
running time of the algorithm is bounded by poly(n, 1/ε), where n is the number of vertices of
the given graph. This is called a fully polynomial-time approximation scheme (FPTAS). The
randomized relaxation of FPTAS is called fully polynomial-time randomized approximation
scheme (FPRAS), which uses random bits in the algorithm and requires that the final output
is within the range [(1− ε)Z, (1 + ε)Z] with high probability.

Recall that we may view Holant problems as a CSP where each variable appears at most
twice. The CSP problem with a degree bound is not necessarily of the same computational
complexity as the problem without the degree bound even if the degree bound is larger
than 2. New and interesting tractable families show up. For degree bounds larger than 2, a
partial classification was known (see, for example [32]). On the other hand, the situation of
Holant (bounded degree 2) is wide open, and it seems that there are many more tractable
problems. Here we list a number of interesting ones.

Matching. There is an FPRAS for counting the number of matchings, even with weights [45].
Parity Function. A parity function is a symmetric function of form [a, b, a, b, · · · ]. If the

constraint in each vertex is a parity function, there is an FPRAS for computing the
partition function for any weighted graphs [46]. By transforming to this Holant problem
(which was called the “subgraph world” problem in [46]) of parity functions, an FPRAS
for ferromenaginic Ising model was given by Jerrum and Sinclair [46]

SAT. For SAT instances where each variable appears in at most two clauses, there is an
FPRAS to count the number of satisfying assignments [3].

Not-All-Equal. Let NotAllEqualk be the symmetric function that is 0 if the input has
Hamming weights 0 or k, and 1 otherwise; namely its signature is [0, 1, 1, · · · , 1, 0] with
k+ 1 entries. Let NAE be the set of NotAllEqualk functions for all integers k. There
is an FPRAS for Holant(NAE) [57].

5.1 Winding
One powerful approach to design approximate counting algorithms is Markov Chain Monte
Carlo (MCMC). The key step is to prove that the Markov chain is rapidly mixing, namely, it
is very close to the stationary distribution after polynomial number of steps. Canonical paths
argument, introduced by [45, 46] is one of the two main tools (the other one is coupling) to
prove rapid mixing of the Markov chain. To make use of canonical paths, one needs to design
paths between each pair of states for the Markov chain and prove that the overall congestion
at each transition of the Markov chain is low. However, it is typically a very difficult task to
come up with a low congestion routing, especially because there are usually exponentially
many states corresponding to the Markov chain.
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There are some successful examples such as the matching problem mentioned above. The
symmetric difference of two matchings of a graph is a disjoint union of paths and cycles. Then,
the natural and successful canonical paths for matchings is “(un-)winding” the edges one by
one following an arbitrary order of these paths and cycles. Another important successful
example is the “subgraph world” problem (or the parity function problem, as described in
the last section) transformed from ferromagnetic Ising model [46]. For this problem, the
symmetric difference of two configurations can be any graphs. The key observation is that
we may utilize the path-cycle decomposition. Jerrum and Sinclair’s canonical paths simply
do an arbitrary path-cycle decomposition and unwind edges following these paths and cycles.
Since the constraint in each vertex for that problem is simply the parity function, one can
prove that these canonical paths indeed have low congestion.

In an unpublished manuscript [57], McQuillan proposed a beautiful generalization of this
path-cycle decomposition idea called winding. The idea was further developed in [43]. Here
is the definition of windable functions.

I Definition 30. For any finite set J and any configuration x ∈ {0, 1}J , define Mx to
be the set of partitions of {i | xi = 1} into pairs and at most one singleton. A function
f : {0, 1}J → R+ is windable if there exist values B(x, y,M) ≥ 0 for all x, y ∈ {0, 1}J and
all M ∈Mx⊕y satisfying:
1. f(x)f(y) =

∑
M∈Mx⊕y

B(x, y,M) for all x, y ∈ {0, 1}J , and
2. B(x, y,M) = B(x⊕ S, y ⊕ S,M) for all x, y ∈ {0, 1}J and all S ∈M ∈Mx⊕y.
Here x⊕ S denotes the vector obtained by changing xi to 1− xi for the one or two elements
i in S.1

To get a rapidly mixing Markov chain, we assign two values to the two half-edges of each
edge. We call it consistent if the two values are the same. A normal edge assignment is
therefore an assignment of half-edges without inconsistency. We call these assignments perfect.
A near-perfect assignment is one where there are two inconsistencies along edges. Windable
functions admit a rapidly mixing Markov chain, by moving between perfect assignments and
near-perfect assignments. Due to the design of the algorithm, the number of inconsistencies
cannot be one.

However since we enlarge the state space slightly, merely a rapidly mixing Markov chain
is not sufficient to guarantee a polynomial time algorithm. We also need to be able to hit
perfect assignments with at least inverse polynomial probability. This can be stated as
a bound between the Holant sum of all perfect assignments and that of all near-perfect
assignments. More precisely, recall (1). The weight of an assignment can be naturally extend
to near-perfect assignments, and their Holant sum is to simply add all weights up. Denote by
Z0 the Holant of all perfect assignments, and Z2 that of all near-perfect assignments. Then
we need to ensure that Z2/Z0 is bounded above by a polynomial for the MCMC algorithm
to run in polynomial time.

I Theorem 31. There exists an FPRAS to compute the partition function of Holant(F) if
all the functions in F are windable and Z2/Z0 is bounded above by a polynomial of the input
size.

One can verify that the matching constraint [45] and the parity function [46] are indeed
windable. Thus both of these two FPRASes can be viewed as special cases of Theorem 31.

1 This definition is taken from [43], which simplifies the original definition from [57].
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However for a general function, it is still quite difficulty to tell whether it is windable or
not. A clear characterization was given for all symmetric functions in [43] by solving a set
of linear equations. With this powerful approach and characterization in hand, one can
design a number of new FPRAS for approximate counting by simply verifying that the local
constraint functions are windable. One such example is counting b-matchings, which is a
natural generalization of matchings. A subset of edges for a graph is called a b-matching if
every vertex is incident to at most b edges in the set. Hence 1-matching is the conventional
definition of matching for a graph. Huang, Lu, and Zhang [43] showed that there exists an
FPRAS to count b-matchings when b ≤ 7 for any graphs.

Another problem one can resolve using this approach is a generalization of the edge cover
problem. A subset of edges for a graph is called an edge cover if every vertex is incident to
at least one edge in the set. Previously, MCMC based approximation algorithm for counting
edge covers was only known for 3-regular graphs [2] by Bezáková and Rummler. In fact,
they also used canonical paths to get rapid mixing and used path-cycle decompositions to
construct canonical paths. However, due to the lack of a systematic approach, Bezáková and
Rummler stopped at the special case of 3-regular graphs. Using the winding approach and
the systematic characterization of windable functions, one can show that there exist a convex
combination of path-cycle decompositions which works for general graphs [43]. Moreover,
one can generalize it to b-edge-covers by requiring that every vertex is incident to at least
b edges in the set. This approach yields an FPRAS to count b-edge-covers for b ≤ 2 [43].
We note that FPTAS based on the correlation decay technique for counting edge covers for
general graphs was known [54, 55]. However, it seems that the correlation decay approach
have intrinsic difficulties for 2-edge-covers.

It is still open whether there exists an FPRAS for counting b-matchings for b > 7 or
counting b-edge-covers for b > 2.

5.2 Fibonacci Functions
Correlation decay is another idea based on which one may design approximate counting
algorithms. This approach has the advantage of yielding deterministic algorithms, namely
FPTAS. Here we present FPTAS for a family of functions called Fibonacci Functions.

Fibonacci Functions by themselves are tractable, as they are P-transformable (see
Lemma 16). We extend the framework a bit by allowing edge weights. An edge-weighted
Holant instance Ω = (G, {fv|v ∈ V }, {λe|e ∈ E}) is a tuple defined as follows. G = (V,E)
is a graph. fv is a function with arity dv: {0, 1}dv → R+, where dv is the degree of v
and R+ denotes non-negative real numbers. Edge weight λe is a mapping {0, 1} → R+. A
configuration σ of edges is a mapping E → {0, 1} and has a weight

wΩ(σ) =
∏
e∈E

λe(σ(e))
∏
v∈V

fv(σ |E(v)),

where E(v) denotes the set of incident edges of v. The counting problem on the instance Ω
is to compute the partition function (or the Holant sum):

Z(Ω) =
∑
σ

(∏
e∈E

λe(σ(e))
∏
v∈V

fv(σ |E(v))
)
.

We use Holant(F ,Λ) to denote the problem of computing the above quantity, where all
functions are from F and all edge weights are from the set Λ. This version and its complexity
are slightly different from the decision version and exactly counting as described in the
previous two sections.
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A Fibonacci function f is a symmetric function [f0, f1, . . . , fk], satisfying that fi =
cfi−1 + fi−2 for some constant c. For example, the parity function [a, b, a, b, . . .] is a special
Fibonacci function with c = 0. If there is no edge weights (or equivalently all the weights are
equal to 1) and all the node functions are Fibonacci functions with the same parameter c,
we have a polynomial time algorithm to compute the partition function exactly [18]. If we
allow edges to have non-trivial weights or different functions to have different parameters
in Fibonacci gates, then the exact counting problem becomes #P-hard [19, 11]. Thus, it is
interesting to study the problem in the approximation setting. Indeed, these edge-weighted
Holant problems have connections with ferromagnetic 2-spin systems. For more details, see
[56].

We use Fp,qc to denote a subfamily of Fc such that fi+1 ≥ pfi and fi+1 ≤ qfi for all
i = 0, 1, · · · , d − 1. When the upper bound q is not given, we simply write Fpc . We use
Fp,qc1,c2

to denote
⋃
c1≤c≤c2

Fp,qc . We use Λλ1,λ2 to denote the set of edge weights λe such that
λ1 ≤ λe ≤ λ2.

Lu, Wang and Zhang [56] give the following algorithms.

I Theorem 32. For any c > 0 and p > 0, there exists λ1(p, c) < 1 and λ2(p, c) > 1 such
that there is an FPTAS for Holant(Fpc ,Λλ1(p,c),λ2(p,c)).

I Theorem 33. Let p > 0. Then there is an FPTAS for Holant(Fp1.17,+∞,Λ1,+∞).
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