

Edinburgh Research Explorer

FKT is not universal — A planar Holant dichotomy for symmetric
constraints

Citation for published version:
Cai, J-Y, Fu, Z, Guo, H & Williams, T 2021, 'FKT is not universal — A planar Holant dichotomy for
symmetric constraints', Theory of Computing Systems. https://doi.org/10.1007/s00224-021-10032-1

Digital Object Identifier (DOI):
10.1007/s00224-021-10032-1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Theory of Computing Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

https://doi.org/10.1007/s00224-021-10032-1
https://doi.org/10.1007/s00224-021-10032-1
https://www.research.ed.ac.uk/en/publications/d57c88d6-c3d7-4626-994e-08fa213e0a60

Theory of Computing Systems
https://doi.org/10.1007/s00224-021-10032-1

FKT is Not Universal— A Planar Holant Dichotomy
for Symmetric Constraints

Jin-Yi Cai1 ·Zhiguo Fu2 ·Heng Guo3 ·TysonWilliams4

Accepted: 11 January 2021
© The Author(s) 2021

Abstract
We prove a complexity classification for Holant problems defined by an arbitrary
set of complex-valued symmetric constraint functions on Boolean variables. This
is to specifically answer the question: Is the Fisher-Kasteleyn-Temperley (FKT)
algorithm under a holographic transformation (Valiant, SIAM J. Comput. 37(5),
1565–1594 2008) a universal strategy to obtain polynomial-time algorithms for prob-
lems over planar graphs that are intractable on general graphs? There are problems
that are #P-hard on general graphs but polynomial-time solvable on planar graphs.
For spin systems (Kowalczyk 2010) and counting constraint satisfaction problems
(#CSP) (Guo and Williams, J. Comput. Syst. Sci. 107, 1–27 2020), a recurring theme
has emerged that a holographic reduction to FKT precisely captures these problems.
Surprisingly, for Holant, we discover new planar tractable problems that are not
expressible by a holographic reduction to FKT. In particular, a straightforward for-
mulation of a dichotomy for planar Holant problems along the above recurring theme
is false. A dichotomy theorem for #CSPd , which denotes #CSP where every variable
appears a multiple of d times, has been an important tool in previous work. How-
ever the proof for the #CSPd dichotomy violates planarity, and it does not generalize
to the planar case easily. In fact, due to our newly discovered tractable problems,
the putative form of a planar #CSPd dichotomy is false when d ≥ 5. Neverthe-
less, we prove a dichotomy for planar #CSP2. In this case, the putative form of the
dichotomy is true. (This is presented in Part II of the paper.) We manage to prove

A preliminary version appeared in FOCS 2015 [9].

Supported by NSF CCF-1714275.

Supported by National Natural Science Foundation of China (Grant No. 61872076).

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research innovation programme (grant agreement No. 947778).

� Heng Guo
hguo@inf.ed.ac.uk

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10032-1&domain=pdf
http://orcid.org/0000-0001-8199-5596
mailto: hguo@inf.ed.ac.uk

Theory of Computing Systems

the planar Holant dichotomy relying only on this planar #CSP2 dichotomy, with-
out resorting to a more general planar #CSPd dichotomy for d ≥ 3. A special
case of the new polynomial-time computable problems is counting perfect match-
ings (#PM) over k-uniform hypergraphs when the incidence graph is planar and
k ≥ 5. The same problem is #P-hard when k = 3 or k = 4, which is also a
consequence of our dichotomy. When k = 2, it becomes #PM over planar graphs
and is tractable again. More generally, over hypergraphs with specified hyperedge
sizes and the same planarity assumption, #PM is polynomial-time computable if the
greatest common divisor (gcd) of all hyperedge sizes is at least 5. It is worth not-
ing that it is the gcd, and not a bound on hyperedge sizes, that is the criterion for
tractability.

Keywords Computational complexity · Counting · Holographic algorithms

Part I Planar Holant Dichotomy

1 Introduction

The Fisher-Kasteleyn-Temperley (FKT) algorithm [29, 30, 41] is a classical gem
that counts perfect matchings over planar graphs in polynomial time. This was an
important milestone in a decades-long research program by physicists in statistical
mechanics to determine what is known as Exactly Solved Models [3, 28–30, 33–35,
39, 41, 49–51].

For four decades, the FKT algorithm stood as the polynomial-time algorithm
for any counting problem over planar graphs that is #P-hard over general graphs.
Then Valiant introduced matchgates [42, 43] and holographic reductions to the
FKT algorithm [44, 45]. These reductions differ from classical ones by intro-
ducing quantum-like superpositions. This novel technique extended the reach
of the FKT algorithm and produced polynomial-time algorithms for a num-
ber of problems for which only exponential-time algorithms were previously
known.

Since the new polynomial-time algorithms appear so exotic and unexpected, and
since they solve problems that appear so close to being #P-hard, they challenge our
faith in the well-accepted conjecture that P �= NP. Quoting Valiant [44]: “The objects
enumerated are sets of polynomial systems such that the solvability of any one mem-
ber would give a polynomial time algorithm for a specific problem. . . . the situation
with the P = NP question is not dissimilar to that of other unresolved enumerative
conjectures in mathematics. The possibility that accidental or freak objects in the
enumeration exist cannot be discounted if the objects in the enumeration have not
been studied systematically.” Indeed, if any “freak” object exists in this framework,
it would collapse #P to P. Therefore, over the past 10 to 15 years, this technique
has been intensely studied in order to gain a systematic understanding of the limit
of the trio of holographic reductions, matchgates, and the FKT algorithm [6, 7, 15,
16, 32, 37, 38, 42, 46]. Without settling the P versus #P question, the best hope is to
achieve a complexity classification. This program finds its sharpest expression in a

Theory of Computing Systems

complexity dichotomy theorem, which classifies every problem expressible in a
framework as either solvable in P or #P-hard, with nothing in between.

Out of this work, a strong theme has emerged. For a wide variety of problems, such
as those expressible as a #CSP, holographic reductions to the FKT algorithm is a uni-
versal technique for turning problems that are #P-hard in general to P-time solvable
over planar graphs. In fact, a preponderance of evidence suggests the following puta-
tive classification of all counting problems defined by local constraints into exactly
three categories: (1) those that are P-time solvable over general graphs; (2) those that
are P-time solvable over planar graphs but #P-hard over general graphs; and (3) those
that remain #P-hard over planar graphs. Moreover, category (2) consists precisely of
those problems that are holographically reducible to the FKT algorithm. This theme
is so strong that it has become an intuitive and trusty guide for us when we investi-
gate unknown problems and plan proof strategies. In fact, many of the results in the
present paper are proved in this way. However, one is still left wondering whether the
FKT algorithm is universal, or more precisely, is the combined algorithmic power of
holographic reductions, matchgates, and the FKT algorithm sufficient to capture all
tractable problems over planar graphs that are intractable in general?

We list some of the supporting evidence for this putative classification. These date
back to the classification of the complexity of the Tutte polynomial [47, 48]. It has
also been an unfailing theme in the classification of spin systems and #CSP [14,
19, 26, 31]. However, these frameworks do not capture all locally specified counting
problems. Some natural problems, such as counting perfect matchings (#PM), are not
expressible as a point on the Tutte polynomial or a #CSP, and #PM is provably not
expressible within the special case of vertex assignment models [23, 24, 40]. How-
ever, this is the problem for which FKT was designed, and is the basis of Valiant’s
matchgates and holographic reductions.

A refined framework, called Holant problems [17], was proposed to address this
issue. It is an edge assignment model. It naturally encodes and expresses #PM as
well as Valiant’s matchgates and holographic reductions. Thus, Holant is the proper
framework in which to study the power of holographic algorithms. It is also more
general than #CSP in that any #CSP problem is a special case of a Holant problem,
and a complete complexity classification for Holant problems implies one for #CSP.

In this paper, we classify for the first time the complexity of Holant problems over
planar graphs with an arbitrary set of symmetric complex-valued constraint functions.
Our result generalizes both the dichotomy for Holant [11, 27] and the dichotomy
for planar #CSP [19, 26]. Surprisingly, we discover new planar tractable problems
that are not expressible by a holographic reduction to matchgates and FKT. To the
best of our knowledge, this is the first primitive extension since FKT to a problem
solvable in P over planar instances but #P-hard in general. We consider this extension
primitive in the sense that it provably cannot be obtained by applying any holographic
reduction to matchgates and FKT. Furthermore, our dichotomy theorem says that
this completes the picture: there are no more undiscovered extensions for problems
expressible in this framework, unless #P collapses to P. In particular, the putative
form of the planar Holant dichotomy is false.

Before stating our main theorem, we give a brief description of the Holant frame-
work [17]. Fix a set of local constraint functions F . A signature grid � = (G, π) is

Theory of Computing Systems

a tuple, where G = (V , E) is a graph, π labels each v ∈ V with a function fv ∈ F
with input variables from the incident edges E(v) at v. Each fv maps {0, 1}deg(v) to
C. We consider all 0-1 edge assignments. An assignment σ for every e ∈ E gives an
evaluation

∏
v∈V fv(σ |E(v)), where σ |E(v) denotes the restriction of σ to E(v). The

counting problem on the instance � is to compute

Holant(�;F) =
∑

σ :E→{0,1}

∏

v∈V

fv

(
σ |E(v)

)
. (1.1)

For example, #PM, the problem of counting perfect matchings in G, corresponds
to assigning the EXACTONE function at every vertex of G. The Holant problem
parameterized by the set F is denoted by Holant(F).

At a high level, we can state our main theorem as follows.

Theorem 1.1 Let F be a set of complex-valued, symmetric functions on Boolean
variables. Then there is an effective classification for all possible F , according to
which, Holant(F) is either (1) P-time computable over general graphs, or (2) P-time
computable over planar graphs but #P-hard over general graphs, or (3) #P-hard over
planar graphs.

The complete statement is given in Theorem 8.1. The classification is explicit. The
tractability criterion is decidable in polynomial time due to [12, 16]. Tractable prob-
lems over general graphs have been previously studied in [11]. The planar tractable
class includes both those solvable by holographic reductions to FKT and those newly
discovered. Explicit criteria for these are also proved in this paper.

Let us meet some new tractable problems.We consider some orientation problems,
which are Holant problems after a complex-valued holographic transformation. 1

Given a planar graph, we allow two kinds of vertices. The first kind can be either a
sink or a source while the second kind must have exactly one incoming edge. The goal
is to compute the number of orientations satisfying these constraints. This problem
can be expressed in the Holant framework under a Z-transformation, where Z =[
1 1
i −i

]

. It can be shown that this is equivalent to the Holant problem on the edge-

vertex incidence graph where we assign the DISEQUALITY function to every edge,
we assign either the EQUALITY function or the EXACTONE function to each vertex.
Suppose vertices assigned EQUALITY functions all have degree k. If k = 2, then this
problem can be solved by FKT. We show that this problem is #P-hard if k = 3 or
k = 4, but is tractable again if k ≥ 5. The algorithm involves a recursive procedure
that simplifies the instance until it can be solved by known algorithms, including
FKT. The algorithm crucially uses global topological properties of planar graphs, in

1This transformation is Z =
[
1 1
i −i

]

. It is common that one problem can be transformed to another

over C while one or both problems are specified by real-valued constraint functions, and provably no
transformation exists over R. Thus it is both natural and proper to study the classification question over
complex-valued constraint functions. For example, the integer-valued orientation problem studied here is
complex weighted if expressed directly as Holant.

Theory of Computing Systems

particular Euler’s characteristic formula. If the graph is not planar, then this algorithm
does not work, and indeed the problem is #P-hard over general graphs.

More generally, we allow vertices of arbitrary degrees to be assigned EQUALITY.
If all the degrees are at most 2, then the problem is tractable by the FKT algo-
rithm. Otherwise, the complexity depends on the greatest common divisor (gcd) of
the degrees. The problem is tractable if gcd ≥ 5 and #P-hard if gcd ≤ 4. It is
worth noting that the criterion for tractability is not a degree lower bound. Moreover,
the planarity assumption and the degree rigidity pose a formidable challenge in the
hardness proofs for gcd ≤ 4.

If the graph is bipartite with EQUALITY functions assigned on one side and EXAC-
TONE functions on the other, then this is the problem of #PM over hypergraphs
with planar incidence graphs. Our results imply that the complexity of this problem
depends on the gcd of the hyperedge sizes. The problem is computable in polynomial
time when gcd ≥ 5 and is #P-hard when gcd ≤ 4 (assuming there are hyperedges of
size at least 3). For a formal statement, see Theorem 7.17.

Most of the reductions in previous Holant dichotomy theorems [11, 27] do not
hold for planar graphs, so we are forced to develop new techniques and formulate new
proof strategies. In particular, an important ingredient in previous proofs is the #CSPd

dichotomy by Huang and Lu [27]. Here #CSPd denotes #CSP where every variable
appears a multiple of d times. The very first step in the #CSPd dichotomy proof
uses a pinning technique. In this proof multiple copies of a graph are created and
vertices are connected across different copies. But this construction fundamentally
violates planarity. Moreover, as a consequence of the new dichotomy, this violation
of planarity is unavoidable. Owing to our newly discovered tractable problems, the
putative form of a planar #CSPd dichotomy is false when d ≥ 5. Nevertheless, we
prove a dichotomy for planar #CSP2 for which the putative form is true (which is
lucky for us but not obvious in hindsight). Obtaining a dichotomy for planar #CSP2

is essential because it captures a significant fraction of planar Holant problems either
directly or through reductions. We manage to prove the planar Holant dichotomy
without appealing to planar #CSPd for d ≥ 3.

The proof of the planar #CSP2 dichotomy comprises the entire Part II of this
paper. A brief outline of this proof of the planar #CSP2 dichotomy is given in
Section 5 of Part I. Among the concepts and techniques introduced are some spe-
cial tractable families of constraint functions specific to the #CSP2 framework. We
also introduce a derivative operator ∂ and its inverse operator integral

∫
to stream-

line the proof argument. It also uses some elementary properties of cyclotomic
fields.

We began this project expecting to prove the putative form of the planar Holant
dichotomy. It was determined that a planar #CSPd dichotomy in the putative form
would be both a more modest, and thus hopefully more attainable, intermediate step
as well as a good launch station for the final goal. However after some attempt, even
the planar #CSPd dichotomy appeared too difficult to achieve, and so we scaled back
the ambition to prove just a planar #CSP2 dichotomy. Luckily, a successful #CSP2

dichotomy can carry most of the weight of a full #CSPd dichotomy, and, as it turned
out, the putative form of the planar #CSP2 dichotomy is true while that of planar
#CSPd is not. Ironically, many steps of our proof in this paper were guided by the

Theory of Computing Systems

putative form of the complexity classification. The discovery of the new tractable
problems changed the original plan, but also helped complete the picture.

Coming back to the challenge of the P vs. NP question posed by Valiant’s holo-
graphic algorithms, we venture the opinion that the dichotomy theorem provides one
satisfactory answer. Indeed, it would be difficult to conceive a world where #P is P,
and yet all this algebraic theory can somehow maintain a consistent, sharp but faux
division where there is none. (Consider the following Gedankenexperiment: #P is
really equal to P, but Nature conspires against us and keeps scores on how much
of #P we have learned to be in P. For every problem in this broad class that is yet
unknown to be in P we are allowed to prove it #P-hard—a superfluous notion really,
since every problem in #P, being equal to P, is #P-hard. But for every problem in this
broad class already known to be in P, it makes sure that our proof for #P-hardness
on that problem fails, thus preventing us from making the ultimate discovery. This
seems to us most implausible.)

After the preliminary version of the present paper [9] appeared in FOCS 2015,
more progress has been made in the classification program of counting problems
[1, 2, 8, 20, 36]. Ironically, if we go back to the #CSP setting, then holographic
algorithms with matchgates become universal again [8], despite the fact that it is
designed for the Holant setting. This generalizes the previous classification theo-
rem [26] from symmetric constraint functions to general (not necessarily symmetric)
constraint functions. Nevertheless, many problems are still left open, most of which
relate to generalizing results in the current paper to asymmetric (i.e., not necessar-
ily symmetric) signatures. For example, a #CSP2 dichotomy has been proved for
asymmetric signatures (by combining results from [36] and [20]). But it is open
in the planar setting. Also, classifying all Holant problems for general asymmetric
complex-weighted signatures remains elusive. Partial results have been obtained for
Holantc problems [2] or Holant problems with non-negatively weighted signatures
[36].

2 Preliminaries

2.1 Problems and Definitions

The framework of Holant problems is defined for functions mapping any [q]n →
R for a finite q and some commutative semiring R. In this paper, we investigate
complex-weighted Boolean Holant problems, that is, all functions are of the form
[2]n → C. For consideration of models of computation, functions take complex
algebraic numbers.

Graphs may have self-loops and parallel edges. A graph without self-loops or par-
allel edges is a simple graph. Fix a set of local constraint functions F . A signature
grid � = (G, π) consists of a graph G = (V , E), where π assigns to each vertex
v ∈ V and its incident edges some fv ∈ F and its input variables. We say that � is
a planar signature grid if G is planar, where the variables of fv are ordered counter-

Theory of Computing Systems

clockwise starting from an edge specified by π . The Holant problem on instance � is
to evaluate Holant(�;F) = ∑

σ

∏
v∈V fv(σ |E(v)), a sum over all edge assignments

σ : E → {0, 1}, where E(v) denotes the incident edges of v and σ |E(v) denotes the
restriction of σ to E(v). We write G in place of � when π is clear from context.

A function fv can be represented by listing its values in lexicographical order
as in a truth table, which is a vector in C

2deg(v)
, or as a tensor in (C2)⊗ deg(v). A

function f ∈ F is also called a signature. A symmetric signature f on n Boolean
variables can be expressed as [f0, f1, . . . , fn], where fw is the value of f on inputs
of Hamming weight w. An example is the EQUALITY signature =n of arity n, which
is [1, 0, . . . , 0, 1] with n − 1 zero entries.

In this paper, we prove complexity classifications for counting problems specified
by symmetric signatures. A Holant problem is parametrized by a set of signatures.

Definition 2.1 Given a set of signatures F , we define the counting problem
Holant(F) as:

Input: A signature grid � = (G, π);
Output: Holant(�;F).

The problem Pl-Holant(F) is defined similarly using a planar signature grid.
A signature f of arity n is degenerate if there exist unary signatures uj ∈ C

2 (1 ≤
j ≤ n) such that f = u1 ⊗ · · · ⊗ un. A symmetric degenerate signature has the form
u⊗n. Replacing such signatures by n copies of the corresponding unary signature
does not change the Holant value. Replacing a signature f ∈ F by a constant multiple
cf , where c �= 0, does not change the complexity of Holant(F). In this paper, we
may say we obtain a signature f when in fact we have obtained a signature cf for
some c �= 0. It introduces a global nonzero factor cn to Holant(�;F), where n is the
number of occurrences of cf in �.

We allow F to be an infinite set. For Pl-Holant(F) to be tractable, the problem
must be computable in polynomial time even when the description of the signatures
in the input � are included in the input size, where a local constraint function f is
specified by its signature entries. In contrast, we say Pl-Holant(F) is #P-hard if there
exists a finite subset of F for which the problem is #P-hard. We say a signature set
F is tractable (resp. #P-hard) if the corresponding counting problem Pl-Holant(F) is
tractable (resp. #P-hard). Similarly for a signature f , we say f is tractable (resp. #P-
hard) if {f } is. We denote polynomial time Turing reduction and equivalence by ≤T

and ≡T respectively.

2.2 Holographic Reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite
graphs. For a general graph, we can always transform it into a bipartite graph while
preserving the Holant value, as follows. For each edge in the graph, we replace it by
a path of length two. (This operation is called the 2-stretch of the graph and yields

Theory of Computing Systems

the edge-vertex incidence graph.) Each new vertex is assigned the binary EQUALITY

signature (=2) = [1, 0, 1].
We use Holant (F | G) to denote the Holant problem over signature grids with

a bipartite graph H = (U, V, E), where each vertex in U or V is assigned a sig-
nature in F or G, respectively. Signatures in F are considered as row vectors (or
covariant tensors); signatures in G are considered as column vectors (or contravariant
tensors) [22]. Similarly, Pl-Holant (F | G) denotes the Holant problem over signature
grids with a planar bipartite graph.

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃f ∈ F of arity
n, g = T ⊗nf }, and similarly for FT . Whenever we write T ⊗nf or TF , we view
the signatures as column vectors; similarly for f T ⊗n or FT as row vectors. In the

special case that T =
[
1 1
1 −1

]

, we also define TF = F̂ .

Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T

is the following operation: given a signature grid � = (H, π) of Holant (F | G), for
the same bipartite graph H , we get a new grid �′ = (H, π ′) of Holant

(
FT | T −1G

)

by replacing each signature in F or G with the corresponding signature in FT or
T −1G.

Theorem 2.2 (Valiant’s Holant Theorem [45]) If T ∈ C
2×2 is an invertible matrix,

then we have Holant(�;F | G) = Holant(�′;FT | T −1G).

Therefore, an invertible holographic transformation does not change the complex-
ity of the Holant problem in the bipartite setting. Furthermore, there is a special
kind of holographic transformations, the orthogonal transformations, that preserve
the binary equality and thus can be used freely in the standard setting.

Theorem 2.3 (Theorem 2.6 in [17]) If T ∈ O2(C) is an orthogonal matrix
(i.e. T T T = I2), then Holant(�;F) = Holant(�′; TF).

We frequently apply a holographic transformation defined by the matrix Z =
1√
2

[
1 1
i −i

]

(or sometimes without the nonzero factor of 1√
2
since this does not

affect the complexity). This matrix has the property that the binary EQUALITY sig-
nature (=2) = [1, 0, 1] is transformed to [1, 0, 1]Z⊗2 = [0, 1, 0] = (�=2), the binary
DISEQUALITY signature.

An important definition involving a holographic transformation is the notion of a
signature set being transformable.

Definition 2.4 We say a signature set F is C -transformable if there exists a T ∈
GL2(C) such that [1, 0, 1]T ⊗2 ∈ C and F ⊆ T C .

This definition is important because if Pl-Holant(C) is tractable, then
Pl-Holant(F) is tractable for any C -transformable set F .

Theory of Computing Systems

2.3 Counting Constraint Satisfaction Problems

We can define the framework of counting constraint satisfaction problems (#CSP) in
terms of the Holant framework. An instance of #CSP(F) has the following bipartite
view. Create a vertex for each variable and each constraint. Connect a variable vertex
to a constraint vertex if the variable appears in the constraint. This bipartite graph is
also known as the constraint graph. Each variable can be viewed as an EQUALITY

function. In this way we obtain a signature grid. A variable can take values 0 or 1, and
the EQUALITY function forces all incident edges to take the same value. Under this
view, we see that #CSP(F) ≡T Holant (EQ | F), where EQ = {=1, =2, =3, . . . }
is the set of EQUALITY signatures of all arities. By restricting to planar constraint
graphs, we have the planar #CSP framework, which we denote by Pl-#CSP. The
construction above also shows that Pl-#CSP(F) ≡T Pl-Holant (EQ | F).

For any positive integer d , the problem #CSPd(F) is the same as #CSP(F)

except that every variable appears a multiple of d times. Thus, Pl-#CSPd(F) ≡T

Pl-Holant (EQd | F), where EQd = {=d , =2d , =3d , . . . } is the set of EQUALITY

signatures of arities that are a multiple of d . If d ∈ {1, 2}, then we further have
Pl-#CSPd(F) ≡T Pl-Holant (EQd | F) ≡T Pl-Holant(EQd ∪ F). (2.2)

For the second equivalence the reduction from left to right is trivial. For the other
direction, we take a signature grid for the problem on the right and create a bipartite
signature grid for the problem on the left such that both signature grids have the same
Holant value up to an easily computable factor. If two signatures in F are assigned
to adjacent vertices, then we subdivide all edges between them and assign the binary
EQUALITY signature =2 ∈ EQd to all new vertices. Suppose EQUALITY signatures
=n, =m ∈ EQd are assigned to adjacent vertices connected by k edges. If n = m = k,
then we simply remove these two vertices. The Holant of the resulting signature grid
differs from the original by a factor of 2. Otherwise, we contract all k edges and
assign =n+m−2k ∈ EQd to the new vertex.

2.4 Realization

One basic notion used throughout the paper is realization. We say a signature f is
realizable or constructible from a signature set F if there is a gadget with some
dangling edges such that each vertex is assigned a signature fromF , and the resulting
graph, when viewed as a black-box signature with inputs on the dangling edges, is
exactly f . If f is realizable from a set F , then we can freely add f into F while
preserving the complexity. (Often it is convenient to ignore a nonzero constant factor
for the signature realized by a gadget construction; however at other times it is more
convenient to keep the exact value so that claims of a particular construction can be
more readily verified numerically.)

Formally, such a notion is defined by an F-gate [19]. An F-gate is similar to a
signature grid (G, π) for Holant(F) except that G = (V , E, D) is a graph with some
dangling edges D. The dangling edges define external variables for the F-gate. (See

Theory of Computing Systems

Fig. 1 for an example.) We denote the regular edges in E by 1, 2, . . . , m and the
dangling edges in D by m + 1, . . . , m + n. Then we can define a function � for this
F-gate as

�(y1, . . . , yn) =
∑

x1,...,xm∈{0,1}
H(x1, . . . , xm, y1, . . . , yn),

where (y1, . . . , yn) ∈ {0, 1}n is an assignment on the dangling edges and
H(x1, . . . , xm, y1, . . . , yn) is the value of the signature grid on an assignment of all
edges in G, which is the product of evaluations at all internal vertices. We also call
this function � the signature of the F-gate.

An F-gate is planar if the underlying graph G is a planar graph, and the dangling
edges, ordered counterclockwise corresponding to the order of the input variables,
are in the outer face in a planar embedding. A planar F-gate can be used in a planar
signature grid as if it is just a single vertex with the particular signature.

Using the idea of planar F-gates, we can reduce one planar Holant problem to
another. Suppose g is the signature of some planar F-gate. Then Pl-Holant(F ∪
{g}) ≤T Pl-Holant(F). The reduction is simple. Given an instance of Pl-Holant(F ∪
{g}), by replacing every appearance of g by the F-gate, we get an instance of
Pl-Holant(F). Since the signature of the F-gate is g, the Holant values for these two
signature grids are identical.

Although our main result is about symmetric signatures, some of our proofs utilize
asymmetric signatures. When a gadget has an asymmetric signature, we indicate the
ordering of the variables by placing a hollow diamond on the edge corresponding
to the first input in the figure. The remaining inputs are ordered counterclockwise
around the vertex.

We note that even for a very simple signature set F , the signatures for all F-gates
can be quite complicated and expressive.

Fig. 1 An F -gate with 5
dangling edges

Theory of Computing Systems

2.5 Tractable Signature Sets

We define the sets of signatures that were previously known to be tractable. All quo-
tations of results and definitions from [11, 12, 26], both in this section and throughout
the paper, refer to the full versions of these papers.

Affine Signatures

Definition 2.5 (Definition 3.1 in [18]) A k-ary function f (x1, . . . , xk) is affine if it
has the form

λ · χAx=b · i
∑n

j=1〈vj ,x〉
,

where λ ∈ C, A is a matrix over the two-element finite field F2, b and vj are vectors
over F2, x = (x1, x2, . . . , xk)

T , and χ is a 0-1 indicator function such that χAx=b
is 1 iff Ax = b. Note that the dot product 〈vj , x〉 is calculated over F2 with output in
{0, 1}, and the summation

∑n
j=1 on the exponent of i = √−1 is evaluated as a sum

mod 4 of 0-1 terms. We use A to denote the set of all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. It is
permissible that A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent
way to express the exponent of i is as a quadratic polynomial where all cross terms
have an even coefficient (cf. [5]).

It is known that the set of non-degenerate symmetric signatures in A is precisely
the nonzero signatures (λ �= 0 in the expressions below) in F1 ∪ F2 ∪ F3 with arity
at least 2, where F1, F2, and F3 are three families of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir [0, 1]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir [1, −1]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
, and

F3 =
{
λ
(
[1, i]⊗k + ir [1, −i]⊗k

)
|λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list these signatures up to an arbitrary constant multiple from C:

1. [1, 0, . . . , 0, ±1]; (F1, r = 0, 2)
2. [1, 0, . . . , 0, ±i]; (F1, r = 1, 3)
3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)
4. [1, −i, 1, −i, . . . , (−i) or 1]; (F2, r = 1)
5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)
6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)
7. [1, 0, −1, 0, 1, 0, −1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)
8. [1, 1, −1, −1, 1, 1, −1, −1, . . . , 1 or (−1)]; (F3, r = 1)
9. [0, 1, 0, −1, 0, 1, 0, −1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1, −1, −1, 1, 1, −1, −1, 1, . . . , 1 or (−1)]. (F3, r = 3)

Theory of Computing Systems

Product-Type Signatures

Definition 2.6 (Definition 3.3 in [18]) A function is of product type if it can be
expressed as a product of unary functions, binary equality functions ([1, 0, 1]), and
binary disequality functions ([0, 1, 0]). We use P to denote the set of product-type
functions.

For a function f ∈ P of arity n, since the product of unary, binary equality,
and binary disequality functions in its definition can be on separate and overlapping
choices of subsets of n variables, f in general is not symmetric. For example,P con-
tains weighted binary disequality functions f (x, y), where f (0, 0) = f (1, 1) = 0,
f (0, 1) = a, and f (1, 0) = b. We denote this by its truth table (0, a, b, 0). An alter-
nate definition for P , implicit in [21], is the tensor closure of signatures with support
on two complementary bit vectors. It can be shown (see [27, Lemma 2.2]) that if f is
a symmetric signature in P , then f is either degenerate, binary DISEQUALITY �=2,
or [a, 0, . . . , 0, b] for some a, b ∈ C.

Matchgate Signatures

Matchgates were introduced by Valiant [42, 43] to give polynomial-time algorithms
for a collection of counting problems over planar graphs. As the name suggests,
problems expressible by matchgates can be reduced to computing a weighted sum of
perfect matchings. The latter problem is tractable over planar graphs by Kasteleyn’s
algorithm [30], a.k.a. the FKT algorithm [29, 41]. These counting problems are nat-
urally expressed in the Holant framework using matchgate signatures. We use M
to denote the set of all matchgate signatures; thus Pl-Holant(M) is tractable. The
function [0, 1, 0, . . . , 0] of arity k belongs to M , and is called the EXACTONEk func-
tion. More generally, we can define EXACTONEk:a1,...,ak

as a weighted version of
EXACTONEk , which takes value ai if the input has Hamming weight 1 and xi = 1;
the function outputs 0 on all other inputs. This function also belongs to M .

Holographic transformations extend the reach of the FKT algorithm even further,
as stated below.

Theorem 2.7 Let F be any set of complex-valued signatures in Boolean variables.
If F is M -transformable, then Pl-Holant(F) is computable in polynomial time.

Matchgate signatures are characterized by the matchgate identities (see [10] for
the identities and a self-contained proof). The parity of a matchgate signature is even
(resp. odd) if its support is on entries of even (resp. odd) Hamming weight. We
explicitly list all the symmetric signatures in M (see [10]).

Proposition 2.8 Let f be a symmetric signature in M . Then there exist a, b ∈ C

and n ∈ N such that f takes one of the following forms:

1. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n ≥ 2);
2. [an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n + 1 ≥ 1);
3. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn] (of arity 2n + 1 ≥ 1);
4. [0, an, 0, an−1b, 0, . . . , 0, abn−1, 0, bn, 0] (of arity 2n + 2 ≥ 2).

Theory of Computing Systems

In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any
multiple of these is also a matchgate signature.

Roughly speaking, the symmetric matchgate signatures have 0 for every other
entry (which is called the parity condition), and form a geometric progression with
the remaining entries.

Another useful way to view the symmetric signature in M is via a low tensor rank
decomposition. To state these low rank decompositions, we use the following definition.

Definition 2.9 Let Sn be the symmetric group of degree n. Then for positive integers
t and n with t ≤ n and unary signatures v, v1, . . . , vn−t , we define

Symt
n(v; v1, . . . , vn−t) =

∑

π∈Sn

n⊗

k=1

uπ(k),

where the ordered sequence (u1, u2, . . . , un) = (v, . . . , v
︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

Proposition 2.10 Let f be a symmetric signature in M of arity n. Then there exist
a, b, λ ∈ C such that f takes one of the following forms:

1. [a, b]⊗n + [a, −b]⊗n =
{
2[an, 0, an−2b2, 0, . . . , 0, bn] n is even,

2[an, 0, an−2b2, 0, . . . , 0, abn−1, 0] n is odd;

2. [a, b]⊗n−[a, −b]⊗n =
{
2[0, an−1b, 0, an−3b3, 0, . . . , 0, abn−1, 0] n is even,

2[0, an−1b, 0, an−3b3, 0, . . . , 0, bn] n is odd;
3. λSymn−1

n ([1, 0]; [0, 1]) = [0, λ, 0, . . . , 0];
4. λSymn−1

n ([0, 1]; [1, 0]) = [0, . . . , 0, λ, 0].
While the symmetric signature notation such as [0, λ, 0, . . . , 0] is intuitive, the

notation of tensor powers and Symt
n (−; −) will be convenient for holographic

transformations.
The understanding of matchgates was further developed in [16], which charac-

terized, for every symmetric signature, the set of holographic transformations under
which the transformed signature becomes a matchgate signature.

Vanishing Signatures

Vanishing signatures were first introduced in [25] in the parity setting to denote
signatures for which the Holant value is always 0 modulo 2.

Definition 2.11 A set of signatures F is called vanishing if the value Holant�(F)

is 0 for every signature grid �. A signature f is called vanishing if the singleton set
{f } is vanishing.

A Holant problem defined only by vanishing signatures is trivially tractable by
definition. The question is how to determine which sets of signatures are vanishing?
We introduced the following definitions to answer this question.

Theory of Computing Systems

Definition 2.12 (Definition 17, p. 1683 in [11]) A nonzero symmetric signature f

of arity n has positive vanishing degree k ≥ 1, which is denoted by vd+(f) = k,
if k ≤ n is the largest positive integer such that there exists n − k unary signatures
v1, . . . , vn−k satisfying

f = Symk
n([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If
f is the all zero signature, define vd+(f) = n + 1.

We define negative vanishing degree vd− similarly, using −i instead of i.

Definition 2.13 (Definition 18, p. 1684 in [11]) For σ ∈ {+, −}, we define V σ =
{f |2 vdσ (f) > arity(f)}.

Furthermore, we let V = V + ∪ V −. The fact that V is closed under orthogonal
transformations follows directly from the next lemma.

Lemma 2.14 (Lemma 29, p.1690 in [11]) For a symmetric signature f of arity n,
σ ∈ {+, −}, and an orthogonal matrix T ∈ C

2×2, vdσ (f) is either vdσ (T ⊗nf) or
vd−σ (T ⊗nf).

The following characterization of vanishing signature sets holds.

Theorem 2.15 (Theorem 26, p. 1689 in [11]) LetF be a set of symmetric signatures.
Then F is vanishing if and only if F ⊆ V + or F ⊆ V −.

To prove this theorem, two more definitions were made, which complement the
previous two definitions because of Corollary 2.18.

Definition 2.16 (Definition 20, p. 1684 in [11]) A symmetric signature f =
[f0, f1, . . . , fn] of arity n is in R+

t for a nonnegative integer t ≥ 0 if t > n or for
any 0 ≤ k ≤ n − t , fk, . . . , fk+t satisfy the recurrence relation

(
t

t

)

itfk+t +
(

t

t − 1

)

it−1fk+t−1 + · · · +
(

t

0

)

i0fk = 0. (2.3)

We define R−
t similarly but with −i in place of i in (2.3).

Definition 2.17 (Definition 21, p. 1684 in [11]) For a nonzero symmetric signature
f of arity n, it is of positive (resp. negative) recurrence degree t ≤ n, denoted by
rd+(f) = t (resp. rd−(f) = t), if and only if f ∈ R+

t+1 − R+
t (resp. f ∈ R−

t+1 −
R−

t). If f is the all zero signature, we define rd+(f) = rd−(f) = −1.

Corollary 2.18 (Corollary 23, p. 1686 in [11]) If f is a symmetric signature and
σ ∈ {+, −}, then vdσ (f) + rdσ (f) = arity(f).

The following lemma gives a simple formula for the recurrence degree of a
signature when expressed under the Z transformation.

Theory of Computing Systems

Lemma 2.19 (Lemma 30, p. 1690 of [11]) Suppose f is a symmetric signature of
arity n. Let f̂ = (Z−1)⊗nf . If rd+(f) = d , then f̂ = [f̂0, f̂1, . . . , f̂d , 0, . . . , 0] and
f̂d �= 0. Also f ∈ R+

d iff all nonzero entries of f̂ are among the first d entries in its
symmetric signature notation.

Similarly, if rd−(f) = d , then f̂ = [0, . . . , 0, f̂n−d, . . . , f̂n] and f̂n−d �= 0. Also
f ∈ R−

d iff all nonzero entries of f̂ are among the last d entries in its symmetric
signature notation.

The following lemma is a reduction involving binary signatures in the Z basis. It
is used in Section 4 to help determine what binary signatures can mix with vanishing
signatures. The original statement is for general graphs, but the proof clearly holds
for planar graphs as well.

Lemma 2.20 (Lemma 65, p. 1724 in [11]) Let x ∈ C. If x �= 0, then for any set F
containing [x, 1, 0], we have

Pl-Holant
(�=2 | F ∪ {[v, 1, 0]}) ≤T Pl-Holant

(�=2 | F)

for any v ∈ C.

2.6 Some Known Dichotomies

Here we list several known dichotomies. The first is the dichotomy for Holant.

Theorem 2.21 (Theorem 31, p. 1691 in [11]) Let F be any set of symmetric,
complex-valued signatures in Boolean variables. Then Holant(F) is #P-hard unless
F satisfies one of the following conditions, in which case the problem is in ¶:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for σ ∈ {+, −};
5. All non-degenerate signatures in F are in Rσ

2 for σ ∈ {+, −}.

We also use several dichotomy theorems for planar Holant problems with addi-
tional restrictions. The first of these is a dichotomy theorem for a single signature
of small arity. It is a combination of Theorem 6.1 (p. 882) in [19] and Theorem 5.6
(p. 16) in [26] for arity 3 and 4, respectively. This theorem forms the base case of an
inductive proof of Theorem 6.1, our single signature dichotomy.

Theorem 2.22 If f is a non-degenerate, symmetric, complex-valued signature of
arity 3 or 4 in Boolean variables, then Pl-Holant(f) is #P-hard unless f satisfies one
of the following conditions, in which case, the problem is computable in polynomial
time:

1. Holant(f) is tractable (i.e. f is A -transformable, P-transformable, or vanish-
ing);

2. f is M -transformable.

Theory of Computing Systems

We also state a corollary of this result, which shows that counting weighted
matchings in 4-regular planar graphs is #P-hard. This is easier to apply than
Theorem 2.22.

Corollary 2.23 (Lemma 5.5 in [26]) Let v ∈ C. If v �= 0, then Pl-Holant
([v, 1, 0, 0, 0]) is #P-hard.

Next is a dichotomy theorem about counting complex weighted graph homo-
morphisms over degree prescribed graphs. This is essentially equivalent to Theo-
rem 3 in [13]. A more explicitly equivalent statement is stated as Theorem 22 in
[31].

Theorem 2.24 Let S ⊆ Z
+ containing some r ≥ 3, let G = {=k |k ∈ S}, and let

d = gcd(S). Further suppose that f0, f1, f2 ∈ C. Then Pl-Holant ([f0, f1, f2] | G)

is polynomial time computable in the following cases:

1. f0f2 = f 2
1 ;

2. f0 = f2 = 0;
3. f1 = 0;
4. f0f2 = −f 2

1 and f d
0 = −f d

2 �= 0;
5. f d

0 = f d
2 �= 0.

In all other cases the problem is #P-hard.

Theorem 2.24 is stated in an explicit form that is easy to apply. Conceptu-
ally, it can be restated as Theorem 2.24′, which supports the putative form of the
Pl-#CSPd dichotomy. We denote by M̂ = HM the set of Matchgate signatures M

transformed by the Hadamard basis H =
[
1 1
1 −1

]

.

Let Tk =
{[

1 0
0 θ

]

| θk = 1

}

be a set of diagonal matrices of order dividing k.

Theorem 2.24′ Let S ⊆ Z
+ contain k ≥ 3, let G = {=k |k ∈ S}, and let d = gcd(S).

Further suppose that f is a non-degenerate, symmetric, complex-valued binary sig-
nature in Boolean variables. Then Pl-Holant (f | G) is #P-hard unless f satisfies one
of the following conditions, in which case, the problem is computable in polynomial
time:

1. there exists T ∈ T4d such that T ⊗2f ∈ A ;
2. f ∈ P;
3. there exists T ∈ T2d such that T ⊗2f ∈ M̂ .

Lastly, we quote the Pl-#CSP dichotomy for symmetric signatures. It also supports
the putative form of a dichotomy, which states that holographic algorithms using
matchgates followed by the FKT algorithm is a universal strategy.

Theory of Computing Systems

Theorem 2.25 (Theorem 9.3 in [26]) Let F be any set of symmetric, complex-valued
signatures in Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆
P , or F ⊆ M̂ , in which case the problem is computable in polynomial time.

2.7 Redundant Signature Matrices and Related Hardness Results

Definition 2.26 (Definition 32, p. 1692 in [11]) A 4-by-4 matrix is redundant if its
middle two rows and middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4
signature.

Definition 2.27 (Definition 33, p. 1693 in [11]) The signature matrix of a symmetric
arity 4 signature f = [f0, f1, f2, f3, f4] is

Mf =

⎡

⎢
⎢
⎣

f0 f1 f1 f2
f1 f2 f2 f3
f1 f2 f2 f3
f2 f3 f3 f4

⎤

⎥
⎥
⎦ .

This definition extends to an asymmetric signature g as

Mg =

⎡

⎢
⎢
⎣

g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111

⎤

⎥
⎥
⎦ ,

where gwxyz is the output of g on input wxyz. When we present g as an F-gate, we
order the four external edges ABCD counterclockwise. In Mg , the row index bits are
ordered AB and the column index bits are ordered DC, in the reverse order. We order
them in this way so that when we link two arity 4 F-gates with signature matrices A

and B, the resulting signature matrix is the matrix product AB.
If Mg is redundant, we also define the compressed signature matrix of g in C

3×3

as

M̃g =
⎡

⎣
1 0 0 0
0 1

2
1
2 0

0 0 0 1

⎤

⎦Mg

⎡

⎢
⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤

⎥
⎥
⎦ .

Lemma 2.28 (Corollary 3.8 in [26]) Let f be an arity 4 signature with complex
weights. If Mf is redundant and M̃f is nonsingular, then Pl-Holant(f) is #P-hard.

Furthermore, by combining Lemma 2.28 with Lemma 39 (p. 1702) in [11], we
obtain the planar version of Corollary 40 (p. 1703) in [11].

Theory of Computing Systems

Fig. 2 The movement of the entries in the signature matrix of a quaternary signature under a counter-
clockwise rotation of the input edges. Entries of Hamming weight 1 are in the dotted cycle, entries of
Hamming weight 2 are in the two solid cycles (one has length 4 and the other one is a swap), and entries
of Hamming weight 3 are in the dashed cycle. a A counterclockwise rotation: Hollow diamonds inside
and outside the box mark the first variable before and after the rotation. Other variables are cyclically or-
dered. bMovement of signature matrix entries under this rotation.

Corollary 2.29 Let f be an arity 4 signature with complex weights. If there exists a
nonsingular matrix T ∈ C

2×2 such that f̂ = T ⊗4f , where M
f̂
is redundant and M̃

f̂

is nonsingular, then Pl-Holant(f) is #P-hard.

In the course of working with symmetric signatures, we sometimes construct
gadgets with signatures that are not symmetric. The power of Lemma 2.28 and Corol-
lary 2.29 is that they apply to such signatures provided the corresponding signature
matrix is redundant. Starting from a signature with a non-redundant signature matrix,
sometimes one can apply a rotation to obtain a signature with a redundant signature
matrix (see Fig. 2).

3 A -,P-, andM -transformable Signatures

In this section, we investigate the properties of A -, P-, and M -transformable sig-

natures. Throughout, we define α = 1+i√
2

= √
i = e

πi
4 and use O2(C) to denote the

group of 2-by-2 orthogonal matrices over C. While the main results in this section
assume that the signatures involved are symmetric, we note that some of the lemmas
also hold without this assumption.

3.1 Characterization ofA - andP-transformable Signatures

A - and P-transformable signatures have been well studied in previous work [11,
12]. We summarize some useful notions and lemmas here. The three sets A1, A2,
and A3 capture all symmetric A -transformable signatures.

Definition 3.1 A signature f of arity n is in, respectively, A1, or A2, or A3 if
it is symmetric and there exist an H ∈ O2(C) and a nonzero constant c ∈ C

Theory of Computing Systems

such that f has the form, respectively, cH⊗n

([
1
1

]⊗n

+ β

[
1
−1

]⊗n
)

, or cH⊗n

([
1
i

]⊗n

+
[
1
−i

]⊗n
)

, or cH⊗n

([
1
α

]⊗n

+ ir
[
1
−α

]⊗n
)

, where β = αtn+2r ,

r ∈ {0, 1, 2, 3}, and t ∈ {0, 1}.

For k ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ak with
transformation H . If f ∈ Ak with I2, then we say f is in the canonical form of Ak .

The following lemma characterizes the signatures in A2.

Lemma 3.2 (Lemma 54, p. 1714 in [11]) Let f be a symmetric signature of arity

n. Then f ∈ A2 if and only if f = c

([
1
i

]⊗n

+ β

[
1
−i

]⊗n
)

for some nonzero

constants c, β ∈ C. Thus signatures inA2 are those with the form [x, y, −x, −y, . . .]
with y �= ±ix.

Signatures in A2 have the form Z⊗n[a, 0, . . . , 0, b] where [a, 0, . . . , 0, b] is a
weighted EQUALITY function with ab �= 0.

Membership in these three sets characterizes the A -transformable signatures.

Lemma 3.3 (Lemma 56, p. 1715 in [11]) Let f be a non-degenerate symmetric
signature. Then f is A -transformable if and only if f ∈ A1 ∪ A2 ∪ A3.

There is a similar characterization for P-transformable signatures.

Definition 3.4 A signature f of arity n is in P1 if it is symmetric and there exist

an H ∈ O2(C) and a nonzero c ∈ C such that f = cH⊗n

([
1
1

]⊗n

+ β

[
1
−1

]⊗n
)

,

where β �= 0.

We define P2 = A2. For k ∈ {1, 2}, when such an H exists, we say that f ∈ Pk

with transformation H . If f ∈ Pk with I2, then we say f is in the canonical form of
Pk .

Lemma 3.5 (Lemma 59, p. 1717 in [11]) Let f be a non-degenerate symmetric
signature. Then f is P-transformable if and only if f ∈ P1 ∪ P2.

These classes Ai and Pj contain only symmetric functions. These are trans-
formed classes based on (symmetric functions in) A and P . They are not subsets
of A and P respectively. However, A and P do contain nonsymmetric functions.
The same remark applies to the classes Mk for k = 1, 2, 3, 4 from Definition 3.9 in
Section 3.2, in relation to M .

Theory of Computing Systems

We can define
Stab(A) = {T ∈ GL2(C)|T A ⊆ A },

as the stabilizer group of A . It can be verified that

[
1 0
0 i

]

,

[
0 1
1 0

]

,

[
1 1
1 −1

]

∈
Stab(A).

3.2 Characterization ofM -transformable Signatures

Now we develop a similar theory for the M -transformable signatures. Recall from
Definition 2.4 that for a signature set F to be M -transformable, it must be that
there exists a T ∈ GL2(C) such that [1, 0, 1]T ⊗2 ∈ M . Since [1, 0, 1] is symmet-
ric, [1, 0, 1]T ⊗2 is also symmetric. However, it is unnecessary to consider all binary
signatures in M . We can normalize via right multiplication by elements in

Stab(M) = {T ∈ GL2(C)|T M ⊆ M },
the stabilizer group of M . Technically this set is the left stabilizer group of M , but
it is easy to see that the left and right stabilizer groups of M coincide. It is easy to
prove that

Proposition 3.6 Stab(M) is generated by nonzero scalar multiples of

[
1 0
0 ν

]

for

any nonzero ν ∈ C and X =
[
0 1
1 0

]

.

After this normalization, it is enough to consider cases 1 and 3 in the following
proposition.

Proposition 3.7 (Proposition 47, p. 1711 in [11]) Let T ∈ C
2×2 be a matrix. Then

the following hold:

1. [1, 0, 1]T ⊗2 = [1, 0, 1] if and only if T ∈ O2(C);
2. [1, 0, 1]T ⊗2 = [1, 0, i] if and only if there exists an H ∈ O2(C) such that

T = H

[
1 0
0 α

]

;

3. [1, 0, 1]T ⊗2 = [0, 1, 0] if and only if there exists an H ∈ O2(C) such that

T = 1√
2
H

[
1 1
i −i

]

.

Lemma 3.8 Let F be a set of signatures. Then F is M -transformable if and only if

F ⊆
[
1 1
i −i

]

M or there exists an H ∈ SO2(C) such that F ⊆ HM .

Proof Sufficiency is easily verified by checking that =2 is transformed into M in
both cases. In particular, H leaves =2 unchanged.

If F is M -transformable, then by definition, there exists a matrix T such that
(=2)T

⊗2 ∈ M and F ⊆ T M . The non-degenerate binary signatures in M are

Theory of Computing Systems

either [0, 1, 0] or of the form [1, 0, ν], for ν �= 0, up to a scalar. However, notice that

[1, 0, 1] = [1, 0, ν]
[
1 0

0 ν− 1
2

]⊗2

and

[
1 0

0 ν− 1
2

]

∈ Stab(M). Thus, we only need to

consider [1, 0, 1] and [0, 1, 0]. Now we apply Proposition 3.7.

1. If (=2)T
⊗2 = [1, 0, 1], then by case 1 of Proposition 3.7, we have T ∈ O2(C). If

T ∈ SO2(C), then we are done with H = T . Otherwise, T ∈ O2(C) − SO2(C).

We want to find an H ∈ SO2(C) such that F ⊆ HM . Let H = T

[
1 0
0 −1

]

∈
SO2(C). Then

F ⊆ T M = T

[
1 0
0 −1

]

M = HM

since

[
1 0
0 −1

]

∈ Stab(M).

2. If (=2)T
⊗2 = [0, 1, 0], then by case 3 of Proposition 3.7, there exists an

H ∈ O2(C) such that T = 1√
2
H

[
1 1
i −i

]

. Therefore F ⊆ H

[
1 1
i −i

]

M .

Furthermore, if H =
[

a b

−b a

]

∈ SO2(C), then a2 + b2 = 1 and

F ⊆ H

[
1 1
i −i

]

M =
[
1 1
i −i

] [
a + bi 0

0 a − bi

]

M =
[
1 1
i −i

]

M

since H

[
1 1
i −i

]

=
[
1 1
i −i

][
a + bi 0
0 a − bi

]

and

[
a + bi 0
0 a − bi

]

∈

Stab(M). Otherwise, H =
[

a b

b −a

]

∈ O2(C) − SO2(C), so a2 + b2 = 1 and

F ⊆ H

[
1 1
i −i

]

M =
[
1 1
i −i

] [
0 a − bi

a + bi 0

]

M =
[
1 1
i −i

]

M

since H

[
1 1
i −i

]

=
[
1 1
i −i

][
0 a − bi

a + bi 0

]

and

[
0 a − bi

a + bi 0

]

∈
Stab(M).

We use four sets to characterize the M -transformable signatures. The function
Symt

n (−; −) is defined in Definition 2.9.

Definition 3.9 A signature f of arity n is in Mk for k = 1, 2, 3, 4, if it is symmetric
and there exist an H ∈ O2(C) and nonzero constants c, γ ∈ C such that f has the
form (k) as follows:

(1) : cH⊗n

([
1
1

]⊗n

± in
[
1
−1

]⊗n
)

;

(2) : cH⊗n

([
1
γ

]⊗n

±
[
1
−γ

]⊗n
)

for some γ �= 0;

Theory of Computing Systems

(3) : cH⊗n Symn−1
n

([
1
0

]

;
[
0
1

])

;

(4) : cH⊗n Symn−1
n

([
1
i

]

;
[
1
−i

])

.

Form (3) is cH⊗n[0, 1, 0, . . . , 0], and form (4) is c(HZ)⊗n[0, 1, 0, . . . , 0], where
[0, 1, 0, . . . , 0] is the EXACT-ONE function of arity n.

For k ∈ {1, 2, 3, 4}, when such an H exists, we say that f ∈ Mk with transfor-
mation H . If f ∈ Mk with I2, then we say f is in the canonical form of Mk .

Notice that

{[
1
i

]

,

[
1
−i

]}

is set-wise invariant under any transformation in

O2(C) up to nonzero constants. Using this fact, the following lemma gives a char-
acterization of M4. It says that any signature in M4 is essentially in canonical
form.

Lemma 3.10 Let f be a symmetric signature of arity n. Then f ∈ M4 if and only

if f = c Symn−1
n (

[
1
i

]

;
[
1
−i

]

) or f = c Symn−1
n (

[
1
−i

]

;
[
1
i

]

) for some nonzero

constant c ∈ C.

Proof Suppose f ∈ M4, so that f = cH⊗n Symn−1
n (

[
1
i

]

;
[
1
−i

]

). If H ∈

SO2(C), then H =
[

a b

−b a

]

for some a, b ∈ C such that a2 + b2 = 1. Since

H

[
1
i

]

= (a + bi)

[
1
i

]

and H

[
1
−i

]

= (a − bi)

[
1
−i

]

, it follows that f =

c(a + bi)n−1(a − bi)Symn−1
n (

[
1
i

]

;
[
1
−i

]

). Otherwise, H ∈ O2(C) − SO2(C),

so H =
[

a b

b −a

]

for some a, b ∈ C such that a2 + b2 = 1. Then f =

c(a + bi)(a − bi)n−1 Symn−1
n (

[
1
−i

]

;
[
1
i

]

).

Now suppose f = c Symn−1
n (

[
1
i

]

;
[
1
−i

]

) or f = c Symn−1
n (

[
1
−i

]

;
[
1
i

]

).

The first case is already in the standard form of M4. In the second case, we pick

H =
[
1 0
0 −1

]

∈ O2(C). Then H⊗nf is in the standard form of M4.

We further split M4 into M ±
4 for future use. Define M ±

4 = {f |f =
c Symn−1

n (

[
1
±i

]

;
[
1
∓i

]

)}. In other words, M +
4 contains signatures of the form

Z⊗n[0, 1, 0, . . . , 0] and M −
4 contains signatures of the form Z⊗n[0, . . . , 0, 1, 0]

up to a scalar, where Z =
[
1 1
i −i

]

. We will denote [0, 1, 0, . . . , 0] of arity k

by EXACTONEk , and [0, . . . , 0, 1, 0] of arity k by ALLBUTONEk . Note that these
are precisely the PERFECT MATCHING signatures and corresponding reversals. In

Theory of Computing Systems

general, the reversal of a symmetric signature [f0, f1, . . . , fn] is [fn, . . . , f1, f0],
corresponding to flipping all input bits 0 and 1. By Definition 2.13 and Lemma 2.19,
all signatures in M ±

4 of arity at least 3 belong to V ±, respectively.
We note that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂ M2. Also note that P1 ∩ M2 ⊆

A1. See Fig. 3 for a visual description of the relationships among these sets.
Next we show that Mk for k = 1, 2, 3, 4 captures all M -transformable signatures.

Lemma 3.11 Let f be a non-degenerate symmetric signature. Then f is M -
transformable if and only if f ∈ M1 ∪ M2 ∪ M3 ∪ M4.

Proof Assume that f is M -transformable of arity n. By applying Lemma 3.8 to {f },
we have f ∈

[
1 1
i −i

]

M or there exists an H ∈ SO2(C) such that f ∈ HM .

Proposition 2.10 lists the symmetric signatures in M . Since we are only interested
in non-degenerate signatures, we only consider a, b, and λ that are nonzero. Now we
consider the possible cases.

1. Suppose f ∈
[
1 1
i −i

]

M .

• If f =
[
1 1
i −i

]⊗n
([

a

b

]⊗n

±
[

a

−b

]⊗n
)

for some nonzero a, b ∈ C. Let

T = 1−i
2

[
u v

v −u

]

, where u = a + bi and v = i(a − bi). Then f =

T ⊗n

([
1
1

]⊗n

± in
[
1
−1

]⊗n
)

. Since T ∈ O2(C) up to a nonzero factor of

√
2ab, we have f ∈ M1.

Fig. 3 Relationships among A1, A2, A3, P1, P2, M1, M2, M3, and M4

Theory of Computing Systems

• Otherwise, if f = λ

[
1 1
i −i

]⊗n

Symn−1
n (

[
1
0

]

;
[
0
1

]

) for some nonzero λ ∈

C. Then we have f = λSymn−1
n (

[
1
i

]

;
[
1
−i

]

), so f ∈ M4 by Lemma 3.10.

• Otherwise, f = λ

[
1 1
i −i

]⊗n

Symn−1
n (

[
0
1

]

;
[
1
0

]

) for some nonzero λ ∈

C. Then we have f = λSymn−1
n (

[
1
−i

]

;
[
1
i

]

), so f ∈ M4 by Lemma 3.10.

2. Suppose f ∈ HM .

• If f = H⊗n

([
a

b

]⊗n

±
[

a

−b

]⊗n
)

for some nonzero a, b ∈ C. Then we

have the form f = anH⊗n

([
1
γ

]⊗n

±
[
1
−γ

]⊗n
)

, where γ = b
a
, so f ∈

M2.

• Otherwise, if f = λH⊗n Symn−1
n (

[
1
0

]

;
[
0
1

]

) for some nonzero λ ∈ C.

Then f ∈ M3.

• Otherwise, f = λH⊗n Symn−1
n (

[
0
1

]

;
[
1
0

]

) for some nonzero λ ∈ C. Let

H ′ = H

[
0 1
1 0

]

∈ O2(C). Then we have f = λH ′⊗n Symn−1
n (

[
1
0

]

;
[
0
1

]

),

so f ∈ M3.

Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the
canonical forms of M1, M2, M3, or M4, then one can directly check that f is M -
transformable by Definition 2.4. In fact, the transformations that we applied above
are all invertible.

Furthermore, we show that a nontrivial signature f in the set M3 is not A - or P-
transformable. Moreover, the only transformation to make f in M is very restricted.
This is for future use.

Lemma 3.12 Let f ∈ M3 be a non-degenerate signature of arity n ≥ 3 with H ∈
O2(C). Then f is not A - or P-transformable. Moreover, f is M -transformable

with only HD or H

[
0 1
1 0

]

D for some diagonal matrix D.

Proof Suppose f = [f0, f1, . . . , fn]. It can be directly verified that symmetric sig-
natures in A and P satisfy second order recurrence relations (see Lemma 48, p.
1712 [11]) with distinct eigenvalues, and this property still holds under a holographic
transformation. Indeed if f is A - or P-transformable, then f satisfies a second
order recurrence relation afi + bfi+1 + cfi+2 = 0, for a, b, c ∈ C such that not all
a, b, c are 0 and b2 − 4ac �= 0. In other words, the second order recurrence relation
has to have distinct eigenvalues. Moreover, this property is preserved by holographic

Theory of Computing Systems

transformations [12]. However, f is in M3. Hence f = H⊗nEXACTONEn for some
H ∈ O2(C) up to a nonzero factor. On the other hand, EXACTONEn does not satisfy
a second order recurrence with distinct eigenvalues if n ≥ 3, a contradiction.

Moreover, notice that the only signatures in M that do not satisfy such second
order recurrence relations are EXACTONEk and ALLBUTONEk functions. If f is
M -transformable, then there exists a transformation T such that f = T ⊗ng for
some g ∈ M and [1, 0, 1]T ⊗2 ∈ M . Hence g = EXACTONEn or ALLBUTONEn.
On the other hand f = H⊗nEXACTONEn up to a nonzero factor. Therefore
(T −1H)⊗nEXACTONEn = EXACTONEn or ALLBUTONEn up to a nonzero factor.

Let J = T −1H =
[

x y

z w

]

and let h = J⊗nEXACTONEn. As EXACTONEn =

Symn−1
n (

[
1
0

]

;
[
0
1

]

), h = (

[
x y

z w

]

)⊗nEXACTONEn = Symn−1
n (

[
x

z

]

;
[

y

w

]

).

The first and last entries of h are xn−1y and zn−1w. As h = EXACTONEn or
ALLBUTONEn, we have that xn−1y = zn−1w = 0. It is easy to see that x and z,
or y and w cannot be both 0. Then x = w = 0 or y = z = 0. This implies that

J = D or J = D

[
0 1
1 0

]

for some diagonal matrix D. Thus T = HJ−1 = HD−1 or

H

[
0 1
1 0

]

D−1.

Let g = [x, y, 0, . . . , 0, z] have arity n ≥ 3, where xyz �= 0. As an example of
the theory developed in this section, we discuss the signature Z⊗ng in the follow-
ing lemma, which will be used in Lemma 6.6 in the proof of the single signature
dichotomy Theorem 6.1.

Lemma 3.13 Let n ≥ 3, g = [x, y, 0, . . . , 0, z] have arity n and xyz �= 0. Then the
signature Z⊗ng is neither A -, P-, M -transformable, nor vanishing.

Remark 1 By Theorem 2.22, for arity n = 3 or 4, Lemma 3.13 says that
Pl-Holant(Z⊗ng) is #P-hard. After we have proved Theorem 6.1, this lemma will
imply that Pl-Holant(Z⊗ng) is #P-hard for all n ≥ 3.

Proof That Z⊗ng is not vanishing follows from Lemma 2.19 combined with Corol-
lary 2.18 and Theorem 2.15. To show that Z⊗ng is not A -, P-, M -transformable,
we only need to show that Z⊗ng �∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 by Lemma 3.3, 3.5
and 3.11, and the fact that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂ M2. See Fig. 3.

We first show that Z⊗ng �∈ P1 ∪ M2 ∪ A3. We say a signature f =
[f0, f1, . . . , fn] satisfies a second order recurrence of type 〈a, b, c〉 if afk − bfk+1 +
cfk+2 = 0 for 1 ≤ k ≤ n − 2, for some a, b and c not all zero. Symmetric signatures
in A , P, M all satisfy second order recurrences, and this property is invariant under
a holographic transformation. So signatures in P1 ∪ M2 ∪ A3 also satisfy second
order recurrences. The recurrence afk − bfk+1 + cfk+2 = 0 has characteristic equa-
tion a−bX+cX2 = 0. Suppose Z⊗ng ∈ P1∪M2∪A3, then for some H ∈ O2(C),

Theory of Computing Systems

f = H⊗nZ⊗ng = (HZ)⊗ng has the canonical form given in Definitions 3.4, 3.9
or 3.1. As such, f satisfies a second order recurrence, and so does (Z−1)⊗nf . We

have HZ = ZD or ZD

[
0 1
1 0

]

for some non-singular diagonal D. Then f = Z⊗ng′,

where g′ = D⊗ng or (D

[
0 1
1 0

]

)⊗ng. So g′ has the form [x′, y′, 0, . . . , 0, z′] or

[x′, 0, . . . , 0, y′, z′], with x′y′z′ �= 0. We assume the former; the proof is similar for
the latter.

It follows that g′ = (Z−1)⊗nf satisfies a second order recurrence. However, for
n ≥ 4, g′ does not satisfy any second order recurrence. For a contradiction suppose
g′ does. By x′y′z′ �= 0, ay′ − b0 + c0 = 0 gives a = 0, ax′ − by′ + c0 = 0 gives
b = 0, and a0 − b0 + cz′ = 0 gives c = 0; but a, b, c cannot be all zero.

Next suppose n = 3, and we show that g′ = (Z−1)⊗nf is still impossible. ForP1,

f =
[
1
1

]⊗3

+β

[
1
−1

]⊗3

up to a nonzero constant. It is easy to check that (Z−1)⊗nf

satisfies a second order recurrence whose two eigenvalues sum to zero. However
g′ = [x′, y′, 0, z′] has type 〈y′z′, x′z′, −y′2〉, so the sum of its two eigenvalues is
−x′z′/y′2 �= 0.

For M2, f =
[
1
γ

]⊗3

±
[
1
−γ

]⊗3

. In (Z−1)⊗nf , Z−1
[
1 1
γ −γ

]

has the form
[

u v

v u

]

, and (Z−1)⊗nf =
[

u

v

]⊗3

±
[

v

u

]⊗3

. Thus the weight 1 and weight 2 entries

of (Z−1)⊗nf are either equal or sum to zero. If g′ = (Z−1)⊗nf this would imply
y′ = 0, a contradiction.

For A3, f =
[
1
α

]⊗n

+ ir
[
1
−α

]⊗n

. (Recall, as defined at the beginning of

Section 3, α = √
i.) Z−1

[
1 1
α −α

]

=
[

u v

v u

]

, with u = 1− αi and v = 1+ αi. The

weight 2 entry of (Z−1)⊗nf is uv2 + irvu2 = (uv)(v + iru). This is nonzero for all
r . However for g′ = [x′, y′, 0, z′], the weight 2 entry is 0.

It remains to show that Z⊗ng �∈ M3 ∪M4. If Z⊗ng ∈ M3, then Z⊗ng = cH⊗nf

for some H ∈ O2(C) and f = Symn−1
n (

[
1
0

]

;
[
0
1

]

). Again f = ((cH)−1Z)⊗ng =
Z⊗ng′ for some g′ having the same form as g or its reversal. Then g′ = (Z−1)⊗nf

is the signature [n, n − 2, . . . , −(n − 2), −n], up to a nonzero constant. The weight
1 entry and weight n − 1 entry have the same absolute value. By the form of g′ this
is a contradiction.

Finally if Z⊗ng ∈ M4, then by Lemma 3.10, Z⊗ng = cZ⊗nf , for some nonzero

constant c ∈ C, and f = Symn−1
n (

[
1
0

]

;
[
0
1

]

) or its reversal Symn−1
n (

[
0
1

]

;
[
1
0

]

).

In either case, after canceling out Z, the weight 0 entry is 0 in the expression but not
so in g; a contradiction.

Theory of Computing Systems

4 Mixing with Vanishing Signatures

In this section, we prove some hardness results for vanishing signature sets when
augmented by other signatures. We first consider the mixing of vanishing signatures
with unary and binary signatures. Over general graphs, these cases are handled by
Lemma 44 and Lemma 45 (p. 1708) in [11]. One can check that the hardness in
Lemma 44 in [11] holds for planar graphs. We state the planar version of Lemma 44
in [11] and provide a proof for completeness. Specifically, the reduction to obtain the
signature f ′′ is planar and Pl-Holant(f ′′) is #P-hard by Theorem 2.22.

Lemma 4.1 Let f ∈ V σ be a symmetric signature of arity n with rdσ (f) = d ≥ 2
where σ ∈ {+, −}. Suppose v = u⊗m is a symmetric degenerate signature for some
unary signature u and some integer m ≥ 1. If u is not a multiple of [1, σ i], then
Pl-Holant(f, v) is #P-hard.

Proof We consider σ = + since the other case is similar. Since f ∈ V +, we have
n > 2d ≥ 4. Under a holographic transformation by Z, we have

Pl-Holant(f, v) ≡ Pl-Holant
(
�=2 | f̂ , [a, b]⊗m

)
,

where f̂ = (
Z−1

)⊗n
f and [a, b]⊗m = (

Z−1
)⊗m

v with b �= 0 since u is not

a multiple of [1, i]. Moreover, f̂ = [f̂0, f̂1, . . . , f̂d , 0, . . . , 0] with f̂d �= 0 by
Lemma 2.19.

We get f̂ ′ = [f̂d−2, f̂d−1, f̂d , 0, . . . , 0] of arity n − 2d + 4 by d − 2 self-loops
via �=2 on f̂ . This signature is on the right hand side of the bipartite Holant problem

Pl-Holant
(
�=2 | f̂ , [a, b]⊗m

)
. With two more self-loops, we get [1, 0]⊗(n−2d), also

on the right.
We claim that we can use [1, 0]⊗(n−2d) and [a, b]⊗m to create [a, b]⊗(n−2d). Let

t = gcd(m, n − 2d). If n − 2d > m, then we connect [a, b]⊗m to [1, 0]⊗(n−2d) via
�=2 to get [1, 0]⊗(n−2d−m) up to a nonzero factor bm. We repeat this process until
we get a tensor power [1, 0]⊗� for some � ≤ m. We can do a similar construction if
m > n − 2d . Repeat this process, which is a subtractive Euclidean algorithm. Halt
upon getting both [1, 0]⊗t and [a, b]⊗t . Then we combine n−2d

t
copies of [a, b]⊗t to

get [a, b]⊗(n−2d).
Now connecting [a, b]⊗(n−2d) back to f̂ ′ via �=2, gives f̂ ′′ =

[f̂ ′′
0, f̂

′′
1, f̂

′′
2, 0, 0] of arity 4. Moreover, f̂ ′′

2 = bn−2d f̂d �= 0. Notice that

Pl-Holant(�=2 | [f̂ ′′
0, f̂

′′
1, f̂

′′
2, 0, 0]) ≡ Pl-Holant

(�=2 | [0, 0, 1, 0, 0]),
the latter being counting Eulerian Orientations over planar 4-regular graphs, which
is #P-hard by Corollary 2.29 (or more directly by [26, Theorem 3.7]). Thus,
Pl-Holant(f, v) is #P-hard.

Next come binary signatures. The statement of Lemma 45 (p. 1708) in [11] must
be modified to rule out a planar tractable case (which is proved #P-hard for general
graphs in Lemma 45 in [11]). Excluding this planar tractable case, there is one more
nonplanar reduction in the proof of Lemma 45 in [11]. This reduction is used to show

Theory of Computing Systems

that Holant
(�=2 | {[t, 1, 0, 0, 0], [c, 0, 1]}) is #P-hard when c �= 0 (but the gadget in

Figure 12a of [11] (p. 1710) is nonplanar). In the following lemma, we first show that
this problem Holant

(�=2 | {[t, 1, 0, 0, 0], [c, 0, 1]}) remains #P-hard even restricted
to planar graphs provided t �= 0. If t = 0, then all signatures belong to M and the
problem is tractable.

Lemma 4.2 Let c, t ∈ C. If ct �= 0, then Pl-Holant
(�=2 | [t, 1, 0, 0, 0], [c, 0, 1]) is

#P-hard.

Proof By connecting two copies of �=2 to either side of [c, 0, 1], we get
the signature [1, 0, c] on the left. Clearly Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ≤T

Pl-Holant
(�=2 | [t, 1, 0, 0, 0], [c, 0, 1]). Then under a holographic transformation by

T −1, where T =
[
1 0
0

√
c

]

, we have

Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ≡ Pl-Holant
(
[1, 0, c](T −1)⊗2 | T ⊗4[t, 1, 0, 0, 0]

)

≡ Pl-Holant
([1, 0, 1] | [t,√c, 0, 0, 0])

≡ Pl-Holant([t,√c, 0, 0, 0]).
The last problem is #P-hard by Corollary 2.23 after dividing by

√
c.

Next we prove the planar version of Lemma 45 (p. 1708) in [11] using Lemma 4.2.
We have to rule out the planar tractable case f ∈ M ±

4 . Also note that if f ∈ V ±
is a symmetric non-degenerate signature, then f has arity at least 3. This is because
a unary signature is degenerate, and if a binary symmetric signature f is vanishing,
then its vanishing degree is greater than 1, hence at least 2, and therefore f is also
degenerate. In the following lemma, we explicitly state this condition arity(f) ≥ 3.

Lemma 4.3 Let f ∈ V σ be a symmetric non-degenerate signature of arity n ≥ 3
for some σ ∈ {+, −}. Suppose h is a non-degenerate binary signature. If f �∈ M σ

4
and h /∈ Rσ

2 , then Pl-Holant(f, h) is #P-hard.

Proof We consider σ = + since the other case is similar. Under a Z transformation,

Pl-Holant(f, h) ≡ Pl-Holant
(
�=2 | f̂ , ĥ

)
,

where f̂ = (
Z−1

)⊗n
f and ĥ = (

Z−1
)⊗2

h. Since h �∈ R+
2 , we may assume that

ĥ = [a, b, 1] by Lemma 2.19 with a nonzero entry ĥ2, here we normalized to 1.
Moreover since h is non-degenerate, so is ĥ, and therefore b2 �= a.

We prove the lemma by induction on the arity of f (or equivalently f̂). There are
two base cases, n = 3 and n = 4. However, the arity 3 case is easily reduced to the
arity 4 case. We show this first, and then show that the lemma holds in the arity 4
case.

Assume n = 3. Since f ∈ V +, by Definition 2.13, Corollary 2.18 and
Lemma 2.14, we have the form f̂ = [f̂0, f̂1, 0, 0]. Moreover, since f is nonde-
generate, we have f̂1 �= 0 and we can normalize it to 1. So we have the form

Theory of Computing Systems

Fig. 4 Circle vertices are
assigned [t, 1, 0, 0] and the
square vertex is assigned �=2

f̂ = [t, 1, 0, 0]. By Lemma 2.19, we have t �= 0 as f �∈ M +
4 . Consider the gad-

get in Fig. 4. We assign f̂ to the circle vertices and �=2 to the square vertex. Let f̂ ′
be the signature of the resulting gadget. The signature f̂ ′ may not seem symmetric
by construction, but in fact it is, and it has signature f̂ ′ = [2t, 1, 0, 0, 0]. The cru-
cial observation is that it takes the same value 0 on inputs 1010 and 1100, where bits
are ordered counterclockwise, starting from an arbitrary edge. (Note that f̂ ′ outputs
value 0 even when both copies of f̂ have 01 on the dangling edges.) This finishes our
reduction to n = 4.

Now we consider the base case of n = 4. Since f ∈ V +, we have vd+(f) > 2 and
rd+(f) < 2. As f is not degenerate, rd+(f) �∈ {−1, 0}. This implies that rd+(f) = 1
and by Lemma 2.19, f̂ = [t, 1, 0, 0, 0]. Moreover, t �= 0 since f /∈ M +

4 .
Our next goal is to show that we can realize a signature of the form [c, 0, 1]

with c �= 0. Then Pl-Holant
(�=2 | [t, 1, 0, 0, 0], [c, 0, 1]) ≤ Pl-Holant(f, h). Then it

follows from Lemma 4.2 that the problem Pl-Holant
(�=2 | [t, 1, 0, 0, 0], [c, 0, 1]) is

#P-hard.
Recall that ĥ = [a, b, 1] with b2 �= a. If b = 0, then ĥ is what we want since in

this case a = a − b2 �= 0.
Otherwise b �= 0. By connecting ĥ to f̂ via �=2, we get [t + 2b, 1, 0]. If t �= −2b,

then by Lemma 2.20, we can interpolate any binary signature of the form [v, 1, 0].
Otherwise t = −2b. Then we connect two copies of ĥ via �=2, and get ĥ′ = [2ab, a+
b2, 2b]. By connecting this ĥ′ to f̂ via �=2, we get [2(a − b2), 2b, 0], using t = −2b.
Since a �= b2 and b �= 0, we can once again interpolate any [v, 1, 0] by Lemma 2.20.

Hence, we have the signature [v, 1, 0], where v ∈ C is for us to choose. We
construct the gadget in Fig. 5 with the circles assigned [v, 1, 0], the squares assigned
�=2, and the triangle assigned [a, b, 1]. The resulting gadget has signature [a +2bv +
v2, b + v, 1], which can be verified by the matrix product

[
v 1
1 0

] [
0 1
1 0

] [
a b

b 1

] [
0 1
1 0

] [
v 1
1 0

]

=
[
a + 2bv + v2 b + v

b + v 1

]

.

By setting v = −b, we get [c, 0, 1], where c = a − b2 �= 0.

Fig. 5 A sequence of binary gadgets that forms another binary gadget. The circles are assigned [v, 1, 0],
the squares are assigned �=2, and the triangle is assigned [a, b, 1]

Theory of Computing Systems

Now we do the induction step. Assume n ≥ 5. The construction is essentially
identical to the case n = 4, but for clarity we spell it out. Since f is non-degenerate,
rd+(f) ≥ 1. If rd+(f) = 1, then f̂ = [t, 1, 0, . . . , 0] for some t �= 0. We connect
ĥ to f̂ via �=2, getting [t + 2b, 1, 0, . . . , 0] of arity n − 2 ≥ 3. If t + 2b �= 0, then
we are done by induction hypothesis. Otherwise t = −2b, and we connect two ĥ

together via �=2. The signature is ĥ′ = [2ab, b2 + a, 2b]. Connect ĥ′ to f̂ via �=2.
We get [−4b2 + 2(b2 + a), 2b, 0, . . . , 0] = [2(a − b2), 2b, 0, . . . , 0]. If b = 0, then
t = 0. Contradiction. Hence b �= 0, and also a − b2 �= 0 since ĥ is nondegenerate.
Then we can apply induction hypothesis on [2(a − b2), 2b, 0, . . . , 0].

The case left is that rd+(f) = d ≥ 2. Then f̂ = [f̂0, f̂1, . . . , f̂d , 0, . . . , 0] with
f̂d �= 0 by Lemma 2.19. We form a self-loop of f̂ via �=2, getting the signature
f̂ ′′ = [f̂1, . . . , f̂d , 0, . . . , 0] of arity n − 2 ≥ 3. Since d ≥ 2, f̂ ′′ is non-degenerate
and f ′′ = Z⊗(n−2)f̂ ′′ ∈ V +. If f ′′ �∈ M +

4 , then apply the induction hypothesis and
we are done. Otherwise, by the form of f̂ ′′, we have d = 2 and f̂1 = 0, and so we
may assume f̂ = [f̂0, 0, 1, 0, . . . , 0] since f̂2 �= 0.

In this case, we connect ĥ to f̂ via �=2, getting f̂ ′′′ = [a + f̂0, 2b, 1, 0, . . . , 0]
of arity n − 2 ≥ 3. If n ≥ 7, then we can apply the induction hypothesis. If
n = 6, then f̂ ′′′ = [a + f̂0, 2b, 1, 0, 0] of arity 4. Notice that Pl-Holant([0, 1, 0] |
[a + f̂0, 2b, 1, 0, 0]) is equivalent to Pl-Holant ([0, 1, 0] | [0, 0, 1, 0, 0]), which is
counting Eulerian orientations in 4-regular planar graphs. Then Pl-Holant(�=2 | f̂ ′′′)
is #P-hard by Corollary 2.29.

The only case left now is when n = 5 and f̂ = [f̂0, 0, 1, 0, 0, 0]. We do two self-
loops on f̂ via �=2 to get [1, 0]. Then connect [1, 0] to ĥ via �=2 and get [b, 1]. At
last, connect [b, 1] to f̂ via �=2, resulting in [f̂0, b, 1, 0, 0]. Similar to the case above,
this is counting Eulerian orientations in 4-regular planar graphs, and is #P-hard by
Corollary 2.29.

If f ∈ M ±
4 , there is an additional case for binary signatures.

Lemma 4.4 Let f ∈ M σ
4 be a symmetric non-degenerate signature with σ ∈ {+, −}

of arity k ≥ 3. Suppose h is a non-degenerate binary signature such that h /∈ Rσ
2 and

h is not a multiple of Z⊗2[a, 0, 1] for any a �= 0. Then Pl-Holant(f, h) is #P-hard.

Proof We assume f ∈ M +
4 since the other case is similar. Suppose h = Z⊗2[a, b, c]

for some a, b, c ∈ C. Since h /∈ R+
2 , we have c �= 0, so we assume c = 1. Moreover

b �= 0. This is because, if b = 0 then either h is degenerate or is a multiple of
Z⊗2[a, 0, 1] for some a �= 0. Either case is a contradiction. Then under a holographic
transformation by Z, the problem becomes Pl-Holant

(�=2 | EXACTONEk, [a, b, 1]).
If we connect two copies of EXACTONEk via �=2, we get EXACTONE2k−2. Hence
we may assume that k ≥ 5. Then we connect [a, b, 1] to EXACTONEk via �=2, and
get [2b, 1, 0, . . . , 0] of arity k − 2 ≥ 3. Since b �= 0, Pl-Holant(f, h) is #P-hard by
Lemma 4.3.

Next we consider mixing signatures from V + and V −. This is a planar version
of Lemma 46 (p. 1711) in [11]. However, for planar graphs, there is a tractable case

Theory of Computing Systems

when one signature is in M +
4 and the other is in M −

4 . This case was shown to be #P-
hard over general graphs by Lemma 43 in [11] (p. 1704) using a nonplanar reduction.
One can check that the rest of the proof of Lemma 46 in [11] holds for planar graphs.
For completeness we include a proof.

Lemma 4.5 Let f ∈ V + and g ∈ V − be symmetric non-degenerate signatures of
arities ≥ 3 respectively. If f /∈ M +

4 or g /∈ M −
4 then Pl-Holant(f, g) is #P-hard.

Proof Let rd+(f) = d , rd−(g) = d ′, arity(f) = n and arity(g) = n′, then 2d < n

and 2d ′ < n′. Under a holographic transformation by Z =
[
1 1
i −i

]

, we have

Pl-Holant (=2 | f, g) ≡T Pl-Holant
(
�=2 | f̂ , ĝ

)
,

where f̂ = (Z−1)⊗nf = [f̂0, . . . , f̂d , 0, . . . , 0] and ĝ = (Z−1)⊗n′
g =

[0, . . . , 0, ĝd ′ , . . . , ĝ0] due to Lemma 2.19. Moreover f̂d �= 0 and ĝd ′ �= 0.
If d ≥ 2, we can do d ′ many self-loops of �=2 on ĝ, getting ĝ′ = [0, . . . , 0, ĝd ′]

of arity n′ − 2d ′ ≥ 1. Thus g′ is Z⊗(n′−2d ′)ĝ′ = [1, −i]⊗(n′−2d ′) up to a nonzero
constant. We apply Lemma 4.1 to derive that Pl-Holant(f, g) is #P-hard. If d ′ ≥ 2,
we can similarly get [1, i]⊗(n−2d) and apply Lemma 4.1. Thus we can assume that
d = d ′ = 1.

So up to nonzero constants, we have f̂ = [a, 1, 0, . . . , 0] and ĝ = [0, . . . , 0, 1, b]
for some a, b ∈ C. We can assume that f /∈ M +

4 and a �= 0. The case of b �= 0
is similar. We show that it is always possible to get two such signatures of the same
arity min{n, n′}. Suppose n > n′. We form a loop from f̂ via �=2. It is easy to see that
this signature is the degenerate signature 2[1, 0]⊗(n−2). Similarly, we can form a loop
from ĝ and can get 2[0, 1]⊗(n′−2). Thus we have both [1, 0]⊗(n−2) and [0, 1]⊗(n′−2).
We can connect all n′−2 edges of the second to the first, connected by �=2. This gives
[1, 0]⊗(n−n′). We can continue subtracting the smaller arity from the larger one. We
continue this process in a subtractive version of the Euclidean algorithm, and end up
with both [1, 0]⊗t and [0, 1]⊗t , where t = gcd(n−2, n′−2) = gcd(n−n′, n′−2). In
particular, t | n − n′ and by taking n−n′

t
copies of [0, 1]⊗t , we can get [0, 1]⊗(n−n′).

Connecting this back to f̂ via �=2, we get a symmetric signature of arity n′ consisting
of the first n′ + 1 entries of f̂ . A similar proof works when n′ > n.

Thus we may assume n = n′. As shown above we also have [0, 1]⊗(n−2). Con-
necting [0, 1]⊗(n−2) to f̂ = [a, 1, 0, . . . , 0] via �=2 we get ĥ = [a, 1, 0]. Recall that
a �= 0. Translating this back by Z, we have a binary signature h /∈ R−

2 and h is not a
multiple of Z⊗2[c, 0, 1] for any c �= 0. Since g ∈ V −, by Lemma 4.3 or Lemma 4.4,
Pl-Holant(g, h) is #P-hard. Hence Pl-Holant(f, g) is also #P-hard.

When signatures in both M +
4 and M −

4 appear, we show that the only degenerate
signatures that mix must also be vanishing.

Lemma 4.6 Let f ∈ M +
4 and g ∈ M −

4 be two non-degenerate signatures of arity
≥ 3. Let v = u⊗m be a degenerate signature for some unary signature u and some
integer m ≥ 1. If u is not a multiple of [1, ±i], then Pl-Holant(f, g, v) is #P-hard.

Theory of Computing Systems

Proof Suppose f is of arity n and g of arity �. Under a holographic transformation
by Z, we have

Pl-Holant(f, g, v) ≡ Pl-Holant
(�=2 | EXACTONEn,ALLBUTONE�, [a, b]⊗m

)
,

where ab �= 0. Notice that v is transformed to (Z−1u)⊗m = [a, b]⊗m. We have
ab �= 0 since u is not a multiple of [1, ±i]. First we get [1, 0]⊗(n−2) by a self-loop via
�=2 on EXACTONEn. By the same subtractive Euclidean argument as in Lemma 4.1,
we can realize [a, b]⊗(n−2) by [1, 0]⊗(n−2) and [a, b]⊗m. Connecting [a, b]⊗(n−2) to
EXACTONEn via �=2 we get a binary signature h = [(n − 2)abn−3, bn−2, 0]. After
transforming back, we have

Pl-Holant(g, Z⊗2h) ≤T Pl-Holant(f, g, v).

However Z⊗2h /∈ R−
2 by Lemma 2.19 and it is not a multiple of Z⊗2[c, 0, 1] for any

c �= 0. Hence Pl-Holant(f, g, v) is #P-hard by Lemma 4.4, where (g, Z⊗2h) plays
the role of “(f, h)” in Lemma 4.4 and σ = −.

We also consider the mixing of vanishing signatures with those in P2.

Lemma 4.7 Let f ∈ V \ M4 and g ∈ P2 be two non-degenerate signatures with
arities m and n respectively. If m, n ≥ 3, then Pl-Holant(f, g) is #P-hard.

Proof We claim that it suffices to consider f ∈ V + \ M4 and g =
[
1
i

]⊗n

+
[
1
−i

]⊗n

. By Lemma 3.2, we know that g =
[
1
i

]⊗n

+ β

[
1
−i

]⊗n

for some β �= 0

up to a nonzero scalar. Under a holographic transformation by T = Z

[
1 0

0 β
1
n

]

Z−1,

which is orthogonal up to a nonzero factor, we have ĝ = (T −1)⊗ng =
[
1
i

]⊗n

+
[
1
−i

]⊗n

. Now M4 is closed under orthogonal transformations by definition, and

V is closed under orthogonal transformations by Lemma 2.14. Thus, we still have
a signature f̂ = (T −1)⊗nf such that f̂ ∈ V \ M4. If f̂ ∈ V −, then under a

holographic transformation by D =
[
1 0
0 −1

]

, we have f̂ ∈ V +. Furthermore, ĝ is

invariant under D. This proves the claim.

Now we assume that f ∈ V + \ M4 and g =
[
1
i

]⊗n

+
[
1
−i

]⊗n

. By Corol-

lary 2.18, we have rd+(f) = d < m
2 . Under a holographic transformation by Z, we

have

Pl-Holant (=2 | f, g) ≡ Pl-Holant
([1, 0, 1]Z⊗2 | Z−1{f, g})

≡ Pl-Holant
(
�=2 | f̂ , =n

)
,

Theory of Computing Systems

where f̂ = (Z−1)⊗mf . By Lemma 2.19, the support of f̂ is on entries with Ham-
ming weight at most d and includes the entry of Hamming weight exactly d . Now
f /∈ M4, so by Lemma 3.10, we either have d = 1 and f̂ = [f̂0, 1, 0, . . . , 0] with
f̂0 �= 0 or d ≥ 2 and f̂ = [f̂0, f̂1, . . . , f̂d−1, 1, 0, . . . , 0] (and up to a nonzero scalar
in either case).

In the first case, a self-loop on f̂ via �=2 gives [1, 0]⊗(m−2) on the right side. Let
r = gcd(n, m − 2), and let �1, �2 be two positive integers such that �1n − �2(m −
2) = r . We connect �1 copies of =n with �2 copies of [1, 0]⊗(m−2) via �=2’s to get
[0, 1]⊗r . Since r | m − 2, we can also realize [0, 1]⊗(m−2) by putting m−2

r
copies

of [0, 1]⊗r together. Now connect [0, 1]⊗(m−2) to f̂ via �=2. The resulting signature
is [f̂0, 1, 0]. We can also move =n to the left using n copies of �=2. Hence, we have
Pl-Holant(=n| [f̂0, 1, 0]) ≤T Pl-Holant(�=2 | f̂ , =n). The former problem is #P-
hard by Theorem 2.24 since f̂0 �= 0, so the latter problem is #P-hard as well.

In the second case, we have m ≥ 5 since 2 ≤ d < m
2 . Furthermore,

we may assume that d = 2, since otherwise can we do d − 2 self-loops on
f̂ via �=2. With this assumption, we do two self-loops on f̂ via �=2 to get
[1, 0]⊗(m−4) on the right side. By a similar argument as in the previous case, we
can construct [0, 1]⊗(m−4) by using [1, 0]⊗(m−4) and =n via �=2. Now connect
[0, 1]⊗(m−4) back to f̂ via �=2. We get the arity 4 signature [f̂0, f̂1, 1, 0, 0]. Hence,
we have Pl-Holant(�=2 | [f̂0, f̂1, 1, 0, 0]) ≤T Pl-Holant(�=2 | f̂ , =n). Note that
Pl-Holant(�=2 | [f̂0, f̂1, 1, 0, 0]) is equivalent to Pl-Holant(�=2 | [0, 0, 1, 0, 0]). This
can be seen as follows. From the �=2 on the LHS, any edge assignment must assign 0’s
and 1’s to exactly half of the edges. However, considering from the RHS, if any occur-
rence of the signature [f̂0, f̂1, 1, 0, 0] is assigned more 0’s than 1’s, then some other
occurrence must be assigned more 1’s than 0’s which results in a global factor 0. Thus
each occurrence of the signature [f̂0, f̂1, 1, 0, 0] is assigned exactly two 0’s and two
1’s, which is equivalent to [0, 0, 1, 0, 0]. The problem Pl-Holant(�=2 | [0, 0, 1, 0, 0])
is counting Eulerian Orientations in planar 4-regular graphs. This problem was
proved #P-hard for general 4-regular graphs by Huang and Lu [27] and improved
to planar 4-regular graphs by Guo and Williams [26]. It is also a consequence of
Corollary 2.29. Thus Pl-Holant(�=2 | f̂ , =n) is #P-hard as well.

5 Dichotomy for Pl-#CSP2 and Related Lemmas

In this section, we state the dichotomy for Pl-#CSP2. We defer the proof to Part II
of this paper, where we will restate it as Theorem 9.2. In this section we provide a
sketch of the proof. Afterwards, we discuss several related lemmas, which are used

for the full dichotomy of Pl-Holant. Let Tk =
{[

1 0
0 θ

]

∈ C
2×2|θk = 1

}

.

Theorem 5.1 Let F be a set of symmetric signatures. Then Pl-#CSP2(F) is #P-hard
unless F satisfies one of the following conditions:

1. there exists T ∈ T8 such that F ⊆ T A ;
2. F ⊆ P;

Theory of Computing Systems

3. there exists T ∈ T4 such that F ⊆ T M̂ .

In each exceptional case, Pl-#CSP2(F) is computable in polynomial time.

Proof Sketch We first define some tractable families of signatures specific to the

Pl-#CSP2 framework. Let Ã = A ∪
[
1 0
0 eπi/4

]

A and M̃ = M̂ ∪
[
1 0
0 i

]

M̂ . One

can show that Ã covers Case 1 above, and M̃ covers Case 3. The proof will revolve
around these tractable classes.

The overall plan is to break the proof into two main steps.
The first step is to prove the dichotomy theorem for Pl-#CSP2(F) when there is

at least one nonzero signature of odd arity in F . In this case, we can make use of a
lemma showing that we can simulate Pl-#CSP(F) by Pl-#CSP2(F) if F includes a
unary signature [a, b] with ab �= 0. Then we can apply the known dichotomy The-
orem 2.25 for Pl-#CSP. However this strategy (provably) cannot work when every
signature in F satisfies the parity constraint. In that case we employ other means.
This first step of the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in F have
even arity. This is where the real difficulties lie. In this case it is impossible to directly
construct any unary signature. So we cannot use that lemma pertaining to a unary sig-
nature. But we prove another lemma which provides a way to simulate Pl-#CSP(F)

by Pl-#CSP2(F) in a global fashion, if F includes some tensor power of the form
[a, b]⊗2 where ab �= 0. Moreover, we have a lucky break (for the complexity of the
proof) if F includes a signature that is in M̂ \ (P ∪ Ã). In this case, we can con-
struct a special binary signature, and obtain [1, 1]⊗2 by interpolation. This proof uses
some elementary properties of cyclotomic fields. This simplifies the proof greatly.
For all other cases (when F has only even arity signatures), the proof gets going in
earnest— we will attempt an induction on the arity of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2
whenever possible; however for many cases an arity reduction to 2 destroys the #P-
hardness at hand. Therefore the true basis of this induction proof of Pl-#CSP2 starts
with arity 4. Consequently we will first prove a dichotomy theorem for Pl-#CSP2(f),
where f is a signature of arity 4. Several tools will be used. These include the rank
criterion for redundant signatures, Theorem 2.24 for arity 2 signatures, and a trick we
call the Three Stooges by domain pairing.

However, in the next step we do not attempt a general Pl-#CSP2 dichotomy for
a single signature of even arity. This would have been natural at this point, but it
would have been too difficult. We will need some additional leverage by proving a
conditional “No-Mixing” Lemma for pairs of signatures of even arity. So, seemingly
taking a detour, we prove that for two signatures f and g both of even arity, that indi-
vidually belong to some tractable class, but do not belong to a single tractable class
in the conjectured dichotomy (that is yet to be proved), the problem Pl-#CSP2(f, g)

is #P-hard. We prove this No-Mixing Lemma for any pair of signatures f and g

both of even arity, not restricted to arity 4. Even though at this point we only have
a dichotomy for a single signature of arity 4, we prove this No-Mixing Lemma for
higher even arity pairs f and g by simulating two signatures f ′ and g′ of arity 4 that

Theory of Computing Systems

belong to different tractable sets, from that of Pl-#CSP2(f, g). After this arity reduc-
tion (within the No-Mixing Lemma), we prove that Pl-#CSP2(f ′, g′) is #P-hard by
the dichotomy for a single signature of arity 4. After this, we prove a No-Mixing
Lemma for a set of signatures F of even arities, which states that if F is contained in
the union of all tractable classes, then it is still #P-hard unless it is entirely contained
in one single tractable class. Note that at this point we still only have a conditional
No-Mixing Lemma in the sense that we have to assume every signature in F belongs
to some tractable set.

We then attempt the proof of a Pl-#CSP2 dichotomy for a single signature of arbi-
trary even arity. This uses all the previous lemmas, in particular the (conditional)
No-Mixing Lemma for a set of signatures. However, after completing the proof of
this Pl-#CSP2 dichotomy for a single signature of even arity, the No-Mixing Lemma
becomes absolute.

Finally the dichotomy for a single signature of even arity is logically extended to
a dichotomy theorem for Pl-#CSP2(F) where all signatures in F have even arity.
Together with the first main step when F contains some nonzero signature of odd
arity, this completes the proof of Theorem 5.1.

5.1 Related Lemmas

Nowwe give some consequences of Theorem 5.1. These are cases that can be reduced
to Pl-#CSP2. We consider signatures in P1, M2 \ P2, A3, or M3.

All signatures stated in lemmas and corollaries in this section are assumed sym-
metric. We begin with the cases of P1 and A3. The proofs of the following two
lemmas are contained in the proofs of Lemma 61 and Lemma 63 in [11] respectively.
One can check that the reductions in these proofs are planar.

Lemma 5.2 (cf. Lemma 61, p. 1717 in [11]) Let f ∈ P1 be a non-degenerate
signature of arity n ≥ 3 with an orthogonal transformation H−1 and F be a

set of signatures containing f . Let H2 be the 2-by-2 matrix 1√
2

[
1 1
1 −1

]

. Then

Pl-#CSP2(H2HF) ≤T Pl-Holant(F).

Lemma 5.3 (cf. Lemma 63, p. 1719 in [11]) Let f ∈ A3 be a non-degenerate sig-
nature of arity n ≥ 3 with an orthogonal transformation H−1 and F be a set of

signatures containing f . Let α = eπi/4 and Y be the 2-by-2 matrix

[
α 1
−α 1

]

. Then

Pl-#CSP2(YHF ∪ {[1, −i, 1]}) ≤T Pl-Holant(F).

With these reductions, we can apply Theorem 5.1 to get the following corollaries.
Corollary 5.4 follows directly from Lemma 5.2 and Theorem 5.1 as H2 is orthogonal
and every Pl-#CSP2 tractable case is also tractable for Pl-Holant.

Corollary 5.4 Let F be a set of symmetric signatures. Suppose there exists f ∈
F that is a non-degenerate signature of arity n ≥ 3 in P1. Then Pl-Holant(F) is

Theory of Computing Systems

#P-hard unless F is A -, P-, or M -transformable, in which case Pl-Holant(F) is
tractable.

The proof of this corollary is straightforward. To illustrate the power of Theo-
rem 5.1, we give a short proof here.

Proof Suppose f ∈ P1. Then there is some H ∈ O2(C) such that (H2H)⊗nf

has the form [a, 0, . . . , 0, b], where ab �= 0, and H2 = 1√
2

[
1 1
1 −1

]

. Let H ′ =
(H2H)−1 ∈ O2(C). By Lemma 5.2 and Theorem 5.1, Pl-Holant(F) is #P-hard unless

either (1) F ⊆ H ′P , or (2) F ⊆ H ′T A , or (3) F ⊆ H ′T ′
[
1 1
1 −1

]

M , where

T ∈ T8 and T ′ ∈ T4. In case (1), F is P-transformable since (=2)H
′⊗2 = (=2

) ∈ P . In case (2), F is A -transformable since (=2)(H
′T)⊗2 = (=2)T

⊗2 ∈ A .

In case (3), F is M -transformable. If T ′ =
[
1 0
0 ±1

]

, then T ′ ∈ O2(C). So (=2

)(H ′T ′
[
1 1
1 −1

]

)⊗2 is unchanged (=2) ∈ M . If T ′ =
[
1 0
0 ±i

]

, then T ′
[
1 1
1 −1

]

=
[
1 1
i −i

]

or

[
1 1
−i i

]

, and (=2)(H
′T ′
[
1 1
1 −1

]

)⊗2 = 2[0, 1, 0] ∈ M .

Corollary 5.4 is useful in Section 8. In Section 6, we need the following further
specialization.

Corollary 5.5 Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be
obtained from f with a self loop, and assume that f ′ ∈ P1 is non-degenerate. Then
Pl-Holant(f) is #P-hard unless f is A -, P-, or M -transformable, in which case
Pl-Holant(f) is tractable.

For the case of A3, some case analysis is required.

Corollary 5.6 Let F be a set of signatures. Suppose there exists f ∈ F that
is a non-degenerate signature of arity n ≥ 3 in A3. Then Pl-Holant(F) is
#P-hard unless F is A - or M -transformable, in which case Pl-Holant(F) is
tractable.

Proof Assume that f ∈ A3 with an orthogonal transformation H−1. By Lemma 5.3,

we have Pl-#CSP2(YHF ∪ {[1, −i, 1]}) ≤T Pl-Holant(F), where Y =
[

α 1
−α 1

]

and α = eπi/4. Let g = [1, −i, 1] and F ′ = YHF ∪ {g}.
We apply Theorem 5.1 to Pl-#CSP2(F ′). The consequence is that Pl-#CSP2(F ′)

(and hence Pl-Holant (F)) is #P-hard unless F ′ ⊆ P , or F ′ ⊆
[
1 0
0 ir

]

M̂ for some

integer 0 ≤ r ≤ 3, or F ′ ⊆
[
1 0
0 αr

]

A for some integer 0 ≤ r ≤ 7 where α = eiπ/4.

Notice that g �∈ P and hence the first case is impossible.

Theory of Computing Systems

Suppose F ′ ⊆
[
1 0
0 ir

]

M̂ for some integer 0 ≤ r ≤ 3. It is easy to ver-

ify that binary symmetric signatures in M̂ have the form [a, b, a] or [a, 0, −a].
However

[
1 0
0 ir

]−1

g has the matrix form

[
1 0
0 i−r

][
1 −i

−i 1

][
1 0
0 i−r

]T
=

[
1 −i1−r

−i1−r (−1)−r

]

. For r = 1, 3, this is not in M̂ . So g �∈
[
1 0
0 ir

]

M̂ for r = 1, 3,

and we have that YHF ⊆
[
1 0
0 ±1

]

M̂ . Moreover, notice that

[
1 0
0 −1

]

M̂ =
[
1 1
1 −1

][
0 1
1 0

]

M =
[
1 1
1 −1

]

M = M̂ . Hence YHF ⊆ M̂ . Rewrite Y as

Y =
[
1 1
−1 1

][
α 0
0 1

]

. We deduce that

HF ⊆ 1
2

[
α−1 0
0 1

][
1 −1
1 1

]

M̂ = 1
2

[
α−1 0
0 1

][
1 −1
1 1

][
1 1
1 −1

]

M

=
[

α−1 0
0 1

][
0 1
1 0

]

M = M ,

using Proposition 3.6. Hence F is M -transformable in this case.

The last case is when F ′ ⊆
[
1 0
0 αr

]

A for some integer 0 ≤ r ≤ 7. The matrix

form of the signature g is

[
1 −i

−i 1

]

. We note that

[
1 0
0 α−1

]T[
1 −i

−i 1

][
1 0
0 α−1

]

=
[
1 −iα−1

−iα−1 −i

]

�∈ A as the entries are not powers of i, so g �∈
[
1 0
0 α

]

A . Notice

that

[
1 0
0 il

]

∈ Stab(A). Since g ∈
[
1 0
0 αr

]

A , we get r = 0, 2, 4, 6. That is,

F ′ ⊆
[
1 0
0 il

]

A for some integer 0 ≤ l ≤ 3. This implies that YHF ⊆ A . Again,

rewriting Y as Y =
[
1 1
−1 1

][
α 0
0 1

]

, we have

HF ⊆ 1
2

[
α−1 0
0 1

][
1 −1
1 1

]

A = 1
2

[
α−1 0
0 1

]

A .

Therefore F is A -transformable. This finishes the proof.

Again, we specialize Corollary 5.6 to our need.

Corollary 5.7 Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be obtained
from f with a self loop. If f ′ is non-degenerate and f ′ ∈ A3, then Pl-Holant(f)

is #P-hard unless f is A - or M -transformable, in which case Pl-Holant(f) is
tractable.

Theory of Computing Systems

The next case is when f is in M2 but not P2.

Lemma 5.8 Let F be a set of signatures. Suppose there exists f ∈ F which is a
non-degenerate signature of arity n ≥ 3 in M2 \ P2. Then Pl-Holant (F) is #P-hard
unless F is A -, P-, or M -transformable, in which case Pl-Holant (F) is tractable.

Proof As f ∈ M2 \ P2, we may assume f = H⊗n

([
1
γ

]⊗n

±
[
1
−γ

]⊗n
)

up to a

nonzero constant, where H is an orthogonal 2-by-2 matrix and γ �= 0, ±i.
We first show that

Pl-#CSP2(T −1F, g) ≤T Pl-Holant (f,F) , (5.4)

where T = H

[
1 1
γ −γ

]

and g = (=2)T
⊗2 = [1 + γ 2, 1 − γ 2, 1 + γ 2].

Assume that f = H⊗n

([
1
γ

]⊗n

+
[
1
−γ

]⊗n
)

with the + sign. In this case, we

do the transformation T :

Pl-Holant (=2 | f,F) ≡T Pl-Holant

(

[1, 0, 1]H⊗2
[
1 1
γ −γ

]⊗2
∣
∣
∣
∣
∣

([
1 1
γ −γ

]−1
)⊗n (

H−1
)⊗n

f, T −1F
)

≡T Pl-Holant
(
g | =n, T −1F

)
.

By connecting g to two inputs of=n, we get=n−2 up to a constant factor of 1+γ 2 �=
0 as γ �= ±i. We repeat this process. If n is even, then we get =2 eventually, which
is on the right hand side in the above Pl-Holant problem. If n is odd, then eventually
we get =3 and (=1) = [1, 1] on the right. Connecting [1, 1] to g we get 2[1, 1] on the
left. Then connecting [1, 1] to =3 we get =2 on the right. To summarize, we get that

Pl-Holant
(
g | =2, =n, T

−1F
)

≤T Pl-Holant
(
g | =n, T

−1F
)

≤T Pl-Holant (f,F) . (5.5)

Next we show that

Pl-Holant
(
=2, g | =2, =n, T

−1F
)

≤T Pl-Holant
(
g | =2, =n, T

−1F
)
. (5.6)

Let N =
[
1 + γ 2 1 − γ 2

1 − γ 2 1 + γ 2

]

be the signature matrix of g. If there is a positive integer

k and a nonzero constant c such that Nk = cI2, where I2 is the 2-by-2 identity
matrix, then we may directly implement =2 on the left by connecting k copies of
[1 + γ 2, 1 − γ 2, 1 + γ 2] via =2 on the right. This implies (5.6) holds.

Otherwise such k and c do not exist. The two eigenvalues of N are λ1 = 2 and

λ2 = 2γ 2. If λ1 = λ2, then γ 2 = 1 and N =
[
2 0
0 2

]

. Contradiction. Hence λ1 �= λ2,

and N is diagonalizable. Let N = P

[
λ1 0
0 λ2

]

P −1, for some non-singular matrix P .

By connecting l many copies of N on the left via =2 on the right, where l is a positive

Theory of Computing Systems

integer, we can implement Nl = P

[
λl
1 0

0 λl
2

]

P −1. Since N does not have finite order

up to a scalar, for any positive integer l, (λ1/λ2)l �= 1.
Consider an instance � of Pl-Holant

(=2, g |=2, =n, T
−1F

)
. Suppose that the

left =2 appears t times. Let l be a positive integer. We obtain �l from � by replacing
each occurrence of =2 on the left with Nl .

Since Nl = P

[
λl
1 0

0 λl
2

]

P −1, we can view our construction of �l as replacing

Nl by 3 signatures, with matrix P ,

[
λl
1 0

0 λl
2

]

, and P −1, respectively. This does not

change the Holant value.
We stratify the assignments in �l based on the assignments to the t occurrences

of the signature whose matrix is the diagonal matrix

[
λl
1 0

0 λl
2

]

. Suppose there are i

many times it was assigned 00 with function value λl
1, and j times 11 with function

value λl
2. Clearly i + j = t if the assignment has a nonzero evaluation. Let cij be

the sum over all such assignments of the products of evaluations of all signatures
(including the signatures corresponding to matrices P and P −1) in �l except for this
diagonal one. Then

Holant�l
=
∑

i+j=t

(
λl
1

)i (
λl
2

)j

cij = λlt
2

∑

0≤i≤t

((
λ1

λ2

)l
)i

ci,t−i .

By an oracle for Pl-Holant
(
g |=2, =n, T

−1F
)
, we can get Holant�l

for any 1 ≤
l ≤ t + 1. Recall that for any positive integer l, (λ1/λ2)l �= 1. This implies that for
any two distinct integers i, j ≥ 0, (λ1/λ2)

i �= (λ1/λ2)
j . Therefore we get a non-

singular Vandermonde system. We can solve all cij for i + j = t given Holant�l
for

all 1 ≤ l ≤ t + 1. Then notice that
∑

i+j=t cij is the Holant value of �l by replacing

both λl
1 and λl

2 with 1, which is the instance � as PI2P
−1 = I2. Therefore we may

compute Holant� via t + 1 many oracle calls to Pl-Holant
(
g | =2, =n, T

−1F
)
. This

finishes the reduction in (5.6).
The problem Pl-Holant

(=2, g | =2, =n, T
−1F

)
in the left hand side of (5.6) has

=2 on both sides. Therefore we may lift the bipartite restriction. Combining it with
(5.5), we get

Pl-Holant
(
=n, g, T −1F

)
≤T Pl-Holant (f,F) .

Notice that given an equality of arity n ≥ 3, we can always construct all equalities of
even arity, regardless of the parity of n, in the Pl-Holant setting. Therefore, we have

Pl-#CSP2(T −1F, g) ≤T Pl-Holant (f,F) ,

finishing the proof of (5.4) in the case f = H⊗n

([
1
γ

]⊗n

+
[
1
−γ

]⊗n
)

.

Theory of Computing Systems

To complete the proof of (5.4), there is another case that f =
H⊗n

([
1
γ

]⊗n

−
[
1
−γ

]⊗n
)

, with the − sign. Again we do a T transformation,

where (T −1)⊗f = [1, 0, . . . , 0, −1] has arity n:

Pl-Holant (=2 | f,F) ≡T Pl-Holant
(
g | [1, 0, . . . , 0, −1], T −1F

)
.

We then do the same construction as in the previous case of connecting g to
[1, 0, . . . , 0, −1] repeatedly. Depending on the parity of n, we have two cases.

1. If n is odd, then eventually we get [1, 0, 0, −1] and [1, −1] on the right as γ �=
±i, and therefore 2γ 2[1, −1], i.e., [1, −1] on the left as γ �= 0. Then connecting
[1, −1] to [1, 0, 0, −1] we get =2 on the right. Thus, for odd n,

Pl-Holant
(
g | =2, [1, 0, . . . , 0, −1], T −1F

)
≤T Pl-Holant

(
g | [1, 0, . . . , 0, −1], T −1F

)

≤T Pl-Holant (f,F) .

Notice that our previous binary interpolation proof only relies on g and =2.
Hence we get

Pl-Holant
(
g | =2, [1, 0, . . . , 0, −1], T −1F

)
≥T Pl-Holant

(
=2, g | =2, [1, 0, . . . , 0, −1], T −1F

)

≡T Pl-Holant([1, 0, . . . , 0, −1], g, T −1F).

Moreover it is straightforward to construct all even equalities from
[1, 0, . . . , 0, −1] of arity n in the normal Pl-Holant setting as n ≥ 5. Combining
everything together gives us

Pl-#CSP2(g, T −1F) ≤T Pl-Holant (f,F) .

2. Otherwise n is even. By the same construction of connecting g to
[1, 0, . . . , 0, −1] repeatedly, we get [1, 0, 0, 0, −1] and [1, 0, −1] on the right
eventually. Then we connect two copies of g via [1, 0, −1], resulting in[
1 + γ 2 1 − γ 2

1 − γ 2 1 + γ 2

][
1 0
0 −1

][
1 + γ 2 1 − γ 2

1 − γ 2 1 + γ 2

]

= 4γ 2
[
1 0
0 −1

]

on the left. Then

connect [1, 0, −1] to [1, 0, 0, 0, −1] to get [1, 0, 1] on the right. At last we con-
nect two [1, 0, −1]’s on the left via [1, 0, 1] on the right to get [1, 0, 1] on the
left. Then it reduces to the previous case.

This concludes the proof of (5.4).
We apply Theorem 5.1 to Pl-#CSP2(T −1F, g). Then we have that

Pl-#CSP2(T −1F, g) (and hence Pl-Holant(f,F)) is #P-hard unless T −1F ∪ {g} ⊆
P , or T −1F ∪ {g} ⊆

[
1 0
0 ir

]

M̂ for some integer 0 ≤ r ≤ 3, or

T −1F ∪ {g} ⊆
[
1 0
0 αr

]

A for some integer 0 ≤ r ≤ 7 where α = eiπ/4. We deal

with these three cases. We start with the simplest case P , then M̂ , and then A .

1. The first case is that T −1F ∪ {g} ⊆ P . Recall that γ �= 0 or ±i, it can be
verified that g �∈ P unless γ 2 = 1. Hence γ = ±1. In either case we have that

Theory of Computing Systems

[
1 1
γ −γ

]

is an orthogonal matrix up to a nonzero scalar, and hence so is T . This

implies that F is P-transformable.

2. Next suppose T −1F ∪ {g} ⊆
[
1 0
0 ir

]

M̂ for some integer 0 ≤ r ≤ 3.

If γ = ±1, then T is an orthogonal matrix as

[
1 1
γ −γ

]

is, up to a fac-

tor of 1√
2
. Hence F is M -transformable, as F ⊆ T

[
1 0
0 ir

][
1 1
1 −1

]

M and

(=2)

(

T

[
1 0
0 ir

][
1 1
1 −1

])⊗2

is either [1, 0, 1] when r = 0, 2, or [0, 1, 0] when
r = 1, 3, up to a nonzero factor.

Otherwise γ 2 �= 1 and it is straightforward to verify that g �∈
[
1 0
0 ir

]

M̂

for r = 1, 3. Hence we may assume that T −1F ⊆
[
1 0
0 ±1

]

M̂ . Moreover,
[
1 0
0 −1

]

M̂ =
[
1 1
1 −1

][
0 1
1 0

]

M =
[
1 1
1 −1

]

M = M̂ . Then T −1F ⊆ M̂ .

As T −1 =
[
1 1
γ −γ

]−1

H−1, this implies that

H−1F ⊆
[
1 1
γ −γ

]

M̂ =
[
1 0
0 γ

][
1 1
1 −1

][
1 1
1 −1

]

M

=
[
1 0
0 γ

]

M = M .

Hence F ⊆ HM and F is M -transformable.

3. In the last case, T −1F ∪ {g} ⊆
[
1 0
0 αr

]

A for some integer 0 ≤ r ≤ 7. If

γ = ±1, then T is an orthogonal matrix as

[
1 1
γ −γ

]

is, up to a factor of 1√
2
.

Hence F is A -transformable, as F ⊆ T

[
1 0
0 αr

]

A and (=2)

(

T

[
1 0
0 αr

])⊗2

is

[1, 0, ir] ∈ A , up to a nonzero factor.

Otherwise γ 2 �= 1 and g �∈
[
1 0
0 αr

]

A for any integer r = 1, 3, 5, 7. Hence

T −1F ∪ {g} ⊆ A as

[
1 0
0 ir

]

A = A for any integer 0 ≤ r ≤ 3. If 1+γ 2

1−γ 2 �= ±i,

then one can check that g �∈ A . A contradiction. Otherwise 1+γ 2

1−γ 2 = ±i. This

implies that γ = αl for some integer l = 1, 3, 5, 7. We may assume l = 1 as

Theory of Computing Systems

other cases are similar. In this case it is possible that T −1F ∪ {g} ⊆ A . As

T −1 =
[
1 1
γ −γ

]−1

H−1 =
[
1 1
α −α

]−1

H−1, this implies that

H−1F ⊆
[
1 1
α −α

]

A =
[
1 0
0 α

][
1 1
1 −1

]

A =
[
1 0
0 α

]

A .

Hence, F is A -transformable, so Pl-Holant(F) is tractable. This finishes the
proof.

Lemma 5.8 leads to the following specialization.

Corollary 5.9 Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with a
self loop, and f ′ is non-degenerate and f ′ ∈ M2\P2. Then Pl-Holant(f) is #P-hard
unless f is A -, P-, or M -transformable, in which case Pl-Holant(f) is tractable.

We can reduce the case of f ∈ M3 to the previous case.

Lemma 5.10 Let F be a set of signatures. Suppose there exists f ∈ F that is
a non-degenerate signature of arity n ≥ 3 in M3. Then Pl-Holant(F) is #P-hard
unless F ⊆ HM for some H ∈ O2(C), in which case F is M -transformable and
Pl-Holant(F) is tractable.

Proof We first claim that Pl-Holant(F) is #P-hard unless F is A -, P-, or M -
transformable.

By the definition of M3, we may assume, up to a nonzero constant, that f̂ =
(H−1)⊗nf = EXACTONEn for some orthogonal matrix H ∈ O2(C). After zero
or more self loops, we can further assume that either f̂ = EXACTONE3 or f̂ =
EXACTONE4 depending on the parity of n.

Suppose f̂ = EXACTONE3. Consider the gadget in Fig. 6a. We assign f̂ to all
vertices. The signature of the resulting gadget is g = [0, 1, 0, 1], which is in M2 and
not in P2 = A2 by Lemma 3.2. Thus, the claim follows from Lemma 5.8.

Fig. 6 Two gadgets used to create a signature in M2 \ P2. a Triangle gadget. b Planar tetrahedron gadget

Theory of Computing Systems

Otherwise, f̂ = EXACTONE4. Consider the gadget in Figure 6b. We assign f̂ to
all vertices. Note that this is a matchgate. The signature of the resulting gadget is
[0, 2, 0, 1, 0], which is in M2 and not in P2 = A2 by Lemma 3.2. Thus, the claim
follows from Lemma 5.8. This completes the proof of the claim.

However, as f ∈ F and f ∈ M3, F cannot be A - or P-transformable by
Lemma 3.12. Also by Lemma 3.12, if F is M -transformable, then F ⊆ HDM

or H

[
0 1
1 0

]

DM for some diagonal matrix D. Notice that D ∈ Stab(M) and
[
0 1
1 0

]

D ∈ Stab(M). This implies that F ⊆ HM .

Once again, we specialize Lemma 5.10 to our needs.

Corollary 5.11 Let f be a non-degenerate signature of arity n ≥ 5. Let f ′ be f with
a self loop, and f ′ is non-degenerate and f ′ ∈ M3. Then Pl-Holant(f) is #P-hard
unless f is M -transformable, in which case Pl-Holant(f) is tractable.

6 Single Signature Dichotomy

Theorem 6.1 is the single signature dichotomy for Pl-Holant problems.

Theorem 6.1 If f is a non-degenerate symmetric signature of arity n ≥ 3 with
complex weights in Boolean variables, then Pl-Holant(f) is #P-hard unless f ∈
P1∪M2∪A3∪M3∪M4∪V , in which case the problem is computable in polynomial
time.

Remark 2 The expression f ∈ P1 ∪M2 ∪A3 ∪M3 ∪M4 ∪V has other equivalent
forms. For f of arity n ≥ 3, if f ∈ M4 then f ∈ V , and therefore we can also write
the expression in Theorem 6.1 as f ∈ P1∪M2∪A3∪M3∪V . However we retain the
term M4 for convenience later. Indeed, we have M1 ⊂ A1 ⊂ P1, A2 = P2 ⊂ M2
(see Fig. 3). Thus the expression in Theorem 6.1 can also be written as

f ∈ P1 ∪ P2 ∪ A1 ∪ A2 ∪ A3 ∪ M1 ∪ M2 ∪ M3 ∪ M4 ∪ V .

In this form, the conclusion of Theorem 6.1 is clear: Pl-Holant(f) is #P-hard unless
f is A - or P- or M -transformable or vanishing, by Lemmas 3.5, 3.3, 3.11 and
Theorem 2.15.

We prove Theorem 6.1 by induction on the arity. Before proceeding to the proof,
we first introduce several lemmas involved in the inductive step. All signatures stated
in lemmas and corollaries in this section are assumed symmetric, unless indicated
otherwise (e.g., the signature ĝ in Lemma 6.7).

Theory of Computing Systems

6.1 Lemmas Applied to Non-Degenerate Signatures in the Inductive Step

The single signature dichotomy relies on the following key lemma. The important
assumption here is that f ′ is non-degenerate.

Lemma 6.2 Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be f

with a self loop. If f ′ ∈ P1∪M2∪A3∪M3∪V is non-degenerate, then Pl-Holant(f)

is #P-hard unless f ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V .

Lemma 6.2 depends on several results, each of which handles a different case. In
fact, the proof of Lemma 6.2 is a straightforward combination of Corollary 5.5 (for
P1), Corollary 5.7 (for A3), Corollary 5.9 (for M2 \ P2), and Corollary 5.11 (for
M3) from Section 5, as well as Corollary 6.4 (forP2) and Lemma 6.5 (for V), which
we will prove shortly. These last two results handle the cases f ′ ∈ P2 and f ′ ∈ V
respectively. Note that M4 ⊂ V . First we consider the case of f ′ ∈ P2 and show
the following lemma.

Lemma 6.3 Let f be a non-degenerate signature of arity n ≥ 5. If f =
Z⊗n[a, 1, 0, . . . , 0, 1, b] for some a, b ∈ C, where the number of 0’s is n − 3. Then
Pl-Holant(f) is #P-hard.

Proof First we use the gadget in Fig. 7b, where we put f on both vertices. Let the
resulting signature be h = Z⊗4ĥ. It is easier to calculate ĥ, that is, h in the Z basis.
Indeed, ĥ is not symmetric, but ĥ has the following matrix representation as n ≥ 5:

M
ĥ

=

⎡

⎢
⎢
⎣

0 a a ab + (n − 2)
a 2 2 b

a 2 2 b

ab + (n − 2) b b 0

⎤

⎥
⎥
⎦ .

Notice that this matrix is redundant, and det(M̃
ĥ
) = −4(n − 2)(ab + n − 2). If

ab �= 2− n, then by Corollary 2.29 Pl-Holant(h) is #P-hard, and so is Pl-Holant(f).
Hence in the following we assume ab = 2 − n.

Fig. 7 Two gadgets used. In the normal basis, circles are assigned f and squares are assigned =2. In
the Z basis, circles are assigned f̂ and squares are assigned �=2. a A binary construction. b An arity-4
construction

Theory of Computing Systems

Let f ′ be f with a self loop. Recall that (=2)Z
⊗ = (�=2) = [0, 1, 0] up to a

nonzero factor. Thus a self loop by (=2) becomes a self loop by (�=2) after the Z

transformation. Applying the Z transformation we get the following:

Pl-Holant
(=2 | f, f ′) ≡T Pl-Holant

(
[0, 1, 0] | f̂ , f̂ ′

)
,

where f̂ ′ = [1, 0, . . . , 0, 1] and f̂ = [a, 1, 0, . . . , 0, 1, b] for some a, b ∈ C. We
get this expression of f̂ ′ because doing a self loop commutes with the operation of
holographic transformations.

We connect f̂ ′ to f̂ via [0, 1, 0], getting [a, 2, b]. Then we connect [a, 2, b] to f̂

via [0, 1, 0] again, getting ĝ = [ab + 4, b, 0, . . . , 0, a, ab + 4] of arity n − 2.
If n ≥ 7, then we use the gadget in Fig. 7b again, where we put g on both ver-

tices this time. We get some signature h′, which in Z basis has the following matrix
representation as n − 2 ≥ 5:

Mĥ′ =

⎡

⎢
⎢
⎣

0 a(ab + 4) a(ab + 4) (n − 4)ab + (ab + 4)2

a(ab + 4) 2ab 2ab b(ab + 4)
a(ab + 4) 2ab 2ab b(ab + 4)

(n − 4)ab + (ab + 4)2 b(ab + 4) b(ab + 4) 0

⎤

⎥
⎥
⎦ .

Once again this matrix is redundant. It can be simplified as ab = 2 − n. The
compressed matrix is

M̃ĥ′ =
⎡

⎣
0 −2(n − 6)a −6n + 28

−(n − 6)a 8 − 4n −(n − 6)b
−6n + 28 −2(n − 6)b 0

⎤

⎦ .

It is easy to compute that det(M̃ĥ′) = −8(3n− 14)(ab(n− 6)2 − 6n2 + 40n− 56) =
8(n − 4)(n − 2)2(3n − 14). Since n ≥ 7, det(M̃ĥ′) > 0. Then by Corollary 2.29
Pl-Holant(h′) is #P-hard, and so is Pl-Holant(f).

The remaining cases are n = 6 and n = 5. When n = 6, ab = 2 − n = −4.
Moreover, ĝ is of arity 4 and ĝ = [ab+4, b, 0, a, ab+4] = [0, b, 0, a, 0]. We do one
more self loop on g via [0, 1, 0] in the Z basis, resulting in ĝ′ = [b, 0, a]. Connecting
ĝ′ to f̂ via [0, 1, 0], we get ĝ1 = [a2, a, 0, b, b2]. Hence det(M̃ĝ1) = −4a2b2 =
−64 �= 0. Then by Corollary 2.29 Pl-Holant(g1) is #P-hard, and so is Pl-Holant(f).

At last, n = 5 and ab = 2 − n = −3. We also have ĝ = [ab + 4, b, a, ab + 4] =
[1, b, a, 1]. One more self loop on g via [0, 1, 0] in the Z basis results in ĝ′′ = [b, a].
Connecting ĝ′′ to f̂ via [0, 1, 0], we get ĝ2 = [a2 + b, a, 0, b, b2 + a]. Hence
det(M̃ĝ2) = −2(a3 + 2a2b2 + b3) = −2(a3 + b3 + 18). If a3 + b3 + 18 �= 0,
then we are done by Corollary 2.29. Otherwise a3 + b3 = −18, and we con-
struct a binary signature [a, 0, b] by doing a self-loop on ĝ2 in the Z basis. Then
we construct another unary signature by connecting ĝ′′ = [b, a] to [a, 0, b] via
[0, 1, 0], which gives [a2, b2]. Connecting [a2, b2] to f̂ via [0, 1, 0], we have another
arity-4 signature ĝ3 = [ab2 + a2, b2, 0, a2, a2b + b2]. We compute det(M̃ĝ3) =
−2(a6 + a5b2 + a2b5 + b6) = −2(a6 + b6 − 162). If a6 + b6 − 162 �= 0, again we
are done by Corollary 2.29. Otherwise a6 + b6 = 162. Together with a3 + b3 = −18
and ab = −3, there is no solution of a and b. This finishes the proof.

This lemma essentially handles the case of f ′ ∈ P2 due to the following corollary.

Theory of Computing Systems

Corollary 6.4 Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′ be
obtained from f with a self loop. If f ′ ∈ P2 is non-degenerate, then Pl-Holant(f)

is #P-hard.

Proof Since f ′ ∈ P2 = A2, we can assume by Lemma 3.2 that we have

the form c−1f ′ = Z⊗(n−2)

([
1
0

]⊗(n−2)

+ β

[
0
1

]⊗(n−2)
)

, for some c, β �=

0. Let γ = β
1

n−2 , a = γ+1
2
√

γ
and b = γ−1

2i
√

γ
, then a + bi = √

γ

and a − bi = 1√
γ
, both nonzero with a2 + b2 = 1 and a+bi

a−bi
= γ .

Thus H =
[

a b

−b a

]

∈ O2(C), and HZ = Z

[
a + bi 0

0 a − bi

]

. Then

c−1H⊗(n−2)f ′ = (HZ)⊗(n−2)

([
1
0

]⊗(n−2)

+ γ n−2
[
0
1

]⊗(n−2)
)

= (a +
bi)n−2Z⊗(n−2)[1, 0, . . . , 0, 1] of arity n−2. SinceH does not change the complexity,
we may assume we are under this transformation. Then up to a nonzero constant f is
of the formZ⊗n[a, 1, 0, . . . , 0, 1, b] of arity n. The claim follows by Lemma 6.3.

The next lemma handles the case when f ′ is a non-degenerate vanishing signature.
Its proof is partly contained in the proof of Theorem 64 (p. 1720) in [11]. We include
this part here for completeness. As we shall see, the case of f ′ ∈ M4 is a special
case of this result.

Lemma 6.5 Suppose f is a non-degenerate signature of arity n ≥ 5. Let f ′
be obtained from f with a self loop. If f ′ is non-degenerate and vanishing, then
Pl-Holant(f) is #P-hard unless {f, f ′} is vanishing, in which case Pl-Holant(f) is
tractable.

Proof Since f ′ is vanishing, f ′ ∈ V σ for some σ ∈ {+, −} by Theorem 2.15. For
simplicity, assume that f ′ ∈ V +. The other case is similar.

Note that f ′ is of arity n − 2 ≥ 3. Recall Definition 2.13 and Corollary 2.18.
Suppose rd+(f ′) = d − 1, then 2d < n and d ≥ 2 since f ′ is non-degenerate. Under

the transformation Z = 1√
2

[
1 1
i −i

]

, we have that

Pl-Holant
(=2 | f, f ′) ≡T Pl-Holant

(
[0, 1, 0] | f̂ , f̂ ′

)
,

where f̂ ′ = (Z−1)⊗nf ′ = [f̂1, . . . , f̂d , 0, . . . , 0] with f̂d �= 0 by Lemma 2.19. Note
that adding a self-loop in the standard basis is the same as connecting to [0, 1, 0] in
the Z basis. Hence we may assume that f̂ = [f̂0, f̂1, . . . , f̂d , 0, . . . , 0, c], for some
f̂0 and c. If c = 0, then {f, f ′} ⊂ V + is vanishing. Hence we may assume that
c �= 0. We will show that Pl-Holant(f) is #P-hard.

Doing d − 2 self-loops by [0, 1, 0] on f̂ , we get a signature ĥ =
[f̂d−2, f̂d−1, f̂d , 0, . . . , 0, 0 (or) c] of arity n − 2(d − 2) = n − 2d + 4 ≥ 5. The last
entry of ĥ is c when d = 2 and is 0 when d > 2. As n > 2d , we may do two more
self loops and get [f̂d , 0, . . . , 0] of arity k = n−2d ≥ 1. This signature is equivalent

Theory of Computing Systems

to [1, 0]⊗k . Now connect this signature back to f̂ via [0, 1, 0]. It is the same as get-
ting the last n−k +1 = 2d +1 signature entries of f̂ up to a nonzero scalar. We may
repeat this operation zero or more times until the arity k′ of the resulting signature is
less than or equal to k. We claim that this signature has the form ĝ = [0, . . . , 0, c].
In other words, the k′ + 1 entries of ĝ consist of the last c and k′ many 0’s from the
signature f̂ , all appearing after f̂d . This is because there are n−d −1 many 0 entries
in the signature f̂ after f̂d , and n − d − 1 ≥ k ≥ k′. Note that ĝ = [0, 1]⊗k′

.
Having both [1, 0]⊗k and ĝ = [0, 1]⊗k′

in the Z basis, we realize [0, 1]⊗t using
the subtractive Euclidean argument as in Lemma 4.1, where t = gcd(k, k′). Then
we put k

t
many copies of [0, 1]⊗t together to get [0, 1]⊗k . Connect ĥ with [0, 1]⊗k

by [0, 1, 0]. Note that due to [0, 1, 0] flipping the bits, this gets the prefix of ĥ of
arity arity(h) − k. Recall that arity(h) = n − 2d + 4, and hence arity(h) − k =
n − 2d + 4 − (n − 2d) = 4. The resulting signature has arity 4. Moreover, the
signature is [f̂d−2, f̂d−1, f̂d , 0, 0]. The last entry is 0 (and not c), because k ≥ 1 and
arity(ĥ) ≥ 5.

However, as explained in the proof of Lemma 4.7, the problem
Pl-Holant([0, 1, 0] | [f̂d−2, f̂d−1, f̂d , 0, 0]) is equivalent to Pl-Holant([0, 1, 0] |
[0, 0, 1, 0, 0]) when f̂d �= 0, the problem of counting Eulerian Orientations in planar
4-regular graphs. This problem is #P-hard [26].

6.2 Lemmas Applied to Degenerate Signatures in the Inductive Step

Lemma 6.2 does not solve the case when f ′ is degenerate. In general, when f ′
is degenerate, the inductive step is straightforward unless f ′ is also vanishing.
Lemma 6.6 and 6.8 are the two missing pieces to this end.

Lemma 6.6 Let a, b ∈ C. Suppose f is a signature of the form

Z⊗n[a, 1, 0, . . . , 0, b], where Z =
[
1 1
i −i

]

, with arity n ≥ 3. If ab �= 0, then

Pl-Holant(f) is #P-hard.

Proof We prove by induction on n. For n = 3 or 4, it follows from Lemma 3.13 and
Theorem 2.22 that Pl-Holant(f) is #P-hard.

Now assume n ≥ 5. Under a holographic transformation by Z =
[
1 1
i −i

]

, we

have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [a, 1, 0, . . . , 0, b]. Now consider the gadget in Fig. 7a with f̂ assigned
to both vertices. This gadget has the binary signature ĝ1 = [0, ab, 2b], which is
equivalent to [0, a, 2] since b �= 0. As ĝ1 = (Z−1)⊗2g1, translating back by Z to the

Theory of Computing Systems

original setting g1 = Z⊗2ĝ1, this signature is g1 = [a + 1, −i, a − 1]. This can be
verified as [

1 1
i −i

] [
0 a

a 2

] [
1 1
i −i

]T
= 2

[
a + 1 −i

−i a − 1

]

.

By the form of ĝ1 = [0, ab, 2b] and b �= 0, it follows from Lemma 2.19 that g1 �∈
R+

2 . Moreover, since a �= 0, g1 is non-degenerate.
Doing a self loop on f yields f ′ = Z⊗(n−2)[1, 0, . . . , 0]. Connecting f ′ back to

f , we get a binary signature g2 = Z⊗2[0, 0, b]. Once again we connect g2 to f ,
the resulting signature is h = Z⊗(n−2)[a, 1, 0, . . . , 0] of arity n − 2 ≥ 3 up to the
constant factor of b �= 0.

Notice that h is non-degenerate and h ∈ V +. Since a �= 0, h �∈ M +
4 . By

Lemma 4.3, Pl-Holant(h, g1) is #P-hard, hence Pl-Holant(f) is also #P-hard.

The next case uses the following technical lemma. It is also applied more than
once in Section 7.

Lemma 6.7 Let ĝ be the arity 4 signature whose matrix is

Mĝ =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦ . (6.7)

Then Pl-Holant
(�=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ) is #P-hard.

Proof Consider the gadget in Fig. 8a. We assign [0, 0, 0, 1, 0] to the triangle ver-
tices, [0, 1, 0, 0, 0] to the circle vertices, ĝ to the pentagon vertex, and [0, 1, 0] to the
square vertices. Let ĥ be the signature of this gadget. By adding two more disequality
signatures and then grouping appropriately, it is clear that the gadget in Fig. 8b has
the same signature of the gadget in Fig. 8a, where the circle vertices are still assigned
[0, 1, 0, 0, 0], the square vertices are still assigned [0, 1, 0], and the diamond vertex is
assigned the quaternary equality signature. To compute the signature ĥ, first compute

Fig. 8 Two gadgets with the same signature used in Lemma 6.7. a (�=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ)-
gate on right side. b Simpler construction with the same signature

Theory of Computing Systems

Fig. 9 The movement of the even Hamming weight entries in the signature matrix of a quaternary signa-
ture under the negation of the second and fourth inputs (i.e. the square vertices are assigned [0, 1, 0]). a
Negating the second and fourth inputs. bMovement of even Hamming weight entries

the signature ĥ′ of the inner gadget enclosed by the dashed line, which has signature
matrix

M
ĥ′ =

⎡

⎢
⎢
⎣

3 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

⎤

⎥
⎥
⎦ .

Then by Fig. 9, the signature matrix of ĥ is

ĥ is M
ĥ
=

⎡

⎢
⎢
⎣

0 0 0 1
0 1 3 0
0 1 1 0
1 0 0 0

⎤

⎥
⎥
⎦.

We use one more gadget before we finish the proof using interpolation. Consider
the gadget in Fig. 10b. We assign ĥ to the circle vertices and [0, 1, 0] to the square
vertices. The signature of the resulting gadget is r̂ with signature matrix Mr̂ (see

Fig. 10 Two quaternary gadgets used in the proof of Lemma 6.7 and 6.8. a Gadget that realizes a partial
crossover. b Gadget with a useful signature matrix

Theory of Computing Systems

Fig. 2 for the signature of a rotated copy of ĥ that appears as the second circle vertex
in Fig. 10b), where

Mr̂ =

⎡

⎢
⎢
⎣

0 0 0 1
0 1 3 0
0 1 1 0
1 0 0 0

⎤

⎥
⎥
⎦

([
0 1
1 0

]

⊗
[
0 1
1 0

])
⎡

⎢
⎢
⎣

0 0 0 1
0 1 1 0
0 3 1 0
1 0 0 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 0 0 1
0 6 4 0
0 4 2 0
1 0 0 0

⎤

⎥
⎥
⎦ .

So we can construct r̂ in the RHS of Pl-Holant
(�=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ).

Consider an instance � of Pl-Holant
(�=2 | F ∪ {r̂ ′}), where F is a set of symmet-

ric signatures containing r̂ , and the signature matrix of r̂ ′ is

Mr̂ ′ =

⎡

⎢
⎢
⎣

0 0 0 1
0 3 1 0
0 1 1 0
1 0 0 0

⎤

⎥
⎥
⎦ .

Suppose that r̂ ′ appears n times in �. We construct from � a sequence of instances
�s of Pl-Holant

(�=2 | F) indexed by s ≥ 1. We obtain �s from � by replacing each
occurrence of r̂ ′ with the gadget Ns in Fig. 11 with r̂ assigned to the circle vertices
and [0, 1, 0] assigned to the square vertices. In �s , the edge corresponding to the ith
significant index bit of Ns connects to the same location as the edge corresponding
to the ith significant index bit of r̂ ′ in �.

We can express the signature matrix of Ns as

MNs = X(XMr̂)
s = XP diag

(
1, 4 + 2

√
3, 4 − 2

√
3, 1

)s

P −1,

where

X =

⎡

⎢
⎢
⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤

⎥
⎥
⎦ and P =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0

√
3 −√

3 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Since Mr̂ ′ = XP diag
(
1, 1 + √

3, 1 − √
3, 1

)
P −1, we can view our construction of

�s as first replacing Mr̂ ′ with XP diag
(
1, 1 + √

3, 1 − √
3, 1

)
P −1, which does not

change the Holant value, and then replacing the diagonal matrix with the diagonal

matrix diag
(
1, 4 + 2

√
3, 4 − 2

√
3, 1

)s

.

Fig. 11 Linear recursive construction used for interpolation in a nonstandard basis

Theory of Computing Systems

We stratify the assignments in � based on the assignments to the n occurrences of
the signature whose signature matrix is the diagonal matrix

⎡

⎢
⎢
⎣

1 0 0 0
0 1 + √

3 0 0
0 0 1 − √

3 0
0 0 0 1

⎤

⎥
⎥
⎦ . (6.8)

We only need to consider the assignments that assign

• i many times the bit patterns 0000 or 1111,
• j many times the bit pattern 0110, and
• k many times the bit pattern 1001,

since any other assignment contributes a factor of 0. Let cijk be the sum over all such
assignments of the products of evaluations of all signatures (including the signatures
corresponding to the signature matrices X, P , and P −1) in � except for signature
corresponding to the signature matrix in (6.8). Then

Holant� =
∑

i+j+k=n

(
1 + √

3
)j (

1 − √
3
)k

cijk

and the value of the Holant on �s , for s ≥ 1, is

Holant�s =
∑

i+j+k=n

((
4 + 2

√
3
)j (

4 − 2
√
3
)k
)s

cijk =
∑

i+j+k=n

((
4 + 2

√
3
)j−k

4k

)s

cijk .

We argue that this Vandermonde system has full rank, which is to

say that
(
4 + 2

√
3
)j−k

4k �=
(
4 + 2

√
3
)j ′−k′

4k′
unless (j, k) =

(j ′, k′). If
(
4 + 2

√
3
)j−k

4k =
(
4 + 2

√
3
)j ′−k′

4k′
, then we have

(
4 + 2

√
3
)j−k−(j ′−k′)

4k−k′ = 1. Since any nonzero integer power of 4 + 2
√
3 is

not rational, we must have j − k = j ′ − k′. And in this case, 4k−k′ = 1, and hence
k = k′ and j = j ′.

Therefore, we can solve for the unknown cijk’s and obtain the value of Holant�.
Thus we have a reduction

Pl-Holant
(�=2 | r̂ ′) ≤T Pl-Holant

(�=2 | F ∪ {r̂ ′}) ≤T Pl-Holant
(�=2 | F).

After a counterclockwise rotation of r̂ ′ (c.f. Fig. 2), the rotated form of r̂ ′ has matrix
⎡

⎢
⎢
⎣

0 0 0 3
0 1 1 0
0 1 1 0
1 0 0 0

⎤

⎥
⎥
⎦ ,

which is redundant and its compressed form is nonsingular. Hence by Corollary 2.29
the following equivalent problems

Pl-Holant(Z⊗4r̂ ′) ≡ Pl-Holant
(�=2 | r̂ ′)

Theory of Computing Systems

are #P-hard. We conclude that Pl-Holant
(�=2 | F) is #P-hard. Since we can construct

r̂ ∈ F in the RHS of Pl-Holant
(�=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ), the lemma

follows.

With Lemma 6.7 at hand, we continue to prove Lemma 6.8.

Lemma 6.8 Let b ∈ C. Suppose f is a signature of the form Z⊗n[0, 1, 0, . . . , 0, b],
where Z =

[
1 1
i −i

]

, with arity n ≥ 4. If b �= 0, then Pl-Holant(f) is #P-hard.

Remark 3 For n = 3, Z⊗3[0, 1, 0, b] is tractable, as it is M -transformable.

Proof If n = 4, then we are done by Corollary 2.29. Thus, assume that n ≥ 5.

Under a holographic transformation by Z =
[
1 1
i −i

]

, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)
,

where f̂ = [0, 1, 0, . . . , 0, b]. We show how to construct the following three signa-
tures: [0, 0, 0, 1, 0], [0, 1, 0, 0, 0], and ĝ, where ĝ is defined by (6.7). Then we are
done by Lemma 6.7.

Consider the gadget in Fig. 7. We assign f̂ to the circle vertices and [0, 1, 0] to the
square vertices. The signature of the resulting gadget is [0, 0, 0, 1, 0] up to a nonzero
factor of b.

Taking a [0, 1, 0] self loop on [0, 0, 0, 1, 0] gives [0, 0, 1] = [0, 1]⊗2. We connect
this back to f̂ through [0, 1, 0] until the arity of the resulting signature is either 4
or 5, depending on the parity of n. If n is even, then we have [0, 1, 0, 0, 0] as desired.
Otherwise, n is odd and we have [0, 1, 0, 0, 0, b or 0], where the last entry is b if
n = 5 and 0 if n > 5. Connecting [0, 1]⊗2 through [0, 1, 0] to f̂ twice more gives
[0, 1]. We connect this through [0, 1, 0] to [0, 1, 0, 0, 0, b or 0] to get [0, 1, 0, 0, 0]
as desired.

Taking a [0, 1, 0] self loop on [0, 1, 0, 0, 0] gives [1, 0, 0] = [1, 0]⊗2. Now con-
sider the gadget in Fig. 7b. We assign f̂ to the circle vertices, [1, 0]⊗2 to the triangle
vertices, and [0, 1, 0] to the square vertices. Up to a factor of b2, the signature of the
resulting gadget is ĝ with signature matrix Mĝ given in (6.7). To see this, first replace
the two copies of the signatures [1, 0]⊗2 assigned to the triangle vertices with two
copies of [1, 0] each. Then notice that f̂ simplifies to a weighted equality signature
when connected to [1, 0] through [0, 1, 0].

6.3 Proof of the Single Signature Dichotomy

Now we are ready to prove the dichotomy for a single signature, Theorem 6.1, which
states:

If f is a non-degenerate symmetric signature of arity n ≥ 3 with complex
weights in Boolean variables, then Pl-Holant(f) is #P-hard unless f ∈ P1 ∪

Theory of Computing Systems

M2∪A3∪M3∪M4∪V , in which case the problem is computable in polynomial
time.

Recall that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂ M2. Thus f ∈ P1∪M2∪A3∪M3∪
M4 if and only if f is A -, P-, or M -transformable by Lemma 3.3, Lemma 3.5, or
Lemma 3.11.

Proof of Theorem 6.1 The proof is by induction on n. The base cases of n = 3 and
n = 4 are proved in Theorem 2.22. Now assume n ≥ 5.

With the signature f , we form a self loop to get a signature f ′ of arity at least 3. In
general we use prime to denote the signature with a self loop. We consider separately
whether or not f ′ is degenerate.
• Suppose f ′ = [a, b]⊗(n−2) is degenerate. Then there are three cases to consider.

1. If a = b = 0, then f ′ is the all zero signature. For f , this means fk+2 = −fk

for 0 ≤ k ≤ n − 2, i.e., f has the form [x, y, −x, −y, . . .]. By Lemma 3.2,
f ∈ A2 = P2, and therefore Pl-Holant(f) is tractable.

2. If a2 + b2 �= 0, then f ′ is nonzero and [a, b] is not a constant multiple of
either [1, i] or [1, −i]. We may normalize so that a2 + b2 = 1. Then the

orthogonal transformation

[
a b

−b a

]

transforms the column vector [a, b] to
[1, 0]. Let f̂ be the transformed signature from f , and f̂ ′ = [1, 0]⊗(n−2) the
transformed signature from f ′.

Since an orthogonal transformation keeps =2 invariant, this transforma-
tion commutes with the operation of taking a self loop, i.e., f̂ ′ = (f̂)′.
Here (f̂)′ is the function obtained from f̂ by taking a self loop. As (f̂)′ =
[1, 0]⊗(n−2), we have f̂0 + f̂2 = 1 and for every integer 1 ≤ k ≤ n − 2,
we have f̂k = −f̂k+2. With one or more self loops on (f̂)′, we eventually
obtain either [1, 0] when n is odd or [1, 0, 0] when n is even. In either case,
we connect [1, 0] or [1, 0, 0] to f̂ until we get an arity 4 signature, which is
ĝ = [f̂0, f̂1, f̂2, −f̂1, −f̂2]. This is possible because that the parity matches
and the arity of f̂ is at least 5. We show that Pl-Holant(ĝ) is #P-hard. To see
this, we first compute det(M̃g) = −2(f̂0 + f̂2)(f̂

2
1 + f̂ 2

2) = −2(f̂ 2
1 + f̂ 2

2),
since f̂0 + f̂2 = 1. Therefore if f̂ 2

1 + f̂ 2
2 �= 0, Pl-Holant(ĝ) is #P-hard

by Lemma 2.28. Otherwise f̂ 2
1 + f̂ 2

2 = 0, and we assume f̂2 = if̂1 since
the other case f̂2 = −if̂1 is similar. Since f is non-degenerate, f̂ is non-
degenerate, which implies f̂2 �= 0. We can rewrite ĝ as [1, 0]⊗4− f̂2[1, i]⊗4.

Under the holographic transformation by T =
[
1 (−f̂2)

1/4

0 i(−f̂2)
1/4

]

, we have

Pl-Holant
(=2 | ĝ

) ≡T Pl-Holant
(
[1, 0, 1]T ⊗2 | (T −1)⊗4ĝ

)

≡T Pl-Holant
(
ĥ | =4

)
,

where

ĥ = [1, 0, 1]T ⊗2 = [1, (−f̂2)
1/4, 0]

Theory of Computing Systems

and ĝ is transformed by T −1 into the arity 4 equality =4, since

T ⊗4

([
1
0

]⊗4

+
[
0
1

]⊗4
)

=
[
1
0

]⊗4

− f̂2

[
1
i

]⊗4

= ĝ.

By Theorem 2.24, Pl-Holant
(
ĥ | =4

)
is #P-hard as f̂2 �= 0.

3. If a2+b2 = 0 but (a, b) �= (0, 0), then [a, b] is a nonzero multiple of [1, ±i].
Ignoring the constant multiple, we have f ′ = [1, i]⊗(n−2) or [1, −i]⊗(n−2).
We consider the first case since the other case is similar.

In the first case, the characteristic polynomial of the recurrence relation
of f ′ is x − i, so that of f is (x − i)(x2 + 1) = (x − i)2(x + i). Hence there
exist a0, a1, and c such that

fk = (a0 + a1k)ik + c(−i)k

for every integer 0 ≤ k ≤ n. Let f + and f − be two signatures of arity
n such that f +

k = (a0 + a1k)ik and f −
k = c(−i)k for every 0 ≤ k ≤ n.

Hence fk = f +
k + f −

k and we write f = f + + f −. If a1 = 0, then f ′ is
the all zero signature, a contradiction. If c = 0, then f is vanishing, one of
the tractable cases. Now we assume a1c �= 0 and show that Pl-Holant(f)

is #P-hard. Hence rd+(f +) = 1 and rd−(f −) = 0. Thus, (Z−1)⊗n(f +)

has the form [x, y, 0, . . . , 0], where y �= 0, and (Z−1)⊗n(f −) has the form
[0, 0, . . . , 0, z], where z = 2n/2c �= 0. It follows that f̂ = (Z−1)⊗n(f) =
[x, y, 0, . . . , 0, z]. Note that the arity n ≥ 5, so the nonzero entries in the
sum do not collide.

Under the holographic transformation Z = 1√
2

[
1 1
i −i

]

, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)

≡T Pl-Holant
(
[0, 1, 0] | f̂

)

≡T Pl-Holant(Z⊗nf̂),

where f̂ takes the form [f̂0, f̂1, 0, . . . , 0, f̂n]with f̂n = 2n/2c �= 0 and f̂1 �=
0. On the other side, (=2) = [1, 0, 1] is transformed into (�=2) = [0, 1, 0].
Depending on whether f̂0 = 0 or not, we apply Lemma 6.8 or Lemma 6.6
and Pl-Holant(f) is #P-hard.

• Suppose f ′ is non-degenerate. By the inductive hypothesis, Pl-Holant(f ′) is #P-
hard, unless f ′ ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ M4 ∪ V . Note that f ′ has arity
n − 2 ≥ 3, and every signature in M4 of arity at least 3 is also in V . Hence
the exceptional case is equivalent to f ′ ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V . In this
case, we apply Lemma 6.2 to f ′ and f . Hence Pl-Holant(f) is #P-hard, unless
f ∈ P1 ∪M2 ∪A3 ∪M3 ∪V . The exceptional cases imply that f is A - or P-
or M -transformable or vanishing, and Pl-Holant(f) is tractable.

Theory of Computing Systems

7 MixingP2 andM4—Equalities andMatchgates in the Z Basis

Given a set F of symmetric signatures, by Theorem 6.1, Pl-Holant(F) is #P-hard
unless every single non-degenerate signature f of arity at least 3 in F is in P1 ∪
M2 ∪ A3 ∪ M3 ∪ M4 ∪ V . Furthermore, we have already proved that the desired
full dichotomy holds if F contains such an f in P1, A3, M2 \ P2, or M3 due to
Corollary 5.4, Corollary 5.6, Lemma 5.8, or Lemma 5.10, respectively, namely, if F
contains a non-degenerate signature f ∈ P1 ∪ (M2 \ P2) ∪ A3 ∪ M3 of arity at
least 3, then Pl-Holant(F) is #P-hard unless F is A -, P-, or M -transformable, in
which case Pl-Holant (F) is tractable.

The remaining cases are when all non-degenerate signatures of arity at least 3 in
F are contained in P2 ∪M4 ∪V . In this section, we consider the mixing of P2 and

M4. For this, we do a holographic transformation by Z =
[
1 1
i −i

]

or Z

[
0 1
1 0

]

=
[
1 1
−i i

]

. Then the problem becomes Pl-Holant
(�=2 | =k,EXACTONEd

)
with var-

ious arities k and d . Recall that EXACTONEd denotes the exact one function
[0, 1, 0, . . . , 0] of arity d . These are the signatures for PERFECT MATCHING and they
are the basic components ofMatchgates.

At this stage of our proof, we found a big surprise. Against the putative form of a
complexity classification for planar counting problems, we found that the complexity
of the problem Pl-Holant

(�=2 | =k,EXACTONEd

)
depends on the values of d and k,

and the problem is tractable for all large k. This result has the consequence that, for
the first time since Kasteleyn’s algorithm, we have discovered some new primitive
tractable family of counting problems on planar graphs. These problems cannot be
captured by a holographic reduction to Kasteleyn’s algorithm, or any other known
algorithm. Thus for planar problems the paradigm of holographic algorithms using
matchgates (i.e., being M -transformable) is not universal.

Let EO = {EXACTONEd | d ≥ 3}.

7.1 Hardness when k = 3 or 4

We begin with some hardness results.

Lemma 7.1 Pl-Holant
(�=2 | =3, [0, 1, 0, 0]

)
is #P-hard.

Proof By connecting two copies of [0, 1, 0, 0] together via �=2, we have [0, 1, 0, 0, 0]
on the right. Consider the gadget in Fig. 12a. We assign =3 to the triangle vertices,
[0, 1, 0, 0] to the circle vertices, �=2 to the square vertices, and [0, 1, 0, 0, 0] on the
diamond vertex in the middle. Let f be the signature of this gadget.

We claim that the support of f is {0011, 0110, 1100, 1001}. To see this, notice that
[0, 1, 0, 0, 0] in the middle must match exactly one of the half edges, which forces the
corresponding equality signature to take the value 0 and all other equality signatures
to take value 1. The two [0, 1, 0, 0]’s adjacent to the equality assigned 0 must have 0
going out, and the other two [0, 1, 0, 0]’s have 1 going out.

Theory of Computing Systems

Fig. 12 Two gadgets used in the proof of Lemma 7.1. a Cycle-like gadget used twice. bGadget to realize ĝ

Now we consider the gadget in Fig. 12a again. This time we place [0, 1, 0, 0] on
each triangle, =3 on each circle, f on the middle diamond, and again �=2 on each
square. Now notice that each support of f makes two [0, 1, 0, 0]’s that are cyclically
adjacent on the outer cycle to become [0, 1, 0] and the other two [1, 0, 0]. It is easy
to see that the support of the resulting signature is {0111, 1011, 1101, 1110}. There-
fore it is the reversed EXACTONE4 signature [0, 0, 0, 1, 0] (namely ALLBUTONE4).
The whole gadget is illustrated in Fig. 13, where each circle is assigned [0, 1, 0, 0],
triangle =3, and square �=2.

Finally, we build the gadget in Fig. 12b. We place =3 on each circle and �=2 on
each square. It is easy to see that there are only two support vectors of the result-

Fig. 13 The whole gadget to
realize [0, 0, 0, 1, 0]

Theory of Computing Systems

ing signature, which are 0101 and 1010. Recall the definition (6.7) of the partial
crossover ĝ. This gadget realizes exactly ĝ.

By Lemma 6.7, Pl-Holant
(�=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ĝ) is #P-hard. We

have constructed [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], and ĝ on the right side. Therefore
Pl-Holant

(�=2 | =3, [0, 1, 0, 0]
)
is #P-hard.

For k = 4, we need the following lemma.

Lemma 7.2 Let g be the arity 4 signature whose matrix is

Mg =

⎡

⎢
⎢
⎣

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

Then Pl-Holant(g) is #P-hard.

Proof Let h = [2, 1, 1]. We show that Pl-#CSP(h) ≤T Pl-Holant(g) in two steps.
In each step, we begin with a signature grid and end with a new signature grid
such that the Holant values of both signature grids are the same. This follows from
Theorem 2.24, since Pl-#CSP(h) ≡ Pl-Holant (EQ | h) by (2.2).

For step one, let G = (U, V, E) be an instance of Pl-Holant (EQ | h). Fix an
embedding of G in the plane. This defines a cyclic ordering of the edges incident to
each vertex. Consider a vertex u ∈ U of degree k. It is assigned the signature =k .
We decompose u into k vertices. Then we connect the k edges originally incident to
u to these k new vertices so that each vertex is incident to exactly one edge. We also
connect these k new vertices in a cycle according to the cyclic ordering induced on
them by their incident edges. Each of these vertices has degree 3, and we assign them
=3. Clearly the Holant value is unchanged. This completes step one. An example of
this step applied to a vertex of degree 4 is given in Fig. 14a. The resulting graph has
the following properties: (1) it is planar; (2) every vertex is either degree 2 (in V and
assigned h) or degree 3 (newly created and assigned =3); (3) each degree 2 vertex is
connected to two degree 3 vertices; and (4) each degree 3 vertex is connected to one
degree 2 vertex and two other degree 3 vertices.

Fig. 14 A reduction from Pl-Holant (EQ | h) to Pl-Holant(g) for any binary signature h and a quaternary
signature g that depends on h. The circle vertices are assigned =4 or =3 respectively, the triangle vertex
is assigned h, and the square vertex is assigned the signature of the gadget to its left. a Step one: Degree 4
vertex example. b Step two: Contract edges

Theory of Computing Systems

Now step two. For every v ∈ V , v has degree 2. We contract the two edges incident
to v, or equivalently, we replace the two circle vertices and one triangle vertex boxed
in Fig. 14b with a single (square) vertex of degree 4. The resulting graph G′ =
(V ′, E′) is planar and 4-regular.

Next we determine what is the signature on v′ ∈ V ′ after this contraction. Clearly
the two inputs to each original circle have to be the same (as illustrated in the first
figure in Fig. 14b). Therefore its support is 0000,0110,1001,1111, listed starting from
the diamond and going counterclockwise. Moreover, due to the triangle assigned h in
the middle, the weight on 0000 is 2, and every other weight is 1. Hence it is exactly
the signature g, with the diamond in Fig. 14b marking the first input bit. This finishes
the proof.

Remark 4 From the planar embedding of the graph G, treating h vertices as edges,
the resulting graph G′ is known as the medial graph of G. The (constructive) defi-
nition is usually phrased in the following way. The medial graph Gm of plane graph
G has a vertex on each edge of G and two vertices in Gm are joined by an edge for
each face of G in which their corresponding edges occur consecutively. See Fig. 15
for an example. However, our construction described in the proof clearly extends to
nonplanar graphs as well.

Lemma 7.3 Pl-Holant
(�=2 | =4, [0, 1, 0, 0]

)
is #P-hard.

Proof Consider the gadget in Fig. 16. We assign binary disequality �=2 to the square
vertices,=4 to the circle vertices, and [0, 1, 0, 0] to the triangle vertices. We show that
the support of the resulting signature is the set {00110011, 11001100, 11111111},
where each vector is the assignment ordered counterclockwise starting from the
diamond point.

We call the equality signature =4 in the middle the origin. There are two possible
assignments at the origin. If it is assigned 0, then every adjacent perfect matching

Fig. 15 A plane graph (a), its medial graph (c), and both graphs superimposed (b)

Theory of Computing Systems

Fig. 16 Grid-like gadget used in
the proof of Lemma 7.3, whose
support vectors are 00110011,
11001100, and 11111111. Each
square is assigned a binary
disequality �=2, circle =4, and
triangle [0, 1, 0, 0]

signature [0, 1, 0, 0] is matched to the half edge towards the origin, and every equality
=4 is forced to be 1. This gives the support vector 11111111.

The other possibility is that the origin is 1. In this case, we can remove the origin
leaving the outer cycle, with every [0, 1, 0, 0] becoming [0, 1, 0]. This is effectively
a cycle of four equalities connected by �=2. It is easy to see that there are only two
support vectors, which are exactly 00110011 and 11001100.

Every pair of half edges at each corner always take the same value. We further
connect each pair of these edges to different copy of =4 via two copies of �=2. This
results in a gadget with signature f whose support is the complement of the original
support, that is, {11001100, 00110011, 00000000}.

Now consider the gadget in Fig. 17a. We assign �=2 to the square vertices, =4 to
the circle vertices, [0, 1, 0, 0] to the triangle vertices, and f to the pentagon vertex.
Notice that each pair of edges coming out of the pentagon vertex are from the same
corner of the gadget in Fig. 16 used to realize f . We now study the signature of this
gadget.

Notice that if an =4 on the outer cycle is assigned 0, then the two adjacent per-
fect matchings must match half edges toward that =4, and their outgoing edges
must be 0. Furthermore, the two =4 one more step away must be 1. A fur-
ther observation is that any pair of consecutive =4’s cannot be both 0, and if
a pair of consecutive =4’s are both 1, then the [0, 1, 0, 0] between them must
have a 1 going out. In Fig. 17a, we call the pentagon connecting to four equal-
ities =4 on the upper right f1 and the other one f2. Let g be the signature of
resulting gadget. We further order the external wires of f1, f2, and g counter-
clockwise, each starting from edge marked with a diamond. With this notation and
these observations, we get Table 17b listing the support of g. The support of g is
{11111111, 01111000, 11110000, 10000111, 00000000, 00001111, 00000000}, and
00000000 has multiplicity 2.

Next we use a domain pairing argument. First we move =4 to the left hand
side, by connecting four �=2 into it. We apply the domain pairing on the problem

Theory of Computing Systems

Fig. 17 Another gadget used in the proof of Lemma 7.3 and a Table listing the support of its signature. a
Gadget with signature g. Each square is assigned a binary disequality �= 2, circle = 4, triangle [0, 1, 0, 0],
and pentagon f . b Support of g. Each vector is an assignment ordered counterclockwise from the diamond.

Pl-Holant (=4| g). Specifically, we use =4 as =2, by pairing each pair of edges
together. We also pair adjacent two outputs of g counterclockwise, starting from the
diamond point. Each pair of output wires of g are connected to a pair of wires from
=4 on the left hand side. Note that =4 enforces that each pair of edges always takes
the same value. We re-interpret 00 or 11 as 0 or 1 in the Boolean domain. In this way,
we can treat g as an arity 4 signature g′ in the Boolean domain. So the reduction is

Pl-Holant
(=2 | g′) ≤T Pl-Holant (=4 | g).

We get the expression of g′ next. The two support bit strings 01111000 and 10000111
of g are eliminated as they do not agree on adjacent paired outputs. So in the paired
(Boolean) domain, the support of g′ becomes {1111, 1100, 0011, 0000} where 0000
has multiplicity 2. We further rotate g′ as a Boolean domain signature such that the
support is {1111, 0110, 1001, 0000}. Now it is easy to see that the matrix of g′, an
arity 4 signature in the Boolean domain, is

Mg′ =

⎡

⎢
⎢
⎣

2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

By Lemma 7.2 Pl-Holant(g′) is #P-hard. Hence Pl-Holant
(�=2 | =4, [0, 1, 0, 0]

)
is

#P-hard.

To extend Lemma 7.1 and Lemma 7.3 to general EXACTONEd functions, we show
that we can always realize constant functions [1, 0] and [0, 1] in this setting.

Theory of Computing Systems

Lemma 7.4 For any integer k ≥ 3 and d ≥ 3 and any signature set F consisting of
nonnegative integer valued signatures,

Pl-Holant
(�=2 |=k,EXACTONEd , [0, 1],F)≤T Pl-Holant

(�=2 |=k,EXACTONEd ,F
)
.

Furthermore, we can construct =�k and EXACTONE2+�(d−2) in the right hand side,
for all � ≥ 1.

Proof We can construct =�k on the right, for any integer � ≥ 1, by �=2 on the left and
=k on the right, as follows. If we connect two copies of =k via �=2 we get a signature
of arity 2k −2 with k −1 consecutive external wires labeled + and the others labeled
−. As k ≥ 3, we can take 2 wires of the k − 1 wires labeled − and attach to two
copies of =k via two �=2. This creates a signature of arity 3(k − 1) + (k − 3) with
3(k − 1) consecutive wires labeled + and the other k − 3 wires labeled −. Finally
connect k − 3 pairs of adjacent +/− labeled wires by �=2 recursively. This creates
a planar gadget with an equality signature of arity 3(k − 1) − (k − 3) = 2k, up to
a nonzero constant factor. This can be extended to any =�k by applying the same
process on any consecutive k wires.

We construct EXACTONE2+�(d−2) on the right, for any integer � ≥ 1, by
connecting � many copies of EXACTONEd sequentially via �=2.

Next we construct [0, 1]⊗r for some integer r ≥ 1 on the right hand side. We get
[1, 0]⊗(d−2) by a self-loop of EXACTONEd via �=2, ignoring the factor 2. We pick an
integer � large enough so that d − 2 < �k. Then we connect [1, 0]⊗(d−2) to =�k via
�=2 to get [0, 1]⊗(�k−d+2). Thus r = �k − d + 2 suffices.

Given an instance � of Pl-Holant
(�=2 | =k,EXACTONEd , [0, 1],F) with an

underlying plane graph G, consider the dual graph G∗ of G. Take a spanning tree
T of G∗, with the external face as the root. In each face F , let cF be the number of
[0, 1]’s in the face F . We start from the leaves to recursively move all the pinnings of
[0, 1] to the external face. Suppose we are working on the face F as a leaf of T , and
it is not the root (the external face). If cF = 0 then we just remove the leaf from T

and recurse on another leaf. Otherwise we remove all [0, 1]’s in F , creating cF dan-
gling edges in the face F . Let s be the smallest integer such that sr ≥ cF . We replace
the �=2 edge bordering between F and its parent F ′ by a chain of three signatures:
�=2, EXACTONE2+�(d−2) and �=2, where � is an integer such that �(d −2) ≥ sr − cF .
(Notice that if �(d −2) many dangling edges of EXACTONE2+�(d−2) are all pinned to
0, then this chain becomes a chain of three (�=3)’s, and thus functionally equivalent
to the original single �=2 between F and F ′.) From EXACTONE2+�(d−2) there are two
edges connected to the two adjacent copies of �=2. Of the other �(d − 2) edges we
will put sr − cF many dangling edges in F , and the remaining �(d − 2) − (sr − cF)

dangling edges in F ′. Hence there are sr dangling edges in F , including those cF

many that were connected to [0, 1]’s via �=2 before we removed the [0, 1]’s. We put
s copies of [0, 1]⊗r inside the face F to pin all of them in a planar way. We add
�(d − 2) − (sr − cF) to cF ′ , and they are all pinned to 0 (by connecting to [0, 1] via
�=2). Remove the leaf F from T , and recurse.

After the process, all [0, 1]’s are in the external face of G. Suppose the number is
p. We put r disjoint copies ofG together to form a planar signature grid. Apply a total
of pr many [0, 1]’s by p copies of [0, 1]⊗r in a planar way. This is now an instance of

Theory of Computing Systems

Pl-Holant
(�=2 | =k,EXACTONEd ,F

)
and the Holant value is the rth power of that

of �. Since the Holant value of � is a nonnegative integer, we can take the rth root
and finish the reduction.

Once we have the pinning [0, 1] in the right hand side of Pl-Holant(�=2 | =k,EXACTONEd

)
, it is easy to construct EXACTONE3 = [0, 1, 0, 0] from

EXACTONEd , for all d ≥ 3, because connecting [0, 1] via �=2 to EXACTONEd gives
EXACTONEd−1. Therefore combining Lemma 7.4 with Lemma 7.1 and Lemma 7.3
we get the following corollary.

Corollary 7.5 If d ≥ 3 and k ∈ {3, 4}, then Pl-Holant
(�=2 | =k,EXACTONEd

)
is

#P-hard.

7.2 Tractability when k ≥ 5

On the other hand, if the arity k of the equality signature is at least 5, then
Pl-Holant

(�=2 | =k, EO
)
is tractable, where EO = {EXACTONEd | d ≥ 3}. In this

subsection we will first prove that this problem is tractable for k ≥ 6. After that we
will return to =5.

To prove this, we first do some preprocessing. Let G be the underlying graph of
an instance of Pl-Holant

(�=2 | =k, EO
)
. First, we may assume no copy of =k has a

self loop by �=2, since this results in 0 for the overall Holant value. Similarly we may
assume that no EXACTONEd in EO has more than one self loops by �=2, since this
also results in 0. If a single self loop by a �=2 is applied to some EXACTONEd , the
signature EXACTONEd is changed to [1, 0]⊗(d−2) with a factor 2. In this way we can
eliminate all self loops by �=2 on all signatures on the RHS, resulting in some pin-
ning signatures [1, 0]. These pinning signatures can be applied recursively. Any [1, 0]
is first transformed to [0, 1] via �=2 on LHS and then applied either to =k produc-
ing [0, 1]⊗(k−1), or to EXACTONEd (for some d) producing [1, 0]⊗(d−1). Similarly,
any [0, 1] is first transformed to [1, 0] via �=2 on LHS and then applied either to =k

producing [1, 0]⊗(k−1), or to EXACTONEd (for some d) producing EXACTONEd−1.
(Of course if a pair of pinning signatures [1, 0] and [0, 1] meet by �=2, this results
in 0 for the overall Holant value.) This process of “using up” the pinning signatures
[1, 0]’s and [0, 1]’s must terminate, even though some new ones may be created in
the process, because the sum of arities of all the signatures remaining monotonically
decreases. Note that if d = 3 then EXACTONEd−1 is just �=2 on RHS, which com-
bined with its adjacent two copies of �=2 of LHS, is equivalent to a single �=2 of LHS.
Finally, whenever an EXACTONEd and another EXACTONE� are connected by a �=2,
we replace it by a single EXACTONEd+�−2, shrinking the edge between (and remove
the connecting �=2). After these steps, we may assume that all pinning signatures
[1, 0] and [0, 1] are eliminated, our instance graph G of Pl-Holant

(�=2 | =k, EO
)
has

no self loops by �=2 on RHS signatures, and no �=2 connects two EO signatures on
RHS.

Next we define an Ek-block. If we view every �=2 in the LHS of the bipartite graph
G as an edge, then we get a graph G′ on the RHS vertices of G only. Every vertex
in G′ is labeled by =k or some EXACTONEd , and every edge is labeled by �=2. The

Theory of Computing Systems

vertices of G′ labeled by =k form connected components, with edges labeled by �=2.
All edges in G′ from such a connected component to the rest of G′ (if the rest is
nonempty) must connect to some EO signatures. We define an Ek-block to be such
a connected component of =k vertices, including the outgoing edges (if any) with all
edges (including the outgoing edges) labeled by �=2. We call these outgoing edges
of an Ek-block dangling edges. Notice that the signature defined by an Ek-block
has either exactly two or zero support vectors. This depends on whether or not there
exists a contradiction, which is formed by an odd cycle of =k connected by �=2, i.e.,
a sequence of odd number of vertices labeled by =k connected by edges labeled by
�=2 in G′. We say an Ek-block is trivial if it has no support. This is easy to check.
The two support vectors of a nontrivial Ek-block are complements of each other.
We mark dangling edges of a nontrivial Ek-block by “+” or “−” signs. Dangling
edges marked with the same sign take the same value on both support vectors while
dangling edges marked with different signs take opposite values on both support
vectors. This marking is unique except one may exchange all ± with ∓. The marking
uniquely determines the signature of an Ek-block. Let n+ and n− be the numbers of
dangling edges marked + and − respectively. Then it is easy to see that

n+ ≡ n− mod k. (7.9)

An example of E6-block is illustrated in Fig. 18, with 8 + signs and 2 − signs.
Recall that we have eliminated all edges (labeled by �=2) between EO signatures.

Thus if we define the graph between EO signatures on the one hand and Ek-block’s
on the other hand, we have a bipartite (multi)-graph. Since we consider the dangling
edges of any Ek-block as part of the Ek-block, we get a bipartite (multi)-graph where
edges are labeled by (=2). This bipartite graph may have multiple edges between a
pair of Ek-block and EXACTONEd signatures. More importantly, we claim that it is
a planar bipartite (multi)-graph.

Formally we define a contraction process on the underlying planar connected
(multi)-graph for an Ek-block (which includes the dangling edges). Recursively, pick
any non-dangling non-loop edge e, we shrink it to a point, maintaining planarity. The
local cyclic orders of incident edges of the two vertices of e are spliced along e to
form the cyclic order of the new vertex. For any self loop created we simply remove
it. This contraction process ends in a single point with a cyclic order of the dangling
edges.

After this contraction, we obtain a planar bipartite (multi)-graph connected
between EO signatures and Ek-block’s by edges labeled by =2. Note that the

Fig. 18 Example of an
E6-block. Circle vertices are
assigned =6 and square vertices
are assigned �=2. For simplicity,
we omit the square �=2 on the 10
dangling edges

Theory of Computing Systems

connection becomes =2 because the dangling edges (labeled by �=2) of an Ek-block
are considered as part of the Ek-block which is now represented by a single vertex
after the contraction.

The following Lemma 7.6 is a key observation that for a planar bipartite (multi)-
graph, if its degrees are large, then it cannot be simple, i.e., it must have parallel
edges.

Lemma 7.6 Let G = (L ∪ R, E) be a nonempty planar bipartite (multi)-graph with
parts L and R. If every vertex in L has degree at least 6 and every vertex in R has
degree at least 3, then G is not simple.

Proof We may assume G is connected; otherwise we prove the lemma for a con-
nected component of G. For a contradiction, suppose G is simple. Let v, e and f be
the total number of vertices, edges, and faces, respectively. Let vi be the number of
vertices of degree i in L, where i ≥ 6, and uj be the number of vertices of degree j in
R, where j ≥ 3. Since G is simple and bipartite, each face has at least 4 edges. Thus,

2e ≥ 4f . (7.10)

Furthermore, it is easy to see that

v =
∑

i≥6

vi +
∑

j≥3

uj and e =
∑

i≥6

ivi =
∑

j≥3

juj . (7.11)

Then starting from Euler’s characteristic equation for planar graphs, we have

2 = v − e + f

≤ v − e

2
(By (7.10))

=
∑

i≥6

vi +
∑

j≥3

uj − 1

6

∑

i≥6

ivi − 1

3

∑

j≥3

juj (By (7.11))

=
∑

i≥6

6 − i

6
vi +

∑

j≥3

3 − j

3
uj ≤ 0,

a contradiction. Here we used the trivial fact that 1/2 = 1/6 + 1/3.

Lemma 7.6 does not give us tractability for the case of k ≥ 6 yet. The reason is that
given an instance of Pl-Holant

(�=2 | =k, EO
)
, after the preprocessing and forming

Ek-blocks to make the graph bipartite, it is possible to have Ek-blocks of arity less
than 6, in which case Lemma 7.6 does not apply. However, for k ≥ 6 and a nontrivial
Ek-block of arity n where n < 6, by (7.9) and the fact that 0 ≤ n+, n− ≤ n < k,
we see that n+ = n−, and n = n+ + n− must be even. If k = 5, and n < 5, we
also have n must be even. Moreover, if n = 2, then this means that the Ek-block is
just �=2. This �=2 connects EO signatures; if it is a self loop on a single EXACTONEd

signature this creates [1, 0]⊗(d−2), i.e., d−2 pinning signatures which can be handled
as before, if it connects two signatures from EO this creates a new EO signature. The
problematic case is when n = 4.

Theory of Computing Systems

Figure 19a depicts the two possibilities of Ek-blocks of arity 4 up to a rotation.
An Ek-block of arity 4 can be viewed as a pair of �=2 in parallel, but there is a
correlation between them, namely their support vectors are paired up in a unique way.
If we replace the contracted Ek-block of arity 4 by two parallel edges as indicated
in Fig. 19b, one can revert back to a planar realization in the Ek-block as it connects
to the rest of the graph. This can be seen by reversing the contraction process step
by step. Alternatively we can just use the following direct construction of Ek-blocks
of arity 4 for the two types in Fig. 19a. The two types are denoted by their circular
markings + + −− and + − +−. If we connect two copies of =k by �=, we get the
signature represented by the marking + · · ·+− · · · − with k −1 consecutive +’s and
−’s. Then we connect the middle k−3 ≥ 0 pairs of+ and− by �= to get++−−. For
+ − +−, we start from + + −−, and turn the middle + to k − 1 consecutive −’s by
connecting another copy of =k using �=. Similarly we can turn the middle − to k − 1
consecutive +’s. So we get +−· · ·−+ · · ·+− where there are k−1 consecutive −’s
and +’s. Then we cancel the middle k−2 pairs of ± by connecting �= to get +−+−.
Both constructions are completed by adding an extra �= on all the dangling edges.

We will show in the following lemma how to replace Ek-blocks of arity 4 by some
other signatures while keeping track of the Holant value. We also observe that the
tractable set described in Lemma 7.7 allows binary �=2 and unary [1, 0] and [0, 1]
signatures in addition to EO and =k .

Lemma 7.7 For any integer k ≥ 6, Pl-Holant
(�=2 | =k, EO, �=2, [1, 0], [0, 1]

)
is

tractable.

Proof Let � be an instance of Pl-Holant
(�=2 | =k, EO, �=2, [1, 0], [0, 1]

)
. Without

loss of generality, we assume that � is connected. Any occurrence of �=2 of the right
hand side can be removed as follows: It is connected to two adjacent copies of �=2 of
the left hand side. We replace this chain of three copies of �=2 by a single �=2 from
the left hand side.

The given signatures have no weight, however the proof below can be adapted to
the weighted case. For the unweighted case, we only need to count the number of
satisfying assignments. We call an edge in the bipartite instance graph of � pinned if
it has the same value in all satisfying assignments, if there is any. Clearly any edge
incident to a vertex assigned [1, 0] or [0, 1] is pinned.

When an edge is pinned to a known value, we can get a smaller instance of the
problem Pl-Holant(�=2 |=k, EO, �=2, [1, 0], [0, 1]) without changing the number of

Fig. 19 Arity 4 Ek-blocks. a Two dierent arity 4 Ek-blocks. b Replace them by parallel �=2’s

Theory of Computing Systems

satisfying assignments. In our algorithm we may also find a contradiction and sim-
ply return 0. If e is a pinned edge, then it is adjacent to another edge e′ via �=2 on
the left hand side, and both e and e′ are pinned. We remove e, e′, and �=2, and per-
form the following on e (and on e′ as well). If the other endpoint of e is u = [1, 0]
or [0, 1] we either remove that u if the pinned value on e is consistent with u, or
return 0 otherwise. If the other endpoint of e is =k , then all edges of this =k are
pinned to the same value which we can recursively apply. If the other endpoint of e

is EXACTONEd ∈ EO, then we replace this signature by EXACTONEd−1 when the
pinned value is 0; or if the pinned value is 1 then the remaining d − 1 edges of this
EXACTONEd are pinned to 0 which we recursively apply. Notice that we may create
an EXACTONE2 (i.e. �=2) on the right hand side when we pin 0 on EXACTONE3. Such
�=2’s are replaced as described at the beginning. It is easy to see that all these steps
do not change the number of satisfying assignments, and work in polynomial time.

If � does not contain any EO signatures, i.e., any EXACTONEd function (for some
d ≥ 3), then � is an instance of P and therefore tractable. If � does not contain
any =k , then it is an instance of M and therefore also tractable. So we may assume
� contains at least one =k and at least one EO signature. Then, we claim that there
always exists an edge in � that is pinned, or there is a contradiction. Furthermore, in
polynomial time we can find a pinned edge with a known value, or return that there
is a contradiction. (If there is a contradiction in �, we may still return a purported
pinned edge with a known value, which we can apply and simplify �. The contra-
diction will eventually be found.) The lemma follows from the claim, for we either
recurse on a smaller instance or have a tractable instance.

Now we assume � is an instance where at least one =k and at least one
EXACTONEd ∈ EO appear. We assume no �=2 appears on the right hand side. If any
[1, 0] or [1, 0] appear, then we have found a pinned edge with a known value. Hence
we may assume neither [1, 0] nor [1, 0] appears in �. So we may assume � is an
instance for Pl-Holant

(�=2 | =k, EO
)
.

If a signature EXACTONEd ∈ EO is connected to itself by a self-loop through a
�=2, then there are two choices for the assignment on this pair of edges through the
�=2, but the remaining d − 2 ≥ 1 edges are pinned to 0. We can keep track of the
factor 2 and have found a pinned edge with a known value. Thus we may assume
there are no self-loops via �=2 on EO signatures.

Next we consider the case that two separate (occurrences of) signatures from EO, say,
EXACTONEd and EXACTONE�, are connected by some number of �=2’s. (Here d = �

is permitted.) Depending on the number of connecting edges, there are three cases:

1. The connection is by a single �=2. We contract the connecting edge, maintaining
planarity, and replace these three signatures by an EXACTONEd+�−2 to get a new
instance �′. If an edge is pinned in �′ then it is also pinned in � to the same
value. We continue with �′.

2. The connection is by two �=2’s. There are two choices for the assignment on
these two pairs of edges through �=2, but the remaining d + � − 4 ≥ 2 edges are
pinned to 0.

3. The connection is by at least three �=2’s. The three �=2’s cannot be all satisfied,
so there is no satisfying assignment, a contradiction. We return the value 0.

Theory of Computing Systems

Hence, we may assume there is no connection via any number of �=2’s among EO
signatures.

We can now use our definition of an Ek-block (before Lemma 7.6) as a connected
component composed of =k and �=2. All external connecting edges of each Ek-block
are marked with + or − and this can be found by testing bipartiteness of an Ek-block
where we treat �=2’s as edges and =k’s as vertices. If any Ek-block is not bipartite,
we return 0. Such an Ek-block is called trivial. In the following we may assume no
trivialEk-block exists. We contract allEk-blocks and maintain planarity, as described
earlier: For each Ek-block we contract two vertices that are connected by an edge,
one edge at a time, and remove self loops in this contraction process. Any nontrivial
Ek-block of arity 2 has signature �=2, by (7.9). If there is a nontrivial Ek-block of
arity 2, we replace it with an edge labeled by �=2 to form an instance �′, maintaining
planarity, such that any pinned edge in �′ corresponds to a pinned edge in �. This
new edge is between EO signatures and can be dealt with as described earlier. So we
may assume the arity of any Ek-block is at least 4. Since k ≥ 6, the only possible
Ek-blocks of arity 4 are those in Fig. 19a up to a rotation. Since there is at least
one EXACTONEd signature with d ≥ 3, forming Ek-blocks does not consume all
of �.

After these steps we may consider � a bipartite graph, with one side consisting of
Ek-blocks and the other side EO signatures. And they are now connected by edges
labeled by =2.

Suppose there are parallel edges between an Ek-block and an EXACTONEd signa-
ture. We show that this always leads to some pinned edges. If two parallel edges are
marked by the same sign in the Ek-block, then they must be pinned to 0. If they are
marked by different signs, then the remaining d − 2 ≥ 1 edges of the EXACTONEd

signature must be pinned to 0. Therefore, we may assume there are no parallel edges
between any Ek-block and any EO signature.

The next thing we do is to consider Ek-blocks of arity 4 with EO signatures
together. Call a connected component consisting of Ek-blocks of arity 4 and EO sig-
natures an EO-Eq-4-block. Figure 20a illustrates an example. Notice that the two

Fig. 20 EO-Eq-4-blocks. a An EO-Eq-4-block. Triangles are assigned EO signatures and circles are
Ek-blocks of arity 4. b Break the EO-Eq-4-block into three components. Squares are assigned �=2. The
component in the middle contains a cycle, and hence is degenerate. The other two are equivalent to EO
signatures

Theory of Computing Systems

possibilities of Ek-blocks of arity 4 can be viewed as two parallel �=2’s but with some
correlation between them. This is illustrated in Fig. 19b. Note that the two dotted
lines in Fig. 19b represent different correlations.

At this point we would like to replace every Ek-block of arity 4 by two parallel
�=2’s. However this replacement destroys the equivalence of the Holant values, before
and after.

The surprising move of this proof is that we shall do so anyway!
Suppose we ignore the correlation for the time being and replace every Ek-block

of arity 4 by two parallel �=2’s (each parallel copy of �=2 is technically a path of length
2, with the middle vertex labeled by �=2) as in Fig. 19b. This replacement produces a
planar signature grid �1. Every edge in �1 corresponds to a unique edge in �. The
set of satisfying assignments of �1 is a superset of that of �. Moreover, if there is an
edge pinned in �1 to a known value, the corresponding edge is also pinned in � to
the same value. Once we find that in �1 we revert back to work in � and apply the
pinned value to the pinned edge.

All that remains to be shown is that pinning always happens in �1. Each EO-
Eq-4-block splits into some number of connected components in �1. Suppose some
component contains a cycle. Such a cycle must alternate between �=2 (these are the
newly created ones from splitting the Ek-blocks of arity 4) and EXACTONEd signa-
tures for d ≥ 3 (the cycle may involve only one EXACTONEd and one �=2, in which
case the cycle has length 2). Each cycle has even length (as each copy of �=2 takes
length 2), and there are exactly two potential satisfying assignments, which assign
exactly one 0 and one 1 to the two cycle edges incident to each EXACTONEd signa-
ture. Then any edge not on the cycle but incident to some vertex in the cycle is pinned
to 0. Such edges must exist, for EXACTONEd signatures in the cycle are of arity at
least 3. Thus we have found pinned edges.

Hence we may assume there are no cycles in these components, and every such
component forms a tree. We can view this tree as a tree on vertices labeled by EO
functions and edges by �=2’s. Since we have at least one copy of �=2 in each compo-
nent, and it does not form a loop on an EO signature, the tree has n ≥ 2 vertices, and
n − 1 edges. Similar to the discussion in item 1 above for connecting two EO func-
tions EXACTONEd and EXACTONE� by a single �=2, the whole tree is an EXACTONEt

function for some arity t . Since each vertex in the tree has degree at least 3, the arity
t ≥ 3n − 2(n − 1) = n + 2 ≥ 4. We replace these components by EXACTONEt ’s.

Thus, each connected component in the graph underlying �1 is a planar bipartite
graph with Ek-blocks of arity at least 6 on the one side and EO signatures on the
other. By Lemma 7.6, no component is simple, which means that there are parallel
edges between some Ek-block and some EO signature. As discussed earlier, there
must exist some pinned edge, and we can find a pinned edge with a known value in
polynomial time. This finishes the proof.

As indicated in the proof, Lemma 7.7 holds for the weighted version of the signa-
ture sets as well. As defined in Section 2, a weighted binary disequality (0, a, b, 0) (in
truth table notation) outputs a and b on input 01 and 10 respectively. A weighted =k

has signature [c, 0, . . . , 0, d] of arity k, for some c, d . Weighted pinning signatures

Theory of Computing Systems

are scalar multiples of [1, 0] and [0, 1]. Finally, weighted EO signatures are of the
form EXACTONEk:a1,...,ak

defined in Section 3, where k ≥ 3.
We now briefly describe the modifications needed to prove Lemma 7.8, the

weighted version of Lemma 7.7. First, the removal of weighted �=2 from the RHS
still works provided we keep track of the resulting weighted �=2 on the RHS after
combining a chain of three weighted �=2’s. Next for a pinned edge e connected by a
weighted �=2 on the LHS with another edge e′, we obtain a factor depending on the
pinned value is 0 or 1, and e′ is also pinned to the same value as e. The update on the
weighted =k or weighted EO signatures that are connected to e and e′ on the RHS
can be done similarly, keeping track of a multiplicative factor.

If a weighted EO signature EXACTONEk:c1,...,ck
has its ith and j th variables con-

nected to the 1st and 2nd variables of a weighted �=2 signature (0, a, b, 0), we obtain
[1, 0]⊗(k−2) multiplied by acj +bci . If EXACTONEn:c1,...,cn and EXACTONEm:d1,...,dm

are connected by (0, a, b, 0), for notational simplicity we may assume the nth vari-
able of EXACTONEn:c1,...,cn is connected to the 1st variable of (0, a, b, 0), and the
mth variable of EXACTONEm:d1,...,dm to the second. Then we obtain a weighted ver-
sion of EXACTONEn+m−2, where the parameters are acidm for 1 ≤ i ≤ n − 1 and
bcndj−n+1 for n ≤ j ≤ n + m − 2.

Weighted versions of Ek-block are defined in the same way, except there will be
two factors (a, b) associated to it: When all + dangling edges are assigned 1 and all
− dangling edges are assigned 0, we get value a, and in the complement assignment
we get value b.

Finally when we split an Ek-block of arity 4 into two parallel �=2’s, we do not
have to keep track of the weight of the Ek-block of arity 4, because the purpose of
that split is just to find a pinned edge. When such a pinned edge is found we revert
back from �1 to � and continue there.

These observations lead to:

Lemma 7.8 Lemma 7.7 holds when each indicated signature is replaced by any set
of weighted versions of the signature of the same type.

Unlike the situation in Lemma 7.6, a planar (5, 3)-regular bipartite graph can be
simple. However, we show that any planar simple bipartite graph where the degree
from one side is at least 5 and the degree from the other side is at least 3 must have
a special induced subgraph. We call this structure a “wheel”, which is pictured in
Fig. 21. In this wheel structure, there is a vertex v of degree 5 in the middle, and all
faces adjacent to this vertex are 4-gons (i.e. quadrilaterals). Moreover, at least four
neighbors of v have degree 3. Depending on whether the degree of the fifth neighbor
is 3 or not, we have two types of wheel, which are pictured in Fig. 21a and b.

Lemma 7.9 Let G = (L ∪ R, E) be a planar bipartite graph with parts L and R.
Every vertex in L has degree at least 5 and every vertex in R has degree at least 3. If
G is simple, then there exists one of the two wheel structures in Fig. 21 as an induced
subgraph in G (where the five occurrences of the circle vertices on the outer circuit
of length 10 may not be all distinct).

Theory of Computing Systems

Fig. 21 Two types of wheels. Each circle is an E5-block and each triangle is an EO signature. The five
occurrences of circle vertices may be nondistinct. The five triangle vertices are all distinct, and the outer
circuit of length 10 is edge disjoint. a Type 1. b Type 2

Proof Let V = L ∪ R be the set of vertices and let F be the set of faces. We assign
a score sv to each of its vertices v ∈ V . We will define sv so that

∑
v∈V sv = |V | −

|E| + |F | = 2 > 0. For each v ∈ V , the score sv is the sum of the following three
parts:

1. For being a vertex, it gets value 1. This accounts for |V | over all v ∈ V .
2. For each face, we call it a k-gon if we encounter k occurrences of edges (and k

occurrences vertices) if we traverse the face in the interior clockwise. For each k-
gon face, and each occurrence of v on it, we assign 1

k
to v. Overall, this accounts

for |F |.
3. For −|E|, we separate two cases. As G is simple and bipartite, there is no self

loop. For any edge if one of the two endpoints has degree 3, we give the degree
3 vertex a score of − 7

12 , and the other one − 5
12 . This is well defined because

all degree 3 vertices are in R. If the endpoints are not of degree 3, we give each
endpoint − 1

2 . This accounts for −|E|.
Note that since G is bipartite, every k-gon face has k even. And since G has no

parallel edges, we have k > 2. Hence k ≥ 4. Also, the number of occurrences v

appears when we traverse all faces is the degree of v. Thus the total score for v

coming from all faces is at most deg(v)
4 . Now we have the following claim.

Claim: sv ≤ 0 unless v ∈ L and deg(v) = 5.

To prove the claim, first suppose v ∈ L and has degree d ≥ 6. Then

sv ≤ 1 + d
4 − 5

12d = 1 − d
6 ≤ 0.

Next, suppose v ∈ R and v has degree d ≥ 4. Then every edge incident to v gives a
score − 1

2 . Hence,

sv ≤ 1 + d
4 − 1

2d = 1 − d
4 ≤ 0.

Theory of Computing Systems

The remaining case is that v ∈ R and v has degree 3. Then,

sv ≤ 1 + d
4 − 7

12d = 1 − d
3 ≤ 0.

The claim is proved.
Since the total score is positive, there must exist v ∈ L, deg(v) = 5, and sv > 0.

Because G is bipartite and simple, v and its five neighboring vertices v1, . . . , v5 are
six distinct vertices.

We then claim that there must exist such a v so that all five occurrences of adjacent
faces are 4-gons. Suppose otherwise. Then for any such v, among the five occurrences
of faces adjacent to v, at least one occurrence of a k-gon has k ≥ 6. In this case,

sv ≤ 1 + 1
4 · 4 + 1

6 − 5
12 · 5 = 1

12 .

Moreover, if v is adjacent to more than one occurrences of k-gons with k ≥ 6, Then

sv ≤ 1 + 1
4 · 3 + 1

6 · 2 − 5
12 · 5 = 0,

contrary to the assumption that sv > 0. Hence v is adjacent to exactly one occurrence
of k-gon with k ≥ 6—we will call it Fv—and all other occurrences are 4-gons.
Clearly Fv is distinct from the 4-gons. Moreover these four occurrences of 4-gons
are all distinct 4-gons. This is because, by cyclically renaming v1, . . . , v5, we may
name {v, vi, vi+1, ui} for 1 ≤ i ≤ 4 the vertices of the four occurrences of 4-gons.
If there are any multiple occurrences of these 4-gons, by G being bipartite we would
have {vi, vi+1} = {vj , vj+1} for some 1 ≤ i < j ≤ 4. This is a contradiction since
{v1, . . . , v5} are five distinct vertices.

In Fv , v has two neighbors in R. We associate each vertex v that has a positive
score to the vertex on Fv that is the next one in clockwise order from v. By bipar-
titeness, every such v is associated to a vertex in R. We do this association in all
occurrences of faces containing at least one positively scored vertex. It is possible
that more than one such v are associated to the same u ∈ R. Suppose a vertex u ∈ R

is associated to from � different such vertices of positive score. This means that u is
adjacent to at least � many occurrences of k-gons with k ≥ 6. Note that � ≤ deg(u).
Then, if u has degree 3 then 0 ≤ � ≤ 3, and u has score

su ≤ 1 + 1

4
· (3 − �) + 1

6
· � − 7

12
· 3 = − �

12
.

If u has degree d ≥ 4 then 0 ≤ � ≤ d , and u has score

su ≤ 1 + 1

4
· (d − �) + 1

6
· � − 1

2
· d ≤ − �

12
.

Hence in any case, we have su ≤ − �
12 . This implies that the total score of u and

all positively scored vertices associated to u is at most 0. However each positively
scored vertex is associated to a vertex in R. Hence the total score cannot be positive.
This is a contradiction.

Therefore there exists v ∈ L such that sv > 0, and has degree 5, and all adjacent
occurrences of faces are 4-gons. Then we can name these five occurrences of 4-gons
to have vertex sets {v, vi, vi+1, ui} for 1 ≤ i ≤ 5 (where we name v6 as v1). Again,
by G being bipartite and {v1, . . . , v5} being five distinct vertices, these five 4-gons
are all distinct. (We do not rule out the possibility that u1, . . . , u5 may be not all

Theory of Computing Systems

distinct; however, because G is simple, all u1, . . . , u5 are distinct from v. Thus, in the
two wheels depicted in Fig. 21a and b, among the 11 occurrences of vertices which
we just named v, v1, . . . , v5, u1, . . . , u5, only u1, . . . , u5 may be nondistinct. Since
v1, . . . , v5 are distinct, the outer circuit of length 10 is edge disjoint.) We further note
that at most one neighbor of v can have degree ≥ 4, for otherwise,

sv ≤ 1 + 5

4
− 1

2
· 2 − 5

12
· 3 = 0.

If all neighbors of v have degree 3, that is a wheel of type 1 as in Fig. 21a. If one
neighbor of v has degree ≥ 4, that is a wheel of type 2 as in Fig. 21b.

As we shall see, either structure in Fig. 21 leads to pinned edges.

Lemma 7.10 Pl-Holant
(�=2 | =5, EO, �=2, [1, 0], [0, 1]

)
is tractable.

Proof We proceed as in Lemma 7.7 up until the point of getting �1. Note that due
to (7.9) the only nontrivial E5-blocks of arity ≤ 4 are �=2 and those in Fig. 19a.
Moreover, each connected component of �1 is planar and bipartite with vertices on
one side having degree at least 5 and those on the other at least 3. We only need to
show that there are edges pinned in �1.

Unlike in Lemma 7.7, the underlying graph of �1 does not satisfy the condition of
Lemma 7.6 but that of Lemma 7.9. If the graph is not simple, then there are pinned
edges similar to Lemma 7.7. Otherwise by Lemma 7.9, the wheel structure in Fig. 21
appears. Note that by (7.9), n+ ≡ n− mod 5 and the arity n+ + n− = 5 imply that
the center vertex, which is an E5-block, has signature =5. All we need to show is that
wheel structures of either type contain pinned edges.

First we claim that if a wheel of either type has a E5-block, call it E1, on the outer
circuit that has different sign labels (+/−) on the two edges incident to it along the
circuit, then the center vertex denoted by Eo and has signature =5, is pinned. This is
pictured in Fig. 22a. It does not matter whether the wheel is type 1 or 2, or the position

Fig. 22 Degeneracies in the wheel structure. a Different signs of an E5-block along the outer circuit lead
to pinning. b Edges e and e′ are pinned in wheels of type 2

Theory of Computing Systems

of E1 relative to the special triangle P1 in type 2. Because Eo is an equality, both
e1 and e2, the two edges incident to Eo that are connected to the two EO signatures
flanking E1, must take the same value. If both e1 and e2 are assigned 1, then the two
incoming wires of E1 along the circuit have to be both assigned 0, whereas they are
marked by different signs. This is a contradiction. Hence both e1 and e2 are pinned
to 0 as well as all edges incident to Eo.

We may therefore assume that each E5-block has equal signs along the outer cir-
cuit, either ++ or −− (some may have ++ while others may have −−). Then as far
as the two edges along the outer circuit incident to each E5-block are concerned, each
E5-block serves as a binary equality; this is true regardless whether the five triangle
vertices for E5-block’s along the outer circuit in Fig. 21 are distinct or not.

Suppose the wheel has type 1. If the edges incident to Eo are assigned 0, then
the five EXACTONE3 signatures along the outer circuit have all effectively become
�=2 along the circuit. If we now consider the E5-block signatures along the outer
circuit as equalities (since they have signs ++ or −−) and treat them as edges, we
get a cycle on the five EXACTONE3 signatures along the outer circuit as a cycle of
five �=2’s. This has no satisfying assignment. Hence Eo and all its incident edges are
pinned to 1.

Otherwise the wheel is of type 2, and each E5-block has signs ++ or −− along
the outer circuit. We denote by P1 the special EXACTONEd function that has arity
d > 3. We claim that the two edges e and e′ incident to P1 along the circuit are both
pinned to 0. This is illustrated in Fig. 22b. As P1 is EXACTONEd , at most one of e

and e′ is 1. If one of e and e′ is 1, the other is 0, and as P1 is an EXACTONEd function
its edge to Eo is also 0, and thus all edges incident to Eo are 0. As all five neigh-
bors of Eo are EO functions, the four EXACTONE3 functions effectively become
(�=2) functions along the wheel, and we can remove Eo and its incident edges. This
becomes the same situation as in the previous case of type 1, where effectively a
circuit of five binary equalities are linked by five binary disequalities, which has no
valid assignment. This implies that both e and e′ are pinned to 0. This finishes the
proof.

Similar considerations as that after the proof of Lemma 7.7 lead to the weighted
version of Lemma 7.10.

Lemma 7.11 Lemma 7.10 holds when each indicated signature is replaced by any
set of weighted versions of the signature of the same type.

7.3 Lemmas Related toM4 andP2

Now we prove some lemmas relating to M4 and P2, defined in Section 3, that are
used in the proof of the full dichotomy, Theorem 8.1.

Recall that ALLBUTONEd is the signature [0, . . . , 0, 1, 0] of arity d , which is the
reverse of EXACTONEd . After a Z transformation, M4 contains both ALLBUTONEd

and EXACTONEd . However, for arity at least 3, if both appear, then with any =k the
problem is hard.

Theory of Computing Systems

Lemma 7.12 If integers d1, d2, k ≥ 3, then Pl-Holant(�=2 | =k,EXACTONEd1 ,

ALLBUTONEd2) is #P-hard.

Proof We first get the pinning signatures [1, 0] and [0, 1]. We apply Lemma 7.4 to
create [0, 1]. Then note that ALLBUTONEd is just flipping the roles of 0 and 1 in
EXACTONEd , we can get [1, 0] too. So we get both [1, 0] and [0, 1] by applying
Lemma 7.4 twice. With both [1, 0] and [0, 1] in hand, we may reduce d1 (respectively
d2) to 4 if d1 > 4 (respectively d2 > 4), and obtain EXACTONE4 and ALLBUTONE4.
If either of the two arities d1 or d2 is 3, then we connect two copies together via �=2
to realize an arity 4 copy.

Moreover, we use the gadget illustrated in Fig. 23 to create the function
ĝ in Lemma 6.7 as an Ek-block. Then by Lemma 6.7, Pl-Holant(�=2 | =k,

EXACTONEd1 ,ALLBUTONEd2) is #P-hard.

By definition P2 = A2, and by Lemma 3.2, signatures in P2 are non-degenerate
weighted equalities under the Z transformation. The next several lemmas show that
the hardness criterion is the same regardless of the weight.

Lemma 7.13 Let f ∈ P2, g1 ∈ M +
4 , g2 ∈ M −

4 be non-degenerate signatures with
arity ≥ 3. Then Pl-Holant(f, g1, g2) is #P-hard.

Proof Suppose the arities of f , g1, and g2 are n, m1, and m2 respectively. Under a
holographic transformation by Z, we have

Pl-Holant(f, g1, g2) ≡ Pl-Holant

(

�=2 |
(
Z−1

)⊗n

f,
(
Z−1

)⊗m1
g1,
(
Z−1

)⊗m2
g2

)

≡ Pl-Holant
(
�=2 | f̂ ,EXACTONEm1,ALLBUTONEm2

)
,

where f̂ = (Z−1)⊗nf has the form [1, 0, . . . , 0, c] up to a nonzero constant, with

c �= 0, as f ∈ P2. We do another diagonal transformation by D =
[
1 0
0 c1/n

]

. Then

Pl- Holant(f, g1, g2)

≡ Pl-Holant
(
(�=2)D

⊗2
∣
∣
∣ (D−1)⊗nf̂ , (D−1)⊗m1EXACTONEm1 , (D

−1)⊗m2ALLBUTONEm2

)

≡ Pl-Holant
(�=2 | =n,EXACTONEm1 ,ALLBUTONEm2

)
,

Fig. 23 Gadget to realize ĝ in
Lemma 7.12. Circle vertices are
assigned =k and square vertices
are assigned �=2. The number of
parallel edges is k − 2

Theory of Computing Systems

where in the last line we ignored several nonzero factors. The lemma follows from
Lemma 7.12.

We also need to consider the mixture of P2 and binary signatures.

Lemma 7.14 Let F be a set of symmetric signatures. Suppose F contains a non-
degenerate signature f ∈ P2 of arity n ≥ 3 and a binary signature h. Then
Pl-Holant(F) is #P-hard unless h ∈ ZP , or Pl-#CSP2(DZ−1F) ≤T Pl-Holant(F)

for some diagonal transformation D.

Proof We do a Z transformation and get

Pl-Holant(F) ≡ Pl-Holant(F, h, f)

≡ Pl-Holant

(

�=2 | Z−1F,
(
Z−1

)⊗2
h, f̂

)

,

where f̂ = (Z−1)⊗nf = [1, 0, . . . , 0, t] up to a nonzero constant with t �= 0. We

further do another diagonal transformation of D1 =
[
1 0
0 t1/n

]

. Then

Pl-Holant(F) ≡ Pl-Holant

(

(�=2)D
⊗2
1 | (D−1

1)⊗nf̂ , (ZD1)
−1F,

(
(ZD1)

−1
)⊗2

h

)

≡ Pl-Holant

(

�=2 | =n, (ZD1)
−1F,

(
(ZD1)

−1
)⊗2

h

)

≥T Pl-Holant

(

=n | (ZD1)
−1F,

(
(ZD1)

−1
)⊗2

h

)

,

where in the second line we ignore a nonzero factor on �=2. Hence by Theorem 2.24,

Pl-Holant(F) is #P-hard unless
(
(ZD1)

−1
)⊗2

h ∈ P (cases 1, 2 or 3 in Theo-

rem 2.24) or
(
(ZD1)

−1
)⊗2

h = [a, b, c] for some a, b, c ∈ C such that ac �= 0 and
(a/c)2n = 1 (cases 4 or 5 in Theorem 2.24).

If
(
(ZD1)

−1
)⊗2

h ∈ P , then h ∈ ZD1P = ZP as D1 ∈ Stab(P). In the
latter case, we construct =2n on the right by connecting three copies of =n to one
copy of =n via �=2. We do the same construction again to realize =4n using =2n.
We connect n − 1 many [a, b, c]’s to =2n via �=2 to realize a binary weighted equal-
ity [1, 0, r] with r = (a/c)n−1 �= 0 ignoring a factor of cn−1. Note that r2n =
(a/c)2n(n−1) = 1. Then we do another diagonal transformation of D2 =

[
1 0
0 r1/2

]

to get Pl-Holant

(

�=2 | (ZD1D2)
−1F, =2,

(
D−1

2

)⊗4n
(=4n)

)

. Notice that

(
D−1

2

)⊗4n
(=4n) = [1, 0, . . . , 0, r−2n] = (=4n),

as r2n = 1.

Theory of Computing Systems

Hence we have =2 and =4n on the right. With �=2 on the left, we get =2 on the left
and therefore equalities of all even arities on the right. Let D = (D1D2)

−1. Then we
have the reduction chain:

Pl-Holant(F) ≥T Pl-Holant
(
�=2 | DZ−1F ∪ {=2, =4n}

)

≥T Pl-Holant
(
�=2 | DZ−1F ∪ EQ2

)

≥T Pl-Holant
(
EQ2 | DZ−1F

)
.

The last problem is Pl-#CSP2(DZ−1F). Thus Pl-#CSP2(DZ−1F) ≤T

Pl-Holant(F).

Finally, we strengthen Corollary 7.5, Lemma 7.7, Lemma 7.8, Lemma 7.10 and
Lemma 7.11, including weighted equalities. We split the hardness and tractability
cases. For a set F of signatures, denote by F≥3

nd the set of non-degenerate signatures
in F of arity at least 3. Moreover denote by F∗ the signature set that is the same as
F but with each degenerate signature [a, b]⊗m in F replaced by the unary signature
[a, b].

Notice that F ∩ P2 and F∗ ∩ P2 agree on signatures of arity at least 2, since
signatures in P2 of arity at least 2 are non-degenerate. So F ∩ P2 ⊆ F∗ ∩ P2,
and the only possible extra elements are some unary [x, y]’s from [x, y]⊗m ∈ F for
some integer m ≥ 2 and [x, y] is not a multiple of [1, ±i]. Equivalently the only
possible extra elements are unary signatures of the form Z[a, b] for ab �= 0, i.e., not
of the form a multiple of Z[1, 0] or Z[0, 1], when Z−1F contains some degenerate
signatures of the form [a, b]⊗m for some integer m ≥ 2 and ab �= 0.

Lemma 7.15 Let F be a set of symmetric signatures. Let F≥3
nd be the set of non-

degenerate signatures in F of arity at least 3. Suppose F≥3
nd contains some f ∈ M4

of arity d ≥ 3. Moreover, suppose F≥3
nd ∩ P2 is nonempty, and let k be the greatest

common divisor of the arities of signatures in F∗ ∩ P2. If k ≤ 4, then Pl-Holant(F)

is #P-hard.

Proof We are given f ∈ M4, which is the union of M +
4 and M −

4 . We may assume

that f ∈ M +
4 , the other case is symmetric. Since F≥3

nd ∩P2 is nonempty, there exists

g ∈ F≥3
nd ∩P2. By the definition ofF≥3

nd , g has arity n ≥ 3. Under aZ transformation,

Pl-Holant(F) ≡ Pl-Holant
(
�=2 | ĝ,EXACTONEd , Z−1F

)
,

where ĝ = (Z−1)⊗ng has the form [1, 0, . . . , 0, c] of arity n for some c �= 0 up to a
nonzero factor, and EXACTONEd comes from f = Z⊗dEXACTONEd . We further do

a diagonal transformation D =
[
1 0
0 c1/n

]

and get

Pl-Holant(F) ≡ Pl-Holant
(
�=2 | =n,EXACTONEd , (ZD)−1F

)
,

where we ignore nonzero factors on �=2 and EXACTONEd .

Theory of Computing Systems

The proof of this lemma is divided into two parts: We first prove the lemma
when F∗ ∩ P2 �= F ∩ P2. In this case, there exists some degenerate signature
(ZD[a, b])⊗m ∈ F for some ab �= 0 and m ≥ 1. Since F∗ ∩ P2 contains unary sig-
natures, we have k = 1, where k is the gcd of arities defined in the statement of the
lemma. We prove that in this case the problem Pl-Holant(F) is #P-hard. Indeed, we
have

Pl-Holant
(�=2 | =n,EXACTONEd , [a, b]⊗m

) ≤T Pl-Holant(F),

and we prove the former problem is #P-hard.
We write d = 2 + δ, with δ ≥ 1, and we perform the following operations.

1. Let r = gcd(n, δ) ≥ 1. There exist positive integers �1 and �2 such that
r = �1n − �2δ. By Lemma 7.4 we can construct the signatures =�1n and
EXACTONE2+�2δ , for all �1, �2 ≥ 1. By a self-loop on EXACTONE2+�2δ via �=2
we get [1, 0]⊗�2δ . Connect it to =�1n via �=2 we get [0, 1]⊗r on right hand side
(RHS) of Pl-Holant

(�=2 | =n,EXACTONEd, [a, b]⊗m
)
.

2. Let s = gcd(m, r) ≥ 1. There exist positive integers �3 and �4 such that s =
�3m − �4r . Take �3 copies of [a, b]⊗m and connect them to �4 copies of [0, 1]⊗r

via �=2, we get a nonzero multiple of [a, b]⊗s on RHS.
Note that s | m, s | r , and therefore s | n and s | δ.

3. Connect r/s − 1 copies of [a, b]⊗s to [0, 1]⊗r via �=2 we get a nonzero multiple
of [0, 1]⊗s on RHS. (If r = s then we already had [0, 1]⊗s .)

4. Connect δ/s − 1 copies of [0, 1]⊗s to EXACTONE2+δ via �=2, we get
EXACTONE2+s on RHS. (If δ = s then we already had EXACTONE2+s .)

5. Connect n/s − 1 copies of [a, b]⊗s to =n via �=2, we get a weighted EQUAL-
ITY function [c1, 0, . . . , 0, c2] of arity s, for some c1c2 �= 0. Under a diagonal

transformation D′ =
[

c
1/s
2 0

0 c
1/s
1

]

, it becomes =s , up to a factor c1c2 �= 0.

The diagonal transformation D′ does not change �=2 and EXACTONE2+s , up to
a nonzero factor. And [a, b]⊗s is transformed to another [a′, b′]⊗s , for some
a′b′ �= 0.

6. Now we show that Pl-Holant
(�=2 | =s ,EXACTONE2+s , [a′, b′]⊗s

)
is #P-hard.

We can move =s to the left hand side by connecting it to s copies of �=2, thus

Pl-Holant
(�=2, =s | EXACTONE2+s , [a′, b′]⊗s

) ≤T

Pl-Holant
(�=2 | =s ,EXACTONE2+s , [a′, b′]⊗s

)
.

Connecting [a′, b′]⊗s to EXACTONE2+s via �=2 gives us a binary signature h =
[sa′(b′)s−1, (b′)s, 0], which is [sa′, b′, 0] up to a nonzero factor. Hence

Pl-Holant (=s | h) ≤T Pl-Holant(F).

Finally, Pl-Holant (=s | h) is #P-hard by Theorem 2.24.

This completes the first part of the proof, and now for the second part we assume
F∗ ∩ P2 = F ∩ P2.

By a weighted equality we mean a signature of the form [a, 0, . . . , 0, b] of some
arity ≥ 1, where ab �= 0. Recall that P2 consists of the Z transformation of
all weighted equalities (see Lemma 3.2). Weighted equalities are transformed to

Theory of Computing Systems

weighted equalities under the diagonal transformationD. Let G be the set of weighted
equalities in (ZD)−1F . In other words, G = (ZD)−1 (F ∩ P2) as (ZD)−1P2 con-
tains all weighted equalities. Moreover, up to a nonzero factor, (=n) ∈ G, as the
signature g = (ZD)⊗n(=n) ∈ F≥3

nd ∩ P2 ⊆ F ∩ P2.
Pick any g1, g2 ∈ G of arities �1 and �2. Let r = gcd(�1, �2). Let t1, t2 be two

positive integers such that t1�1 − t2�2 = r . Then connecting t1 copies of g1 and t2
copies of g2 via �=2 in a bipartite and planar way, we get a weighted equality signature
of arity r .

Applying the same argument repeatedly, we can construct a weighted equality h

of arity k. We can choose a diagonal transformation D1 of rank 2 that transforms it
to =k , that is,

Pl-Holant(F) ≥T Pl-Holant
(�=2 | G,EXACTONEd

)

≥T Pl-Holant
(�=2 | h,EXACTONEd ,G

)

≥T Pl-Holant

(

(�=2)D
⊗2
1 | =k,

(
D−1

1

)⊗d

EXACTONEd , D−1
1 G

)

≥T Pl-Holant
(
�=2 | =k,EXACTONEd , D−1

1 G
)
,

where in the last line we ignored nonzero factors of EXACTONEd and �=2. If k = 3
or 4, then the hardness follows from Corollary 7.5.

If k = 1 or 2, then on the right hand side we have =k , which is =1 or =2, and a

weighted equality
(
D−1

1

)⊗n

(=n) ∈ D−1
1 G, where n ≥ 3. Call it ĝ′. We move the =k

to the left hand side via �=2. Then we connect zero or more copies of this =k , which
is =1 or =2, to ĝ′ such that its arity is 3 or 4. (It is possible that n = 3 or 4 to begin
with, and if so we do nothing.) We are done by yet another diagonal transformation
and Corollary 7.5.

Lemma 7.16 Let F be a set of symmetric signatures. Suppose F ⊆ ZP ∪ M σ
4 for

some σ ∈ {+, −} and the greatest common divisor of the arities of all signatures in
F∗ ∩ P2 is k ≥ 5. Then Pl-Holant(F) can be computed in polynomial time.

Proof We may assume that σ = + and the case of σ = − is similar. We do a Z

transformation on Pl-Holant(F), and get a problem of Pl-Holant
(�=2 | Z−1F

)
.

As stated after Definition 2.6, symmetric signatures in P are either degener-
ate, or binary DISEQUALITY �=2, or [a, 0, . . . , 0, b] for some a, b ∈ C. There is
a 1-1 correspondence between degenerate signatures in F and degenerate signa-
tures in Z−1F , and every degenerate signature in F can be written as (Z[a, b])⊗m

for some m ≥ 1 and a, b ∈ C. If ab �= 0, then Z[a, b] ∈ F∗ ∩ P2. This
contradicts k ≥ 5. Thus either a = 0 or b = 0, and thus up to a scalar fac-
tor, all degenerate signatures in F are of the form (Z[1, 0])⊗m or (Z[0, 1])⊗m, if
any.

We next consider what nondegenerate signatures can there be in Z−1F . As F ⊆
ZP ∪ M +

4 , we have Z−1F ⊆ P ∪ Z−1M +
4 . Nondegenerate symmetric signatures

in the set P consist of weighted equalities and (�=2) (which is also EXACTONE2),
and signatures in Z−1M +

4 are just the EXACTONEd signatures of arity d ≥ 1. The

Theory of Computing Systems

EXACTONE1 and EXACTONE2 signatures are [0, 1] and (�=2) respectively; those with
d ≥ 3 are in the set EO. The nondegenerate weighted equalities in Z−1F are in the
set Z−1(F∗ ∩ P2), thus have arity a multiple of k, where k ≥ 5.

In the bipartite setting of Pl-Holant
(�=2 | Z−1F

)
, if given =n on the

right hand side, we can realize =�n for any integer � ≥ 1 as an
En-block on the right. By Lemma 7.7 and Lemma 7.10, the problem
Pl-Holant

(�=2 | EQn, EO, �=2, [1, 0], [0, 1]
)
is tractable for any n ≥ 5, where EQn

denotes the set of all equalities of arity �n for all integers � ≥ 1. Pl-Holant(F)

is an instance of Pl-Holant
(�=2 | EQk, EO, �=2, [1, 0], [0, 1]

)
except for the weights

on the equalities. However this weighted version is tractable by Lemma 7.8 and
Lemma 7.11.

Let G = {=k | k ∈ S} be a set of EQUALITY signatures, where S is a set of pos-
itive integers containing at least one r ≥ 3. Moreover let EO+ := {EXACTONEd |
d ∈ Z

+} = EO∪{�=2, [0, 1]}. Then Pl-Holant
(
G | EO+) is the problem of counting

perfect matchings over hypergraphs with planar incidence graphs, where the hyper-
edge sizes are prescribed by S. In the incidence graph, vertices assigned signatures
in G on the left represent hyperedges, and vertices assigned signatures in EO+ on the
right represent vertices of the hypergraph. Let t = gcd(S). It is stated in the introduc-
tion that this problem is tractable if t ≥ 5 and #P-hard if t ≤ 4. The tractability when
t ≥ 5 follows from Lemma 7.7 and 7.10, since we can reduce Pl-Holant

(
G | EO+)

to Pl-Holant
(�=2 | =t , EO, �=2, [0, 1]

)
. The reduction goes as follows. With �=2 on

the left hand side and =t on the right hand side, we can construct all Et -blocks and
hence all of EQt on the right. Note that G ⊆ EQt . Then we move all signatures in G
to the left via �=2.

The #P-hardness of Pl-Holant
(
G | EO+) for t ≤ 4 follows from Corollary 7.5.

We give a reduction to Pl-Holant
(
G | EO+). We construct �=2 on the left using the

gadget pictured in Fig. 7a with (=r) ∈ G on the left side assigned to circle vertices
and �=2 on the right side assigned to square vertices. Then we move G to the right
side via �=2 on the right side. We construct =t on the right side in the same Euclidean
process using G of the right side and �=2 of the left side. This gives us a reduction from
Pl-Holant

(�=2 | =t , EO
)
, which is #P-hard by Corollary 7.5 if t = 3, 4. Otherwise

t = 1, 2. Recall that (=r) ∈ G for some r ≥ 3. We use =t to reduce the arity of =r

to 3 or 4, if necessary. Again we are done by Corollary 7.5.
If there is no hyperedge of size ≥ 3 in Pl-Holant

(
G | EO+), then for S = {1},

the problem is tractable trivially, and for S = {2}, the problem is tractable by
Kasteleyn’s algorithm. The problem is #P-hard if S = {1, 2}, because we can real-
ize not-necessarily perfect matchings [1, 1, 0, . . . , 0] (ATMOSTONEd) by connecting
(=1) = [1, 1] to EXACTONEd+1. In summary, we have the following theorem.

Theorem 7.17 Let S be a set of positive integers. Let G = {=k| k ∈ S}. The problem
Pl-Holant

(
G | EO+) counts perfect matchings over hypergraphs with planar inci-

dence graphs, where the hyperedge sizes are prescribed by the set S. Let t = gcd(S).
If t ≥ 5 or S = {1} or {2}, then the problem is computable in polynomial time.
Otherwise t ≤ 4, S �= {1} and S �= {2}, and the problem is #P-hard.

Theory of Computing Systems

8 Full Dichotomy of Pl-Holant(F)

We are finally ready to prove our main dichotomy theorem. Recall that for a set F of
signatures, F≥3

nd denotes the set of non-degenerate signatures in F of arity at least 3,
and F∗ denotes F with all degenerate signatures [a, b]⊗m replaced by unary [a, b].

Theorem 8.1 Let F be any set of symmetric, complex-valued signatures in Boolean
variables. Then Pl-Holant(F) is computable in polynomial time if F satisfies one of
the following conditions:

1. All non-degenerate signatures in F are of arity at most 2;
2. F is A -transformable;
3. F is P-transformable;
4. F ⊆ V σ ∪ {f ∈ Rσ

2 | arity(f) = 2} for some σ ∈ {+, −};
5. All non-degenerate signatures in F are in Rσ

2 for some σ ∈ {+, −}.
6. F is M -transformable;
7. F ⊆ ZP ∪ M σ

4 for some σ ∈ {+, −}, and the greatest common divisor of the
arities of the signatures in F∗ ∩ P2 is at least 5.

If F does not satisfy any of these conditions, then Pl-Holant(F) is #P-hard. Fur-
thermore, if F satisfies condition 1, 2, 3, 4, or 5, then Holant(F) is computable in
polynomial time without assuming planarity; otherwise (non-planar) Holant(F) is
#P-hard.

Proof We may assume that F contains no identically 0 signatures. We note that
removing any identically 0 signature from a set does not affect its complexity, being
either tractable or #P-hard, and it does not affect the set F satisfying any of the listed
conditions in Case 1 to 7.

If all non-degenerate signatures in F are of arity at most 2, then the problem is
tractable case 1. Otherwise, there is a non-degenerate signature f ∈ F of arity at
least 3. By Theorem 6.1, Pl-Holant(F) is #P-hard unless f ∈ P1∪M2∪A3∪M3∪
M4 or f ∈ V . If f ∈ P1, f ∈ M2 \ P2, f ∈ A3, or f ∈ M3, then we are done
by Corollary 5.4, Lemma 5.8, Corollary 5.6, or Lemma 5.10 respectively. Therefore,
we assume that none of these is the case. This implies that F≥3

nd is nonempty and that
each of its signatures is in P2 or in M4 or vanishing. That is,

∅ �= F≥3
nd ⊆ P2 ∪ M4 ∪ V .

In fact, as stated after Lemma 3.10, all signatures in M4 of arity at least 3 already
belong to V . We keep M4 in the union because M4 is treated separately than V \M4
in the following proof.

Suppose there exists some f ∈ F≥3
nd that is in V \ M4. We assume f ∈ V + since

the other case V − is similar. In this case, we show that Pl-Holant(F) is #P-hard,
unless F is in Case 4 or Case 5. Assume that Pl-Holant(F) is not #P-hard.2 We will

2Formally, this statement has meaning regardless whether #P collapses to P. We prove Theorem 8.1 as
a logical implication: If Pl-Holant(F) is not #P-hard then F belongs to one of the seven cases, and in
each case the problem is P-time computable. Of course, the dichotomy is only meaningful if #P does not
collapse to P. But the validity of the dichotomy theorem is proved without making this explicit assumption.

Theory of Computing Systems

discuss non-degenerate signatures of arity ≥ 3, of arity 2, and degenerate signatures
separately.

1. For any g ∈ F≥3
nd , since signatures in M4 of arity at least 3 already belong to V ,

we have g ∈ P2∪V . If g ∈ P2, then Pl-Holant(f, g) is #P-hard by Lemma 4.7.
If g ∈ V −, then Pl-Holant(f, g) is #P-hard by Lemma 4.5 as f �∈ M4. Therefore
we may assume g ∈ V +.

2. For any non-degenerate binary signature h ∈ F , it must be that h ∈ R+
2 as

otherwise Pl-Holant(f, h) is #P-hard by Lemma 4.3.
3. If rd+(g) = 1 for all g ∈ F≥3

nd , then F≥3
nd ⊆ R+

2 by Lemma 2.19. Together
with the fact just proved that all non-degenerate binary in F are in R+

2 , Case 5
is satisfied.

Otherwise there exists g ∈ F≥3
nd such that rd+(g) ≥ 2. By the first item above,

g ∈ V +. If F contains any degenerate signature v = u⊗m for m ≥ 1 and some
unary u that is not a multiple of [1, i], then by Lemma 4.1, Pl-Holant(g, v) is
#P-hard. Hence all degenerate signatures are multiples of tensor powers of [1, i],
which are in V +. This implies that F is in Case 4.

Now we have that ∅ �= F≥3
nd ⊆ P2 ∪ M4. We handle this in three cases.

1. Suppose F≥3
nd ⊆ M4. First suppose F≥3

nd ⊆ M σ
4 for some σ ∈ {+, −}. Assume

σ = + as σ = − is similar. Then F≥3
nd ⊆ R+

2 by Lemmas 3.10 and 2.19. If
all non-degenerate binary signatures are in R+

2 as well, then this is Case 5 and
tractable. Otherwise let h be a non-degenerate binary signature in F that is not in
R+

2 . We apply Lemma 4.4, and Pl-Holant(F) is #P-hard unless h = Z⊗2[a, 0, 1]
up to a nonzero factor, where a �= 0. In this case we apply a Z transformation,
and get Pl-Holant

(�=2| [a, 0, 1], Z−1F
)
. Then we do a diagonal transformation

D =
[

a1/2 0
0 1

]

. Note that this only changes �=2 on the left hand side to a nonzero

multiple of �=2. Hence we have the reduction chain:

Pl-Holant(F) ≡ Pl-Holant
(
�=2 | [a, 0, 1], Z−1F

)

≡ Pl-Holant
(
�=2 | [1, 0, 1], D−1Z−1F

)

≥T Pl-Holant(D−1Z−1F),

where the last reduction is by a chain of (�=2), (=2) = [1, 0, 1] and (�=2), which
gives (=2) on the LHS. Notice that D−1Z−1F contains EXACTONEk with k ≥
3. To see that, recall that we have ∅ �= F≥3

nd ⊆ M +
4 . Signatures in M +

4 have the
form Z[0, 1, 0, ..., 0] up to a nonzero scalar. A nonsingular diagonal D does not
change EXACTONEk except for a nonzero scalar. This signature EXACTONEk is
in M3 with orthogonal transformation I2. Then by Lemma 5.10, Pl-Holant(F)

is #P-hard unless D−1Z−1F ⊆ I2M = M , i.e., F ⊆ ZDM = ZM . The case
F ⊆ ZM implies that F is M -transformable via Z, and we are in tractable
Case 6.

Otherwise F≥3
nd contains both f ∈ M +

4 and g ∈ M −
4 . Similarly as above,

by Lemma 4.4, if Pl-Holant(F) is not #P-hard, then any non-degenerate binary

Theory of Computing Systems

signature in F has to be either in R+
2 ∩ R−

2 , or a nonzero constant multiple of
Z⊗2[a, 0, 1] where a �= 0. For non-degenerate binary signatures, belonging to
R+

2 ∩ R−
2 is just {Z⊗2(�=2)} up to a nonzero constant (cf. Lemma 2.19). More-

over, by Lemma 4.6, Pl-Holant(F) is #P-hard, unless all degenerate signatures
in F are of the form [1, ±i]⊗m. Note that [1, i] = Z[1, 0] and [1, −i] = Z[0, 1].
When this is the case, F is M -transformable via Z, and we are in tractable
Case 6.

2. Suppose F≥3
nd ⊆ P2. If F contains a non-degenerate binary signature h,

then we apply Lemma 7.14 and Pl-Holant(F) is #P-hard unless h ∈ ZP , or
Pl-#CSP2(DZ−1F) ≤T Pl-Holant(F) for some diagonal transformation D. If
it is the latter case, then by Theorem 5.1, either Pl-Holant(F) is #P-hard, or

DZ−1F is a subset of T A , P , or T

[
1 1
1 −1

]

M , for some diagonal matrix T .

We claim that in any of these cases Pl-Holant(F) is tractable. In fact,

(a) if DZ−1F ⊆ T A , then F is A -transformable as F ⊆ ZD−1T A and
[1, 0, 1] (as a row vector) is transformed into [1, 0, 1](ZD−1T)⊗2, which is
[0, 1, 0] ∈ A up to a nonzero constant;

(b) if DZ−1F ⊆ P , then F is P-transformable as F ⊆ ZD−1P and
[1, 0, 1](ZD−1)⊗2 is [0, 1, 0] ∈ P up to a nonzero constant;

(c) if DZ−1F ⊆ T

[
1 1
1 −1

]

M , then F is M -transformable

as F ⊆ ZD−1T

[
1 1
1 −1

]

M and [1, 0, 1] is transformed to

[1, 0, 1](ZD−1T

[
1 1
1 −1

]

)⊗2, which is [1, 0, −1] ∈ M up to a nonzero

constant.

Hence we may assume that every non-degenerate binary in F is in ZP . Notice
that degenerate signatures are always in P under any transformation. Also F≥3

nd

is a subset of ZP because F≥3
nd ⊆ P2 and P2 is just weighted equalities

under Z-transformation. This implies that F is P-transformable under the Z

transformation. Hence we are in Case 3.
3. Finally, suppose neither of the above is the case. Then there are f, g ∈ F≥3

nd with

f ∈ M4 and g ∈ P2. If F≥3
nd contains signatures from both M +

4 and M −
4 , then

Pl-Holant(F) is #P-hard by Lemma 7.13. Otherwise F≥3
nd ∩M4 ⊆ M +

4 or M −
4 .

Let G = F∗ ∩ P2, and let d be the gcd of the arities of the signatures in G.
Then G contains at least one non-degenerate signature g of arity ≥ 3. If d ≤ 4,
then Pl-Holant(F) is #P-hard by Lemma 7.15. Otherwise d ≥ 5. If F contains a
non-degenerate binary signature h, then we apply Lemma 7.14 and by a similar
analysis as in the case of “F≥3

nd ⊆ P2” above, we are done unless every such h

is in ZP . Ignoring a nonzero factor, this implies that either h = Z⊗2[1, 0, a]
where a �= 0 or h = Z⊗2(�=2). If h = Z⊗2[1, 0, a], then h ∈ F∗ ∩ P2,
and this contradicts d ≥ 5. Hence h = Z⊗2(�=2). If there is any degenerate
v = (Z[a, b])⊗m in F with ab �= 0, then Z[a, b] ∈ F∗ ∩ P2 and this also
contradicts d ≥ 5.

Theory of Computing Systems

In summary, Pl-Holant(F) is #P-hard unlessF satisfies all five properties: (1)
F≥3

nd ⊆ P2 ∪ M4, (2) F≥3
nd ∩ M4 ⊆ M σ

4 for some σ ∈ {+, −}, (3) the great-
est common divisor of the arities of the signatures in F∗ ∩ P2 is at least 5, (4)
every non-degenerate binary in F is of the form Z⊗2(�=2), and (5) every degen-
erate signature in F is of the form (Z[1, 0])⊗m or (Z[0, 1])⊗m. Notice that P2,
Z⊗2(�=2), (Z[1, 0])⊗m, and (Z[0, 1])⊗m are all in ZP . Hence the exceptional
case implies thatF ⊆ ZP∪M σ

4 for some σ ∈ {+, −} and the greatest common
divisor of the arities of the signatures in F∗ ∩ P2 is at least 5. This is tractable
Case 7.

The tractability of Holant(F) in Case 1, Case 2, Case 3, Case 4, and Case 5 follows
from the Holant dichotomy Theorem 2.21, which also implies that (the non-planar)
Holant(F) is #P-hard otherwise. The tractability of Pl-Holant(F) in Case 6 fol-
lows from Theorem 2.7. The tractability of Pl-Holant(F) in Case 7 follows from
Lemma 7.16. This completes the proof.

Part II Planar #CSP2 Dichotomy

In Part II of this paper, we prove Theorem 9.2, which is the complexity dichotomy
theorem of Pl-#CSP2(F), where F is a set of complex-valued symmetric signatures
on Boolean variables. After we define some relevant notions, we give an outline of
the proof of Theorem 9.2. Throughout Part II, we denote by α (respectively ρ) any
quantity that satisfies α4 = −1 (respectively ρ4 = 1) and ε = ±1.

9 Preliminaries

We will first define some tractable families of signatures that are expressible under a
holographic transformation, specific to the Pl-#CSP2 framework.

Definition 9.1 Let Tk =
{[

1 0
0 θ

]

| θk = 1

}

be a set of diagonal matrices of order

dividing k and Tk = T2k \ Tk =
{[

1 0
0 θ

]

| θk = −1

}

. Let A † = T4A and M̂ † =
T2M̂ be the sets of signatures transformed by T4 from the Affine family A and
transformed by T2 from M̂ , respectively, where for a class of signatures C , we
denote

TkC = {T ⊗ arity(f)f | T ∈ Tk and f ∈ C }.
Let

Ã = A ∪ A † and M̃ = M̂ ∪ M̂ †

be the A -transformable and M -transformable signatures for Pl-#CSP2.

Recall that M̂ = HM is the set of Matchgate signatures M transformed by the

Hadamard basis H =
[
1 1
1 −1

]

. Note that A is unchanged under the transformation

Theory of Computing Systems

by H , and thus there is no need to define Â . Also note that P is unchanged under

any diagonal matrix. Thus there is no need to define P†. For T =
[
1 0
0 ρ

]

∈ T4

with ρ4 = 1, T A = A . Thus Ã consists of A under transformations by all

T =
[
1 0
0 θ

]

∈ T8. For such T , we have (=2n)T
⊗2n ∈ A . Hence Ã is A -

transformable for Pl-#CSP2. Similarly, for T =
[
1 0
0 ±1

]

, T H =
[
1 1
±1 ∓1

]

=

either H or H

[
0 1
1 0

]

, and

[
0 1
1 0

]

M = M . Thus T M̂ = M̂ , and M̃ is M

transformed under T H for all T ∈ T4. Also note that for all such T , we have
(=2n)(T H)⊗2n ∈ M . Hence M̃ is M -transformable for Pl-#CSP2.

In the proof of No-Mixing of different tractable sets in later sections, because of a
particular order in which we carry out the proof, to make an overall logical structure
more apparent we introduce the following notations

S1 = M̂ , S2 = M̂ †, S3 = A †, S4 = A , and S5 = P .
(9.12)

We will prove the following Main Theorem of Part II. It is not hard to see that
this is a rephrase of Theorem 5.1 from Part I. It follows from Theorem 11.13, Theo-
rem 16.5 and Theorem 15.4, which will be shown in later sections. It follows from the
definition of P-transformability, A -transformability and M -transformability that if
F ⊆ Sk for any 1 ≤ k ≤ 5, then Pl-#CSP2(F) is tractable.

Theorem 9.2 For any set of complex-valued symmetric signatures F on Boolean
variables, if F ⊆ P , or A , or A †, or M̂ , or M̂ †, then Pl-#CSP2(F) is tractable.
Otherwise, Pl-#CSP2(F) is #P-hard.

In Figs. 24 and 25, we give Venn diagrams to illustrate the relationship among
tractable classes for #CSP2 and #Pl-CSP2, respectively.

Proof Outline of Theorem 9.2 The overall plan is to break the proof into twomain steps.
The first step is to prove the dichotomy theorem for Pl-#CSP2(F) when there

is at least one nonzero signature of odd arity in F . In this case we can make use
of Lemma 10.2 that shows that we can simulate Pl-#CSP(F) by Pl-#CSP2(F) if
F includes a unary signature [a, b] with ab �= 0. Then we can apply the known
dichotomy Theorem 9.22 for Pl-#CSP. However this strategy (provably) cannot work
when every signature in F satisfies parity constraints, as in this case there is no unary
signature [a, b] with ab �= 0. For this case we employ other means. This first step of
the proof is relatively uncomplicated.

The second step is to deal with the case when all nonzero signatures in F have
even arity. This is where the real difficulties lie. In this case it is impossible to
directly construct any unary signature. So we cannot use Lemma 10.2 in this case.
But Lemma 10.3 provides a way to simulate Pl-#CSP(F) by Pl-#CSP2(F) in a global
fashion, if F includes some tensor power of the form [a, b]⊗2 where ab �= 0. More-
over, we have a lucky break (for the complexity of the proof) ifF includes a signature

Theory of Computing Systems

Fig. 24 A Venn diagram of the #CSP2 tractable sets A , A †, and P . Note that ρ4 = 1, α4 = −1, and
n ≥ 1. Excluded are tensor products of unary signatures

that is in M̂ \ (P ∪ Ã). In this case, we can construct a special binary signature, and
then use Lemma 13.2 to obtain [1, 1]⊗2 by interpolation. This proof uses the theory
of cyclotomic fields. This simplifies the proof greatly. For all other cases (when F
has only even arity signatures), the proof gets going in earnest—we will attempt an
induction on the arity of signatures.

The lowest arity of this induction will be 2. We will try to reduce the arity to 2
whenever possible; however for many cases an arity reduction to 2 destroys the #P-
hardness at hand. Therefore the true basis of this induction proof of Pl-#CSP2 starts
with arity 4. Consequently we will first prove a dichotomy theorem for Pl-#CSP2(f),
where f is a signature of arity 4. This proof is presented in Section 12. Several tools
will be used. These include the rank criterion for redundant signatures, Theorem 9.21
for arity 2 signatures, and a trick we call the Three Stooges by domain pairing.

However in the next step we do not attempt a general Pl-#CSP2 dichotomy for
a single signature of even arity. This would have been natural at this point, but it
would have been too difficult. We will need some additional leverage by proving a
conditional No-Mixing Lemma for pairs of signatures of even arity. So, seemingly
taking a detour, we prove that for two signatures f and g both of even arity, that
individually belong to some tractable class, but do not belong to a single tractable
class in the conjectured Pl-#CSP2 dichotomy (that is yet to be proved), the problem
Pl-#CSP2(f, g) is #P-hard. We prove this No-Mixing Lemma for any pair of signa-
tures f and g both of even arity, not restricted to arity 4. Even though at this point
we only have a dichotomy for a single signature of arity 4, we prove this No-Mixing

Theory of Computing Systems

Fig. 25 A Venn diagram of the Pl-#CSP2 tractable sets M̂ and M̂ † along with the set Ã ∪ P of all
tractable #CSP2 signatures. Note that ρ4 = 1, α4 = −1, and n ≥ 1. Excluded are tensor products of unary
signatures

Lemma for higher even arity pairs f and g by simulating two signatures f ′ and g′
of arity 4 that belong to different tractable sets, from that of Pl-#CSP2(f, g). After
this arity reduction (within the No-Mixing Lemma), we prove that Pl-#CSP2(f ′, g′)
is #P-hard by the dichotomy for a single signature of arity 4. After this, we prove a
No-Mixing Lemma for a set of signatures F of even arities, which states that if F
is contained in the union of all tractable classes, then it is still #P-hard unless it is
entirely contained in a single tractable class. Note that at this point we still only have
a conditional No-Mixing Lemma in the sense that we have to assume every signature
in F belongs to some tractable set.

We then attempt the proof of a Pl-#CSP2 dichotomy for a single signature of
arbitrary even arity. This uses all the previous lemmas, in particular the conditional
No-Mixing Lemma for a set of signatures. However, after completing the proof of this
Pl-#CSP2 dichotomy for a single signature of even arity, the conditional No-Mixing
Lemma becomes unconditional.

Finally the dichotomy for a single signature of even arity is logically extended to
a dichotomy theorem for Pl-#CSP2(F) for a set of signatures where all signatures in
F have even arity. Together with the first main step when F contains some nonzero
signature of odd arity, this completes the proof of Theorem 9.2.

In the rest of this Section 9, we will introduce the operators ∂ and
∫
, and

give some characterizations of the tractable classes. We will also introduce some

Theory of Computing Systems

preliminary lemmas, including one using the domain pairing technique, and list some
known dichotomies. In Section 10, we discuss a technique to simulate Pl-#CSP by
Pl-#CSP2. Section 11 proves Theorem 9.2 in the case when F contains at least one
nonzero signature of odd arity. Section 12 proves the base case of the even arity case
of Theorem 9.2 when F consists of a single signature of arity 4. Section 13 gives
an application of cyclotomic field which simplifies the proof of Theorem 9.2 when
F contains a signature in M̃ \ (P ∪ Ã). Section 14 proves the conditional No
Mixing lemmas for a pair of signatures of even arity. Section 15 generalizes the No
Mixing lemmas to a set of signatures of even arity. Section 16 finishes the proof of
Theorem 9.2.

Remark 5 We occasionally make some remarks (such as Remark 6 and Remark 7 in
Section 13.2) to explain the complications forced upon the proof by various reasons,
and why another more straightforward approach would not succeed. These remarks
are not logically necessary to the proof, but hopefully they provide some insight and
point out pitfalls in the proof.

In this section we collect a number of simple facts which may appear disparate and
unmotivated. They are collected here in one place for the convenience of presenting
the proof in later sections. Readers can skim these first and come back to them when
needed.

The next lemma is a simple fact that is used many times. It says that the set
{0, 1, i, −1, −i, ∞} is closed set-wise under the mapping z �→ z+1

z−1 on the extended
complex plane C ∪ {∞}. The proof is straightforward, so we omit it.

Lemma 9.3 On the extended complex plane C ∪ {∞}, the mapping z �→ z+1
z−1 maps

{0, 1, i, −1, −i, ∞} to itself. In particular, for x �= y from C, and λ = x+y
x−y

, we have

λ4 �∈ {0, 1} iff x4 �= y4 and xy �= 0.

Definition 9.4 (Derivative) Let f and g be two symmetric signatures of arities n and
m respectively, and n > m. By connecting all m input edges of g to f , we get a
planar {f, g}-gate with a signature of arity n − m. This derivative signature will be
denoted by ∂g(f). If km < n and we connect k copies of g to f , which is the same
as forming ∂g(f) sequentially k times, the resulting repeated derivative signature is
denoted by ∂k

g (f). If g = [1, 0, 1], we denote ∂g(f) simply by ∂(f).

Calculus: Our proof will make substantial use of an analog calculus using this
notion of a derivative. This calculus is essentially a systematic way to calculate
the signatures of some gadget constructions. In a Pl-Holant problem Pl-Holant(G |
F), if g ∈ G and f ∈ F , then we say that g is from the LHS and f is from
the RHS. If f has arity n and g has arity m, and n > m, then we can form
the signature ∂g(f) and Pl-Holant(G | F ∪ {∂g(f)}) ≤T Pl-Holant(G | F). If
m > n we can form ∂f (g) and Pl-Holant(G ∪ {∂f (g)} | F) ≤T Pl-Holant(G |
F). In particular, for Pl-#CSP2(F) ≡ Pl-Holant(EQ2 | F) (recall that EQ2 =
{=2, =4, =6, · · · } defined in Section 2.3 in Part I) we have all (=2k) from the
LHS. In this case if h ∈ F with arity < n then we can also form ∂h(f), by

Theory of Computing Systems

first moving h to LHS via (=2) ∈ EQ2, and then Pl-#CSP2(F ∪ {∂h(f)}) ≤T

Pl-#CSP2(F). Note that if we discuss Pl-#CSP4(F) ≡ Pl-Holant(EQ4 | F) (recall
that EQ4 = {=4, =8, =12, · · · } defined in Section 2.3 in Part I) then this operation
∂h(f) is in general not permissible for f, h ∈ F , and has to be justified in each
individual case, e.g. when h has even arity and one can construct [1, 0, 1]⊗2 in the
LHS.

To familiarize the readers with this calculus, we list some simple calculations
below, which we will use often in our proofs freely without comments. Recall that
we use ε to denote ±1.

For any g, the operator ∂g(·) is a linear operator. It also depends on g linearly.
By definition ∂([f0, f1, . . . , fn]) = [f0 + f2, f1 + f3, . . . , fn−2 + fn] has arity

n − 2.

1. For g = [g0, g1, . . . , gm], we have ∂g(=n) = [g0, 0, . . . , 0, gm] of arity n − m,
where n > m.

2. If f = [s, t]⊗n, then

• ∂k
[a,b](f) = (as + bt)k[s, t]⊗n−k if n > k.

• ∂k
[a,b,c](f) = (as2 + 2bst + ct2)k[s, t]⊗n−2k if n > 2k;

in particular, ∂k(f) = (s2 + t2)k[s, t]⊗n−2k .
• ∂k=4

(f) = (s4 + t4)k[s, t]⊗n−4k , if n > 4k.

3. Let f be of arity n and fk =εk(n − 2k) for some ε =±1 and for 0≤k ≤ n, then

• ∂(f) has arity n′ = n − 2 and (∂(f))k = 2εk(n′ − 2k). If n is odd, then

∂
n−1
2 (f) = 2

n−1
2 [1, −ε].

• ∂=4(f) has arity n′′ = n − 4 and (∂=4(f))k = 2εk(n′′ − 2k).

If n ≡ 1 (mod 4), then ∂
n−1
4=4 (f) = 2

n−1
4 [1, −ε].

If n ≡ 3 (mod 4), then ∂(∂
n−3
4=4 (f)) = 2

n+1
4 [1, −ε].

4. Let f be of arity n and fk = (εi)k(n − 2k) (0 ≤ k ≤ n), then

• ∂(f) = 4[1, εi]⊗n−2.
• ∂=4(f) has arity m = n − 4 and (∂=4(f))k = 2(εi)k(m − 2k).

If n ≡ 1 (mod 4), then ∂
n−1
4=4 (f) = 2

n−1
4 [1, −εi].

If n ≡ 3 (mod 4), then ∂(∂
n−3
4=4 (f)) = 2

n+5
4 [1, εi].

Now we define an inverse operator
∫
(·) to ∂ . Just like the usual calculus there is a

certain non-uniqueness in the expression in an indefinite integral; this non-uniqueness
is addressed in Lemma 9.5. One reasonable definition for

∫
([f0, f1, . . . , fn]) is F =

[F0, F1, . . . , Fn+2] such that

Fk =
∑

s≥0

(−1)sfk+2s = fk − fk+2 + fk+4 − . . .

where we define fk = 0 for all k > n. Clearly ∂(F) = f .

Theory of Computing Systems

Lemma 9.5 Let F and G be symmetric signatures of arity n ≥ 3 and suppose
∂(F) = ∂(G). Then F − G = x[1, i]⊗n + y[1, −i]⊗n = [x + y, i(x − y), −(x +
y), −i(x − y), · · · , in(x + (−1)ny)] for some constants x and y.

Proof The signature H = F − G satisfies ∂(H) = 0, and thus satisfies the second-
order recurrence relation Hk + Hk+2 = 0 for 0 ≤ k ≤ n − 2. Hence there exist
constants x and y such that H = x[1, i]⊗n + y[1, −i]⊗n.

Note that x[1, i]⊗n+y[1, −i]⊗n has the form [u, v, −u, −v, . . .], where u = x+y

and v = i(x − y).
Thus

∫
(·) is well-defined up to an additive term x[1, i]⊗n + y[1, −i]⊗n. In this

paper, we choose to write the expression
∫
(f) by the following definition when a

certain special expression of f exists. This is more convenient for our proofs.

Definition 9.6 For n ≥ 3,
∫
(·) is a linear operator and

• ∫
(0) = 0.

• For a2 + b2 �= 0,
∫
([a, b]⊗n−2) = 1

a2+b2
[a, b]⊗n.

• ∫
([1, εi]⊗n−2) has arity n and [∫ ([1, εi]⊗n−2)]k = 1

4 (εi)
k(n − 2k).

• If the signature g has arity n − 2 and gk = εk(n − 2− 2k), then
∫
(g) has arity n

and [∫ (g)]k = 1
2ε

k(n − 2k).
• If the signature g has arity n− 2 and gk = (εi)k(n− 2− 2k), then

∫
(g) has arity

n and [∫ (g)]k = (−n
2k + 1

2k
2)(εi)k .

Clearly for all f where
∫
(f) is given in the above definition, ∂[∫ (f)] = f .

When we prove the dichotomy theorem for Pl-#CSP2(f), where f has arity n, we
can get a signature f ′ of arity n − 2 by taking a self loop with f , i.e., f ′ = ∂(f).
Clearly Pl-#CSP2(f ′) ≤T Pl-#CSP2(f). If f ′ /∈ P ∪ Ã ∪ M̃ , then by induction
Pl-#CSP2(f ′) is #P-hard. Thus Pl-#CSP2(f) is also #P-hard. Definition 9.6 allows us
to write down an explicit expression for

∫
(f ′) for all cases when f ′ ∈ P ∪ Ã ∪ M̃ .

The following is an explicit list of
∫
(f ′) for f ′ = ∂(f) ∈ P ∪ Ã ∪ M̃ . We

can recover f up to the constants x, y from ∂(f) by Lemma 9.5. This list is for the
convenience of the readers.

Proposition 9.7 (Explicit List for
∫
(f ′))

• ∫
(f ′) ≡ 0 if f ′ ≡ 0.

• ∫
([1, 0]⊗n−2 + a[0, 1]⊗n−2) = [1, 0]⊗n + a[0, 1]⊗n.

• ∫
([1, γ]⊗n−2 + ir [1, −γ]⊗n−2) = 1

1+γ 2 [1, γ]⊗n + ir

1+γ 2 [1, −γ]⊗n where γ 2 �=
−1, γ 8 = 1.

• ∫
([s, tρ]⊗n−2±[t, sρ]⊗n−2) = 1

s2+ρ2t2
[s, ρt]⊗n± 1

ρ2s2+t2
[t, ρs]⊗n, where ρ4 =

1, st �= 0, s4 �= t4.
• [∫ (f ′)]k = 1

2ε
k(n − 2k) if f ′ has arity n − 2 and f ′

k = εk(n − 2 − 2k).
• [∫ (f ′)]k = 1

4 (εi)
k(n − 2k) if f ′ has arity n − 2 and f ′ = [1, εi]⊗n−2.

Theory of Computing Systems

• [∫ (f ′)]k = 1
4 [ik + ir (−i)k](n − 2k) if f ′ has arity n − 2 and f ′ = [1, i]⊗n−2 +

ir [1, −i]⊗n−2.
• [∫ (f ′)]k = (−n

2k + 1
2k

2)(εi)k if f ′ has arity n − 2 and f ′
k = (εi)k(n − 2− 2k).

Proof Note that all the f ′ in the list are linear combinations of the signatures in
Definition 9.6 and

∫
(·) is a linear operator. So the list follows from Definition 9.6

directly.

The following lemma is used to determine whether a binary signature belongs to
various tractable sets P , A , A †, M̂ , and M̂ †. It can be proved directly by the
definition.

Lemma 9.8 For any binary symmetric signature f ,

• f ∈ P iff f = [a, 0, c] or f = [0, b, 0] or f = [a, b]⊗2.
• f ∈ A iff up to a scalar, f = [1, ρ, −ρ2] where ρ4 = 1, or [0, 1, 0], or [1, 0, ρ]

where ρ4 = 1, or [x, y]⊗2 where (x4 = y4 �= 0 or xy = 0).
• f ∈ A † iff up to a scalar, f = [1, α, −α2] where α4 = −1, or [0, 1, 0], or

[1, 0, ρ] where ρ4 = 1, or [x, y]⊗2 where (x4 = −y4 �= 0 or xy = 0).
• f ∈ M̂ iff f = [a, b, a] or [a, 0, −a].
• f ∈ M̂ † iff f = [a, b, −a] or [a, 0, a].

Proof The condition for f ∈ P follows from Definition 2.6.
The condition for f ∈ A follows from the lists after Definition 2.5.

If f ∈ A †, then

[
1 0
0 α

]⊗2

f ∈ A . Then the condition for f ∈ A † follows from

the condition f ∈ A .
By Proposition 2.8, one binary signature is in M iff it has the form [x, 0, y] or

[0, x, 0]. After the holographic transformation using

[
1 1
1 −1

]

, we get the condition

for f ∈ M̂ .

Then after the holographic transformation using

[
1 0
0 i

]

, we get the condition for

f ∈ M̂ †.

Corollary 9.9 gives some necessary conditions for a binary signature to belong to
a tractable set.

Corollary 9.9 For any binary signature f = [a, b, c],
• f ∈ P =⇒ f satisfies either the parity constraints or b2 = ac.
• f ∈ A =⇒ a2 = c2 or b = 0. If f ∈ A \ P , then f = [1, ρ, −ρ2], ρ4 = 1.
• f ∈ A † =⇒ a2 = −c2 or b = 0. If f ∈ A † \ P , then f = [1, α, −α2],

α4 = −1.
• f ∈ Ã =⇒ the norms of all nonzero entries are equal.
• f ∈ M̃ =⇒ a2 = c2.

Theory of Computing Systems

Furthermore, all signatures in each tractable set satisfy a second-order recurrence
relation.

Definition 9.10 Let f = [f0, f1, . . . , fn]. If there exist constants a, b and c, not all
zero, such that afk − bfk+1 + cfk+2 = 0 for 0 ≤ k ≤ n − 2, then we say f has type
〈a, b, c〉, and it is denoted by f ∈ 〈a, b, c〉.

For a non-degenerate symmetric signature f of arity at least 3, if f has type
〈a, b, c〉, its type is uniquely determined up to a nonzero multiple. The next
lemma states this type information for the various tractable sets. We can use the
lemma to check whether a symmetric signature can possibly be in a tractable
set.

Lemma 9.11 Let f ∈ P ∪ Ã ∪ M̃ be non-degenerate and have arity ≥ 3.

• If f ∈ P then f ∈ 〈0, 1, 0〉.
• If f ∈ A then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, 0, ±1〉. If f ∈ A \ P then f ∈

〈1, 0, ±1〉.
• If f ∈ A † then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, 0, ±i〉. If f ∈ A † \ P then f ∈

〈1, 0, ±i〉.
• If f ∈ M̂ then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, c, 1〉. If f ∈ M̂ \ (P ∪ Ã) then

f ∈ 〈1, c, 1〉 with c �= 0.
• If f ∈ M̂ † then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, c, −1〉. If f ∈ M̂ † \ (P ∪ Ã) then

f ∈ 〈1, c, −1〉 with c �= 0.

Proof By Definition 2.6, if f ∈ P is non-degenerate and has arity≥ 3, then f has
the form [a, 0, · · · , 0, b]. Thus f ∈ 〈0, 1, 0〉.

By the lists after Definition 2.5, f ∈ A then f ∈ 〈0, 1, 0〉 or f ∈ 〈1, 0, ±1〉.
Moreover, if f ∈ A \ P then f ∈ 〈1, 0, ±1〉.

After the holographic transformation using

[
1 0
0 α

]

, we get the conditions for f ∈
A † and f ∈ A † \ P .

By Proposition 2.8, f ′ ∈ M iff f ′ ∈ 〈x, 0, y〉 or f ′ ∈ 〈0, 1, 0〉. Then after the

holographic transformation using

[
1 1
1 −1

]

, f ∈ M̂ iff f ∈ 〈x + y, x − y, x + y〉.
If x + y �= 0, then let c = x−y

x+y
and f ∈ 〈1, c, 1〉 after the scalar x + y. Otherwise

f ∈ 〈0, 1, 0〉 after the scalar x − y. Note that if f ∈ 〈0, 1, 0〉, then f ∈ P . Thus if
f ∈ M̂ \ (P ∪ Ã) then f ∈ 〈1, c, 1〉 with c �= 0.

After the holographic transformation using

[
1 0
0 i

]

, we get the conditions for f ∈
M̂ † and f ∈ M̂ † \ (P ∪ Ã) .

The following two corollaries follow from Lemma 9.8 for the binary case, and
Lemma 9.11 for arity n ≥ 3.

Theory of Computing Systems

Corollary 9.12 If f ∈ A \P , then f /∈ A †. Similarly, If f ∈ A †\P , then f /∈ A .

Corollary 9.13 If f ∈ M̂ \(P∪Ã), then f /∈ M̂ †. Similarly, if f ∈ M̂ †\(P∪Ã),
then f /∈ M̂ .

The following lemma gives a characterization of M̃ \ (P ∪ Ã).

Lemma 9.14 Let f = [f0, . . . , fn] be a symmetric signature of arity n. Then f ∈
M̂ \ (P ∪ Ã) iff

• n = 2 and f = λ[1, a, 1], where a4 �∈ {0, 1} and λ �= 0; or
• n ≥ 3 and f = [s, t]⊗n ± [t, s]⊗n, where st �= 0 and s4 �= t4; or
• n ≥ 3 and fk = λεk(n − 2k) for 0 ≤ k ≤ n, where λ �= 0.

Similarly, f ∈ M̂ † \ (P ∪ Ã) iff

• n = 2 and f = λ[1, b, −1], where b4 �∈ {0, 1} and λ �= 0; or
• n ≥ 3 and f = [s, ti]⊗n ± [t, si]⊗n where st �= 0 and s4 �= t4; or
• n ≥ 3 and fk = λ(εi)k(n − 2k) for 0 ≤ k ≤ n, where λ �= 0.

Proof We prove the lemma for M̂ . The proof for M̂ † follows from a holographic

transformation by

[
1 0
0 i

]

.

By Lemma 9.8, a binary symmetric signature f ∈ M̂ has the form [a, b, a] or
[a, 0, −a]. Since [a, 0, −a] ∈ A is a multiple of [1, 0, −1], we exclude it. For
[a, b, a], if ab = 0, then f ∈ P . Also if a4 = b4, then [a, b, a] ∈ A , being a mul-
tiple of [1, ±1]⊗2 or [1, ±i, 1]. This gives the form f = λ[1, b, 1] with b4 �∈ {0, 1}
and λ �= 0. Conversely, any f of this form belongs to M̂ \ (P ∪ Ã).

For arity n ≥ 3, by Proposition 2.8 and the holographic transformation using[
1 1
1 −1

]

, f ∈ M̂ iff f takes the form [s, t]⊗n ± [t, s]⊗n or fk = λεk(n − 2k). For

the latter case f ∈ M̂ \ (P ∪ Ã) follows from its type 〈1, ±2, 1〉.
For f = [s, t]⊗n ± [t, s]⊗n, if st = 0, then f ∈ P . If s2 = t2, then f is

degenerate, thus f ∈ P . If s2 = −t2, then f ∈ A . Conversely, if st �= 0 and
s4 �= t4, then f is non-degenerate and fk has type 〈1, s

t
+ t

s
, 1〉. Note that s

t
+ t

s
�= 0

by s4 �= t4. Thus f ∈ M̂ \ (P ∪ Ã) by Lemma 9.11.

By the second-order recurrence relation of the signatures in M̃ \ (P ∪ Ã), we
have the following lemma that will be used in the proof of Theorem 11.11. Recall
that M̃ = M̂ ∪ M̂ †.

Corollary 9.15 If f ∈ M̃ \ (P ∪ Ã), then f does not satisfy the parity constraints.

Proof For f ∈ M̂ \ (P ∪ Ã), if f has arity 2, then f = λ[1, a, 1] for some λ �= 0,
a4 �= 0, 1 by Lemma 9.14. Thus it does not satisfy the parity constraints.

For f with arity n ≥ 3, by Lemma 9.11, there exists a constants c �= 0 such that
f ∈ 〈1, c, 1〉. Note that there exists fk �= 0, where 1 ≤ k ≤ n − 1 by f /∈ P . If f

Theory of Computing Systems

satisfies the parity constraints, then fk−1 = fk+1 = 0. Moreover, by fk−1 − cfk +
fk+1 = 0, we have c = 0. This is a contradiction.

The proof for f ∈ M̂ † \ (P ∪ Ã) follows from a holographic transformation by[
1 0
0 i

]

.

The following lemma gives a characterization of nonzero signatures in M̂ . A
GEN-EQ is a signature of the form f = [a, 0, . . . , 0, b], called a generalized equality
(with a = 0 or b = 0 allowed.)

Lemma 9.16 AGEN-EQ signature f is in M̂ iff f = λ[1, 0, . . . , 0, ±1], for some λ.
Suppose f is a symmetric signature that is not a GEN-EQ. Then f ∈ M̂ iff f

satisfies a second-order recurrence fk −cfk+1+fk+2 = 0 (for 0 ≤ k ≤ arity(f)−2)
and the following conditions hold.

If f has arity 2n, then

• fn−k = fn+k (for 0 ≤ k ≤ n), fn �= 0, c = 2fn−1
fn

; or

• fn−k = −fn+k (for 0 ≤ k ≤ n), fn−1 �= 0, c = fn−2
fn−1

.

If f has arity 2n + 1, then

• fn−k = fn+1+k (for 0 ≤ k ≤ n), fn �= 0, c = fn−1
fn

+ 1; or

• fn−k = −fn+1+k (for 0 ≤ k ≤ n), fn �= 0, c = fn−1
fn

− 1.

Proof By Proposition 2.8 and the holographic transformation using

[
1 1
1 −1

]

, sym-

metric signatures in M̂ have the following forms, f = [s, t]⊗m ± [t, s]⊗m, or
fk = λεk(m − 2k) (0 ≤ k ≤ m). A GEN-EQ f ∈ M̂ iff it takes the first form with
st = 0. Suppose f is not a GEN-EQ, then we have st �= 0 in the first form. In par-
ticular f is not identically zero. In both forms, f satisfies a second-order recurrence
fk − cfk+1 + fk+2 = 0 (0 ≤ k ≤ m − 2), for some c. For example in the first form
with a tensor sum, the product of the eigenvalues s/t · t/s = 1.

We prove the lemma for the case that m = 2n is even (the odd-arity case is similar
and we omit it here).

If f = [s, t]⊗2n + [t, s]⊗2n, we have the symmetry fn+k = fn−k . Thus fn−1 =
fn+1 and cfn = 2fn−1. If fn = 0, then f is identically zero, a contradiction.
Therefore, we have c = 2fn−1

fn
.

For f = [s, t]⊗2n − [t, s]⊗2n, or fk = λεk(2n − 2k), we have fn+k = −fn−k .
Thus we have fn = 0 and cfn−1 = fn−2. If fn−1 = 0, then f is identically zero, a
contradiction. Therefore, we have c = fn−2

fn−1
.

Conversely, the second-order recurrence fk − cfk+1 + fk+2 = 0 gives the expres-
sion f = c1[s, t]⊗2n + c2[t, s]⊗2n, or in the double root case when c = ε2, we
have the form fk = λεk(2n − μk). If fn+k = −fn−k , then fn = 0, the dou-
ble root case must be fk = λεk(2n − 2k), and the tensor sum takes the form
f = [s, t]⊗2n − [t, s]⊗2n. If fn+k = fn−k , then we only have the form f =
[s, t]⊗2n + [t, s]⊗2n.

Theory of Computing Systems

For odd arity, the proof is similar. We omit it here.

Corollary 9.17 If f ∈ M̂ † has even arity 2n, then

f0=f2n, f1=−f2n−1, f2=f2n−2,. . . ; or f0=−f2n, f1=f2n−1, f2=−f2n−2,

In other words, for all 0 ≤ k ≤ 2n,

fk = f2n−k or fk = −f2n−k

and the signs strictly alternate according to k in either cases.

Proof By definition, M̂ † =
[
1 0
0 i

]⊗2n

M̂ . By Lemma 9.16, we have in−kfn−k =
εin+kfn+k for all k. The Corollary follows.

The discussion above is a characterization of symmetric tractable signatures. In
more detail, we characterize the binary symmetric tractable signatures in Lemma 9.8
and Corollary 9.9. For symmetric signatures of arity ≥ 3, we use the type of the
second-order recurrence relation to characterize them in Lemma 9.11. More charac-
terizations are given in Lemma 9.14 and 9.16. Moreover, by Definition 2.6, all unary
signatures are in P . If a unary signature satisfies the parity constraints, then it is in
P ∩ A ∩ A †, but is not in M̂ ∪ M̂ †. We summarize these relationships among the
tractable signatures in Figs. 24 and 25.

In the proof of Pl-#CSP2 dichotomy, we often use the following Corollary. It gives
a characterization of a signature of arity 4 in M̃ . It follows directly from Lemma 9.16
and the definition of M̂ †.

Corollary 9.18 An arity 4 signature f ∈ M̂ has one of the following forms:

• [u, v, w, v, u] and (u + w)w = 2v2; or
• [u, v, 0, −v, −u].

An arity 4 signature f ∈ M̂ † has one of the following forms:

• [u, v, w, −v, u] and (u − w)w = 2v2,
• [u, v, 0, v, −u].

The following lemma can be proved by domain pairing. We can use it to derive
#P-hardness of Pl-#CSP2 problems by applying the known dichotomy of Pl-#CSP.

Lemma 9.19 Suppose f = [f0, f1, . . . , f2n] is a symmetric signature of arity 2n.
Let g = [f0, f2, . . . , f2n] be a symmetric signature of arity n consisting of all even
indexed entries of f . Then

Pl-#CSP(g) ≤ Pl-#CSP2(f).

Theory of Computing Systems

Proof For any instance of Pl-#CSP(g), we replace each edge e by two edges that
connect the same incident nodes of e. For each variable node that is connected to
k edges, we replace its label =k by =2k . We replace each occurrence of g by f

as a constraint. Then the new instance is a problem in Pl-#CSP2(f) and has the
same value as the given instance of Pl-#CSP(g), because gk = f2k . Note that the
values f2k+1 with an odd index contribute nothing to the partition function in this
instance.

The case when f = [1, i]⊗4 + a[1, −i]⊗4 poses some special difficulty, mainly
because ∂(f) is identically 0. The following lemma shows that in this case, with
a �= 0, we can construct [1, 0, −1]⊗2 in the LHS in a Pl-Holant problem with f

on the RHS. Its utility is that after a holographic transformation by

[
1 0
0 i

]

or by
[
1 1
i −i

]

=
[
1 0
0 i

] [
1 1
1 −1

]

we have [1, 0, 1]⊗2 on the LHS.

Lemma 9.20 Let F be a set of signatures containing f = [1, i]⊗4 + a[1, −i]⊗4.
Then

Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | F) ≡ Pl-#CSP2(F).

Proof Suppose a �= −1 and consider the gadget in Fig. 26a. We assign f to the
circle vertex and =4 to the square vertices. This gives (1+ a)[1, 0, −1]⊗2 on the left
as desired.

Otherwise a = −1. Consider the gadget in Fig. 26b. We assign f to the cir-
cle vertices and =4 to the square vertices. This gives −8[1, 0, −1]⊗2 on the left as
desired.

Next we state a couple of complexity dichotomy theorems that were previously
shown [13, 31]. They are also quoted as Theorem 2.24 in Section 2 of Part I. Here
we restate them for easier reference. The first is a dichotomy theorem about Boolean
domain spin systems (counting complex weighted graph homomorphisms) on degree
prescribed graphs. It includes Pl-#CSP2(f), where f is a symmetric binary signature,
as a special case.

Fig. 26 Two gadgets used to obtain [1, 0,−1]⊗2. The circle vertices are assigned f and the square vertices
are assigned =4

Theory of Computing Systems

Theorem 9.21 Let S ⊆ Z
+ contain k ≥ 3, let G = {=k |k ∈ S}, and let d = gcd(S).

Further suppose that f0, f1, f2 ∈ C. Then Pl-Holant ([f0, f1, f2] | G) is #P-hard
unless one of the following conditions holds:

1. f0f2 = f 2
1 ;

2. f0 = f2 = 0;
3. f1 = 0;
4. f0f2 = −f 2

1 and f d
0 = −f d

2 �= 0;
5. f d

0 = f d
2 �= 0.

In any exceptional case, the problem is computable in polynomial time.

Theorem 9.21 is explicit and easy to apply. Conceptually, it can be restated as
Theorem 9.21′, which supports the putative form of a Pl-#CSPd dichotomy (which is
false, by Theorem 8.1 of Part I, for d > 2).

Theorem 9.21′ Let S ⊆ Z
+ contain k ≥ 3, let G = {=k |k ∈ S}, and let d = gcd(S).

Further suppose that f is a non-degenerate, symmetric, complex-valued binary sig-
nature in Boolean variables. Then Pl-Holant (f | G) is #P-hard unless f satisfies one
of the following conditions, in which case, the problem is computable in polynomial
time:

1. there exists T ∈ T4d such that T ⊗2f ∈ A ;
2. f ∈ P;
3. there exists T ∈ T2d such that T ⊗2f ∈ M̂ .

The following theorem is the dichotomy theorem of Pl-#CSP(F), where F is a set
of symmetric signatures. This is also quoted as Theorem 2.25 in Part I.

Theorem 9.22 (Theorem 9.3 in [26]) Let F be any set of symmetric, complex-valued
signatures in Boolean variables. Then Pl-#CSP(F) is #P-hard unless F ⊆ A , F ⊆
P , or F ⊆ M̂ , in which case the problem is computable in polynomial time.

We repeat the definition of redundant matrices in Section 2.7.

Definition 9.23 (Definition 32, p. 1692 in [11]) A 4-by-4 matrix is redundant if its
middle two rows and middle two columns are the same.

An example of a redundant matrix is the signature matrix of a symmetric arity 4
signature.

Definition 9.24 (Definition 33, p. 1693 in [11]) The signature matrix of a symmetric
arity 4 signature f = [f0, f1, f2, f3, f4] is

Mf =

⎡

⎢
⎢
⎣

f0 f1 f1 f2
f1 f2 f2 f3
f1 f2 f2 f3
f2 f3 f3 f4

⎤

⎥
⎥
⎦ .

Theory of Computing Systems

This definition extends to an asymmetric signature g as

Mg =

⎡

⎢
⎢
⎣

g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111

⎤

⎥
⎥
⎦ .

When we present g as an F-gate, we order the four external edges ABCD counter-
clockwise. In Mg , the row index bits are ordered AB and the column index bits are
ordered DC, in reverse order. This is for convenience so that the signature matrix of
the linking of two arity 4 F-gates is the matrix product of the signature matrices of
the two F-gates.

If Mg is redundant, we also define the compressed signature matrix of g as

M̃g =
⎡

⎣
1 0 0 0
0 1

2
1
2 0

0 0 0 1

⎤

⎦Mg

⎡

⎢
⎢
⎣

1 0 0
0 1

2 0
0 1

2 0
0 0 1

⎤

⎥
⎥
⎦ .

The definition of compressed signature matrix is a slight change from [26] where

M̃g

⎡

⎣
1 0 0
0 2 0
0 0 1

⎤

⎦ is called by that name. It does not affect the following lemma. We

repeat the following lemma from [26], which is very convenient to apply.

Lemma 9.25 (Corollary 3.8 in [26]) Let f be an arity 4 signature with complex
weights. If Mf is redundant and M̃f is nonsingular, then Pl-Holant(f) is #P-hard.

10 Reduction from Pl-#CSP to Pl-#CSP2

Definition 10.1 For k ≥ 1, � ≥ 0 and any ξ , we define E�
k(ξ) = [1, 0, . . . , 0, ξ�] to

be a signature of arity k, and define E(ξ) = {E�
k(ξ) | k ≡ � (mod 2)}. We also write

E�
k for E�

k(ξ) when ξ is clear from the context.

The following lemma shows that if we have a unary [1, ξ] ∈ F with ξ �= 0, then
either F is contained in one single tractable set or Pl-#CSP2(F) is #P-hard. We will
use this lemma for the case that F contains at least one nonzero signature of odd
arity. The proof of this lemma also demonstrates in a simple setting the idea that will
be used in the proof of Lemma 10.3.

Lemma 10.2 Let ξ �= 0 and let F be a set of symmetric signatures containing
[1, ξ] ∈ F . If F � P , F � A , F � A †, F � M̂ , and F � M̂ †, then Pl-
#CSP2(F) is #P-hard.

Theory of Computing Systems

Proof Firstly, we have Ek
k (ξ) = ∂k

[1,ξ](=2k) of arity k on the LHS in Pl-

Holant(EQ2|F) ≡ Pl-#CSP2(F), for all k ≥ 1. By a holographic transformation

using T −1, where T =
[
1 0
0 ξ

]

, we have (Ek
k (ξ))T −1 = (=k) on the LHS, and

Pl-#CSP(TF) ≤T Pl-Holant(EQ ∪ EQ2T
−1 | TF) ≤T Pl-#CSP2(F), (10.13)

where EQ on LHS of the Holant instance comes from Ek
k (ξ) in the second step of

the reduction. If TF � P , TF � A and TF � M̂ , then Pl-#CSP(TF) is #P-hard
by Theorem 9.22. Thus Pl-#CSP2(F) is #P-hard.

Otherwise, TF ⊆ P , TF ⊆ A or TF ⊆ M̂ . If TF ⊆ P , then F ⊆ P . In the
following, assume that TF � P , then TF ⊆ A or TF ⊆ M̂ .

Note that [1, ξ2] ∈ TF . If ξ8 �= 1, then [1, ξ2] /∈ A ∪ M̂ . This is a contradiction.
If ξ4 = −1, then [1, ξ2] /∈ M̂ . Thus TF ⊆ A . It follows that F ⊆ A †.
For ξ4 = 1, if TF ⊆ A , then F ⊆ A . If TF ⊆ M̂ , then either F ⊆ M̂ if

ξ2 = 1, or F ⊆ M̂ † if ξ2 = −1.

Lemma 10.2 allows us to transfer the complexity question of Pl-#CSP2 to that of
Pl-#CSP, to which we can apply the known dichotomy (Theorem 9.22). However it
requires a unary signature. We observe that if all signatures in F have even arities,
then there is no way to construct a unary in Pl-#CSP2(F). In this case, we use the
next lemma, which is similar to Lemma 10.2. It shows that if we have [1, ξ]⊗2 with
ξ �= 0 in F , then we can still transfer the question of Pl-#CSP2 to that of Pl-#CSP. It
is proved using a global simulation of Pl-#CSP by Pl-#CSP2.

Lemma 10.3 Let F be a set of signatures of even arities. Suppose [1, ξ]⊗2 ∈ F
for some ξ �= 0. If F � P , F � A , F � A †, F � M̂ and F � M̂ †, then
Pl-#CSP2(F) is #P-hard.

Proof Let Eo(ξ) = {E�
k(ξ) | k ≡ � ≡ 1 (mod 2)} be the subset of signatures of

odd arity in E(ξ). Let Ee(ξ) = {Ek
k (ξ) | k ≡ 0 (mod 2)} be the subset of signatures

E�
k(ξ) ∈ E(ξ) with even arity k and � = k. Note that not all even arity signatures in

E(ξ) are in Ee(ξ); in partiuclar, k ≥ 2 for any Ek
k (ξ) ∈ Ee(ξ). We will prove that

Pl-Holant(Eo(ξ) ∪ Ee(ξ) | F) ≤T Pl-#CSP2(F), and the conclusion of the lemma
will follow by a holographic transformation.

For the rest of this proof, we write E�
k for E�

k(ξ).
We first give an intuitive description of the proof method. For k ≥ 1 and � ≥ 0, we

have all of E2�
2k = ∂�

[1,ξ]⊗2(=2k+2�) on LHS in Pl-Holant(EQ2 | F) ≡ Pl-#CSP2(F).
Given any instance � of Pl-Holant(Eo(ξ) ∪ Ee(ξ) | F), since all signatures in F
have even arities, the number of E�

k of odd arity in the LHS must be even. In each
connected component of �, we will match up all LHS E�

k of odd arity in pairs in
a planar way, and replace each by an even arity E�−1

k+1 connected by [1, ξ], using
[1, ξ]⊗2 as a pair of [1, ξ]. Note that when one input of E�−1

k+1 is connected to a unary

[1, ξ], it becomes E�
k . Hence a pair E2u+1

2v−1 and E2u′+1
2v′−1 can be functionally replaced

by a pair E2u
2v and E2u′

2v′ that are connected by [1, ξ]⊗2. When an odd arity Ek
� is the

Theory of Computing Systems

signature assigned to a vertex on an edge separating two faces of the planar graph of
�, we may consider this Ek

� as belonging to either of the two faces. If an even arity
Ek

k is such a signature between two faces, we can first transform it to an odd arity
Ek−1

k+1 . We will then carefully account for the number of odd arity signatures in Eo(ξ)

within each face, and argue that they can all be matched up in pairs in a planar way.
Now we give the proof. First, we may assume that the planar graph � is connected

and is given a planar embedding, since the Holant value on � is the product over its
connected components. The number of E�

k ∈ Eo(ξ) of odd arity on the LHS is even
in each connected component of �. We will match up pairs of E�

k of odd arity and
use copies of [1, ξ]⊗2 within each connected component.

Let T be a spanning tree of the dual graph of �, and we pick the external face
of � as the root of T . We will process each face of � by going from the leaves of
T to the root. We prune the tree T as we carry out this process; after we have dealt
with one face (a leaf node in the current tree) we will delete it from the tree T . If
on a leaf (and non-root) node of the current T , i.e., a face F of �, there are an even
number of odd arity LHS signatures in Eo(ξ), we replace each such E�

k ∈ Eo(ξ) by
E�−1

k+1, and then we connect adjacent pairs of them in clockwise order within the face
F with [1, ξ]⊗2. This maintains planarity, and as noted above this does not change
the Holant value. Then we delete this F from T .

Suppose on the leaf node F there are an odd number of odd arity LHS signatures
in Eo(ξ), and suppose F is not the root of T . Let F ′ be the parent node of F in T

and let e = {u, v} be the edge connecting F ′ and F . Since Pl-Holant(Eo(ξ)∪Ee(ξ) |
F) is bipartite, either u or v is labeled by a signature from the LHS signature set
Eo(ξ) ∪ Ee(ξ). We have two cases.

1. It is some E�
k ∈ Eo(ξ). Then both k, � ≥ 1 are odd. We match up the other

(zero or more) odd arity LHS signatures in Eo(ξ) within F in pairs, and replace
them by even arity signatures in E(ξ) as above, connected with [1, ξ]⊗2 in pairs
while maintaining planarity as above. Then we delete this leaf node F from T

and consider the odd arity E�
k , which is on either u or v, to belong to F ′.

2. It is some E2k
2k ∈ Ee(ξ), for some k ≥ 1. On F there must be some LHS odd arity

Et
s ∈ Eo(ξ) since there are an odd number of them in F . We find clockwise the

first such Et
s in F starting from E2k

2k , and replace both Et
s by Et−1

s+1, and E2k
2k by

E2k−1
2k+1 , and connect them by [1, ξ]⊗2. Note thatEt−1

s+1 has even arity and t−1 ≥ 0

is even, and E2k−1
2k+1 has odd arity and 2k − 1 ≥ 1 is odd. This replacement does

not change the Holant value, maintains planarity, and effectively changes the
arity of E2k

2k between F and F ′ to being odd. So we have transformed this case to
case 1. Thus we can match up the other odd arity LHS signatures in Eo(ξ) within
F in pairs, and replace them by even arity signatures in E(ξ) and connected with
[1, ξ]⊗2 in pairs as above. Then we delete F from T and consider the odd arity
E2k−1
2k+1 belonging to F ′.

The above process does not change the property that the total number of LHS odd
arity signatures from Eo(ξ) is even. The proof is completed by induction. After the
tree has been pruned so that only the root of T remains, there must be an even number

Theory of Computing Systems

ofE�
k of odd arity in the external face corresponding to this root node, including those

that have been transformed by its children in T and considered to belong to the root
node. We can pair them up just as before.

This proves the reduction

Pl-Holant(Eo(ξ) ∪ Ee(ξ) | F) ≤T Pl-#CSP2(F).

Note that Ek
k ∈ Eo(ξ) ∪ Ee(ξ), for all k ≥ 1. Thus we have

Pl-Holant(E1
1 , E

2
2 , . . . , E

k
k , . . . | F) ≤T Pl-#CSP2(F).

Then by a holographic transformation using T −1, where T =
[
1 0
0 ξ

]

, we have

Pl-#CSP(TF) ≡ Pl-Holant(E1
1 , E

2
2 , . . . , E

k
k , . . . | F) ≤T Pl-#CSP2(F).

The rest of the proof is essentially the same as the proof of Lemma 10.2, using the
following fact: For either C = A or M̂ , if [1, ξ2]⊗2 ∈ C , then [1, ξ2] ∈ C . For
the case of A this follows from the form of the definition in Definition 2.5. For M
this follows from Matchgate-Identities ([4, 10] see Theorem 4.12, page 117). The
statement for M̂ follows from the fact that holographic transformation is distributive
over tensor products. We omit the details.

The next lemma shows that when we obtain [1, 0, 1]⊗2, we can reduce a Pl-#CSP2

problem to a Pl-#CSP4 problem, when all signatures in F have arity divisible by 4.

Lemma 10.4 Pl-#CSP2(F) ≤T Pl-#CSP4(F, [1, 0, 1]⊗2), if all signatures in F
have arity ≡ 0 (mod 4).

Proof Let � be an instance of Pl-#CSP2(F). Since all signatures in F have arity ≡ 0
(mod 4), the number of EQUALITIES of arity ≡ 2 (mod 4) must be even. We can
connect in pairs all EQUALITIES of arity ≡ 2 (mod 4) by some copies of [1, 0, 1]⊗2

maintaining planarity similarly as in the proof of Lemma 10.3. When two inputs of
=m+2 are connected to [1, 0, 1] it becomes ∂(=m+2) = (=m). Hence a pair =4k−2
and =4�−2 can be functionally replaced by a pair =4k and =4� that are connected
by [1, 0, 1]⊗2. The rest of the proof is the same as in Lemma 10.3 and we omit it
here.

The next corollary is used in the proof of the No-Mixing theorems. We present it
here since the proof uses a global simulation that is similar to Lemma 10.4.

Corollary 10.5 Suppose f = [1, i]⊗4 + ir [1, −i]⊗4 (0 ≤ r ≤ 3) and g =
[g0, . . . , g2n] with gk = (εi)k(2n − 2k). Furthermore, let ĝ = (Z−1)⊗2ng, where

Z =
[
1 1
i −i

]

. Then

Pl-#CSP2(ĝ) ≤T Pl-#CSP2(f, g).

Theory of Computing Systems

Proof Clearly ĝ = [0, 1, 0, . . . , 0] or ĝ = [0, . . . , 0, 1, 0], the perfect matching
signature or its reversal. By applying Lemma 9.20 to f = [1, i]⊗4 + ir [1, −i]⊗4, we
get [1, 0, −1]⊗2 on the left:

Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | f, g) ≤T Pl-#CSP2(f, g).

Under a holographic transformation by Z, we have

Pl-Holant([1, 0, 1]⊗2 | f̂ , ĝ) ≤T Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | f, g),

where f̂ = (Z−1)⊗4f = [1, 0, 0, 0, ir]. Note that [1, 0, −1]Z⊗2 = 2[1, 0, 1], as
ZT
[
1 0
0 −1

]

Z = 2

[
1 0
0 1

]

. Consider the gadget in Fig. 27. We assign f̂ to the cir-

cle vertices and [1, 0, 1]⊗2 the dashed subgadgets rotated appropriately so that it is
equivalent to assigning [1, 0, 1] to the square vertices. The signature of this gadget is
=4, for any 0 ≤ r ≤ 3. Thus

Pl-Holant([1, 0, 1]⊗2 | =4, ĝ) ≤T Pl-Holant([1, 0, 1]⊗2 | f̂ , ĝ).

In Pl-Holant([1, 0, 1]⊗2 | =4, ĝ), by [1, 0, 1]⊗2 and=4, we can get all of=4k for k ≥
1 on RHS and then move them to LHS by [1, 0, 1]⊗2. Moreover, we have [1, 0, 1]⊗2

on RHS by connecting two copies of =4 by [1, 0, 1]⊗2. Thus

Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ) ≤T Pl-Holant([1, 0, 1]⊗2 | =4, ĝ).

Now we simulate Pl-#CSP2(ĝ) by Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ). If ĝ has arity
2n ≡ 0 (mod 4), then we are done by Lemma 10.4.

If ĝ has arity 2n ≡ 2 (mod 4), then in an instance � of Pl-#CSP2(ĝ), the number
of occurrences of EQUALITIES of arity ≡ 2 (mod 4) has the same parity as the num-
ber of occurrences of ĝ, which could be odd. However, we observe that all entries
of signatures in Pl-#CSP2(ĝ) are nonnegative integers. Thus the value of � is a non-
negative integer. Let � � � be the disjoint union of two copies of � as a plane graph
with a common external face, then the value of � � � is the square of the value of
�. Thus computing the values on � � � and � are equivalent. In � � �, the number
of EQUALITIES of arity ≡ 2 (mod 4) is even. Now we can use the same global sim-
ulation as in Lemma 10.4, except that in the last step we may use one extra copy of
[1, 0, 1]⊗2 to connect two EQUALITIES of arity ≡ 2 (mod 4) at the two root nodes
of the two spanning trees of the dual graphs of �, if the number of occurrences of
EQUALITIES of arity ≡ 2 (mod 4) in � is odd. Thus we have

Pl-#CSP2(ĝ) ≤ Pl-Holant(EQ4 | [1, 0, 1]⊗2, ĝ).

Fig. 27 Gadget used to obtain =4. The circle vertices are assigned f̂ and the dashed subgadgets are
assigned [1, 0, 1]⊗2 aligned horizontally so that it is equivalent to assigning [1, 0, 1] to the square vertices

Theory of Computing Systems

11 Dichotomy TheoremwhenF Contains an Odd Arity Signature

In this section, we give a dichotomy theorem for Pl-#CSP2(F), where F includes at
least one nonzero signature f that has odd arity.

The next result applies a domain pairing technique used in the proof of Lemma 6.2
in [26].

Lemma 11.1 Let x, y ∈ C and f = [x, 0, y, 0]. If y �= 0 and x4 �= y4, then
Pl-#CSP2(f) is #P-hard.

Proof We reduce from Pl-#CSP([x2, y2, y2]) to Pl-#CSP2(f). Since
Pl-#CSP([x2, y2, y2]) is #P-hard when y �= 0 and x4 �= y4 by Theorem 9.21, this
shows that Pl-#CSP2(f) is also #P-hard.

An instance of Pl-#CSP([x2, y2, y2]) is a signature grid � with underlying graph
G = (U, V, E), where G is bipartite and planar, and every vertex in U has degree 2.
We replace every vertex in V of degree k (which is assigned =k ∈ EQ) with a vertex
of degree 2k, and bundle two adjacent variables to form k bundles of 2 edges each.
The k bundles correspond to the k incident edges of the original vertex with degree
k. We assign =2k to the new vertices of degree 2k.

If the inputs to these equality signatures are restricted to {(0, 0), (1, 1)} on
each bundle, then these equality signatures take value 1 on ((0, 0), . . . , (0, 0)) and
((1, 1), . . . , (1, 1)) and take value 0 elsewhere. Thus, if we restrict the domain to
{(0, 0), (1, 1)}, it is the equality signature =k .

To simulate [x2, y2, y2], we connect two copies of f = [x, 0, y, 0] by a single
edge as shown in Fig. 28 to form a gadget with signature

h(a1, a2, b1, b2) =
∑

c=0,1

f (a1, b1, c)f (a2, b2, c).

We replace every (degree 2) vertex inU (which is assigned [x2, y2, y2]) by a degree 4
vertex assigned h, where the variables of h are bundled as (a1, a2) and (b1, b2).

The vertices in this new graph G′ are connected as in the original graph G, except
that every original edge is replaced by two edges that connect to the same side
of the gadget in Fig. 28. Notice that h is only connected by (a1, a2) and (b1, b2)

to some bundle of two incident edges of an equality signature. Since this equality
signature enforces that the value on each bundle is either (0, 0) or (1, 1), we only
need to consider the restriction of h to the domain {(0, 0), (1, 1)}. On this domain,

Fig. 28 Gadget designed for the
paired domain. Both vertices are
assigned [x, 0, y, 0]

Theory of Computing Systems

h = [x2, y2, y2] is a symmetric signature of arity 2. Therefore, the signature grid �′
with underlying graph G′ has the same Holant value as the original signature grid
�.

The following lemma is a dichotomy for Pl-#CSP2(f) where f is a symmetric
ternary signature.

Lemma 11.2 Let f be a symmetric signature of arity 3, then Pl-#CSP2(f) is #P-hard
unless f ∈ P ∪ Ã ∪ M̃ .

Proof Let f = [f0, f1, f2, f3]. If f satisfies the parity constraints, then f =
[f0, 0, f2, 0] or f = [0, f1, 0, f3].

For f = [f0, 0, f2, 0], if f2 = 0, then f ∈ P . If f 2
0 = f 2

2 , then f ∈ A .
If f 2

0 = −f 2
2 , then f ∈ A †. Otherwise, we have f2 �= 0 and f 4

0 �= f 4
2 . Thus

Pl-#CSP2(f) is #P-hard by Lemma 11.1. For f = [0, f1, 0, f3], the proof follows

from a holographic transformation using

[
0 1
1 0

]

.

In the following, assume that f does not satisfy the parity constraints. Firstly, we
have ∂(f) = [f0 + f2, f1 + f3].
• For (f0 + f2)(f1 + f3) �= 0, we are done by Lemma 10.2.
• For f0 + f2 = f1 + f3 = 0, f = [f0, f1, −f0, −f1]. Since f does not satisfy

the parity constraints, we have f0f1 �= 0. If f 2
0 = f 2

1 , then f ∈ A .
Otherwise, we have ∂f (=4) = [f0, −f1] on LHS and ∂[f0,−f1](f) = [f 2

0 −
f 2
1 , 2f0f1, f 2

1 − f 2
0] on RHS. Moreover, we have ∂[f 2

0 −f 2
1 ,2f0f1,f 2

1 −f 2
0](=4) =

(f 2
0 − f 2

1)[1, 0, −1] on LHS, where f 2
0 − f 2

1 �= 0. So we have ∂[1,0,−1](f) =
2[f0, f1] on RHS. Then we are done by Lemma 10.2 and f0f1 �= 0.

• For f0 + f2 �= 0, f1 + f3 = 0, we have f1 = −f3 �= 0 since f does not satisfy
the parity constraints. Note that we have ∂(f) = (f0 + f2)[1, 0] in RHS, so we
have ∂2[1,0](f) = [f0, f1] in RHS. If f0 �= 0, then we are done by Lemma 10.2.
If f0 = 0, then f2 �= 0 since f0 + f2 �= 0. Note that we have f1[0, 1] and
f2[1, 0] now. Thus we have ∂[1,0][∂[0,1](f)] = [f1, f2]. Then we are done by
Lemma 10.2.

• For f0 + f2 = 0, f1 + f3 �= 0, the proof follows from a holographic

transformation using

[
0 1
1 0

]

.

The next lemma shows that if we have an odd arity signature in M̃ \ (P ∪ Ã),
then we can prove Theorem 9.2 directly. The key point is that we can use such a
signature to get a unary [1, ξ] with ξ �= 0.

Lemma 11.3 Let F be a symmetric signature set and suppose f ∈ F has odd arity.

• If f ∈ M̂ \ (P ∪ Ã), then either F ⊆ M̂ or Pl-#CSP2(F) is #P-hard.
• If f ∈ M̂ † \ (P ∪ Ã), then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Theory of Computing Systems

Proof We will use our calculus with the derivative operator ∂ . Firstly, we prove the
lemma for f ∈ M̂ \ (P ∪ Ã). We already have F � P , F � A , F � A † by the
presence of f , and F � M̂ † by Corollary 9.13. If we can construct a unary [a, b]
with ab �= 0, then we can finish the proof by Lemma 10.2.

As f �∈ P and has odd arity, its arity n ≥ 3. By Lemma 9.14, the signature
f ∈ M̂ \ (P ∪ Ã) can take one of the following two forms (see the Calculus after
Definition 9.4):

• For f = [s, t]⊗n ± [t, s]⊗n, where n ≥ 3 is odd, we have st �= 0 and s4 �= t4.

Thus we have ∂
n−1
2 (f) = (s2+t2)

n−1
2 ([s, t]±[t, s]) = (s2+t2)

n−1
2 (s±t)[1, ±1],

a nonzero multiple of [1, ±1]. So we are done by Lemma 10.2.
• For fk = λεk(n − 2k), we have ∂

n−1
2 (f) = 2

n−1
2 λ[1, −ε] and we are done by

Lemma 10.2.

Similarly, for f ∈ M̂ † \ (P ∪ Ã), we just need to construct a unary [a, b] with
ab �= 0.

• For f = [s, ti]⊗n ± [t, si]⊗n, we have ∂
n−1
2 (f) = (s2 − t2)

n−1
2 [s, ti] ± (t2 −

s2)
n−1
2 [t, si] = (s2 − t2)

n−1
2 (s ± t)[1, ±i]. By Lemma 9.14, we have st �= 0

and s4 �= t4, and so this is a nonzero multiple of [1, ±i]. So we are done by
Lemma 10.2.

• For fk = λ(εi)k(n − 2k), if n ≡ 1 (mod 4), we have ∂
n−1
4=4 (f) = 2

n−1
4 λ[1, −εi]

and we are done by Lemma 10.2. If n ≡ 3 (mod 4), we have ∂[∂
n−3
4=4 (f)] =

2
n+5
4 λ[1, εi] and we are done by Lemma 10.2.

We remark that the use of ∂=4 instead of just ∂ in this proof is necessary, because
∂2(f) = 0 when fk = λ(εi)k(n−2k) and n ≥ 5. One may also suppose that the case
for M̂ †\(P∪Ã) can be reduced to the case for M̂ \(P∪Ã) by the transformation

T =
[
1 0
0 i

]

. While T transforms M̂ † to M̂ , and keeps P and Ã invariant, this

transformation does not keep EQ2 invariant. In fact [1, 0, 1]T ⊗2 = [1, 0, −1] �∈
EQ2. Therefore we need to handle the proof for M̂ † \ (P ∪ Ã) separately.

By definitions of P and Ã , we have the following simple lemma.

Lemma 11.4 Assume that f satisfies the parity constraints, then f ∈ P ∪ Ã iff f
belongs to the following set, up to a scalar factor
{
[1, 0]⊗n, [0, 1]⊗n, [1, 0]⊗2n + t[0, 1]⊗2n, [1, ρ]⊗n ± [1, −ρ]⊗n, [1, α]⊗n ± [1, −α]⊗n | t �= 0, n ≥ 1

}
.

Proof Note that f satisfies the parity constraints. Then by Definition 2.6, f ∈ P iff
f belongs to

{
[1, 0]⊗n, [0, 1]⊗n, [1, 0]⊗2n + t[0, 1]⊗2n | t �= 0, n ≥ 1

}

up to a scalar factor. Moreover, by the lists after Definition 2.5, f ∈ A \ P satisfies
the parity constraints iff f has the form [1, ρ]⊗n ± [1, −ρ]⊗n up to a scalar factor.

Theory of Computing Systems

Then after the holographic transformation using

[
1 0
0 α

]

, f ∈ A † \ P iff f has the

form [1, α]⊗n ± [1, −α]⊗n up to a scalar factor. This finishes the proof.

The next lemma shows that if we have a nonzero odd arity signature f ∈ P ∪ Ã
that does not satisfy the parity constraints, then we can obtain a unary [a, b] with
ab �= 0. Note that if we have a unary [a, b] with ab �= 0, then we can apply
Lemma 10.2.

Lemma 11.5 If f ∈ P∪Ã has odd arity and does not satisfy the parity constraints,
then we can construct a unary [a, b] with ab �= 0 in Pl-#CSP2(f).

Proof Let f have arity 2n + 1, n ≥ 0. Not satisfying the parity constraints implies
that f is not identically 0. Up to a nonzero factor, f has one of the following forms.

If f ∈ P , then f = [a, b]⊗2n+1 with ab �= 0 or f = [1, 0, . . . , 0, x] with x �= 0.

• If f = [1, 0, . . . , 0, x], x �= 0, then ∂n(f) = [1, x].
• If f = [a, b]⊗2n+1, a2 + b2 �= 0, then ∂n(f) = (a2 + b2)n[a, b].
• For f = [1, ±i]⊗2n+1, if n is even, then ∂

n
2=4(f) = 2

n
2 [1, ±i]. If n is odd, then

we have ∂f (=2n+2) = [1, ∓i] on LHS and we have ∂2n[1,∓i](f) = 22n[1, ±i] on
RHS.

For f ∈ Ã \P , we have f = [1, ρ]⊗2n+1± i[1, −ρ]⊗2n+1 or f = [1, α]⊗2n+1±
i[1, −α]⊗2n+1.

• If f = [1, α]⊗2n+1±i[1, −α]⊗2n+1 or [1, ρ]⊗2n+1±i[1, −ρ]⊗2n+1 with ρ2 = 1,
then ∂n(f) = (1 + α2)n[1 ± i, (1 ∓ i)α] or (1 + ρ2)n[1 ± i, (1 ∓ i)ρ].

• For f = [1, ρ]⊗2n+1 ± i[1, −ρ]⊗2n+1 with ρ2 = −1, and if n is even, then

we have ∂
n
2=4(f) = 2

n
2 [1 ± i, (1 ∓ i)ρ]. If n is odd, then 2n + 1 ≡ 3 (mod 4),

and (±ρ)2n+1 = ±ρ3 = ∓ρ, by ρ2 = −1. Then we have ∂f (=2n+2) =
[1, ρ2n+1]± i[1, (−ρ)2n+1] = [1, −ρ]± i[1, ρ] = (1± i)[1, ±iρ] on LHS. Note
that (1∓i

1±i
)2n = (∓i)2n = (−1)n = −1 since n is odd.

Then we have ∂2n[1,±iρ](f) = (1 ∓ i)2n[1, ρ] ± i(1 ± i)2n[1, −ρ] = (1 ±
i)2n{(1∓i

1±i
)2n[1, ρ]±i[1, −ρ]} = (1±i)2n{−[1, ρ]±i[1, −ρ]} = (1±i)2n[−1±

i, −ρ(1 ± i)].

If a signature f satisfies the parity constraints, then there is no way to construct
[a, b] with ab �= 0 from f . In fact in Pl-#CSP2 using f , the signature of any {f }-gate
will also satisfy the parity constraints, and in particular a unary signature can only be
a multiple of [1, 0] or [0, 1]. The next lemma shows that if we have a nonzero odd
arity signature f ∈ P ∪ Ã that satisfies the parity constraints, then we can obtain
[1, 0] or [0, 1]. We also remark that in Pl-#CSP2 using signatures of even arity one
can only produce signatures of even arity, and thus no unary signatures.

Theory of Computing Systems

Lemma 11.6 If a nonzero f ∈ P ∪ Ã has odd arity and satisfies the parity
constraints, then we can construct a unary [1, 0] or [0, 1] in Pl-#CSP2(f).

Proof By Lemma 11.4, any nonzero f of odd arity belongs to the following set, up
to a nonzero factor,
{
[1, 0]⊗2n+1, [0, 1]⊗2n+1, [1, ρ]⊗2n+1 ± [1, −ρ]⊗2n+1], [1, α]⊗2n+1 ± [1, −α]⊗2n+1] | n ≥ 0

}
.

For f = [1, 0]⊗2n+1, [0, 1]⊗2n+1, [1, α]⊗2n+1 ± [1, −α]⊗2n+1 or [1, ρ]⊗2n+1 ±
[1, −ρ]⊗2n+1 with ρ2 = 1, ∂n(f) = [1, 0], [0, 1], (1 + α2)n[1 ± 1, (1 ∓ 1)α] or
(1 + ρ2)n[1 ± 1, (1 ∓ 1)ρ] respectively, all of which are nonzero multiples of [1, 0]
or [0, 1].

For f = [1, ρ]⊗2n+1±[1, −ρ]⊗2n+1, with ρ2 = −1, if 2n+1 ≡ 1 (mod 4), then

∂
n
2=4(f) = 2

n
2 [1 ± 1, (1 ∓ 1)ρ], a nonzero multiple of [1, 0] or [0, 1]. If 2n + 1 ≡ 3

(mod 4), then (±ρ)2n+1 = ∓ρ. If we write f = [f0, f1, . . . , f2n+1], then exactly
one of f0 and f2n+1 is nonzero. We have the unary u = ∂f (=2n+2) = [f0, f2n+1]
in LHS, a nonzero multiple of [1, 0] or [0, 1]. Then we get ∂2nu (f) in RHS, also a
nonzero multiple of [1, 0] or [0, 1].

The next lemma shows that if we already have [1, 0] or [0, 1] and also a signature
f of any arity that does not satisfy the parity constraints, then we can construct a
unary [a, b] with ab �= 0.

Lemma 11.7 If f does not satisfy the parity constraints, then we can construct a
unary [a, b] with ab �= 0 in Pl-#CSP2([1, 0], f) or Pl-#CSP2([0, 1], f).

Proof We prove the lemma for Pl-#CSP2([1, 0], f). The proof for the other case

follows from a holographic transformation by

[
0 1
1 0

]

.

Let f = [f0, f1, . . . , fn]. Since f does not satisfy the parity constraints, there
exist 0 ≤ i < j ≤ n such that [fi, fi+1, . . . , fj−1, fj] = [fi, 0, . . . , 0, fj], where
fifj �= 0 and j − i is odd. We can get both f ′ = ∂n−i

[1,0] = [f0, f1, . . . , fi] and
f ′′ = ∂

n−j

[1,0] = [f0, f1, . . . , fj] on RHS. Either i or j is odd. And so we have either
=i+1 or =j+1, and we can get either ∂f ′(=i+1) = [f0, fi] or ∂f ′′(=j+1) = [f0, fj]
on LHS. Without loss of generality, assume that we have [f0, fi] on LHS.

If f0 = 0, then we have [0, 1] on LHS and f ′′′ = ∂
j−i−1

2 (∂i
[0,1](f ′′)) =

∂
j−i−1

2 ([fi, 0, . . . , 0, fj]) = [fi, fj] on RHS, and we are done.
If f0 �= 0, let m = min

1≤k≤n
{k | fk �= 0}. (As j > 0 and fj �= 0, this m

is well-defined.) Then f (4) = ∂n−m
[1,0] (f) = [f0, 0, . . . , 0, fm]. Moreover, we have

∂m−1
[f0,fi](f

(4)) = [f m
0 , f m−1

i fm] with two nonzero entries.

The next lemma assumes the presence of a non-degenerate binary GEN-EQ. The
conclusion is about a transformed signature but still in the Pl-#CSP2 setting.

Theory of Computing Systems

Lemma 11.8 For any x �= 0 and any signature f of arity 2n, let f̂ x =
[
1 0

0 x− 1
2

]⊗2n

f . Then Pl-#CSP2(f̂ x) ≤T Pl-#CSP2(f, [1, 0, x]).

Proof After a holographic transformation by

[
1 0

0 x
1
2

]

, we have

Pl-#CSP2([1, 0, x], f) ≡T Pl-Holant([1, 0, x], [1, 0, 0, 0, x2], · · · | [1, 0, 1], f̂ x).

If x is a root of unity, then there exists a t ≥ 1 such that xt = 1. Thus we have =2kt

for all k ≥ 1 on LHS. Moreover, we have =2k by ∂k(t−1)(=2kt) on LHS for all k ≥ 1.
Thus we are done.

If x is not a root of unity, then we have ∂d−2(Ed
2d(x)) = [1, 0, 0, 0, xd] of arity 4

on LHS for all d ≥ 2, where Ed
2d(x) = [1, 0, . . . , 0, xd] has arity 2d . Thus we can

get [1, 0, 0, 0, 1] on LHS by interpolation. Then we can get all of =2k on LHS since
we have [1, 0, 1] on RHS.

Lemma 11.9 Suppose either f = [1, ρ]⊗3±[1, −ρ]⊗3 or f = [1, α]⊗3±[1, −α]⊗3,
and let h = [1, 0, x]. If x4 �∈ {0, 1}, then Pl-#CSP2(f, h) is #P-hard.

Proof We prove the lemma for f = [1, ρ]⊗3 ± [1, −ρ]⊗3. The proof for f =
[1, α]⊗3 ± [1, −α]⊗3 is similar and we omit it here.

Let f̂ = [1, x− 1
2 ρ]⊗3 ± [1, −x− 1

2 ρ]⊗3, then Pl-#CSP2(f̂) ≤Pl-#CSP2(f, h) by

Lemma 11.8. f̂ satisfies a second-order recurrence with eigenvalues ±x− 1
2 ρ with

sum 0 and product −ρ2/x. Hence f̂ has type 〈−ρ2/x, 0, 1〉. Moreover, the second-
order recurrence relation is unique up to a scalar since f̂ is non-degenerate and
has arity 3. By (x−1ρ2)4 �= 1, we have f̂ /∈ P ∪ Ã ∪ M̃ by Lemma 9.11. So
Pl-#CSP2(f̂) is #P-hard by Lemma 11.2. Thus Pl-#CSP2(f, h) is #P-hard.

Lemma 11.10 Let f = [1, ρ]⊗3 ± [1, −ρ]⊗3 and g = [1, α]⊗3 ± [1, −α]⊗3. Then
Pl-#CSP2(f, g) is #P-hard.

Proof Consider the gadget in Fig. 29. We assign f to the circle vertices and g to the
triangle vertices. Let h be the signature of this gadget.

• If f = [1, ρ]⊗3 + [1, −ρ]⊗3 and g = [1, α]⊗3 + [1, −α]⊗3, then h =
32[ρ2α2, 0, −2].

• If f = [1, ρ]⊗3 − [1, −ρ]⊗3 and g = [1, α]⊗3 + [1, −α]⊗3, then h =
32ρ2[−2, 0, ρ2α2].

Fig. 29 Gadget used to obtain a signature of the form [a, 0, b] with |a| �= |b|. The circle vertices are
assigned f and the triangle vertices are assigned g

Theory of Computing Systems

• If f = [1, ρ]⊗3 + [1, −ρ]⊗3 and g = [1, α]⊗3 − [1, −α]⊗3, then h =
32α2[ρ2α2, 0, 2].

• If f = [1, ρ]⊗3 − [1, −ρ]⊗3 and g = [1, α]⊗3 − [1, −α]⊗3, then h =
32ρ2α2[2, 0, ρ2α2].

Note that both f and g satisfy the parity constraints, and thus h also satisfies them.
Hence, e.g., in the first case, f = 2[1, 0, ρ2, 0] and g = 2[1, 0, α2, 0], we only
need to calculate h0 and h2, since h1 = 0 by parity. In fact the left half of Fig. 29,
connecting f to g, also satisfies the parity constraints and has the signature 4[1 +
ρ2α2, 0, 2ρ2α2], and thus h = 16[(1 + ρ2α2)2, 0, 4(ρ2α2)2] = 32[ρ2α2, 0, −2]
(recall that ρ4 = 1 and α4 = −1).

Since |αρ| = 1 �= 2, we are done by Lemma 11.9.

Recall the notations S1, . . . , S5 introduced in (9.12). We have

5⋃

k=1

Sk = P ∪ Ã ∪ M̃ = P ∪ A ∪ A † ∪ M̂ ∪ M̂ †.

Now we can prove a conditional No-Mixing theorem for Pl-#CSP2 when a set of
signatures F is assumed to consist of only tractable signatures and has at least one
nonzero signature of odd arity.

Theorem 11.11 Let F ⊆ ⋃5
k=1 Sk be a set of symmetric signatures that includes

at least one nonzero signature of odd arity. If F � Sk for all 1 ≤ k ≤ 5, then
Pl-#CSP2(F) is #P-hard.

Proof If F contains a signature of odd arity in M̃ \ (P ∪ Ã), then we are done by
Lemma 11.3. Thus we can assume that F contains at least one nonzero signature of
odd arity f ∈ P ∪ Ã .

By Lemma 11.5, if f does not satisfy the parity constraints, then we have a unary
[a, b] with ab �= 0 and we are done by Lemma 10.2. Otherwise, we have [1, 0] or
[0, 1] by Lemma 11.6. If there exists a signature in F that does not satisfy the parity
constraints, then we can obtain a unary [a, b] with ab �= 0 by Lemma 11.7. Thus we
are done by Lemma 10.2.

Now we can assume thatF includes a nonzero odd arity signature f ∈ P∪Ã and

all signatures in F satisfy the parity constraints. Thus F ∩
(
M̃ \ (P ∪ Ã)

)
= ∅ by

Corollary 9.15. So we have F ⊆ P ∪ Ã , i.e., F ⊆ ⋃5
k=3 Sk . Then by Lemma 11.4,

we have, up to scalar multiples,

F ⊆
{ [1, 0]⊗n, [0, 1]⊗n, [1, 0]⊗2n + t[0, 1]⊗2n,

[1, ρ]⊗n ± [1, −ρ]⊗n, [1, α]⊗n ± [1, −α]⊗n

∣
∣
∣
∣ t �= 0 and n ≥ 1

}

.

Theory of Computing Systems

Note that the following signatures are all in
⋂5

k=3 Sk (see Fig. 24): For n ≥ 1,

[1, 0]⊗n and [0, 1]⊗n,

[1, 0]⊗2n + t[0, 1]⊗2n with t4 = 1,

[1, ρ]⊗m ± [1, −ρ]⊗m and [1, α]⊗� ± [1, −α]⊗� with 1 ≤ m, � ≤ 2.

Let

F ′ = F ∩
{ [1, 0]⊗2n + t[0, 1]⊗2n,

[1, ρ]⊗m ± [1, −ρ]⊗m, [1, α]⊗� ± [1, −α]⊗�

∣
∣
∣ t4 �∈ {0, 1}, n ≥ 1 and m, � ≥ 3

}
.

It follows that F \ F ′ ⊆ ⋂5
k=3 Sk .

Then F ′
� Sk for all 3 ≤ k ≤ 5. Indeed if F ′ ⊆ Sk for some 3 ≤ k ≤ 5, then

F ⊆ Sk , contrary to the given condition of the theorem. Let

S = F ′ ∩ {[1, ρ]⊗m ± [1,−ρ]⊗m | m ≥ 3
}

and T = F ′ ∩
{
[1, α]⊗� ± [1,−α]⊗� | � ≥ 3

}
.

If S �= ∅ and T �= ∅, then there exist g, h ∈ F ′ such that g = [1, α]⊗m ±[1, −α]⊗m

and h = [1, ρ]⊗� ±[1, −ρ]⊗�, where m, � ≥ 3. By Lemma 11.6, we can get [1, 0] or
[0, 1] from f . If we have [1, 0], then we have g′ = ∂m−3

[1,0] (g) = [1, α]⊗3 ± [1, −α]⊗3

and h′ = ∂�−3
[1,0](h) = [1, ρ]⊗3 ± [1, −ρ]⊗3, and are done by Lemma 11.10. If we

have [0, 1], then the proof follows from a transformation by

[
0 1
1 0

]

.

If exactly one of S and T is not empty, then there exists some [1, 0]⊗2n+t[0, 1]⊗2n

with t4 /∈ {0, 1} in F ′, since otherwise F ′ would be contained in either A or A †.
This contradictsF ′

� Sk for 3 ≤ k ≤ 5. By taking ∂n−1, we have [1, 0, t]. Moreover,
we have g = [1, α]⊗� ± [1, −α]⊗� or h = [1, ρ]⊗m ± [1, −ρ]⊗m in F ′, where
m, � ≥ 3. By a similar proof as in the previous case, first getting [0, 1] or [1, 0] by
Lemma 11.6, we can have g′ = [1, α]⊗3 ± [1, −α]⊗3 or h′ = [1, ρ]⊗3 ± [1, −ρ]⊗3

in F ′. Thus Pl-#CSP2(F ′) is #P-hard by Lemma 11.9. So Pl-#CSP2(F) is #P-hard.
If S = ∅ and T = ∅, then F ′ ⊆ {[1, 0]⊗2n + t[0, 1]⊗2n | t4 /∈ {0, 1}} ⊆ P . This

contradicts that F ′
� Sk for 3 ≤ k ≤ 5.

Now we can prove the dichotomy for Pl-#CSP2 with a single symmetric signature
of odd arity.

Theorem 11.12 If f is a symmetric signature of odd arity, then either Pl-#CSP2(f)
is #P-hard or f ∈ P ∪ Ã ∪ M̃ .

Proof Let f have arity 2n + 1. If 2n + 1 = 1, then f ∈ P . If 2n + 1 = 3, then we
are done by Lemma 11.2. In the following, assume that 2n + 1 ≥ 5. Let f ′ = ∂(f).
If f ′ /∈ P ∪ Ã ∪M̃ , then Pl-#CSP2(f ′) is #P-hard by induction. Thus Pl-#CSP2(f)
is #P-hard as well. Otherwise, f ′ ∈ P ∪ Ã ∪ M̃ .

If f ′ ∈ M̃ \ (P ∪ Ã), then we are done by Lemma 11.3. So we can assume that
f ′ ∈ P∪Ã . Note that f ′ has odd arity, so if f ′ does not satisfy the parity constraints,
then we have [a, b] with ab �= 0 by Lemma 11.5 and we are done by Lemma 10.2.
Otherwise, either f ′ is identically zero or, as f ′ has odd arity and satisfies the parity
constraints, by Lemma 11.4

f ′ ∈
{
[1, 0]⊗2n−1, [0, 1]⊗2n−1, [1, α]⊗2n−1 ± [1, −α]⊗2n−1, [1, ρ]⊗2n−1 ± [1, −ρ]⊗2n−1

}
.

Theory of Computing Systems

If f ′ ≡ 0, then f = x[1, i]⊗2n+1 + y[1, −i]2n+1 by Lemma 9.5. If x = 0 or
y = 0 or [xy �= 0 ∧ x4 = y4], then f ∈ A . Otherwise, xy �= 0 ∧ x4 �= y4.

• For 2n + 1 ≡ 1 (mod 4), we have ∂
n
2=4(f) = 2

n
2 {x[1, i] + y[1, −i]} = 2

n
2 [x +

y, (x − y)i]. Note that x + y �= 0, x − y �= 0 by x4 �= y4. Then we are done by
Lemma 10.2.

• For 2n + 1 ≡ 3 (mod 4), we have f ′′ = ∂
n−1
2=4 (f) = 2

n−1
2 {x[1, i]⊗3 +

y[1, −i]⊗3}. Note that xy �= 0 and f is non-degenerate. And by its second-order
recurrence, f ∈ 〈1, 0, 1〉. it follows from Lemma 9.11 that f ′′ /∈ P ∪ Ã ∪ M̃
since x4 �= y4. Thus Pl-#CSP2(f ′′) is #P-hard by Lemma 11.2. So Pl-#CSP2(f)

is #P-hard.

If f ′ ∈ {[1, 0]⊗2n−1, [0, 1]⊗2n−1, [1, α]⊗2n−1 ± [1, −α]⊗2n−1, [1, ρ]⊗2n−1 ±
[1, −ρ]⊗2n−1}, then we have [1, 0] or [0, 1] by Lemma 11.6. So if f does not satisfy
the parity constraints, then we have [a, b] with ab �= 0 by Lemma 11.7 and we are
done by Lemma 10.2. So we can assume that f satisfies the parity constraints in the
following.

• For f ′ = [1, 0]⊗2n−1, f = x[1, i]⊗2n+1 + y[1, −i]2n+1 + [1, 0]⊗2n+1 by
Lemma 9.5. If x = y = 0, then f ∈ P . Otherwise, (x, y) �= (0, 0).

Let a = x + y, b = (x − y)i, then (a, b) �= (0, 0). Note that f =
[1 + a, b, −a, −b, . . . , ±a, ±b]. Since 1 + a and −a cannot be both 0, by
the parity constraints, we have b = 0. And thus a �= 0. Moreover we have
∂n−1([1, 0]2n−1) = [1, 0] and f ′′′ = ∂2n−3

[1,0] (f) = [1 + a, 0, −a, 0, a]. We note

that 2n − 3 ≥ 1 and so ∂2n−3
[1,0] is defined. Note that f ′′′ is a redundant signa-

ture and its compressed signature matrix

⎡

⎣
1 + a 0 −a

0 −a 0
−a 0 a

⎤

⎦ is nonsingular, so

Pl-#CSP2(f ′′′) is #P-hard by Lemma 9.25. Thus Pl-#CSP2(f) is #P-hard.
• For f ′ = [0, 1]⊗2n−1, the proof follows from the previous case by a transforma-

tion using

[
0 1
1 0

]

.

• For f ′ = [1, α]⊗2n−1 ± [1, −α]⊗2n−1, f = x[1, i]⊗2n+1 + y[1, −i]2n+1 +
1

1+α2 {[1, α]⊗2n+1 ± [1, −α]⊗2n+1} by Lemma 9.5. If x = y = 0, then f ∈ A †.

Otherwise, (x, y) �= (0, 0). Firstly, we construct [1, 0, α2] by f . Note that we
have f (4) = ∂n−1(f) = (1 + α2)n−2{[1, α]⊗3 ± [1, −α]⊗3}.

If f (4) = (1+α2)n−2{[1, α]⊗3+[1, −α]⊗3}with a+ sign, we have ∂(f (4)) =
2(1 + α2)n−1[1, 0] and ∂[1,0](f (4)) = 2(1 + α2)n−2[1, 0, α2].

If f (4) = (1+α2)n−2{[1, α]⊗3−[1, −α]⊗3}with a− sign, we have ∂(f (4)) =
2α(1 + α2)n−1[0, 1] and ∂[0,1](f (4)) = 2α(1 + α2)n−2[1, 0, α2].

In either case, we have [1, 0, α2]. Then we have f (5) = ∂n−1
[1,0,α2](f) = (1 −

α2)n−1{x[1, i]⊗3 + y[1, −i]3}. If x = 0 or y = 0 or [xy �= 0 ∧ x4 = y4],
then f (5) ∈ A \ A †. By the eigenvalues, f ′ ∈ 〈1, 0, ±i〉, hence f ′ ∈ A † \
(P ∪A ∪M̃) in this case. So Pl-#CSP2(f (5), f ′) is #P-hard by Theorem 11.11.

Theory of Computing Systems

Otherwise, xy �= 0 and x4 �= y4. Then f (5) /∈ P∪Ã ∪M̃ . Thus Pl-#CSP2(f (5))

is #P-hard by Lemma 11.2. So Pl-#CSP2(f) is #P-hard.

The final case is f ′ = [1, ρ]⊗2n−1 ± [1, −ρ]⊗2n−1.

• For f ′ = [1, 1]⊗2n−1 + [1, −1]⊗2n−1,

f = x[1, i]⊗2n+1 + y[1, −i]2n+1 + 1

2

{
[1, 1]⊗2n+1 + [1, −1]⊗2n+1

}
.

If x = y = 0, then f ∈ A . In the following, assume that (x, y) �= (0, 0).
Let a = x + y, b = (x − y)i, then (a, b) �= (0, 0). Moreover, f =
[a, b, −a, −b, . . . , ±b] + [1, 0, 1, 0, . . . , 0] = [a + 1, b, −a + 1, −b, a +
1, . . . , ±b]. Since a + 1 and −a + 1 cannot be both 0, and f satisfies the parity
constraints, we have b = 0. Thus f = [a+1, 0, −a+1, 0, a+1, . . . , ±a+1, 0].
As b = 0 we have a �= 0. Note that we have ∂n(f) = 2n[1, 0]. Thus we have
f (6) = ∂2n−3

[1,0] (f) = [a + 1, 0, −a + 1, 0, a + 1]. The compressed signature

matrix of f (6) is

⎡

⎣
a + 1 0 −a + 1
0 −a + 1 0
−a + 1 0 a + 1

⎤

⎦ with determinant 4a(1 − a). If

a �= 1, then by a �= 0, this determinant is nonzero. Thus the compressed signa-
ture matrix of f (6) is nonsingular and Pl-#CSP2(f (6)) is #P-hard by Lemma 9.25.
So Pl-#CSP2(f) is #P-hard.

If a = 1, then we have f (7) = ∂2n−4
[1,0] (f) = 2[1, 0, 0, 0, 1, 0] of arity 5 (note

that 2n − 4 ≥ 0). Consider the gadget in Fig. 30. We assign [1, 0, 0, 0, 1, 0]
to both vertices. The signature of this gadget is redundant, and its compressed

signature matrix is

⎡

⎣
1 0 0
0 1 0
0 0 3

⎤

⎦. Since this matrix is nonsingular, we are done by

Lemma 9.25.
• For f ′ = [1, 1]⊗2n−1 − [1, −1]⊗2n−1,

f = x[1, i]⊗2n+1 + y[1, −i]2n+1 + 1

2

{
[1, 1]⊗2n+1 − [1, −1]⊗2n+1

}
.

After the holographic transformation by

[
0 1
1 0

]

, we have Pl-#CSP2(f, f ′) ≡
Pl-#CSP2(f̂ , f̂ ′), where f̂ ′ = [1, 1]⊗2n−1 + [1, −1]⊗2n−1, and f̂ =

Fig. 30 Gadget used to obtain a
signature whose signature
matrix is redundant

Theory of Computing Systems

xi2n+1[1, −i]⊗2n+1 + y(−i)2n+1[1, i]2n+1 + 1
2 {[1, 1]⊗2n+1 + [1, −1]⊗2n+1}.

Thus we are done by the previous case.
• For f ′ = [1, i]⊗2n−1+[1, −i]⊗2n−1, f has arity 2n+1 and using Proposition 9.7

(the Explicit List for
∫
(f ′)),

∫
([1, εi]⊗2n−1) is a sum of λ[1, εi]⊗2n+1 with a

signature having the k-th term of the form − 1
2k(εi)k for 0 ≤ k ≤ 2n + 1. Thus,

we can write fk = (x − 1
2k)ik + (y − 1

2k)(−i)k for some x and y, and for
0 ≤ k ≤ 2n + 1 by Lemma 9.5.

We have ∂f ′(=2n) = ∂∂(f)(=2n) = 2[1, 0] on LHS.
Let a = x + y, b = (x − y)i, then f = [a, b, −a + 2, −b, a − 4, . . . , ±b].

Since a and −a + 2 cannot be both 0, and f satisfies the parity constraints, we
have b = 0. Then we have f (8) = ∂2n−3

[1,0] (f) = [a, 0, −a +2, 0, a −4]. If a �= 2,

then the compressed signature matrix of f (8) is

⎡

⎣
a 0 −a + 2
0 −a + 2 0
−a + 2 0 a − 4

⎤

⎦,

and is nonsingular and we are done by Lemma 9.25.
For a = 2, we have ∂2n−4

[1,0] (f) = 2[1, 0, 0, 0, −1, 0]. Consider the gadget in
Fig. 30. We assign [1, 0, 0, 0, −1, 0] to both vertices. The signature of this gadget

is redundant, and its compressed signature matrix is

⎡

⎣
1 0 0
0 1 0
0 0 3

⎤

⎦. Since this matrix

is nonsingular, we are done by Lemma 9.25.
• For f ′ = [1, i]⊗2n−1 − [1, −i]⊗2n−1, the proof follows from the previous case

by a holographic transformation using

[
0 1
1 0

]

.

By Theorem 11.11 and Theorem 11.12, we have the following dichotomy theorem.

Theorem 11.13 For any set of symmetric signatures F that contains at least one
nonzero signature with odd arity, if F ⊆ P , or A , or A †, or M̂ , or M̂ †, then
Pl-#CSP2(F) is tractable. Otherwise, Pl-#CSP2(F) is #P-hard.

12 Arity 4 Dichotomy for Pl-#CSP2(f)

The goal of this section is a dichotomy theorem for Pl-#CSP2(f) when f is a sym-
metric signature of arity 4. Frequently our first test uses the determinantal criterion
of a redundant signature of arity 4 based on Lemma 9.25.

Lemma 12.1 Let f be an arity 4 symmetric signature. If the signature matrix of f is
redundant, and its compressed form is nonsingular, then Pl-#CSP2(f) is #P-hard.

Proof Since Pl-Holant(f) ≤T Pl-#CSP2(f), we are done by Lemma 9.25.

Theory of Computing Systems

Next we introduce a trick which we call the “Three Stooges”. For f =
[a, b, c, d, e], define

f × = [a, c, e]
f ×× = [a2 + c2 + 2b2, ac + ce + 2bd, c2 + e2 + 2d2], and

f ×× = [a2 + c2 + 2b2, b2 + d2 + 2c2, c2 + e2 + 2d2].

The following lemma is proved by the technique of domain pairing.

Lemma 12.2 If f = [a, b, c, d, e], then Pl-#CSP(f ×, f ×× , f ××) ≤T Pl-#CSP2(f).

Proof Let f ′ be the signature of the gadget in Fig. 31 and f ′′ be the signature of the
gadget in Fig. 31 rotated 90◦. Then f ′ and f ′′ have the first and the second signature
matrix below respectively:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 + c2 + 2b2 ab + cd + 2bc ab + cd + 2bc ac + ce + 2bd

ab + cd + 2bc b2 + d2 + 2c2 b2 + d2 + 2c2 bc + de + 2cd

ab + cd + 2bc b2 + d2 + 2c2 b2 + d2 + 2c2 bc + de + 2cd

ac + ce + 2bd bc + de + 2cd bc + de + 2cd c2 + e2 + 2d2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 + c2 + 2b2 ab + cd + 2bc ab + cd + 2bc b2 + d2 + 2c2

ab + cd + 2bc ac + ce + 2bd b2 + d2 + 2c2 bc + de + 2cd

ab + cd + 2bc b2 + d2 + 2c2 ac + ce + 2bd bc + de + 2cd

b2 + d2 + 2c2 bc + de + 2cd bc + de + 2cd c2 + e2 + 2d2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Fig. 31 Gadget used in
Lemma 12.2. Both vertices are
assigned f

Theory of Computing Systems

We highlight the relevant entries in the display below (in fact, readers should only
focus on the entries highlighted; see Fig. 2 in Part I for an illustration of the rotation
operation):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 + c2 + 2b2 ∗ ∗ ac + ce + 2bd

∗ b2 + d2 + 2c2 ∗ ∗

∗ ∗ b2 + d2 + 2c2 ∗

ac + ce + 2bd ∗ ∗ c2 + e2 + 2d2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a2 + c2 + 2b2 ∗ ∗ b2 + d2 + 2c2

∗ ac + ce + 2bd ∗ ∗

∗ ∗ ac + ce + 2bd ∗

b2 + d2 + 2c2 ∗ ∗ c2 + e2 + 2d2‘

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For any instance of Pl-#CSP(f ×, f ×× , f ××), we replace each edge e by two edges
that connect the same incident nodes of e. For each variable node that is con-
nected to k edges, we replace its label =k by =2k . We replace each occurrence of

f ×, f ×× , f ×× by f, f ′, f ′′ as a constraint respectively. Then the new instance is a
problem in Pl-#CSP2(f, f ′, f ′′) and has the same value as the given instance of

Pl-#CSP(f ×, f ×× , f ××). By Pl-#CSP2(f, f ′, f ′′) ≡ Pl-#CSP2(f), we complete the
proof.

We demonstrate a simple use of the “Three Stooges” in the following lemma.

Lemma 12.3 If a4 /∈ {0, 1}, then Pl-#CSP2([1, 0, a, 0, a2]) is #P-hard.

Proof For f = [1, 0, a, 0, a2], we have f × = [1, a, a2] and f ×× = [1+
a2, 2a2, a2(1 + a2)]. By Lemma 9.8, f × /∈ A ∪ M̂ since a4 /∈ {0, 1}. By the same

reason and Lemma 9.8, the only possibility for f ×× ∈ P is being degenerate. Thus
a2(1+ a2)2 = 4a4. This implies that a = 0 or a = ±1; a contradiction. This implies

that f × and f ×× cannot both be in P, A , or M̂ . Thus Pl-#CSP(f ×, f ××) is #P-hard
by Theorem 9.22. Then by Lemma 12.2, Pl-#CSP2(f) is #P-hard.

Lemma 12.4 Let f = [1, 1]⊗4 + a[1, −1]⊗4, where a4 �= 0, 1. Then Pl-#CSP2(f)

is #P-hard.

Proof Under a holographic transformation by H =
[
1 1
1 −1

]

, we have

Pl-#CSP2(f) ≡ Pl-Holant(EQ2 | f) (12.14)

≡ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂), (12.15)

Theory of Computing Systems

where f̂ = (H−1)⊗4f = [1, 0, 0, 0, a]. By Lemma 12.3, Pl-#CSP2([1, 0, a, 0, a2])
is #P-hard, and we have

Pl-#CSP2([1,0, a,0, a2]) ≡ Pl-Holant(EQ2 | [1, 0, a, 0, a2]) (12.16)

≡ Pl-Holant([1, 0, a],[1, 0, 0, 0, a2], · · · | [1, 0, 1, 0, 1]) (12.17)

≤ Pl-Holant([1, 0, a],[1, 0, 0, 0, a2], · · · | [1, 0, 1], [1, 0, 1, 0, 1], · · ·), (12.18)

where the second equivalence ≡ is by a holographic transformation with

[
1 0
0

√
a

]

.

The problem in (12.15) can simulate the problem in (12.18). With [1, 0, 1] on the
left and f̂ on the right in (12.15), we can get ∂(f̂) = [1, 0, a] on the right. Now
consider the gadget in Fig. 32. We assign f̂ to the circle vertices, =2 to the square
vertices, and [1, 0, a] to the triangle vertex. If there are k−1 occurrences of the dashed
subgadget, then the signature of this gadget is [1, 0, . . . , 0, ak] of arity 2k. Thus

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], · · · | [1, 0, a], [1, 0, 0, 0, a2], · · ·)
≤ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], · · · | f̂).

Then combining three reductions, we have Pl-#CSP2([1, 0, a, 0, a2]) ≤
Pl-#CSP2(f), where a4 �= 0, 1. Thus Pl-#CSP2(f) is #P-hard by Lemma 12.3.

Now we are ready to prove the following theorem.

Theorem 12.5 Let f be a symmetric signature of arity 4, then Pl-#CSP2(f) is #P-
hard or f ∈ P ∪ Ã ∪ M̃ .

Proof The first step is to apply Lemma 12.2 to f ×. For f = [f0, f1, f2, f3, f4] we
have f × = [f0, f2, f4]. If Pl-#CSP(f ×) is #P-hard, then Pl-#CSP2(f) is #P-hard
by Lemma 12.2. In the following, assume that Pl-#CSP(f ×) is tractable. So we can
use the dichotomy Theorem 9.21 for d = 1, i.e., for [f0, f2, f4], one of the following
conditions holds:

1. f0f4 = f 2
2 ;

2. f0 = f4 = 0;
3. f2 = 0;
4. f0f4 = −f 2

2 and f0 = −f4 �= 0;
5. f0 = f4 �= 0.

Now we can characterize the form of [f0, f2, f4].
• If f2 = 0, then [f0, f2, f4] takes the form [0, 0, 0], [0, 0, 1], [1, 0, 0] or [1, 0, a]

with a �= 0 up to a scalar;

Fig. 32 Gadget �k , which has k − 1 copies of the dashed box. Circle vertices are assigned f̂ , square
vertices are assigned =2, and the triangle vertex is assigned [1, 0, a]

Theory of Computing Systems

• if f2 �= 0, f0 = 0 or f4 = 0, then [f0, f2, f4] takes the form [0, 1, 0] up to a
scalar;

• if all of f0, f2, f4 are nonzero, then up to a scalar, [f0, f2, f4] has to take the
form [1, r, r2], [1, 1, −1], [1, −1, −1] or [1, b, 1] with r �= 0, b �= 0;

i.e., [f0, f2, f4] takes one of the following form
[0, 0, 0], [1, 0, 0], [0, 0, 1], [1, r, r2], [0, 1, 0], [1, 0, a], [1, 1, −1], [1, −1, −1],

or [1, b, 1]
up to a scalar, where r �= 0, a �= 0, and b2 /∈ {0, 1}.

Case 1: [f0, f2, f4] = [0, 0, 0]

In this case, f = [0, x, 0, y, 0] and f ×× = [2x2, x2 + y2, 2y2].
• If x2 = y2, then f = [0, x, 0, ±x, 0] ∈ A .

• If x2 = −y2, then f = [0, 1, 0, ±i, 0] ∈ A † since

[
1 0
0

√
i

]⊗4

f ∈ A .

• If x4 �= y4, then Pl-#CSP(f ××) is #P-hard by Theorem 9.21, so Pl-#CSP2(f)

is #P-hard by Lemma 12.2.

Case 2: [f0, f2, f4] = [1, 0, 0] or [0, 0, 1]
We prove the case for [f0, f2, f4] = [1, 0, 0] , i.e., f = [1, x, 0, y, 0]. The other
case is similar.
Note that we have ∂(f) = [1, x +y, 0]. If x +y �= 0, then Pl-#CSP2([1, x +y, 0])
is #P-hard by Theorem 9.21. Thus Pl-#CSP2(f) is #P-hard.
If x = −y �= 0, then Pl-#CSP2(f) is #P-hard by Lemma 12.1.
If x = −y = 0, then f = [1, 0]⊗4 ∈ P .

Case 3: [f0, f2, f4] = [1, r, r2] with r �= 0

In this case, f = [1, x, r, y, r2]. If rx �= y, then Pl-#CSP2(f) is #P-hard by
Lemma 12.1. Otherwise, f = [1, x, r, xr, r2]. Then we have ∂(f) = (1 +
r)[1, x, r]. If r �= −1, then we have [1, x, r]. In the following we will separate out
the cases according to value of r .
For r4 �= 1 in f = [1, x, r, xr, r2].
• If x = 0, then f = [1, 0, r, 0, r2], and Pl-#CSP2(f) is #P-hard by

Lemma 12.3.
• If x2 = r , then f = [1, x]⊗4 ∈ P .
• If x2 �= r and x �= 0, then Pl-#CSP2([1, x, r]) is #P-hard by Theorem 9.21.

Thus Pl-#CSP2(f) is #P-hard.

For r = 1, then f = [1, x, 1, x, 1].
• If x4 = 0 or 1, then f ∈ A .

Theory of Computing Systems

• If x4 �= 0, 1, then let a = 1−x
1+x

and we have a4 �= 0, 1 by Lemma 9.3. Note that

f = 1
1+a

{[1, 1]⊗4 + a[1, −1]⊗4
}
. By Lemma 12.4, Pl-#CSP2(f) is #P-hard.

For r = −1, then f = [1, x, −1, −x, 1].
• If x4 = 0 or 1, then f ∈ A .
• If x4 �= 0, 1, then let a = 1+xi

1−xi
and we have a4 �= 0, 1 by Lemma 9.3.

Note that f = 1
a+1

{[1, i]⊗4 + a[1, −i]⊗4
}
. Thus we have [1, 0, −1]⊗2 on

the left by Lemma 9.20. Under the holographic transformation by

[
1 0
0 i

]

, this

[1, 0, −1]⊗2 is transformed to [1, 0, 1]⊗2, and we have

Pl-#CSP2(f) ≡T Pl-Holant(EQ4 ∪ {[1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 0, 0,−1], · · · } | f ′),
(12.19)

where f ′ = 1
1+a

{[1, 1]⊗4 + a[1, −1]⊗4
}
. Now having [1, 0, 1]⊗2 on the left,

we can form a pair of self loops in a planar way for a pair of adjacent f ′ and
get (∂(f ′))⊗2 =

(
2

1+a
[1 + a, 1 − a, 1 + a]

)⊗2
on the right side. Since we

have [1, 0, 1]⊗2 on the left side, we can obtain [1, 0, 1]⊗2 on the right side by

interpolation using [1+a, 1−a, 1+a]⊗2. Note that the matrix

[
1 + a 1 − a

1 − a 1 + a

]

can be diagonalized by

[
1 1
1 −1

]

. This implies that

Pl-#CSP4(f ′, [1, 0, 1]⊗2) ≤T

Pl-Holant(EQ4 ∪ {[1, 0, 1]⊗2, [1, 0, −1], [1, 0, 0, 0, 0, 0, −1], · · · } | f ′).

Then by (12.19) and Lemma 10.4, we have

Pl-#CSP2(f ′) ≤ Pl-#CSP4(f ′, [1, 0, 1]⊗2) ≤ Pl-#CSP2(f). (12.20)

By Lemma 12.4, Pl-#CSP2(f ′) is #P-hard. Thus Pl-#CSP2(f) is #P-hard.

For r2 = −1, then r = ±i in f = [1, x, r, xr, −1].

• If x = 0, then f = [1, 0, r, 0, −1] ∈ A † since

[
1 0
0

√
i

]⊗4

f =
[1, 0, ±1, 0, 1] ∈ A .

• If x2 = r , then f = [1, x]⊗4 ∈ P .

• If x2 = −r , then f = [1, x, −x2, −x3, −1] ∈ A † since

[
1 0
0 x−1

]⊗4

f ∈ A ,

with x4 = −1.
• If x4 �= 0, −1, thus x2 �= ±r . Then Pl-#CSP2([1, x, r]) is #P-hard by

Theorem 9.21. Thus Pl-#CSP2(f) is #P-hard.

Case 4: [f0, f2, f4] = [0, 1, 0]

Theory of Computing Systems

In this case, f = [0, x, 1, y, 0]. We first apply Lemma 12.1 and calculate the
determinant of the compressed matrix for f , which is 2xy − 1. If xy �= 1

2 , then
Pl-#CSP2(f) is #P-hard by Lemma 12.1.
If xy = 1

2 and x−y = 0, then f = [0, 1√
2
, 1, 1√

2
, 0] or f = [0, − 1√

2
, 1, − 1√

2
, 0].

Both are in M̂ , by Lemma 9.18.
If xy = 1

2 and x + y = 0, then f = [0, i√
2
, 1, − i√

2
, 0] or f =

[0, − i√
2
, 1, i√

2
, 0]. Both are in M̂ †, by Lemma 9.18. In fact from the previous

line with [0, ± 1√
2
, 1, ± 1√

2
, 0], we can see directly

[
1 0
0 i

]⊗4

f ∈ M̂ .

In the following we have xy = 1
2 and x2 �= y2. Then f ×× = [1 + 2x2, 2 + x2+

y2, 1+2y2] and f ×× = [1+2x2, 1, 1+2y2]. We will prove that Pl-#CSP(f ×× , f ××)

is #P-hard by showing that f ×× , f ×× cannot be both in the same P, A , or M̂ .

• By x2 �= y2 and Lemma 9.8, we have f ×× /∈ M̂ .

• Suppose {f ×× , f ××} ⊆ P . f ×× is not of the form [1, 0, a], and also not of
the form [0, 1, 0] since 1 + 2x2 �= 1 + 2y2. Thus f ×× is degenerate, i.e.,

(1+2x2)(1+2y2) = 1. Note that f ×× is not of the form [0, 1, 0] since 1+2x2 �=
1+ 2y2. If f ×× is of the form [1, 0, a], then x2 + y2 = −2. Then together with
xy = 1

2 we obtain (1 + 2x2)(1 + 2y2) = −2 �= 1. This contradicts that f ××

is degenerate. Thus f ×× and f ×× are both degenerate. Then we have

(1 + 2x2)(1 + 2y2) = (x2 + y2 + 2)2, (12.21)

(1 + 2x2)(1 + 2y2) = 1. (12.22)

We show that these two equations contradict the known relation xy = 1/2.
Note that the left sides of (12.21) and (12.22) are the same. Thus we have
(x2 + y2 + 2)2 = 1, i.e., x2 + y2 = −3 or x2 + y2 = −1. By expanding
(12.22), we have 2(x2 + y2) + 4x2y2 = 0. If x2 + y2 = −3 or −1, then
4x2y2 = 6 or 2 respectively. Both possibilities contradict that xy = 1

2 . Thus

f ×× and f ×× cannot both belong to P .

• Suppose {f ×× , f ××} ⊆ A . By f ×× ∈ A and the middle term is nonzero,
by Corollary 9.9 we have 1 + 2x2 = ±(1 + 2y2). Since x2 �= y2, we have
1 + 2x2 = −1 − 2y2. This leads to (x + y)2 = 0 by using xy = 1

2 . This
contradicts x2 �= y2.

We have proved that f ×× , f ×× cannot be both in P , or A , or M̂ . Thus

Pl-#CSP(f ×× , f ××) is #P-hard by Theorem 9.22. So Pl-#CSP2(f) is #P-hard by
Lemma 12.2.

Theory of Computing Systems

Case 5: [f0, f2, f4] = [1, 0, a] with a �= 0

In this case, f = [1, x, 0, y, a]. We first apply Lemma 12.1 and calculate the
determinant of the compressed matrix for f , which is −(ax2 + y2). If ax2 +
y2 �= 0, then Pl-#CSP2(f) is #P-hard by Lemma 12.1. In the following we assume
ax2 + y2 = 0.
If x = y = 0, then f ∈ P .
If x = y �= 0, then a = −1. So f = [1, x, 0, x, −1] ∈ M̂ †, by Corollary 9.18.
If x = −y �= 0, then a = −1. So f = [1, x, 0, −x, −1] ∈ M̂ , by Corollary 9.18.
Now we assume ax2 + y2 = 0 and x2 �= y2. Then a �= −1 and xy �= 0 by a �= 0.
In this case, the “Three Stooges” are

f × = [1, 0, a], f ×× = [1+2x2, x2+y2, a2+2y2], and f ×× = [1+2x2, 2xy, a2+2y2].
By ax2 + y2 = 0, we have

f ×× = [1+2x2, (1−a)x2, a2−2ax2] and f ×× = [1+2x2, 2xy, a2−2ax2].
We will prove that Pl-#CSP(f ×, f ×× , f ××) is #P-hard by showing that f ×, f ×× and
f ×× cannot be all in the same P, A , or M̂ .

• Suppose {f ×, f ××} ⊆ M̂ . Note that a �= −1. If f × ∈ M̂ , we have a = 1 by
Lemma 9.8. Then by f ×× ∈ M̂ and Lemma 9.8, we have 1 + 2x2 = 1 − 2x2

or 2xy = 0. This contradicts that xy = 1
2 .

• Suppose {f ×× , f ××} ⊆ P . If 1+ 2x2 and a2 − 2ax2 are both zero, then a = 0

or −1. This contradicts that a �= 0 and a �= −1. Thus f ×× , f ×× are not of the
form [0, 1, 0]. By xy �= 0, f ×× is not of the form [1, 0, c] with c �= 0. Thus
f ×× is degenerate by Lemma 9.8, i.e.,

(1 + 2x2)(a2 − 2ax2) = 4x2y2 = −4ax4, (12.23)

where the last equality is by ax2 + y2 = 0.
If a = 1, we have 1 − 4x4 = −4x4 by (12.23). This is a contradiction.

If a �= 1, then f ×× is not of the form [1, 0, c] with c �= 0. Thus f ×× is
degenerate by f ×× ∈ P , i.e.,

(1 + 2x2)(a2 − 2ax2) = (1 − a)2x4.

Then by (12.23), we have −4ax4 = (1 − a)2x4. This implies that −4a =
(1 − a)2 by x �= 0. Then (1 + a)2 = 0, contradicting a �= ±1.

• Suppose {f ×, f ××} ⊆ A . By f × ∈ A , and a �= 0, we get a4 = 1 from
Lemma 9.8. It follows that a = 1 or a2 = −1, as we have a �= −1.
For a = 1, the equation ax2 + y2 = 0 gives us y2 = −x2. Then from

Corollary 9.9 we have

(1 + 2x2)2 = (1 − 2x2)2

by f ×× ∈ A and 2xy �= 0. Thus x = 0. This is a contradiction.
For a2 = −1, by f ×× ∈ A and 2xy �= 0, we have (1 + 2x2)2 = (−1 −

2ax2)2 by Corollary 9.9. 1 + 2x2 = 1 + 2ax2 leads to a contradiction a = 1,

Theory of Computing Systems

hence 1+2x2 = −(1+2ax2). Then x2 = − 1
a+1 and f ×× = [a−1

a+1 , 2xy, a−1
a+1].

Note that a + 1 �= 0. We observe that the norm of x2 is 1√
2
and the norm of x

is equal to the norm of y by ax2 = −y2 and a2 = −1. Thus the norm of 2xy

is
√
2. Moreover, the norm of a−1

a+1 is 1, as a = ±i. Thus the norm of 2xy is

not equal to the norm of a−1
a+1 , and are nonzero. So f ×× /∈ A by Corollary 9.9.

This implies that f ×, f ×× and f ×× cannot be all in P , or all in A , or all in

M̂ . Thus the problem Pl-#CSP(f ×, f ×× , f ××) is #P-hard by Theorem 9.22. So
Pl-#CSP2(f) is #P-hard.

Case 6: [f0, f2, f4] = [1, ±1, −1]
In this case, f = [1, x, 1, y, −1] or [1, x, −1, y, −1]. We consider the first case;
the second case is similar.
We have ∂(f) = [2, x+y, 0]. If x+y �= 0, then Pl-#CSP2([2, x+y, 0]) is #P-hard
by Theorem 9.21. Thus Pl-#CSP2(f) is #P-hard. Now we assume x +y = 0. Next
we apply Lemma 12.1 and calculate the determinant of the compressed matrix for
f , which is a nonzero constant multiple of x2+1. If x2+1 �= 0, then Pl-#CSP2(f)

is #P-hard by Lemma 12.1.
If x + y = 0 and x2 + 1 = 0, then f = [1, ±i, 1, ∓i, −1]. We have

∂(f) = 2[1, 0, 0], ∂[1,0,0](f) = [1,±i, 1], and ∂[1,±i,1](f) = [0,±2i, 2].
Then Pl-#CSP2([0, ±2i, 2]) is #P-hard by Theorem 9.21. Thus Pl-#CSP2(f) is
#P-hard.

Case 7: [f0, f2, f4] = [1, b, 1] with b2 �= 0, 1

In this last case of Theorem 12.5, f = [1, x, b, y, 1] and the determinant of the
compress signature matrix is

D = b + 2bxy − b3 − x2 − y2. (12.24)

If D �= 0, then Pl-#CSP2(f) is #P-hard by Lemma 12.1. In the following we
assume that D = 0.
If x = y = 0, then b = 0 or b2 = 1 by D = b(1−b2) = 0. This is a contradiction.
If x = y �= 0, then D = (1 − b)[b(1 + b) − 2x2] = 0. By b �= 1, we have
b(1 + b) = 2x2. This implies that f ∈ M̂ by Corollary 9.18.
Similarly, if x = −y �= 0, then D = (1 + b)[b(1 − b) − 2x2] = 0. By b �= −1,
we have b(1 − b) = 2x2. This implies that f ∈ M̂ † by Corollary 9.18.
In the following, assume that x2 �= y2 in additioto D = 0. In this case, the “Three
Stooges” are

f × = [1, b, 1],
f ×× = [1 + b2 + 2x2, 2b2 + x2 + y2, 1 + b2 + 2y2], and

f ×× = [1 + b2 + 2x2, 2b + 2xy, 1 + b2 + 2y2].

Theory of Computing Systems

We will prove that Pl-#CSP(f ×, f ×× , f ××) is #P-hard by showing that

f ×, f ×× , f ×× cannot all be in the same P , or A , or M̂ .
By b2 �= 0, 1, we have f × /∈ P by Lemma 9.8.

• Suppose b2 �= −1. Then in addition to b2 �= 0, 1, we have b4 �= 0, 1. Then

f × /∈ A by Lemma 9.8. Moreover, if f ×× ∈ M̂ , then by Lemma 9.8 and the
fact that x2 �= y2, we must have

1 + b2 + 2x2 = −(1 + b2 + 2y2) and 2b2 + x2 + y2 = 0. (12.25)

From (12.25), we get b2 = 1. This is a contradiction. This implies that f ×, f ××

cannot be all in P , or all in A , or all in M̂ when b2 �= −1.

• Now suppose b2 = −1. Then f ×× = [2x2, x2 + y2 − 2, 2y2] and f ×× =
2[x2, b + xy, y2]. If f ×× ∈ M̂ , then by x2 �= y2 and Lemma 9.8, we have

x2 = −y2 and x2 + y2 − 2 = 0

This is a contradiction.

Finally suppose {f ×× , f ××} ⊆ A .

– If x2 + y2 = 0, then xy = −1 by b2 = −1 and

D = b + 2bxy − b3 − x2 − y2 = 0.

Then f ×× = 2[x2, −1, y2], f ×× = 2[x2, b − 1, y2] both have all
nonzero entries. If they are both in A , the norm of their entries must
be all the same |b − 1| = |x2| = | − 1| = 1, by Corollary 9.9.
However b − 1 does not have norm 1 since b2 = −1.

– If x2 + y2 �= 0, then, since we also have x2 �= y2, the first and the

last entries of both f ×× and f ×× are neither equal nor negative of each
other. It follows from membership in A that x2 + y2 − 2 = 0 and
b+xy = 0 by Corollary 9.9. Then byD = b+2bxy−b3−x2−y2 =
0 and b2 = −1, we get a contradiction.

We have proved that f ×, f ×× , f ×× cannot be all in P , or all in A , or all in
M̂ when b2 = −1.

From above, f ×, f ×× , f ×× cannot be all in P, or all in A , or all in M̂ when

x2 �= y2 and D = 0. Thus Pl-#CSP(f ×, f ×× , f ××) is #P-hard by Theorem 9.22.
So Pl-#CSP2(f) is #P-hard. This completes the proof of Case 7.

This completes the proof of Theorem 12.5.

Theory of Computing Systems

13 An Application of Cyclotomic Field

13.1 Dichotomy Theoremwith a Signature in ̂M \ (P ∪ ˜A)

The next three lemmas are crucial. The purpose of these lemmas is to give a similar
result as Lemma 11.3 when the signature set F contains some f ∈ M̂ \ (P ∪ Ã),
and all signatures in F have even arity. The proof uses an argument involving the
degree of extension of a cyclotomic field.

We first prove that if we have an even arity signature in M̂ \ (P ∪ Ã), then we
can construct a binary [1, a, 1] with a4 /∈ {0, 1}.

Lemma 13.1 Let F be a set of symmetric signatures containing some f ∈ M̂ \
(P ∪ Ã), which has even arity. Then

Pl-#CSP2([1, a, 1],F) ≤T Pl-#CSP2(F)

for some a satisfying a4 /∈ {0, 1}.

Proof If f has arity 2, then we are done by Lemma 9.14. Thus, we assume that f has
arity 2n ≥ 4. By Lemma 9.14, we have either f = [s, t]⊗2n ± [t, s]⊗2n with s4 �= t4

and st �= 0 or fk = εk(2n − 2k) up to a scalar.
For f = [s, t]⊗2n + [t, s]⊗2n, we have ∂n−1(f) = (s2 + t2)n−1{[s, t]⊗2 +

[t, s]⊗2} = (s2 + t2)n[1, a, 1], where a = 2st
s2+t2

. Note that s2 + t2 �= 0 and

a �= 0, ±1. If a �= ±i, then we are done. Suppose a = ±i. Then g = ∂n−2(f) =
(s2 + t2)n−2{[s, t]⊗4 + [t, s]⊗4}. A simple calculation shows that g = −2s2t2(s2 +
t2)n−2[3, ±i, −1, ±i, 3]. Consider the gadget in Fig. 33.We assign [3, ±i, −1, ±i, 3]
to the circle vertices and =6 to the square vertex. Its signature is [8, ±6i, 8], so we
are done.

For f = [s, t]⊗2n − [t, s]⊗2n, we have ∂n−1(f) = (s2 + t2)n−1{[s, t]⊗2 −
[t, s]⊗2} = λ[1, 0, −1], where λ = (s2 + t2)n−1(s2 − t2) �= 0. For 2n ≥ 6, we
have ∂[1,0,−1](f) = (s2 − t2){[s, t]⊗2n−2 + [t, s]⊗2n−2} and we are done by the
proof of the previous case, as 2n − 2 ≥ 4. For 2n = 4, we have ∂[1,0,−1](f) =
(s2 − t2){[s, t]⊗2 + [t, s]⊗2} = (s4 − t4)[1, a, 1], where a = 2st

s2+t2
�= 0, ±1. If

a �= ±i, then we are done. Suppose a = ±i, then a simple calculation shows that
f is a nonzero multiple of [2i, ∓1, 0, ±1, −2i]. (One can verify that the ratio of the

first two entries of f = [s, t]⊗4 − [t, s]⊗4 is s3t−st3

s4−t4
= st

s2+t2
= a

2 = ± i
2 .) Consider

the gadget in Fig. 33. We assign [2i, ∓1, 0, ±1, −2i] to the circle vertices and =6 to
the square vertex.. The signature of this gadget is [−3, ∓4i, −3], so we are done.

For fk = εk(2n − 2k), we have ∂n−2(f) = 2n−1[2, ε, 0, −ε, −2]. Consider the
gadget in Fig. 33. We assign [2, ε, 0, −ε, −2] to the circle vertices and =6 to the
square vertex. The signature of this gadget is [5, 4ε, 5], so we are done.

Fig. 33 Gadget used in the
proof of Lemma 13.1

Theory of Computing Systems

The next lemma shows that if we have [1, a, 1] with a4 �= 0, 1, then we can obtain
[1, 1]⊗2 by interpolation.

Lemma 13.2 For any signature set F and any a4 /∈ {0, 1},
Pl-#CSP2({[1, 1]⊗2} ∪ F) ≤T Pl-#CSP2({[1, a, 1]} ∪ F).

Proof The eigenvalues of

[
1 b

b 1

]

are 1 + b and 1 − b respectively. If we have a

signature [1, b, 1], for some b �= 1, such that ratio 1+b
1−b

of eigenvalues is not a root of
unity, then we can interpolate any binary signature [1, x, 1] for x ∈ C. In particular,
we can interpolate the desired [1, 1]⊗2.

Indeed, let � be an instance of Pl-#CSP2({[1, x, 1]}∪F) in which [1, x, 1] occurs
n times. Write

[
1 x

x 1

]

as H

[
1 + x 0
0 1 − x

]

H, where H = 1√
2

[
1 1
1 −1

]

. We can

stratify the partition function value on � as Z(�) = ∑n
�=1 c�(1 + x)�(1 − x)n−�,

where c� is the sum, over all assignments that assign 00 to � copies of

[
1 + x 0
0 1 − x

]

and 11 to the remaining n − � copies, of the product of evaluations of all other sig-
natures from F and those copies of H . If we construct a sequence �k of instances of
Pl-#CSP2({[1, b, 1]} ∪ F), where we replace each occurrence of [1, x, 1] by a chain

of k linked copies of [1, b, 1], then since

[
1 b

b 1

]k

= H

[
(1 + b)k 0
0 (1 − b)k

]

H, we

have Z(�k) = (1 − b)kn
∑n

�=1 c�(
1+b
1−b

)k�, for 0 ≤ k ≤ n. This is a Vandermonde
system of full rank, and we can solve for all c� and find the value Z(�).

The simple gadget with two copies of =2k connected by 2k − 1 parallel copies of
[1, a, 1] has signature [1, a2k−1, 1]. If there is some k ≥ 1 such that a2k−1 = 1, then
[1, a2k−1, 1] = [1, 1]⊗2, and we are done. Suppose a2k−1 �= 1 for all k ≥ 1. Our key

claim is that there exists a k ≥ 1, depending only on a, such that 1+a2k−1

1−a2k−1 is not a root
of unity. Then we are done by the interpolation given above.

For a contradiction, assume that 1+a2k−1

1−a2k−1 is a root of unity for all k ≥ 1. For k = 1,
1+a
1−a

is some root of unity e2πij/m, where gcd(j, m) = 1. Then a ∈ �m = Q(e2πi/m),

the m-th cyclotomic field. Therefore a2k−1 ∈ �m as well for all k ≥ 1. Furthermore,
| 1+a
1−a

| = 1, so a is purely imaginary, i.e. a = ih for some real h /∈ {0, ±1} since
a4 /∈ {0, 1}. First we consider the case 0 < |h| < 1. Then a2k−1 = ±ih2k−1 and
limk→∞ h2k−1 = 0.

By assumption, for all k ≥ 1, 1+a2k−1

1−a2k−1 is some root of unity e2πiJ/M (in which J

and M depend on k), where 0 < |J | < M/2 with gcd(J, M) = 1. Then e2πi/M ∈
�m as well, so �M ⊆ �m. Note that | tan(πJ/M)| = |h|2k−1. Hence |h|2k−1 ≥
tan(π/M) ≥ π/M . Thus M ≥ π/|h|2k−1.

However, the M-th cyclotomic field �M has degree of extension [Q(e2πi/M) :
Q] = ϕ(M), where ϕ is the Euler totient function. We have a crude estimate
(ϕ(M))2 ≥ M/2: Let M = ∏

i p
ei

i be its prime factorization, where pi are primes

and ei ≥ 1, then ϕ(M) = ∏
i ϕ(p

ei

i) = ∏
i p

ei−1
i (pi − 1). For p = pi ≥ 3, if e ≥ 1,

Theory of Computing Systems

then (p−1)2 > p which implies that (ϕ(pe))2 = p2e−2(p−1)2 > pe. For p = 2, if
e ≥ 1, then (ϕ(2e))2 = 22e−2 ≥ 2e/2. We get the lower bound (ϕ(M))2 ≥ M/2 by
multiplicativity of ϕ. Then it follows that limM→∞ ϕ(M) = ∞, which contradicts
ϕ(M) ≤ ϕ(m) < ∞.

The remaining case |h| > 1 can be handled similarly. In fact, limk→∞ |h2k−1| =
∞, and therefore limk→∞ tan−1(|h2k−1|) = π

2 , but for all k ≥ 1, tan−1(|h2k−1|) <

π
2 . Let θk be the argument of the complex number 1+a2k−1

1−a2k−1 = 1±ih2k−1

1∓ih2k−1 , where the sign
depends on 2k − 1 ≡ 1 or −1 mod 4. Thus the absolute value |θk| of the angle θk is
strictly less than π but approaches π when k → ∞. On the other hand, the order of
this root of unity is at most 2(ϕ(m))2. Any such root of unity not equal to −1 must
have angle at least 1

4(ϕ(m))2
away from π . This is a contradiction.

Combining Corollary 9.13, Lemma 10.3, Lemma 13.1 and Lemma 13.2, we have
proved the following lemma.

Lemma 13.3 Let F be a set of signatures of even arities. If F contains some f ∈
M̂ \ (P ∪ Ã), then Pl-#CSP2(F) is #P-hard unless F ⊆ M̂ .

13.2 Dichotomy Theoremwith a Signature in ̂M † \ (P ∪ ˜A)

We would like to prove a corresponding statement to Lemma 13.3 after replacing
the condition f ∈ M̂ \ (P ∪ Ã) by f ∈ M̂ † \ (P ∪ Ã). This corresponding
statement is indeed true and is implied by Theorem 9.2, the final dichotomy theorem
for Pl-#CSP2. However, at this point leading up to the proof of Theorem 9.2, we are
not able to prove it. Instead, we prove a weaker version, Lemma 13.7, in which f is
assisted by a binary signature other than a multiple of [1, 0, 1].

Remark 6 Here we explain some of the difficulties in the proof caused by structural
complications of the signatures involved.

When we prove the No-Mixing statements for M̂ the crucial step is the abil-
ity to construct [1, ξ]⊗2 with ξ �= 0 in the Pl-#CSP2 setting (cf. Lemma 13.1 and
Lemma 13.2). This is the key, and the only known method, for us to leverage the exis-
ting dichotomy for Pl-#CSP (cf. Lemma 10.3). Then in a similar spirit, to prove the
No-Mixing statements for M̂ †, we would like to be able to construct [1, ξ]⊗2 as well.

A signature f = [f0, . . . , fn] is called an odd signature if f2k = 0 for all k ≥ 0,
and an even signature if f2k+1 = 0 for all k ≥ 0.

In any F-gate H , if every signature in F satisfies the parity constraints, then the
signature of H also satisfies the parity constraints. In fact the parity of the signature
of H is the same as the parity of the number of occurrences of odd signatures of F
in H . To see this, suppose σ is a {0, 1}-assignment to all the edges of H , includ-
ing internal and external edges, that has a nonzero evaluation on H . By the parity
constraints, each odd (resp. even) signature appearing in H has an odd (resp. even)
number of incident edges assigned 1. Adding up all these numbers mod 2, noting
that each internal edge of H assigned 1 contributes 2 to the sum while each exter-
nal edge of H assigned 1 contributes 1, we get N ≡ 2X + Y ≡ Y (mod 2), where
N is the number of occurrences of odd signatures of F in H , and X (resp. Y) is the

Theory of Computing Systems

number of internal (resp. external) edges assigned to 1 by σ . Hence H has the same
parity as N .

For any signature of the form f = [s, ti]⊗m ± [t, si]⊗m, or fk = (εi)k(m − 2k),

for any arity m, (Z−1)⊗mf satisfies the parity constraints, where Z = 1
2

[
1 1
i −i

]

.

In fact for f of the first type, (Z−1)⊗mf = [u, v]⊗m ± [u, −v]⊗m for u = s + t

and v = s − t , and for f of the second type, (Z−1)⊗mf = 2m[0, 1, 0, . . . , 0] or
2m[0, . . . , 0, 1, 0]. Note that

[
1 1
i −i

]⊗m

[0, 1, 0, . . . , 0] = Symm−1
m (

[
1
i

]

;
[
1
−i

]

)

has its k-th term ik(m − 2k). Similarly,

[
1 1
i −i

]⊗m

[0, . . . , 0, 1, 0] has its k-th term

(−i)k(m − 2k).
Under the holographic transformation Z, we have

Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), (13.26)

where f̂ = (Z−1)⊗mf , and 1
2 [0, 1, 0] = (=2)Z

⊗2, 1
23

[1, 0, 1, 0, 1] = (=4)Z
⊗4,

etc. Notice that for the signatures (=2n)Z
⊗2n, if the arity 2n ≡ 2 (mod 4) then the

signature is odd, and if 2n ≡ 0 (mod 4) then the signature is even.
Every signature of the form [s, ti]⊗m + [t, si]⊗m is even, every signature of the

form [s, ti]⊗m −[t, si]⊗m is odd, and for even arity 2n the signatures [0, 1, 0, . . . , 0]
and [0, . . . , 0, 1, 0] are both odd.

Thus, if we focus on signatures f = [s, ti]⊗2n + [t, si]⊗2n with arity 2n ≡ 0
(mod 4), or f = [s, ti]⊗2n − [t, si]⊗2n with arity 2n ≡ 2 (mod 4), or fk =
(εi)k(2n − 2k) with arity 2n ≡ 2 (mod 4), then the following property holds for all
the signatures in the bipartite Pl-Holant problem in (13.26):

All signatures of arity 2n ≡ 2 (mod 4) satisfy odd parity and all signatures of
arity 2n ≡ 0 (mod 4) satisfy even parity.

It follows that, for such f , any gadget constructed from (13.26) has the same parity
as the number of occurrences of signatures of arity 2n ≡ 2 (mod 4).

Furthermore, in a bipartite gadget construction in Pl-Holant([0, 1, 0],
[1, 0, 1, 0, 1], . . . | f̂), if the resulting signature of the gadget is binary, the number
of occurrences of signatures of arity 2n ≡ 2 (mod 4) in this gadget must be odd.
Indeed let N0 (resp. N2) denote the number of occurrences of signatures of arity
2n ≡ 0 (mod 4) (resp. 2n ≡ 2 (mod 4)) in this bipartite gadget, and we add up the
arities of all signatures modulo 4, we get 0N0 + 2N2 ≡ 2NI + 2 (mod 4), where
NI is the number of internal edges in the bipartite gadget, and the additive term 2
is because the gadget is a binary gadget. Thus N2 ≡ NI + 1 (mod 2). On the other
hand, since the gadget is bipartite, NI is the sum of all arities of signatures from
RHS, and minus 2 if the external 2 edges come from the RHS. As all signatures in
this gadget have even arity, NI ≡ 0 (mod 2). Hence N2 ≡ 1 (mod 2).

Theory of Computing Systems

This implies that any binary signature constructed in Pl-Holant([0, 1, 0],
[1, 0, 1, 0, 1], . . . | f̂) must have odd parity, i.e., they are all of the form λ[0, 1, 0].
Thus, before the Z-transformation, one can only construct binary signatures of the
form λ

2 [1, 0, 1] = λZ⊗2[0, 1, 0] in Pl-#CSP(f) by gadget construction. This can be

verified as

[
1 1
i −i

] [
0 1
1 0

] [
1 i

1 −i

]

= 2

[
1 0
0 1

]

.

In particular one cannot construct [1, ξ]⊗2 in Pl-#CSP2(f) by gadget construc-
tion. This explains the extra mile we have to travel in this proof.

As indicated, therefore, we prove a weaker version of Lemma 13.3 in this subsec-
tion, namely Lemma 13.7, in which f is assisted by a binary signature other than a
multiple of [1, 0, 1].

We begin with the following lemma.

Lemma 13.4 Let F be any set of symmetric signatures of even arities, and suppose
F contains signatures f and g, where f ∈ M̂ †\(P∪Ã), and g = [g0, g1, . . . , g2n]
and there exists a positive integer s such that gs

0 = −gs
2n �= 0. Then either F ⊆ M̂ †

or Pl-#CSP2(F) is #P-hard.

Proof Let E2k(−1) = [1, 0, . . . , 0, −1] have arity 2k and E(−1) = {E2k(−1) | k ≥
1}. Firstly, by our calculus we have ∂s

g(=2ns+2k) = gs
0E2k(−1) on LHS for k ≥ 1.

Thus we have

Pl-Holant(E(−1) ∪ EQ2 | F) ≤T Pl-#CSP2(F).

Under a holographic transformation by T −1 =
[
1 0
0 i

]

, the set E(−1) ∪ EQ2 is set-

wise invariant. Indeed, for all k ≥ 1, signatures of arity 4k in E(−1)∪EQ2 are point-
wise fixed, and signatures of arity 4k−2 in E(−1) and in EQ2 are interchanged. Thus,

Pl-#CSP2(TF) ≤T Pl-Holant(E(−1)∪EQ2 | TF) ≡T Pl-Holant(E(−1)∪EQ2 | F).

Note that T ⊗2nf ∈ TF is in M̂ \(P∪Ã). Thus either TF ⊆ M̂ or Pl-#CSP2(TF)

is #P-hard by Lemma 13.3. Note that TF ⊆ M̂ iff F ⊆ M̂ †. Thus either F ⊆ M̂ †

or Pl-#CSP2(F) is #P-hard.

The next two lemmas show that if we have a signature in M̂ † \ (P ∪ Ã) and a
binary signature that is not a multiple of [1, 0, 1], then we have the same statement
for M̂ †, as Lemma 13.3 is for M̂ . This will be stated as Lemma 13.7. Note that
if f ∈ M̂ † \ (P ∪ Ã) is a binary signature, then f takes the form [1, b, −1] by
Lemma 9.14, and this case is covered by Lemma 13.4, where f also plays the role
of g. Thus we assume f ∈ M̂ † \ (P ∪ Ã) has arity ≥ 4. By Lemma 9.14, such a
signature f has two forms. Lemma 13.5 and 13.6 handle these two cases respectively.

Lemma 13.5 Let F be any set of symmetric signatures of even arities, and suppose
F contains signatures f and h, where f = [s, ti]⊗2n ± [t, si]⊗2n with 2n ≥ 4,
s4 �= t4 and st �= 0, and h is any nonzero binary signature other than λ[1, 0, 1].
Then either F ⊆ M̂ † or Pl-#CSP2(F) is #P-hard.

Theory of Computing Systems

Proof Firstly, by our calculus, ignoring the nonzero factor (s2 − t2)n−2 in ∂n−2(f),
we have g = [s, ti]⊗4 ± (−1)n−2[t, si]⊗4. If g = [s, ti]⊗4 − [t, si]⊗4, then we have
∂(g) = (s2 − t2){[s, ti]⊗2 + [t, si]⊗2} = (s2 − t2)[s2 + t2, 2sti, −(s2 + t2)] and we
are done by Lemma 13.4.

Suppose g = [s, ti]⊗4 + [t, si]⊗4, and we also have h �= λ[1, 0, 1]. If h /∈ P ∪
Ã ∪M̃ , then Pl-#CSP2(F) is #P-hard by Theorem 9.21′. Otherwise, by Lemma 9.8,
the possibilities for h, after normalizing, are

[a, b]⊗2, [1, 0, x], [0, 1, 0], [1, ρ, −ρ2], [1, α, −α2], [1, u, 1], and [1, v, −1],
where x /∈ {0, 1}, ρ4 = 1, α4 = −1, u4 /∈ {0, 1}, and v4 /∈ {0, 1}.
• If h = [a, b]⊗2 with ab �= 0, then we are done by Lemma 10.3.
• If h ∈ {[1, 0, −1], [1, 0, ±i], [1, ±1, −1], [1, α, −α2], [1, v, −1]}, then we are

done by Lemma 13.4.
• If h = [1, u, 1] with u4 �= 0, 1, then h ∈ M̂ \ (P ∪ Ã) by Lemma 9.14. Thus

we are done by Lemma 13.3.

The remaining cases are h = [1, 0]⊗2, [0, 1]⊗2, [1, 0, x], [0, 1, 0] or [1, ±i, 1], where
x4 �= 0, 1.

• If h = [1, 0, x] with x4 �= 0, 1, then by taking 4 copies of h and connecting

one input of h to each edge of g, we have ĝ =
[
1 0
0 x

]⊗4

g = [s, xti]⊗4 +
[t, xsi]⊗4. The signature ĝ is non-degenerate, has arity 4, and satisfies a second
order recurrence relation. The eigenvalues of the recurrence relation are xti

s
and

xsi
t
. By the trace and product, ĝ has type 〈−x2, xti

s
+ xsi

t
, 1〉. Thus ĝ /∈ P ∪

Ã ∪ M̃ by Lemma 9.11, since (−x2)2 �= 0, 1 and t
s

+ s
t

�= 0. So Pl-#CSP2(ĝ)

is #P-hard by Theorem 12.5. Thus Pl-#CSP2(F) is #P-hard.
• If h = [0, 1, 0], then ∂h(g) = 2sti{[s, ti]⊗2 + [t, si]⊗2} = 2sti[s2 +

t2, 2sti, −(s2 + t2)]. Then we are done by Lemma 13.4.
• If h = [1, ±i, 1], by connecting two copies of [1, ±i, 1] we have ±2i[0, 1, 0], as

[
1 ±i

±i 1

]2
=
[
0 ±2i
±2i 0

]

. Then we are done by the previous case.

• If h = [1, 0]⊗2, then we have g′ = ∂h(g) = s2[s, ti]⊗2 + t2[t, si]⊗2 = [s4 +
t4, (s2 + t2)sti, −2s2t2]. We claim that g′ /∈ P ∪ Ã ∪ M̃ .

– If g′ ∈ P , then g′ is degenerate by (s2 + t2)sti �= 0 and −2s2t2 �= 0.
So −2s2t2(s4 + t4) = −(s2 + t2)2s2t2. Thus st = 0 or (s2 − t2)2 = 0.
This is a contradiction.

– If g′ ∈ A \ P , then g′ = [1, ρ, −ρ2] up to a scalar by Corollary 9.9,
where ρ4 = 1. By ρ2 = ±1, we have s4+t4 = ±2s2t2. This contradicts
that s4 �= t4.

– If g′ ∈ A † \ P , then g′ = [1, α, −α2] up to a scalar by Corollary 9.9,
where α4 = −1. Thus 2s2t2(s4 + t4) = −(s2 + t2)2s2t2. Then, by
st �= 0, we have 3(s4+ t4) = −2s2t2 �= 0, and so |s4+ t4| �= |−2s2t2|.
This implies that the norms of two nonzero entries of g′ are not equal.
This contradicts the form g′ = λ[1, α, −α2].

Theory of Computing Systems

– Since s4 �= t4 we have s4 + t4 �= ±2s2t2. Hence g′ /∈ M̃ by
Corollary 9.9.

Then by Theorem 9.21′, Pl-#CSP2(g′) is #P-hard. Thus Pl-#CSP2(F) is #P-hard.

• If h = [0, 1]⊗2, then we apply the transformation

[
0 1
1 0

]

and are done by the

previous case.

Lemma 13.6 Let F be any set of symmetric signatures of even arities, and suppose
F contains signatures f and h, where f has arity 2n ≥ 4 and fk = (εi)k(2n − 2k),
and h is any nonzero binary signature other than λ[1, 0, 1]. Then either F ⊆ M̂ † or
Pl-#CSP2(F) is #P-hard.

Proof If 2n ≡ 0 (mod 4), then f0 = −f2n = 2n. Thus we are done by Lemma 13.4.

Suppose 2n ≡ 2 (mod 4). Thus n ≥ 3 and we have g = ∂
n−3
2=4 (f) of arity 6.

Ignoring the nonzero factor 2
n−3
2 , we have gk = (εi)k(6 − 2k). Removing another

factor 2, we have

g = [3, 2iε, −1, 0, −1, −2iε, 3].
We also have a nonzero binary signature h �= λ[1, 0, 1]. If h /∈ P ∪ Ã ∪ M̃ ,
then Pl-#CSP2(F) is #P-hard by Theorem 9.21′. Otherwise (similar to the proof of
Lemma 13.5), by Lemma 9.8, the possibilities for h, after normalizing, are

[a, b]⊗2, [1, 0, x], [0, 1, 0], [1, ρ, −ρ2], [1, α, −α2], [1, u, 1], and [1, v, −1],
where x /∈ {0, 1}, ρ4 = 1, α4 = −1, u4 /∈ {0, 1}, and v4 /∈ {0, 1}. If h = [1, 0, −1],
[1, 0, ±i], [1, ±1, −1], [1, α, −α2], [1, v, −1], [1, u, 1], or [a, b]⊗2 with ab �= 0,
then we are done with the same proof as in Lemma 13.5.

The remaining cases are h = [1, 0]⊗2, [0, 1]⊗2, [1, 0, x], [0, 1, 0], or [1, ±i, 1],
where x4 /∈ {0, 1}.
• For h = [1, 0, x] with x4 /∈ {0, 1}, we have g′ = ∂h(g) = [3 − x, ±2i, −1 −

x, ∓2xi, −1 + 3x]. The signature g′ is non-degenerate because (±2i)(∓2xi) �=
(−1 − x)2 by x �= 1. Moreover, g′ satisfies the second order recurrence relation
with type 〈1, ∓2i, −1〉. Thus g′ /∈ P ∪ Ã ∪ M̂ by Lemma 9.11. Moreover, by
x �= ±1, we have 3 − x �= ±(−1 + 3x), so g′ /∈ M̂ † by Corollary 9.17. So
Pl-#CSP2(g′) is #P-hard by Theorem 12.5. Thus Pl-#CSP2(F) is #P-hard.

• If h = [0, 1, 0], then ∂h(g) = [±2i, −1, 0, −1, ±2i]. Then we are done by
Lemma 13.4.

• If h = [1, ±i, 1], by connecting two copies of [1, i, ±1] we have ±2i[0, 1, 0].
Then we are done by the proof of the previous case.

• If h = [1, 0]⊗2, then we have g′′ = ∂2h(g) = [3, ±2i, −1]. By Corollary 9.9, we
have g′′ /∈ P ∪Ã ∪M̃ . Then by Theorem 9.21′, Pl-#CSP2(g′′) is #P-hard. Thus
Pl-#CSP2(F) is #P-hard.

• If h = [0, 1]⊗2, we apply the transformation

[
0 1
1 0

]

and it follows from the

previous case.

Theory of Computing Systems

Lemma 13.7 Let F be any set of symmetric signatures of even arities, and suppose
F contains signatures f and h, where f ∈ M̂ † \ (P ∪ Ã), and h is any nonzero
binary signature other than λ[1, 0, 1]. Then either F ⊆ M̂ † or Pl-#CSP2(F) is
#P-hard.

Proof If f has arity 2, then f = [1, b, −1] by Lemma 9.14. Then we are done by
Lemma 13.4.

If f has arity 2n ≥ 4, then by Lemma 9.14, we have f = [s, ti]⊗2n ± [t, si]⊗2n

with st �= 0, s4 �= t4, or fk = (εi)k(2n − 2k) up to a scalar. These two cases are
proved in Lemma 13.5, and 13.6 respectively.

Remark 7 Lemma 13.3 and Lemma 13.7 will substantially simplify the succeeding
proof for No-Mixing Lemmas concerning M̂ and M̂ †. Thus it is natural that we
wish to do the same for A , and that means we would like to construct [1, ξ]⊗2 with
ξ �= 0 in Pl-#CSP2(f) for f ∈ A . Unfortunately, for most cases of f ∈ A this is
impossible.

First, for a signature f ∈ A , if f satisfies the parity constraints, then all signa-
tures constructed in Pl-#CSP2(f) satisfy the parity constraints, since all EQ2 also
satisfy the parity constraints. So it is impossible to construct [1, ξ]⊗2 with ξ �= 0 in
Pl-#CSP2(f).

If a signature f ∈ A is degenerate and does not satisfy the parity constraints,
then f = [1, ±1]⊗2n or f = [1, ±i]⊗2n up to a scalar. For f = [1, ±1]⊗2n, we
have ∂n−1(f) = 2n−1[1, ±1]⊗2. For f = [1, ±i]⊗2n and 2n ≡ 2 (mod 4), we have

∂
n−1
2=4 (f) = 2

n−1
2 [1, ±i]⊗2. Thus in these two particular cases we can get [1, ξ]⊗2

with ξ �= 0. We will show that these are the only cases that this is possible.
Let f = [1, ±i]⊗2n and 2n ≡ 0 (mod 4). After a holographic transformation by

Z =
[
1 1
i −i

]

, we have

Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (Z−1)⊗2nf , i.e., f̂ = [1, 0]⊗2n or f̂ = [0, 1]⊗2n. In
Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), all signatures of arity ≡ 0 (mod 4)
have even parity and all signatures of arity ≡ 2 (mod 4) have odd parity. By the
same proof in Remark 6, all nonzero binary signatures that can be constructed in
Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂) are multiples of [0, 1, 0]. In terms of sig-
natures that can be constructed before the Z-transformation, this is equivalent to say
that all nonzero binary signatures that can be constructed in Pl-#CSP2(f) must be
multiples of [1, 0, 1]. In particular, one cannot construct [1, ξ]⊗2 with ξ �= 0 in
Pl-#CSP2(f).

If f ∈ A is non-degenerate and does not satisfy the parity constraints, then f =
[1, i]⊗2n ± i[1, −i]⊗2n or f = [1, 1]⊗2n ± i[1, −1]⊗2n. If we can construct [1, ξ]⊗2

with ξ �= 0 in Pl-#CSP2(f), then [1, ξ]⊗2 must be in A . Thus [1, ξ]⊗2=[1, ±1]⊗2

or [1, ±i]⊗2.
For f = [1, i]⊗2n±i[1, −i]⊗2n, f = [1, ±1, −1, ∓1, . . . , (−1)n] up to the scalar

1 ± i. In any construction in Pl-#CSP2(f), if we ignore a global scalar factor which

Theory of Computing Systems

is a power of 1 ± i, all entries of the constructed signature are real numbers. Thus
the ratio of any two nonzero entries is a real number. But this is not the case with
[1, ±i]⊗2. This implies that we cannot construct [1, ±i]⊗2 in Pl-#CSP2(f) by gadget
construction.

Moreover, we claim that it is impossible to get [1, ±1]⊗2 in Pl-#CSP2(f) by

gadget construction. After a holographic transformation by Z =
[
1 1
i −i

]

, we have

Pl-#CSP2(f) ≡T Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (Z−1)⊗2nf = [1, 0, . . . , 0, ±i]. All signatures in Pl-Holant([0, 1, 0],
[1, 0, 1, 0, 1], . . . | f̂) satisfy the parity constraints. Thus we cannot construct
(Z−1)⊗2[1, ±1]⊗2 = ∓ i

2 [1, ±i]⊗2, which does not satisfy the parity constraints,
by gadget construction. Thus we cannot get [1, ±1]⊗2 in Pl-#CSP2(f) by gadget
construction.

For f = [1, 1]⊗2n±i[1, −1]⊗2n, after a holographic transformation by

[
1 0
0 i

]

, we

can use the same argument as the previous case for [1, ±i]⊗2 to prove that we cannot
get [1, ±1]⊗2 in Pl-#CSP2(f) by gadget construction. Moreover, it is also impos-
sible to get [1, ±i]⊗2 in Pl-#CSP2(f) by gadget construction. After a holographic

transformation by H =
[
1 1
1 −1

]

, we have

Pl-#CSP2(f) ≡T Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂),

where f̂ = (H−1)⊗2nf = [1, 0, . . . , 0, ±i]. All signatures in
Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂) satisfy the parity constraints. Thus we
cannot construct (H−1)⊗2[1, ±i]⊗2 = ± i

2 [1, ∓i]⊗2 by gadget construction. This
implies that we cannot get [1, ±i]⊗2 in Pl-#CSP2(f) by gadget construction.

14 No-Mixing of a Pair of Signatures of Even Arity

The general theme of this section and the next is that, for planar Pl-#CSP2 problems,
various tractable signatures of different types cannot mix. In these two sections, all
signatures are of even arity. In this section we prove a No-Mixing theorem for a pair
of signatures. This will be extended to a set of signatures in the next section.

Recall that

S1 = M̂ , S2 = M̂ †, S3 = A †, S4 = A , and S5 = P .

The general form of the No-Mixing theorem to be proved in this section is as follows:
Let f and g be two symmetric signatures of even arity. Suppose for some 1 ≤ j <

i ≤ 5, f ∈ Si \ Sj and g ∈ Sj \ Si , and for all 1 ≤ k ≤ 5, {f, g} �⊆ Sk . Then
Pl-#CSP2(f, g) is #P-hard. We will call such a statement No-Mixing-(i, j) (or No-
Mixing theorem-(i, j), or a No-Mixing lemma).

Theory of Computing Systems

It is easy to see that, with possibly switching the names f and g, the condition
stated above is equivalent to the following assumption:

{f, g} ⊆
5⋃

k=1

Sk but for any 1 ≤ k ≤ 5, we have {f, g} �⊆ Sk .

However under this assumption, we make the following observation that any index i

for which f ∈ Si can be chosen as the distinguishing index:

If f ∈ Si for some i, then there exists some j �= i such that g ∈ Sj \ Si and
f ∈ Si \ Sj .

In particular, neither f nor g can be identically 0.
We will prove the No-Mixing theorem-(i, j) in a reverse lexico-

graphic order of (i, j): We order the statements as (5, 4), (5, 3), (5, 2),
(5, 1), (4, 3), (4, 2), (4, 1), (3, 2), (3, 1), (2, 1). After having proved all No-Mixing
theorem-(i′, j ′) preceding (i, j) in this order, we assume there are two signatures
f and g such that f ∈ Si \ Sj and g ∈ Sj \ Si . Now we may make the following
additional assumption:

f, g /∈
⋃

i<k≤5

Sk and g /∈
⋃

j<k≤i

Sk .

Indeed, if f or g belongs to Sk for some k > i, then let k be the maximum index
such that Sk contains either f or g. Then by the observation above, there exists some
j �= k such that one signature belongs to Sj \Sk , and the other one belongs to Sk \Sj .
By the maximality of k, we have k > j . Since k > i and No-Mixing theorem-
(k, j) has already been proved, we have Pl-#CSP2(f, g) is #P-hard. Moreover, if
g ∈ ⋃

j<�≤i S�, then g ∈ S� for some j < � < i, as g /∈ Si . Then f ∈ Si \
S� since {f, g} �⊆ S�, and also g ∈ S� \ Si . Hence Pl-#CSP2(f, g) is #P-hard by
No-Mixing-(i, �) already proved.

We now proceed with this plan. We first prove a preliminary result, which
allows us to construct signatures of arbitrarily high even arities from a given binary
signature.

Lemma 14.1 For any binary signature [a, b, c], any integer k ≥ 1, and any signature
set F ,

Pl-#CSP2([a, b]⊗2k + [b, c]⊗2k,F) ≤T Pl-#CSP2([a, b, c],F).

Proof We take 2k copies of [a, b, c] and connect one input of each [a, b, c]
to an edge of =2k . The resulting signature is [a, b]⊗2k + [b, c]⊗2k , since
[

a b

b c

]⊗n
([

1
0

]⊗n

+
[
0
1

]⊗n
)

=
[

a

b

]⊗n

+
[

b

c

]⊗n

.

In the next lemma, we will prove that for any symmetric signature f ∈ A \ P of
even arity, we can construct an arity 4 signature g ∈ A \ P in Pl-#CSP2({f } ∪ F).
Thus we can assume that we have an arity 4 signature g ∈ A \ P in the proof of
the No-Mixing lemma of P versus A , namely No-Mixing-(5, 4). We can prove a
similar result for A † \ P . This is for the proof of No-Mixing-(5, 3).

Theory of Computing Systems

Lemma 14.2 For any symmetric signature f ∈ A \ P (respectively, f ∈ A † \ P)
of even arity 2n ≥ 2, there exists a symmetric signature g ∈ A \ P (respectively,
g ∈ A † \ P) of arity 4, such that for any set F ,

Pl-#CSP2({g} ∪ F) ≤T Pl-#CSP2({f } ∪ F).

Proof If f has arity 2n = 4, then there is nothing to prove. Suppose 2n �= 4. For f ∈
A † \P , if 2n = 2, then f = [1, α, −α2] by Corollary 9.9. By Lemma 14.1, we have
g = [1, α]⊗4 − [1, −α]⊗4, since α4 = −1. Clearly g ∈ A † and is non-degenerate.
Note that g satisfies a second-order recurrence relation of type 〈−α2, 0, 1〉, since the
eigenvalues of the recurrence are ±α with trace 0 and product −α2. Thus g /∈ P
by Lemma 9.11. For 2n ≥ 6, we have f = [1, α]⊗2n + ir [1, −α]⊗2n by definitions
(see Fig. 24). Then by our calculus, we have ∂n−2(f) = (1 + α2)n−2{[1, α]⊗4 +
ir [1, −α]⊗4}. Clearly it is in A † and is non-degenerate. It also has type 〈−α2, 0, 1〉
and therefore it is not in P .

For f ∈ A \ P , if 2n = 2, then f = [1, ρ, −ρ2] by Corollary 9.9. By
Lemma 14.1, we have g = [1, ρ]⊗4 + [1, −ρ]⊗4, since ρ4 = 1. Clearly g ∈ A
and is non-degenerate. Note that g has type 〈−ρ2, 0, 1〉, since the eigenvalues of its
second-order recurrence relation are ±ρ with trace 0 and product −ρ2. Thus g /∈ P
by Lemma 9.11.

For 2n ≥ 6, we have f = [1, ρ]⊗2n + ir [1, −ρ]⊗2n by definitions (see Fig. 24).

If 2n ≡ 0 (mod 4), then n is even, and we have ∂
n−2
2=4 (f) = 2

n−2
2 {[1, ρ]⊗4 +

ir [1, −ρ]⊗4} that is in A , and not in P by its type 〈−ρ2, 0, 1〉. For 2n ≡ 2 (mod 4),

we have h = ∂
n−1
2=4 (f) = 2

n−1
2 {[1, ρ]⊗2 + ir [1, −ρ]⊗2}.

• If r = 2, then we have h = 2
n−1
2 [0, 2ρ, 0]. Thus we have [0, 1, 0] up to a nonzero

scalar and ∂n−2
[0,1,0](f) = (2ρ)n−2{[1, ρ]⊗4 + ir (−1)n−2[1, −ρ]⊗4} that is in A ,

and not in P by its type 〈−ρ2, 0, 1〉.
• If r �= 2, then h = 2

n−1
2 (1+ ir)[1, 1−ir

1+ir
ρ, ρ2]. Then we have ∂[1, 1−ir

1+ir
ρ,ρ2](=4) =

[1, 0, ρ2] on LHS and ∂n−2
[1,0,ρ2](f) = 2n−2{[1, ρ]⊗4 + ir [1, −ρ]⊗4} by ρ4 = 1,

that is in A \ P by the same reason.

We note that the complication for the case f ∈ A \ P is unavoidable since if
ρ = ±i, then ∂(f) = 0, therefore we need to use ∂=4(f).

14.1 Mixing with S5 = P

In this subsection, we prove No-Mixing-(5, j), for 1 ≤ j ≤ 4, namely the No-
Mixing of one signature in P and another signature in a different tractable set. Thus
we assume there is some f ∈ S5 = P , and some g ∈ Sk for some 1 ≤ k ≤ 4, and
for no 1 ≤ k ≤ 5, {f, g} ⊂ Sk . Under this assumption we show that Pl-#CSP2(f, g)

is #P-hard. As explained earlier, for j < k < 5, when we prove No-Mixing-(5, j),
we can make logical use of No-Mixing-(5, k).

Theory of Computing Systems

Lemma 14.3 Let {f, g} ⊆ ⋃5
k=1 Sk and {f, g} � Sj for every 1 ≤ j ≤ 5. Assume

that f ∈ S5 = P , then Pl-#CSP2(f, g) is #P-hard.

Proof As explained earlier, since f ∈ P , there exists some 1 ≤ k ≤ 4, such that
g ∈ Sk \ P and f ∈ P \ Sk . Since [0, 1, 0] ∈ ⋂5

k=1 Sk , we know that f is not a
multiple of [0, 1, 0]. Then by f ∈ P (see Fig. 24), we have f = [a, b]⊗2n with a

and b not both 0 (because f is not identically 0), or f = [1, 0, . . . , 0, x] with x �= 0.
We first consider the case f =[a, b]⊗2n, with (a, b) �= (0, 0). It has three subcases.

• If ab �= 0 (i.e., a and b both nonzero) and a2 + b2 �= 0, then we have ∂n−1(f) =
(a2 + b2)n−1[a, b]⊗2. We are done by Lemma 10.3.

• If ab �= 0 and a2+b2 = 0, then f = [1, ±i]⊗2n up to a nonzero scalar. Note that
f ∈ P ∩A ∩M̂ †. Hence g ∈ A †\(P ∪A ∪M̂ †) or g ∈ M̂ \(P ∪A ∪M̂ †).

If g ∈ M̂ \ (P ∪ Ã ∪ M̂ †), then a fortiori, g ∈ M̂ \ (P ∪ Ã). Therefore
we are done by Lemma 13.3.

The other case is g ∈ A † \ (P ∪ A ∪ M̂ †), then a fortiori, g ∈ A † \ P ,
and by Lemma 14.2, we have an arity 4 signature g′ ∈ A † \ P . By definition
(see Fig. 24), g′ = [1, α]⊗4 + ir [1, −α]⊗4. For r = 2, we have ∂(g′) = 2α(1 +
α2)[0, 1, 0] and ∂n−1

[0,1,0](f) = (±2i)n−1[1, ±i]⊗2. Then we are done by Lemma
10.3. For r �= 2, we have on LHS

∂g′(=6) = ∂[1,α]⊗4(=6) + ir∂[1,−α]⊗4(=6) = [1, 0, α4] + ir [1, 0, (−α)4]
= (1 + ir)[1, 0, −1]

and ∂n−1
[1,0,−1](f) = 2n−1[1, ±i]⊗2. Then again we are done by Lemma 10.3.

• For f = [1, 0]⊗2n or [0, 1]⊗2n, we have ∂n−1(f) = [1, 0]⊗2 or [0, 1]⊗2. Note
that f ∈ P ∩A ∩A †. Thus g ∈ M̃ \ (P ∪ Ã). If g ∈ M̂ \ (P ∪ Ã), then we
are done by Lemma 13.3. If g ∈ M̂ † \ (P ∪ Ã), then we are done by Lemma
13.7, where the binary signature is supplied by ∂n−1(f) = [1, 0]⊗2 or [0, 1]⊗2.

The remaining case is f =[1,0, . . . , 0, x]with x �=0. We have ∂n−1(f)=[1, 0, x].
Suppose g ∈ Ã . As f ∈ P , we have g �∈ P . Then we have an arity 4 signature

g′ ∈ Ã \ P by Lemma 14.2. Moreover, by definition (see Fig. 24), we have g′ =
[1, γ]⊗4 + ir [1, −γ]⊗4 where γ 8 = 1. Depending on whether g ∈ A or A †, we
have either f ∈ P \ A , or f ∈ P \ A †. Then we claim that x4 �= 1. Note
that f has even arity 2n. If x4 = 1, then f = [1, 0, . . . , 0, x] ∈ A as well as
[
1 0
0 α

]⊗2n

f = [1, 0, . . . , 0, xin] ∈ A thus f ∈ A †. This is a contradiction. Thus

we have x4 �= 0, 1. Let ĝ′ = [1, x− 1
2 γ]⊗4 + ir [1, −x− 1

2 γ]⊗4. Then by Lemma 11.8,
Pl-#CSP2(ĝ′) ≤ Pl-#CSP2(f, g). Note that ĝ′ has type 〈−x−1γ 2, 0, 1〉 by calculating
the trace and product of the eigenvalues of the second order recurrence relation. Note
that (−x−1γ 2)4 = x−4 �= 0, 1. Thus ĝ′ �∈ P ∪Ã ∪M̃ by Lemma 9.11. This implies
that Pl-#CSP2(ĝ′) is #P-hard by Theorem 12.5. So Pl-#CSP2(f, g) is #P-hard.

Now we may assume that g /∈ Ã . Thus g ∈ M̃ \ (P ∪ Ã). If g ∈ M̂ \ (P ∪ Ã),
then we are done by Lemma 13.3. If g ∈ M̂ † \ (P ∪ Ã), then f ∈ P \ M̂ †. In
this case we claim that x �= 1. Suppose for a contradiction that x = 1, then we show
that f ∈ M̂ †. Notice that f = [1, 0, . . . , 0, 1] = (=2n) and M̂ † = ZM , where

Theory of Computing Systems

Z =
[
1 1
i −i

]

. Crucially recall that f has even arity. Then, up to a nonzero scalar,

(Z−1)⊗2nf = [1, 0, 1, . . . , 0, 1] ∈ M of arity 2n (if n is even) or (Z−1)⊗2nf =
[0, 1, 0, . . . , 1, 0] ∈ M of arity 2n (if n is odd). Hence x �= 1. Then we are done by
Lemma 13.7, with g ∈ M̂ † \ (P ∪ Ã), and the help of ∂n−1(f) = [1, 0, x].

14.2 Mixing with S4 = A

In this subsection, we prove the No-Mixing lemma of A with other tractable sets.
Because we have already proved Lemma 14.3, the No-Mixing lemma for S5 = P ,
we only need to consider No-Mixing-(4, j) of S4 = A with Sj for 1 ≤ j ≤ 3.

There is a particular case involving A and A † that requires some special care.
This is when two signatures f ∈ A and g ∈ A † both satisfy the parity constraints.
We deal with this case first. Furthermore, by Lemma 14.2, for two signatures f ∈
A \ P and g ∈ A † \ P we may assume the signatures f and g have arity 4. Hence
the next lemma considers signatures f and g of arity 4.

Lemma 14.4 Let f = [1, ρ]⊗4 ± [1, −ρ]⊗4 ∈ A and g = [1, α]⊗4 ± [1, −α]⊗4 ∈
A †. Then Pl-#CSP2(f, g) is #P-hard.

Proof There are four cases depending on the combination of the two ± signs. Sup-
pose f = [1, ρ]⊗4 + [1, −ρ]⊗4 and g = [1, α]⊗4 + [1, −α]⊗4. Consider the gadget
in Fig. 34a. We assign g to the circle vertex and f to the triangle vertex. Since both
f = 2[1, 0, ρ2, 0, 1] and g = 2[1, 0, α2, 0, −1] have even parity, the signature of
this gadget also has even parity. It is also clearly a redundant signature by design.
Hence there are only five signature entries we need to compute. E.g., the entry of
Hamming weight 0 is g0f0 + g2f2 = 4(1 + α2ρ2). Up to a factor of 4, the signature
of this gadget has signature matrix

⎡

⎢
⎢
⎣

α2ρ2 + 1 0 0 α2 + ρ2

0 2α2ρ2 2α2ρ2 0
0 2α2ρ2 2α2ρ2 0

α2 − ρ2 0 0 α2ρ2 − 1

⎤

⎥
⎥
⎦ , which becomes

⎡

⎢
⎢
⎣

α2ρ2 + 1 0 0 2α2ρ2

0 α2 − ρ2 2α2ρ2 0
0 2α2ρ2 α2 + ρ2 0

2α2ρ2 0 0 α2ρ2 − 1

⎤

⎥
⎥
⎦

Fig. 34 Two gadgets used in the proof of Lemma 14.4

Theory of Computing Systems

after a 90◦ counterclockwise rotation of the gadget. (See Fig. 2 in Part I for an illus-
tration of the rotation operation.) Taking the four corner entries, we define the binary
signature h = [α2ρ2 + 1, 2α2ρ2, α2ρ2 − 1]. By domain pairing, Pl-#CSP(h) ≤T

Pl-#CSP2(f, g). (Domain pairing is the following reduction: In an instance of
Pl-#CSP(h) replace every occurrence of h by a copy of the 90◦ counterclockwise
rotated gadget, and replace both edges of h by two parallel edges each, and replace
every (=k) in the Pl-#CSP(h) instance by (=2k) in Pl-#CSP2(f, g). Note that the
rotation is necessary to create a symmetric binary signature h in the paired domain.)

Note that α2 = ±i and ρ2 = ±1, so α2ρ2±1 has norm
√
2, while 2α2ρ2 has norm

2. Also α2ρ2 + 1 �= α2ρ2 − 1. Hence h /∈ P ∪ A by Corollary 9.9 and also h /∈ M̂
by Lemma 9.8. Thus Pl-#CSP(h) is #P-hard by Theorem 9.22. So Pl-#CSP2(f, g) is
#P-hard.

Suppose f = [1, ρ]⊗4 − [1, −ρ]⊗4 and g = [1, α]⊗4 − [1, −α]⊗4. Consider the
same construction. Up to a nonzero factor of 4αρ, the signature of this gadget has the
signature matrix

⎡

⎢
⎢
⎣

2 0 0 2ρ2

0 1 + α2ρ2 1 + α2ρ2 0
0 1 + α2ρ2 1 + α2ρ2 0

2α2 0 0 2α2ρ2

⎤

⎥
⎥
⎦ , which becomes

⎡

⎢
⎢
⎣

2 0 0 1 + α2ρ2

0 2α2 1 + α2ρ2 0
0 1 + α2ρ2 2ρ2 0

1 + α2ρ2 0 0 2α2ρ2

⎤

⎥
⎥
⎦

after a 90◦ counterclockwise rotation of the gadget. Let h = [2, 1+α2ρ2, 2α2ρ2]. By
domain pairing, we have Pl-#CSP(h) ≤T Pl-#CSP2(f, g). Note that 1+α2ρ2 = 1±i

has norm
√
2 while 2α2ρ2 �= 2 but has norm 2. Hence h /∈ P ∪ A ∪ M̂ by

Corollary 9.9 and Lemma 9.8. Thus we are done by Theorem 9.22.
Suppose f = [1, ρ]⊗4 − [1, −ρ]⊗4 and g = [1, α]⊗4 + [1, −α]⊗4. Consider the

gadget in Fig. 34b. We assign f to the circle vertices and g to the triangle vertex. Up
to a nonzero factor of 16α2ρ2, the signature of this gadget has the signature matrix

⎡

⎢
⎢
⎣

2 0 0 2ρ2

0 ρ2 ρ2 0
0 ρ2 ρ2 0

2ρ2 0 0 2

⎤

⎥
⎥
⎦ , which becomes

⎡

⎢
⎢
⎣

2 0 0 ρ2

0 2ρ2 ρ2 0
0 ρ2 2ρ2 0
ρ2 0 0 2

⎤

⎥
⎥
⎦

after a 90◦ rotation of the gadget. Let h = [2, ρ2, 2]. We also have g× =
2[1, α2]⊗2 by domain pairing with g (see Lemma 9.19). Then Pl-#CSP(g×, h) ≤T

Theory of Computing Systems

Pl-#CSP2(f, g). Note that |ρ2| = 1 �= 2, so by Lemma 9.8 and Corollary 9.9,
h ∈ M̂ \ (P ∪ A). Also by Lemma 9.8 and (α2)2 = −1 �= 1 we have g× /∈ M̂ .
Thus we are done by Theorem 9.22. Note that in this case, the rotation is necessary
to create a non-degenerate binary signature h in the paired domain.

Finally, suppose f = [1, ρ]⊗4 + [1, −ρ]⊗4 and g = [1, α]⊗4 − [1, −α]⊗4.
Consider the gadget in Fig. 34b. We assign g to the circle vertices and f to the tri-
angle vertex. Up to a nonzero factor of 16α2ρ2, the signature of this gadget has the
signature matrix

⎡

⎢
⎢
⎣

2 0 0 2α2

0 α2 α2 0
0 α2 α2 0

2α2 0 0 −2

⎤

⎥
⎥
⎦ , which becomes

⎡

⎢
⎢
⎣

2 0 0 α2

0 α2 2α2 0
0 2α2 α2 0
α2 0 0 −2

⎤

⎥
⎥
⎦

after a 90◦ rotation of the gadget. Let h = [2, α2, −2], then Pl-#CSP(h) ≤T

Pl-#CSP2(f, g) by domain pairing. Since |α2| = 1 �= 2, we have h /∈ P ∪ A by
Corollary 9.9 and also h /∈ M̂ by Lemma 9.8. Thus we are done by Theorem 9.22.
Note that in this case, the rotation is also necessary to create a non-degenerate binary
signature h in the paired domain.

Remark 8 The use of a more complicated construction in the third case is neces-
sary. Notice that g = [1, α]⊗4 + [1, −α]⊗4 = 2[1, 0, α2, 0, −1] has an even parity,
while f = [1, ρ]⊗4 − [1, −ρ]⊗4 = 2ρ[0, 1, 0, ρ2, 0] has an odd parity. Then in any
construction of a signature using f and g, if the number of occurrences Nf of f is
odd (resp. even), then the resulting signature also has an odd (resp. even) parity. To
see this, let H be an arbitrary {f, g}-gate with Nf occurrences of f . Suppose σ is
a {0, 1}-assignment to all the edges of H , including internal and external edges, that
has a nonzero evaluation on H . Then each copy of f has an odd number of incident
edges assigned to 1. Summing these numbers (mod 2) over all copies of f we get a
number ≡ Nf (mod 2), since each of these numbers is ≡ 1 (mod 2). Similarly each
copy of g has an even number of incident edges assigned to 1. Summing these num-
bers (mod 2) over all copies of g we get a number ≡ 0 (mod 2). On the other hand,
if we add these two sums together we get 2X + Y where X is the number of internal
edges and Y is the number of external edges assigned to 1 by σ . This is because each
internal edge assigned to 1 appears exactly twice in the sum. Hence this number is
≡ Y (mod 2). We conclude that Nf ≡ Y (mod 2), the Hamming weight of σ on the
external edges.

If Nf is odd, from any constructed signature of arity 4, by rotation and domain
pairing we can only get the identically zero binary signature. Thus we must use f an
even number of times. Using g alone will not get out of A †, which is a tractable set.
Thus we must use f at least twice. Also using g alone will not get out of A , another
tractable set. Therefore we must use g at least once. Therefore the construction we
give is the simplest possible.

The same consideration applies for the construction in the fourth case.

Theory of Computing Systems

The next Lemma deals with the situation when we have a binary signature in
A \ P and an arity 4 signature in A † \ P .

Lemma 14.5 Let f = [1, ρ, −ρ2] and g = [1, α]⊗4 + ir [1, −α]⊗4. Then
Pl-#CSP2(f, g) is #P-hard.

Proof By our calculus, we have ∂[1,ρ,−ρ2](g) = λ[1, α]⊗2 + irμ[1, −α]⊗2, where
λ = 1 − ρ2α2 + 2ρα and μ = 1 − ρ2α2 − 2ρα. Note that 1 − ρ2α2 =
1 ± i has norm

√
2 and |2ρα| = 2, we have λ �= 0. Let x = irμ/λ, then

∂[1,ρ,−ρ2](g) = λ(1 + x)[1, 1−x
1+x

α, α2]. By norm, (1 − ρ2α2)4 �= (2ρα)4 and

(1 − ρ2α2)(2ρα) �= 0, we have x4 �= 0, 1 by Lemma 9.3. By Lemma 9.3 again, we
have (1−x

1+x
)4 �= 0, 1. Thus [1, 1−x

1+x
α, α2] /∈ P∪Ã ∪M̃ by Corollary 9.9. This implies

that Pl-#CSP2([1, 1−x
1+x

α, α2]) is #P-hard by Theorem 9.21′. Thus Pl-#CSP2(f, g) is
#P-hard.

The next lemma is the No-Mixing lemma of A with the other tractable sets,
namely the statements No-Mixing-(4, j) for 1 ≤ j ≤ 3. Having already proved
Lemma 14.3, we can assume that both f and g are not in S5 = P .

Lemma 14.6 Let {f, g} ⊆
(⋃4

k=1 Sk

)
\ S5 and {f, g} � Sj for every 1 ≤ j ≤ 4.

Assume that f ∈ S4 = A , then Pl-#CSP2(f, g) is #P-hard.

Proof By f ∈ A , we have g /∈ A . Thus, g ∈ (A † ∪ M̂ ∪ M̂ †) \ (P ∪ A).

1. Suppose g ∈ A † \ (P ∪ A). Then a fortiori, g ∈ A † \ P . As f ∈ A \ P ,
by Lemma 14.2, we have some f ′ ∈ A \ P and g′ ∈ A † \ P , both of arity 4.
Without loss of generality, we will assume the given f and g are of arity 4. By
definition (see Fig. 24), we can assume that

f =[1, ρ]⊗4+ir [1,−ρ]⊗4 and g=[1, α]⊗4+is[1,−α]⊗4 where r, s =0,1,2,3.

• If both r, s ≡ 0 (mod 2), then f = [1, ρ]⊗4±[1, −ρ]⊗4 and g = [1, α]⊗4±
[1, −α]⊗4. This is the case where both f and g satisfy the parity constraints,
and it is proved in Lemma 14.4.

• If r ≡ 1 (mod 2) then f = [1, ρ]⊗4 ± i[1, −ρ]⊗4. For ρ2 = 1, by our
calculus we have

∂(f) = 2{[1, ρ]⊗2 ± i[1, −ρ]⊗2} = 2(1 ± i)[1, ∓iρ, ρ2] = 2(1 ± i)[1, ρ′, −ρ′2],
where ρ′ = ∓iρ, and ρ′4 = 1. Thus Pl-#CSP2([1, ρ′, −ρ′2], g) is #P-hard
by Lemma 14.5. So Pl-#CSP2(f, g) is #P-hard.

For ρ2 = −1, we cannot use [1, 0, 1] to reduce the arity of f , because
∂(f) = 0 in this case. Instead we construct a suitable binary signature from
g. If s �= 2, then we have g0 = 1 + is �= 0 and g4 = α4 + is(−α)4 =
−(1 + is) = −g0, and therefore ∂g(=6) = g0[1, 0, −1] on the LHS. Then
we have ∂[1,0,−1](f) = 2{[1, ρ]⊗2 ± i[1, −ρ]⊗2} = 2(1± i)[1, ∓iρ, ρ2] =
2(1 ± i)[1, ρ′, −ρ′2], where ρ′ = ∓iρ and ρ′4 = 1. Then we are done

Theory of Computing Systems

by Lemma 14.5. If s = 2, then ∂(g) = (1 + α2){[1, α]⊗2 − [1, −α]⊗2},
a nonzero multiple of [0, 1, 0]. Thus we have ∂[0,1,0](f) = 2ρ{[1, ρ]⊗2 ∓
i[1, −ρ]⊗2} = 2ρ(1∓ i)[1, ±iρ, ρ2] = 2ρ(1∓ i)[1, ρ′, −ρ′2], where ρ′ =
±iρ and ρ′4 = 1. Then we are done by Lemma 14.5 again.

• If r ≡ 0 (mod 2) and s ≡ 1 (mod 2), i.e., f = [1, ρ]⊗4 ± [1, −ρ]⊗4

and g = [1, α]⊗4 ± i[1, −α]⊗4, then we will construct a binary signature
h = [1, b, ±1]. Note that h ∈ M̃ by Lemma 9.8. Furthermore, we will
ensure that b4 �= 0, 1, thus h /∈ P ∪ Ã by Corollary 9.9. Then we are done
by Lemma 13.3 and Lemma 13.7.

We have ∂(g) = (1 + α2){[1, α]⊗2 ± i[1, −α]⊗2} = (1 + α2)(1 ±
i)[1, ∓iα, α2], a nonzero multiple of [1, α′, −α′2], where α′ = ∓iα and
α′4 = −1. Moreover, we have h = ∂[1,α′,−α′2](f) = λ[1, ρ]⊗2 ±
μ[1, −ρ]⊗2, where λ = 1 − ρ2α′2 + 2ρα′ and μ = 1 − ρ2α′2 − 2ρα′.
Then h = λ(1 ± x)[1, aρ, ρ2], where x = μ

λ
and a = 1∓x

1±x
. Note that

1 − ρ2α′2 = 1 ± i has norm
√
2 and |2ρα′| = 2, thus λ �= 0 and

(1−ρ2α′2)4 �= (2ρα′)4 by norm. Denote by u = 1−ρ2α′2 and v = −2ρα′.
Then x = u+v

u−v
. By Lemma 9.3, x4 �= 0, 1. Then by Lemma 9.3 again,

a4 �= 0, 1, and so (aρ)4 = a4 �= 0, 1 as well. As λ �= 0, 1±x �= 0, ρ2 = ±1,
we have a nonzero multiple of [1, aρ, ±1], our desired binary signature, and
we are done by Lemma 13.3 and Lemma 13.7.

In the following we may assume g /∈ A †.
2. Suppose g ∈ M̂ \ (P ∪ A), then g ∈ M̂ \ (P ∪ Ã). We also have f /∈ M̂ ,

lest {f, g} ⊆ M̂ , and we are done by Lemma 13.3.
3. Suppose g ∈ M̂ †\(P∪A), then g ∈ M̂ †\(P∪Ã). Now f ∈ A \(P∪M̂ †).

Note that [1, 1]⊗2n ± [1, −1]⊗2n ∈ M̂ †. This can be verified as follows: Let

Z =
[
1 1
i −i

]

, then M̂ † = ZM , and Z−1 = 1
2

[
1 −i

1 i

]

. We first verify that

[1, 0]⊗2n ± [0, 1]⊗2n ∈ M̂ † = ZM̂ , by

[
1 −i

1 i

]⊗2n
{[

1
0

]⊗2n

±
[
0
1

]⊗2n
}

=
[
1
1

]⊗2n

± (−i)2n
[
1
−1

]⊗2n

=
[
1
1

]⊗2n

± (−1)n
[
1
−1

]⊗2n

∈ M .

Then notice that

[
1
1

]⊗2n

±
[
1
−1

]⊗2n

=
[
1 1
1 −1

]⊗2n
{[

1
0

]⊗2n

±
[
0
1

]⊗2n
}

∈
[
1 1
1 −1

]

M̂ †.

However

[
1 1
1 −1

] [
1 1
i −i

]

=
[
1 + i 1 − i

1 − i 1 + i

]

=
[
1 1
i −i

] [
0 1 − i

1 + i 0

]

Theory of Computing Systems

and

[
0 1 − i

1 + i 0

]

M = M , therefore

[
1 1
1 −1

]

M̂ † =
[
1 1
1 −1

]

ZM =

Z

[
0 1 − i

1 + i 0

]

M = ZM = M̂ †. (Also see Fig. 25).

Now, since [1, 1]⊗2n ± [1, −1]⊗2n ∈ M̂ † and f /∈ M̂ †, f cannot take the
form [1, 1]⊗2n ± [1, −1]⊗2n. Then by definition (see Fig. 24) f takes the form

[1, ρ,−ρ2], or [1, 1]⊗2n±i[1,−1]⊗2n, or [1, i]⊗2n+ir [1,−i]⊗2n, where 2n≥4.

The following three cases are immediately done by Lemma 13.7:

• f = [1, ρ, −ρ2].
• f = [1, 1]⊗2n±i[1, −1]⊗2n with 2n ≥ 4, then we have ∂n−1(f) = 2n−1[1±

i, 1 ∓ i, 1 ± i] which is not λ[1, 0, 1].
• If f = [1, i]⊗2n + ir [1, −i]⊗2n with 2n ≡ 2 (mod 4), then we have

∂
n−1
2=4 (f) = 2

n−1
2 [1 + ir , (1 − ir)i, −(1 + ir)] which is not λ[1, 0, 1], no

matter what value r takes.

The remaining case is that f = [1, i]⊗2n + ir [1, −i]⊗2n with 2n ≡ 0
(mod 4). In this case, we have

∂
n−2
2=4 (f) = 2

n−2
2 {[1, i]⊗4 + ir [1, −i]⊗4}.

We will denote by f ′ = [1, i]⊗4 + ir [1, −i]⊗4. If g has arity 2, then up to
a nonzero scalar, g = [1, b, −1] with b4 �= 0, 1 by Lemma 9.14, and we are
done by Lemma 13.7. In the following, assume that g has arity 2m ≥ 4. By
Lemma 9.14, either g = [s, ti]⊗2m ± [t, si]⊗2m with s4 �= t4 and st �= 0, or g

has arity 2m and gk = (εi)k(2m − 2k).

• If g has arity 2m ≥ 4 and gk = (εi)k(2m − 2k) up to a nonzero scalar,

then let ĝ = (Z−1)⊗2mg, where Z =
[
1 1
i −i

]

. Then ĝ = [0, 1, 0, . . . , 0] or
ĝ = [0, . . . , 0, 1, 0] of arity 2m. By Corollary 10.5, we have

Pl-#CSP2(ĝ) ≤ Pl-#CSP2(f ′, g).

Let ĝ′ = ∂m−2(ĝ) = [0, 1, 0, 0, 0] or [0, 0, 0, 1, 0]. Clearly ĝ′ is non-
degenerate. It also has a second order recurrence of type 〈0, 0, 1〉 or 〈1, 0, 0〉.
By Lemma 9.11, ĝ′ /∈ P ∪ Ã ∪ M̃ . Then Pl- #CSP2(ĝ′) is #P-hard by
Theorem 12.5 and we are done.

• If g = [s, ti]⊗2m ± [t, si]⊗2m, we have

g′ = ∂m−2(g) = (s2 − t2)m−2
{
[s, ti]⊗4 ± (−1)m−2[t, si]⊗4

}

and from f ′ we get [1, 0, −1]⊗2 on LHS by Lemma 9.20, thus

Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | f ′, g′) ≤ Pl-#CSP2(f, g).

Theory of Computing Systems

After a holographic transformation using T =
[
1 0
0 −i

]

, we have

Pl-Holant([1, 0, 1]⊗2, [1, 0, −1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′)
≡ Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | f ′, g′),

where f̂ ′ = (T −1)⊗4f ′ = [1, 1]⊗4+ir [1, −1]⊗4 and ĝ′ = (T −1)⊗4g′. Note
that f̂ ′ satisfies a second order recurrence of type 〈−1, 0, 1〉. Thus f̂ ′ /∈ M̂
by Lemma 9.11. Also note that P and Ã are invariant under T , and since
g′ ∈ M̂ † \ (P ∪ Ã), we have ĝ′ ∈ M̂ \ (P ∪ Ã). In the following, we
will construct [1, 0, 1]⊗2 on RHS for

Pl-Holant([1, 0, 1]⊗2, [1, 0, −1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′).

Since we have [1, 0, 1]⊗2 on LHS, we can get [∂(f̂ ′)]⊗2 = 4[1 + ir , 1 −
ir , 1 + ir]⊗2 on RHS.

– If r = 0, then we directly have [1, 0, 1]⊗2 on RHS.
– If r = 2, then we have [0, 1, 0]⊗2 on RHS. Thus we can move [1, 0, 1]⊗2

on LHS to RHS.
– If r = 1 or 3, then we have [1, ±i, 1]⊗2 on RHS. By connecting two

copies of [1, ±i, 1]⊗2 by [1, 0, 1]⊗2 of LHS, we have a nonzero multiple
of [0, 1, 0]⊗2 on RHS. Then we can move [1, 0, 1]⊗2 on LHS to RHS.

From the above, we have

Pl-Holant([1, 0, 1]⊗2, [1, 0, −1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′, [1, 0, 1]⊗2)

≤ Pl-Holant([1, 0, 1]⊗2, [1, 0, −1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′).
Note that we have all of =4k on the LHS. Thus by Lemma 10.4,

Pl-#CSP2(f̂ ′, ĝ′) ≤ Pl-Holant([1, 0, 1]⊗2, [1, 0,−1], [1, 0, 0, 0, 1], . . . | f̂ ′, ĝ′, [1, 0, 1]⊗2).

Recall that ĝ′ ∈ M̂ \ (P ∪ Ã) and f̂ ′ /∈ M̂ . Thus we are done by
Lemma 13.3.

14.3 Mixing with S3 = A †

In this subsection, we prove the No-Mixing lemma for A † with other tractable sets,
namely the statements No-Mixing-(3, j), for 1 ≤ j ≤ 2. Because we have already
proved Lemma 14.3 and Lemma 14.6, the No-Mixing lemmas for S5 = P and
S4 = A respectively, we only need to consider the mixing of S3 = A † with Sj for
1 ≤ j ≤ 2. Thus we may assume f ∈ A † and g ∈ M̃ \ A †. Moreover, we can
assume that f, g /∈ P ∪ A .

Lemma 14.7 Let {f, g} ⊆
(⋃3

k=1 Sk

)
\ (S4 ∪ S5) and {f, g} � Sj for 1 ≤ j ≤ 3.

Assume that f ∈ S3 = A †, then Pl-#CSP2(f, g) is #P-hard.

Theory of Computing Systems

Proof Firstly, we have f ∈ A † \ P , thus f ∈ {[1, α, −α2], [1, α]⊗2n +
ir [1, −α]⊗2n | 2n ≥ 4} (see Fig. 24). Clearly [1, α, −α2] is not λ[1, 0, 1]. If
f = [1, α]⊗2n + ir [1, −α]⊗2n, then we have ∂n−1(f) = (1 + α2)n−1{[1, α]⊗2 +
ir [1, −α]⊗2} = (1 + α2)n−1[1 + ir , (1 − ir)α, (1 + ir)α2] which is not λ[1, 0, 1].
Hence we can always obtain a nonzero binary signature that is not λ[1, 0, 1] from f .

Note that g ∈ M̃ \ (P ∪ Ã). If g ∈ M̂ \ (P ∪ Ã), we are done by Lemma
13.3. For g ∈ M̂ † \ (P ∪ Ã), since we have a nonzero binary signature that is not
λ[1, 0, 1], we are done by Lemma 13.7.

14.4 Mixing with S2 = ̂M

In this subsection, we prove the No-Mixing lemma for M̂ with other tractable sets.
Because we have already proved Lemma 14.3, Lemma 14.6, and Lemma 14.7, the
No-Mixing lemmas for S5 = P , S4 = A , and S3 = A † respectively, we only need
to consider the No-Mixing of S2 = M̂ with S1 = M̂ †.

Lemma 14.8 Let {f, g} ⊆
(⋃2

k=1 Sk

)
\(S3∪S4∪S5) and {f, g} � Sj for 1 ≤ j ≤ 2.

Then Pl-#CSP2(f, g) is #P-hard.

Proof Either f or g ∈ M̂ , otherwise {f, g} ⊆ M̂ †. As they do not belong to S3 ∪
S4 ∪ S5 = P ∪ Ã , we have a signature in M̂ \ (P ∪ Ã). Thus we are done by
Lemma 13.3.

By Lemma 14.3, Lemma 14.6, Lemma 14.7 and Lemma 14.8, we have the
following No-Mixing theorem for two signatures with even arities.

Theorem 14.9 Let f and g be two symmetric signatures of even arity. If {f, g} ⊆⋃5
k=1 Sk and {f, g} � Sj for 1 ≤ j ≤ 5, then Pl-#CSP2(f, g) is #P-hard.

15 No-Mixing of Even Arity Signature Set

In this section, we extend Theorem 14.9, the No-Mixing theorem for a pair of two
signatures of even arity, to Theorem 15.4, the No-Mixing theorem for a set of signa-
tures of even arity. For convenience, we explicitly list some signature sets that will
be used in the proof of Theorem 15.4.

Lemma 15.1 Restricted to nonzero even arity signatures, ignoring a nonzero factor,
we have

1. A † ∩ (P ∪ A) is the set

{[1, α]⊗2n, [1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir] | n ≥ 1, 0 ≤ r ≤ 3}.
2. M̂ ∩ (P ∪ Ã) is the set

{[1, ±1]⊗2m, [0, 1, 0], [1, ±i, 1], [1, 0, . . . , 0, ±1], [1, i]⊗2n ± [1, −i]⊗2n | m ≥ 1, n ≥ 2}.

Theory of Computing Systems

3. M̂ † ∩ (P ∪ Ã) is the set

{[1, ±i]⊗2m, [0, 1, 0], [1, ±1, −1], [1, 0, . . . , 0, ±1], [1, 1]⊗2n±[1, −1]⊗2n | m ≥ 1, n ≥ 2}.
4.

⋂

3≤k≤5
Sk is the set {[1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir] | n ≥ 1, 0 ≤

r ≤ 3}.
5.

⋂

1≤k≤5
Sk = ⋂

2≤k≤5
Sk is the set {[0, 1, 0], [1, 0, . . . , 0, ±1]}.

Proof For all five cases, it is easy to show that the listed signatures in the displayed
set are indeed members of the respective stated intersection, bear in mind that the
signatures all have even arity. E.g., the signature f = [1, 0, . . . , 0, ir] is clearly
in P (as well as A), and it has even arity 2n, and thus under the transformation

T =
[
1 0
0 α

]

, (T −1)2nf = [1, 0, . . . , 0, is] ∈ A , for some 0 ≤ s ≤ 3. Thus

f ∈ A †.
In the following, we prove that if f is a nonzero signature of even arity and is in

the stated intersection then it is among the listed types.

1. (a.) Firstly, suppose that f ∈ A † ∩ (P ∪ A) is degenerate, i.e., f = [a, b]2n.
If f = [1, 0]2n or [0, 1]2n up to a nonzero scalar, then f is among the
listed. Suppose ab �= 0. Then up to a nonzero scalar, f = [1, ξ]2n, for
some ξ �= 0. By f ∈ A †, we have

[
1 0
0 α

]2n
f = [1, αξ]2n ∈ A . Thus

(αξ)4 = 1, i.e., ξ4 = −1. So f is among the listed types.
(b.) If f ∈ A † ∩ (P ∪ A) is a non-degenerate binary signature, by f ∈ A †

and Lemma 9.8, we have f = [1, α, −α2], or [0, 1, 0], or [1, 0, ρ] up to
a scalar, where α4 = −1, ρ4 = 1. Note that [1, α, −α2] /∈ P ∪ A by
Corollary 9.9. Thus f = [0, 1, 0] or [1, 0, ρ]; these are among the listed
types.

(c.) If f ∈ A †∩ (P ∪A) is non-degenerate and has arity 2n ≥ 4, by f ∈ A †

and Lemma 9.11, f has type 〈0, 1, 0〉 or 〈1, 0, ±i〉 and the second-order
recurrence relation is unique up to a scalar. If f has type 〈1, 0, ±i〉, then
f /∈ P ∪A by Lemma 9.11. This contradicts that f ∈ A † ∩ (P ∪A). If
f has type 〈0, 1, 0〉, then f = [1, 0, . . . , 0, x] with x �= 0 up to a nonzero
scalar, because f is non-degenerate. Moreover, if x4 �= 1, bear in mind that
f has even arity, then f /∈ A † and this contradicts that f ∈ A †∩(P∪A).
Hence x4 = 1 and f = [1, 0, . . . , 0, ir], for some 0 ≤ r ≤ 3; this is
among the listed types.

Summarizing, we proved that if f ∈ A † ∩ (P ∪ A) then f is among the
listed types.

2. (a.) Suppose f ∈ M̂ ∩ (P ∪ Ã) is a nonzero degenerate signature, i.e., f =
[a, b]⊗2n. By f ∈ M̂ we have

[
1 1
1 −1

]⊗2n

f = [a + b, a − b]⊗2n ∈
M , which must satisfy the parity constraints. Thus a = ±b and f =
[1, ±1]⊗2n up to a nonzero scalar.

Theory of Computing Systems

(b.) If f ∈ M̂ ∩ (P ∪ Ã) is a non-degenerate binary signature, by f ∈ M̂
and Lemma 9.8, we have f = [0, 1, 0], or [1, b, 1], or [1, 0, −1] up to
a nonzero scalar. If f = [1, b, 1] and b4 �= 0, 1, then f /∈ P ∪ Ã , by
Corollary 9.9. This contradicts that f ∈ M̂∩(P∪Ã). Thus, f = [0, 1, 0],
[1, 0, 1], [1, ir , 1] or [1, 0, −1], where 0 ≤ r ≤ 3. Note that if r = 0 or 2,
then [1, ir , 1] = [1, ±1, 1] = [1, ±1]⊗2. Thus all these binary signatures
are in the listed types.

(c.) If f ∈ M̂ ∩ (P ∪ Ã) is non-degenerate and has arity 2n ≥ 4, by
f ∈ M̂ and Lemma 9.11, f has type 〈0, 1, 0〉 or 〈1, c, 1〉, and the
second-order recurrence relation is unique up to a scalar. If f has type
〈1, c, 1〉 with c �= 0, then f /∈ P ∪ Ã by Lemma 9.11 and this con-
tradicts that f ∈ M̂ ∩ (P ∪ Ã). If f has type 〈1, 0, 1〉, then there
exist constants x and y such that f = x[1, i]⊗2n + y[1, −i]⊗2n. By
non-degeneracy, we get xy �= 0, and by its type 〈1, 0, 1〉, f �∈ P
by Lemma 9.11. Thus f ∈ Ã . In fact by Lemma 9.11 and its type
〈1, 0, 1〉, f �∈ A † \ P , thus it follows that f ∈ A \ P . Then there are

two possibilities: Either f =
[
1 1
1 −1

]⊗2n {[1, 0]⊗2n + ir [0, 1]⊗2n
}
, or

f =
[
1 1
i −i

]⊗2n {[1, 0]⊗2n + ir [0, 1]⊗2n
}
, up to a nonzero scalar, where

0 ≤ r ≤ 3. However, the first possibility is a contradiction to f ∈ M̂ ,
because [1, 0]⊗2n + ir [0, 1]⊗2n �∈ M , for arity 2n ≥ 4, by Proposi-
tion 2.8. Thus f = [1, i]⊗2n + ir [1, −i]⊗2n up to a nonzero scalar, for

some 0 ≤ r ≤ 3. If f = [1, i]⊗2n ± i[1, −i]⊗2n, then

[
1 1
1 −1

]⊗2n

f is

(±i)(1− i)2n{[1, i]⊗2n ∓ i(−1)n[1, −i]⊗2n}. This is a nonzero multiple of
[1, i]⊗2n ± i[1, −i]⊗2n, which does not satisfy the parity constraints, and
hence not in M . So f is not in M̂ . Hence f = [1, i]⊗2n ± [1, −i]⊗2n,
which is among the listed types.

If f has type 〈0, 1, 0〉, then f = [1, 0, . . . , 0, x] with x �= 0, up to a
nonzero scalar. By f ∈ M̂ and Lemma 9.16, we have x2 = 1. Thus f =
[1, 0, . . . , 0, ±1], which is among the listed types.

Summarizing, we proved that if f ∈ M̂ ∩ (P ∪ Ã), then f is among the
listed types.

3. Note that P ∪ Ã is unchanged under the transformation by

[
1 0
0 i

]

. Thus

M̂ † ∩ (P ∪ Ã) =
[
1 0
0 i

] {
M̂ ∩ (P ∪ Ã)

}
.

Then the proof of this case follows from the previous case by a transformation

using

[
1 0
0 i

]

.

4. If f ∈ ⋂5
k=3 Sk , then a fortiori, f ∈ A † ∩ (P ∪ A). This implies that

f ∈{[1, α]⊗2n, [1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir] | n≥1, 0≤r ≤3}.

Theory of Computing Systems

Note that [1, α]⊗2m /∈ A . Thus f = [1, 0]⊗2n, or [0, 1]⊗2n, or [0, 1, 0], or
[1, 0, . . . , 0, ir]. All of these four types are among the listed.

5. We already have

{[0, 1, 0], [1, 0, . . . , 0, ±1]} ⊆
⋂

1≤k≤5

Sk ⊆
⋂

2≤k≤5

Sk .

If f ∈ ⋂5
k=2 Sk , then f ∈ ⋂5

k=3 Sk . This implies that

f ∈ {[1, 0]⊗2n, [0, 1]⊗2n, [0, 1, 0], [1, 0, . . . , 0, ir] | n ≥ 1, 0 ≤ r ≤ 3}.
Moreover, if f = [1, 0]⊗2n, or [0, 1]⊗2n or [1, 0, . . . , 0, ±i], then f /∈ M̂ ,

because

[
1 1
1 −1

]⊗2n

f does not satisfy the parity constraints. Hence f =
[0, 1, 0], or [1, 0, . . . , 0, ±1], and both types are among the listed.

We state the following simple lemma which allows us to replace a signature set
F in the proof of the No-Mixing Theorem by a smaller set F ′ that subtracts from F
those signatures that belong to all common tractable signature sets.

Lemma 15.2 Let F be a set of symmetric signatures such that for all 1 ≤ k ≤ 5,
F �⊆ Sk . Let F ′ = F \ (

⋂5
k=1 Sk), the set of signatures in F excluding those that

belong to all five tractable signature sets. Then for all 1 ≤ k ≤ 5, F ′ �⊆ Sk and
Pl-#CSP2(F ′) ≤ Pl-#CSP2(F).

Proof Suppose for some 1 ≤ k ≤ 5, F ′ ⊆ Sk , then clearly F ⊆ Sk . The reduction is
trivial since F ′ ⊆ F .

Suppose F is as given in Lemma 15.2, and F ∩ (
⋃5

k=1 Sk) �= ∅, i.e., there exists
some signature in F outside of all five tractable signature sets. Let j = min{k |
F∩Sk �= ∅, 1 ≤ k ≤ 5}. Then j is well defined. Then by definition and De Morgan’s
laws F ′ = F \ (

⋂5
k=j Sk), is also the set of signatures in F excluding those that

belong to all signature sets Sk for j ≤ k ≤ 5. By Lemma 15.2 we have F ′ �⊆ Sk ,
for j ≤ k ≤ 5, F ′ ∩ Sk = ∅ for 1 ≤ k < j (by definition), and Pl-#CSP2(F ′) ≤
Pl-#CSP2(F). For ease of application we state this as a corollary.

Corollary 15.3 Let F be a set of symmetric signatures such that for all 1 ≤ k ≤ 5,
F �⊆ Sk . Furthermore suppose F ∩ (

⋃5
k=1 Sk) �= ∅ and let j = min{k | F ∩ Sk �=

∅, 1 ≤ k ≤ 5}. Let F ′ = F \ (
⋂5

k=j Sk). Then for all j ≤ k ≤ 5, F ′ �⊆ Sk and

Pl-#CSP2(F ′) ≤ Pl-#CSP2(F).

Recall that S1 = M̂ , S2 = M̂ †, S3 = A †, S4 = A and S5 = P .

Theorem 15.4 Let F ⊆ ⋃5
k=1 Sk be a set of symmetric signatures of even ari-

ties. If F ⊆ Sk for some 1 ≤ k ≤ 5, then Pl-#CSP2(F) is tractable. Otherwise,
Pl-#CSP2(F) is #P-hard.

Theory of Computing Systems

Proof If F ⊆ Sk for some 1 ≤ k ≤ 5, then tractability follows from the definition of
P-transformability, A -transformability and M -transformability.

Now suppose F � Sk for all 1 ≤ k ≤ 5. We first replace F by F ′ = F \
(
⋂5

k=1 Sk). This also excludes the identically 0 signature. By Lemma 15.2, we still
have F ′

� Sk for 1 ≤ k ≤ 5, and we only need to prove Pl-#CSP2(F ′) is #P-hard.
We will treat the tractable sets in the order S1, S2, . . . , S5, starting with S1 = M̂ .

1. Suppose that F ′ ∩ S1 �= ∅.
Let G1 = F ′ ∩S1, andH1 = F ′ \S1. Then G1 �= ∅, and sinceF ′

� S1 we also
haveH1 �= ∅. If there exists g ∈ G1 such that g ∈ M̂ \(P∪Ã), then we are done
by Lemma 13.3. Otherwise, G1 ⊆ M̂ ∩ (P ∪ Ã). Then by the forms given in
Lemma 15.1, ignoring nonzero scalars, G1 ⊆ {[1, ±1]⊗2m, [1, ±i, 1], [1, i]⊗2n±
[1, −i]⊗2n | m ≥ 1, n ≥ 2}. Note that we have excluded⋂5

k=1 Sk in F ′, hence
also in G1. By Lemma 15.1, [1, 0, . . . , 0, ±1], [0, 1, 0] �∈ F ′.

If [1, ±1]⊗2m ∈ G1 for some m ≥ 1, then we can construct
∂m−1([1, ±1]⊗2m) = 2m−1[1, ±1]⊗2, and we are done by Lemma 10.3.

Otherwise, by the forms in

G1 ⊆ {[1, ±i, 1], [1, i]⊗2n ± [1, −i]⊗2n | n ≥ 2}, (15.27)

we have G1 ⊆ A . If H1 ⊆ A , then we would have F ′ ⊆ A , a contradiction.
ThusH1 � A . Thus there exists h ∈ H1\A . By definition ofH1, h �∈ M̂ . Also
H1 ⊆ ⋃5

k=1 Sk , thus h ∈ (P∪A †∪M̂ †)\(A ∪M̂). By the forms of signatures
in the nonempty set G1 in (15.27) we have G1 ∩ (P ∪ A † ∪ M̂ †) = ∅. To check
this: for the binary [1, ±i, 1], we apply Lemma 9.8; for [1, i]⊗2n±[1, −i]⊗2n we
use its second-order recurrence of type 〈1, 0, 1〉 and then we apply Lemma 9.11.
Thus Pl-#CSP2(F ′) is #P-hard by Theorem 14.9.

2. We haveF ′∩S1 = ∅. We replaceF ′ byF ′′ = F ′\(
⋂5

k=2 Sk). By Corollary 15.3,
we still have F ′′

� Sk for 2 ≤ k ≤ 5, F ′′ ∩ S1 = ∅, and we only need to prove
Pl-#CSP2(F ′′) is #P-hard.

Now suppose that F ′′ ∩ S2 �= ∅.
By Lemma 15.1, [1, 0, . . . , 0, ±1], [0, 1, 0] �∈ F ′′.
Let G2 = F ′′∩S2 andH2 = F ′′\S2. Both G2,H2 �= ∅ (G2 �= ∅ by assumption,

H2 �= ∅ by F ′′ �⊆ S2), and we also have H2 ∩ M̃ = ∅ by definition. Thus there
exists h ∈ H2 \ M̃ . If there exists g ∈ G2 such that g ∈ M̂ † \ (P ∪ Ã), then
Pl-#CSP2(f, g) is #P-hard by Theorem 14.9.

Otherwise, G2 ⊆ M̂ † ∩ (P ∪ Ã). Then G2 ⊆
{[1, ±i]⊗2m, [1, ±1, −1], [1, 1]⊗2n ± [1, −1]⊗2n | m ≥ 1, n ≥ 2} by
Lemma 15.1. By its form G2 ⊆ A . If H2 ⊆ A , then we would have F ′′ ⊆ A ,
a contradiction. Thus H2 � A . Hence there exists h′ ∈ H2 \ A . By def-
inition of H2, h′ �∈ M̃ . As F ′′ ⊆ ⋃5

k=2 Sk , h′ ∈ (P ∪ A †) \ (A ∪ M̃).
We note that both [1, ±1, −1] and [1, 1]⊗2n ± [1, −1]⊗2n, for any n ≥ 2,
are not in P ∪ A †. To see this for [1, ±1, −1] we apply Corollary 9.9. To
see this for [1, 1]⊗2n ± [1, −1]⊗2n with n ≥ 2, we note its recurrence type
〈−1, 0, 1〉 and then apply Lemma 9.11. Now if G2 includes either [1, ±1, −1]

Theory of Computing Systems

or [1, 1]⊗2n ± [1, −1]⊗2n for some n ≥ 2, then Pl-#CSP2(F ′′) is #P-hard by
Theorem 14.9.

We are left with the case where the nonempty set G2 ⊆ {[1, ±i]⊗2m | m ≥ 1}.
By its form G2 ⊆ P ∩ A ∩ M̂ † and G2 ∩ A † = ∅. If there exists h′′ ∈
H2 \ (A ∪ P), then by definition ofH2 this h′′ �∈ M̃ as well, and we conclude
that Pl-#CSP2(F ′′) is #P-hard by Theorem 14.9.

So we may assumeH2 ⊆ A ∪P . IfH2 ⊆ A , then we would have F ′′ ⊆ A ,
a contradiction. Thus there exists h′′′ ∈ (H2 ∩ P) \ A . Considering the forms
of signatures in P \ A , it takes the form h′′′ = [a, b]⊗2n with a4 �= b4, ab �= 0,
or h′′′ = [1, 0, . . . , 0, x] of arity 2n, with x4 �= 0, 1, for some n ≥ 1. Tak-
ing h′′′′ = ∂n−1(h′′′), we get a nonzero multiple of either [a, b]⊗2 or [1, 0, x].
Then taking ∂m−1

h′′′′ ([1, ±i]⊗2m), for some m ≥ 1, where [1, ±i]⊗2m ∈ G2
which is nonempty, we get a nonzero multiple of [1, ±i]⊗2, and we are done by
Lemma 10.3.

3. Now we have F ′′ ∩ S2 = ∅.
We replace F ′′ by F ′′′ = F ′′ \ (

⋂5
k=3 Sk). By Corollary 15.3, we still have

F ′′′
� Sk for 3 ≤ k ≤ 5, F ′′′ ∩ (S1 ∪ S2) = ∅, and we only need to prove

Pl-#CSP2(F ′′′) is #P-hard.
Suppose that F ′′′ ∩ S3 �= ∅.
By Lemma 15.1, as F ′′′ ∩ ⋂5

k=3 Sk = ∅, the following signatures
[1, 0, . . . , 0, ir] of arity 2n, [0, 1, 0], [1, 0]⊗2n, [0, 1]⊗2n all do not belong to
F ′′′, for any 0 ≤ r ≤ 3 and any n ≥ 1.

Let G3 = F ′′′ ∩ S3,H3 = F ′′′ \ S3. Both G3,H3 �= ∅ (G3 �= ∅ by assumption,
H3 �= ∅ by F ′′′ �⊆ S3). Thus there exists h ∈ H3 such that h ∈ (P ∪ A) \
(A † ∪ M̃). By definition G3 ⊆ S3 = A †. If there exists g ∈ G3 such that
g ∈ A † \ P , then by Corollary 9.12, g �∈ A . Thus Pl-#CSP2(g, h) is #P-hard
by Theorem 14.9.

Otherwise, we have G3 ⊆ A † ∩ P . Thus we have G3 ⊆ {[1, α]⊗2m | m ≥
1}. Note that by Lemma 15.1, we have excluded [1, 0, . . . , 0, ir] of arity 2n,
[0, 1, 0], [1, 0]⊗2n, [0, 1]⊗2n which are all in

⋂5
k=3 Sk . (See Fig. 24. Note that in

the diagram of Fig. 24 we excluded the tensor products of unary signatures, as
explained in the caption of Fig. 24.)

Then we have ∂m−1([1, α]⊗2m) = (1 + α2)[1, α]⊗2 and we are done by
Lemma 10.3.

4. Finally we have F ′′′ ∩ S3 = ∅.
We have F ′′′

� Sk for 4 ≤ k ≤ 5, F ′′′ ∩ (S1 ∪ S2 ∪ S3) = ∅, and thus
F ′′′ ⊆ S4 ∪ S5. Then we are done directly by Theorem 14.9.

16 Dichotomy Theorem for an Even-Arity Signature

In this section, we prove the dichotomy theorem for Pl-#CSP2(f), where f has a
general even arity 2n. If 2n = 2 or 4, then it has been proved in Theorem 9.21′ and
Theorem 12.5 respectively. Thus we will assume 2n ≥ 6.

Theory of Computing Systems

The next simple lemma is to determine if a symmetric signature satisfies a second-
order recurrence relation. In the following proof, we often argue that a signature f

does not belong to P ∪ Ã ∪ M̃ by Lemma 9.11. And we show that Lemma 9.11
applies by showing that f does not satisfy any second-order recurrence relation.

Lemma 16.1 For a symmetric signature f = [f0, f1, . . . , fn], let Mf =⎡

⎢
⎢
⎢
⎣

f0 f1 f2
f1 f2 f3
...

...
...

fn−2 fn−1 fn

⎤

⎥
⎥
⎥
⎦
, then f satisfies a second-order recurrence relation iff

rank(Mf) ≤ 2.

Proof The signature f satisfies a second-order recurrence relation afk + bfk+1 +
cfk+2 = 0 for 0 ≤ k ≤ n − 2 iff the linear system Mf X = 0 has a nonzero solution
(a, b, c)T iff rank(Mf) ≤ 2.

We often use the following argument to prove hardness: Firstly, we prove f /∈
P ∪ Ã ∪ M̃ using Lemma 16.1. Moreover, if we can get [1, ξ]⊗2 in Pl-#CSP2(f)

for some ξ �= 0, then Pl-#CSP2(f, [1, ξ]⊗2) is #P-hard by Lemma 10.3. Or if we can
get a signature g ∈ M̂ \ (P ∪ Ã) in Pl-#CSP2(f), then Pl-#CSP2(f, g) is #P-hard
by Lemma 13.3.

The next three lemmas are some special cases of Theorem 16.5 which is the main
result of this section. We prove these lemmas separately to facilitate the presentation
of the proof of Theorem 16.5.

Lemma 16.2 Suppose ab �= 0 and f = [1, a, 0, −a, 0, a, b], then Pl-#CSP2(f) is
#P-hard.

Proof Note that Mf =

⎡

⎢
⎢
⎢
⎢
⎣

f0 f1 f2
f1 f2 f3
f2 f3 f4
f3 f4 f5
f4 f5 f6

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1 a 0
a 0 −a

0 −a 0
−a 0 a

0 a b

⎤

⎥
⎥
⎥
⎥
⎦

has rank 3. Thus f does

not satisfy any second-order recurrence relation by Lemma 16.1. So f /∈ P∪Ã ∪M̃
by Lemma 9.11.

Moreover, we have ∂=4(f) = [1, 2a, b]. If [1, 2a, b] is degenerate, then
[1, 2a, b] = [1, 2a]⊗2. We are done since Pl-#CSP2(f, [1, 2a]⊗2) is #P-hard by
Lemma 10.3. Otherwise,

• For b4 �= 1, we have [1, 2a, b] /∈ P ∪ Ã ∪M̃ by Corollary 9.9 and Lemma 9.8.
Thus Pl-#CSP2([1, 2a, b]) is #P-hard by Theorem 9.21′ and we are done.

• For b2 = −1, we have ∂2[1,2a,b](=6) = [1, 0, −1] on the left and we have
f ′ = ∂[1,0,−1](f) = [1, 2a, 0, −2a, −b]. Note that f ′ is redundant and the deter-
minant of its compressed signature matrix is 4(b−1)a2 �= 0. Thus Pl-#CSP2(f ′),
being equivalent to Pl-Holant(f ′, EQ2) (see (2.2)), is #P-hard by Lemma 9.25
and we are done.

Theory of Computing Systems

• For b2 = 1, if (2a)4 �= 1, then we have [1, 2a, b] ∈ M̃ \ (P ∪ Ã)

by Lemma 9.14. Thus Pl-#CSP2(f, [1, 2a, b]) is #P-hard by Lemma 13.3 and
Lemma 13.7 and we are done.

Otherwise, we have (2a)4 = 1. This implies that (2a)2 = ±b. Since [1, 2a, b]
is non-degenerate, we have (2a)2 �= b, thus (2a)2 = −b. Moreover, we have
f ′′ = ∂[1,2a,b](f) = [1 + (2a)2, (1 − b)a, −(2a)2, −(1 − b)a, b2 + (2a)2].
Note that f ′′ = [0, 0, 1, 0, 0] for b = 1 and f ′′ = [2, ±1, −1, ∓1, 2] for
b = −1. Both of [0, 0, 1, 0, 0] and [2, ±1, −1, ∓1, 2] are redundant and their
compressed signature matrices are nonsingular. Thus Pl-#CSP2(f ′′) is #P-hard
by Lemma 9.25 and we are done.

The next lemma shows that if ∂(f) = [1, 0]⊗2n−2 + t[0, 1]⊗2n−2 with t �= 0, then
either f = [1, 0]⊗2n + t[0, 1]⊗2n or Pl-#CSP(f) is #P-hard. We will use this lemma
in Theorem 16.5 for the cases where ∂(f) is a non-degenerate generalized equality
GEN-EQ.

For f = [a, b]⊗2n = [f0, f1, . . . , f2n] we have fk = an−kbk . Then it is easy
to see that the signature f̄ consisting of all even indexed entries of f , namely f̄ =
[f0, f2, . . . , f2n], is just [a2, b2]⊗n. This observation also extends to a sum of tensor
powers by linearity. We will use this simple fact in the next lemma.

Lemma 16.3 Suppose that (x, y) �= (0, 0) and f = x[1, i]⊗2n + y[1, −i]⊗2n +
[1, 0]⊗2n + t[0, 1]⊗2n, where 2n ≥ 6 and t �= 0, then Pl-#CSP2(f) is #P-hard.

Proof Let a = x + y, b = (x − y)i, then (a, b) �= (0, 0). Note that

f = [a, b, −a, −b, . . . , ±b, ∓a] + [1, 0, . . . , 0, t] = [a + 1, b, −a, −b, a, . . . , ±b, ∓a + t].

Since Mf has a rank 3 submatrix

⎡

⎢
⎢
⎣

f0 f1 f2
f1 f2 f3
f2 f3 f4
f2n−2 f2n−1 f2n

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

a + 1 b −a

b −a −b

−a −b a

±a ±b ∓a + t

⎤

⎥
⎥
⎦,

Mf has rank 3. By Lemma 16.1, f does not satisfy any second order recurrence
relation. So f /∈ P ∪ Ã ∪ M̃ by Lemma 9.11.

1. For a �= 0, let f̄ = [f0, f2, . . . , f2n], then f̄ = [a, −a, a, −a, . . .] +
[1, 0, . . . , 0, t] is

a[1, −1]⊗n + [1, 0]⊗n + t[0, 1]⊗n,

and Pl-#CSP(f̄) ≤ Pl-#CSP2(f) by Lemma 9.19. Note that f̄ = [a +
1, −a, a, . . . , ±a, ∓a + t] has arity n ≥ 3.

• For 2n ≥ 8 or [2n = 6 and t �= −1], we claim that f̄ /∈ P ∪ A ∪ M̂ .

Theory of Computing Systems

For 2n ≥ 8, Since Mf̄ has a rank 3 submatrix

⎡

⎣
f̄0 f̄1 f̄2
f̄1 f̄2 f̄3
f̄n−2 f̄n−1 f̄n

⎤

⎦ =
⎡

⎣
a + 1 −a a

−a a −a

∓a ±a ∓a + t

⎤

⎦, Mf̄ has rank 3. Thus f̄ does not satisfy any second-

order recurrence relation by Lemma 16.1. So f̄ /∈ P ∪ A ∪ M̂ by
Lemma 9.11.

For 2n = 6 and t �= −1, Mf̄ is a 2 × 3 matrix and has rank less than 3.
So it always satisfies a second-order recurrence relation. But we still show
that f̄ /∈ P ∪ A ∪ M̂ .

Note that f̄ = [a + 1, −a, a, −a + t] when n = 3.

– f̄ is non-degenerate by (f̄1)
2 �= f̄0f̄2 and f̄ is not GEN-EQ since f̄1 �=

0, so f̄ /∈ P .
– If f̄ ∈ A \ P , then f̄ has type 〈1, 0, ±1〉 by Lemma 9.11. By f̄0 −

f̄2 �= 0, f̄ does not have type 〈1, 0, −1〉. If f̄ has type 〈1, 0, 1〉, then
f̄0 + f̄2 = 0, f̄1 + f̄3 = 0. This implies t = −1. It is a contradiction.
Thus f̄ /∈ A \ P .

– By f̄1 = −f̄2 �= 0 and Lemma 9.16, if f̄ ∈ M̂ , then f̄0 = −f̄3. This
contradicts that t �= −1. Thus f̄ /∈ M̂ .

To summarize, f̄ /∈ P ∪ A ∪ M̂ for 2n ≥ 8, or [2n = 6 and t �= −1].
Thus Pl-#CSP(f̄) is #P-hard by Theorem 9.22. So Pl-#CSP2(f) is #P-hard.

• For 2n = 6 and t = −1, we have f = [a + 1, b, −a, −b, a, b, −a − 1].
Firstly, we have ∂2(f) = [1, 0, −1] and f ′ = ∂[1,0,−1](f) = [1 +
2a, 2b, −2a, −2b, 1 + 2a]. The compressed signature matrix of f ′ is⎡

⎣
1 + 2a 2b −2a
2b −2a −2b
−2a −2b 1 + 2a

⎤

⎦ and its determinant is −2(4a2 + 4b2 + a). If

4a2 + 4b2 + a �= 0, then it is nonsingular, and we are done by Lemma 9.25.
Otherwise we have 4a2 + 4b2 + a = 0. Consider the gadget in Fig. 35.

We assign f to both vertices. The signature of this gadget is redundant, and
its compressed signature matrix is

⎡

⎣
1 + 2a + 8a2 + 8b2 b −2a − 8a2 − 8b2

b 8a2 + 8b2 −b

−2a − 8a2 − 8b2 −b 1 + 2a + 8a2 + 8b2

⎤

⎦ =
⎡

⎣
1 b 0
b −2a −b

0 −b 1

⎤

⎦ .

Fig. 35 Gadget used to obtain a
signature whose signature
matrix is redundant. Both
vertices are assigned f

Theory of Computing Systems

If a+b2 �= 0, then this matrix is nonsingular, so we are done by Lemma 9.25.
Otherwise we have 4a2 + 4b2 + a = 0 and a + b2 = 0. Also we have

a �= 0. By solving these two equations, a = 3
4 and b = ±

√
3
2 i. Moreover, we

have ∂=4(f) = [1 + 2a, 2b, −1 − 2a] = [52 , ±
√
3i, − 5

2]. By Lemma 9.14,
∂=4(f) ∈ M̂ † \ (P ∪ A). Recall that f /∈ M̂ †. Thus Pl-#CSP2(f, [1 +
2a, 2b, −1 − 2a]) is #P-hard by Lemma 13.7 and we are done.

2. For a = 0, then b �= 0 by (a, b) �= (0, 0).

• if 2n ≡ 0 (mod 4) and t �= −1, then

f ′′ = ∂
n−2
2=4 (f) = 2

n−2
2 x[1, i]⊗4 + 2

n−2
2 y[1, −i]⊗4 + [1, 0]⊗4 + t[0, 1]⊗4,

i.e., f ′′ = [1, 2 n−2
2 b, 0, −2

n−2
2 b, t]. Note that f ′′ is redundant and the deter-

minant of its compressed signature matrix is−2n−2b2(t+1). By t �= −1 and
b �= 0, the compressed signature matrix is nonsingular. So Pl-#CSP2(f ′′) is
#P-hard by Lemma 9.25. Thus Pl-#CSP2(f) is #P-hard.

• if 2n ≡ 0 (mod 4) and t = −1, we have ∂n−1(f) = [1, 0, −1] and
f ′′′ = ∂n−3

[1,0,−1](f) = 2n−3x[1, i]⊗6+2n−3y[1, −i]⊗6+[1, 0]⊗6+(−1)n−2[0, 1]⊗6,

i.e., f ′′′ = [1, 2n−3b, 0, −2n−3b, 0, 2n−3b, (−1)n−2]. By Lemma 16.2,
Pl-#CSP2(f ′′′) is #P-hard and we are done.

• if 2n ≡ 2 (mod 4), we have

f (4) = ∂
n−3
2=4 (f) = 2

n−3
2 x[1, i]⊗6 + 2

n−3
2 y[1, −i]⊗6 + [1, 0]⊗6 + t[0, 1]⊗6.

Note that f (4) = [1, 2 n−3
2 b, 0, −2

n−3
2 b, 0, 2

n−3
2 b, t]. By Lemma 16.2,

Pl-#CSP2(f (4)) is #P-hard and we are done.

We will use the next lemma in the proof of Theorem 16.5 for the case that ∂(f) =
[1, i]⊗2n−2 + ir [1, −i]⊗2n−2. In this case, we will transform Pl-#CSP2 to Pl-#CSP4

by holographic transformation and gadget construction. This is why we have to deal
with Pl-#CSP4 problems in the next lemma.

Lemma 16.4 Suppose f = [0, 1, 0, . . . , 0, a, 0] has arity 2n ≥ 6. If a4 = 1, then
the problem Pl-#CSP4(f, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]) is #P-hard.

Proof In Pl-#CSP4(f, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]), we do not have =2 on the left, so
we cannot connect the two edges on the right freely. But we do have [1, 0, 1]⊗2 on
the right and=4 on the left, so we can do a loop to a pair of=4 on the left respectively
and we get [1, 0, 1]⊗2 on the left.

Suppose a2 = 1. Consider the gadget in Fig. 36a. We assign f to the circle vertices
and [1, 0, 1]⊗2 to the dashed subgadgets rotated so that it is equivalent to assigning
[1, 0, 1] to the square vertices, where there are 2n − 2 parallel edges connecting
the 2 copies of f with 2n − 2 square vertices. The signature f ′ of this gadget is

Theory of Computing Systems

redundant, and its compressed signature matrix is

⎡

⎣
2n − 2 0 0
0 1 + a2 0
0 0 (2n − 2)a2

⎤

⎦,

which is nonsingular, by a2 = 1. Thus we have

Pl-#CSP2(f ′)≤T Pl-#CSP4(f ′, [1,0,1]⊗2)≤T Pl-#CSP4(f, [1,0,1]⊗2,[1,0,1,0,1]),
where the first ≤T is by Lemma 10.4. Then we are done by Lemma 9.25.

For a2 = −1, the gadget in Fig. 36a cannot work since the compressed signature

matrix of its resulting signature is

⎡

⎣
2n − 2 0 0
0 0 0
0 0 −2n + 2

⎤

⎦ which is singular.

We consider two cases.

• Suppose 2n ≡ 0 (mod 4). Then by Lemma 10.4, we have

Pl-#CSP2(f, [1, 0, 1, 0, 1]) ≤T Pl-#CSP4(f, [1, 0, 1, 0, 1], [1, 0, 1]⊗2).
(16.28)

In Pl-#CSP2(f, [1, 0, 1, 0, 1]), we have f ′ = ∂n−2(f) = [0, 1, 0, ±i, 0]. Note
that f ′ ∈ A † by considering

[
1 0
0 α

]⊗4

f ′, and also f ′ /∈ P ∪ A ∪ M̃

by considering its type 〈1, 0, ±i〉, and by Lemma 9.11. Furthermore we have
[1, 0, 1, 0, 1] ∈ A , and also [1, 0, 1, 0, 1] /∈ A † by its type 〈1, 0, −1〉, and by
Lemma 9.11. Thus Pl-#CSP2(f ′, [1, 0, 1, 0, 1]) is #P-hard by Theorem 15.4 and
we are done.

• For 2n ≡ 2 (mod 4), we cannot use Lemma 10.4 to get the reduction in
(16.28) since Lemma 10.4 requires that all signatures on the right have arity

≡ 0 (mod 4). But we have f ′ = ∂
n−3
2=4 (f) = [0, 1, 0, 0, 0, ±i, 0] as well as

∂=4(f
′) = (1 ± i)[0, 1, 0]. We may use [1, 0, 1]⊗2 of the LHS to transport this

[0, 1, 0] from the RHS to the LHS as follows: Let f (x1, y1, x2, y2) be the func-
tion [1, 0, 1]⊗2 which is 1 iff x1 = y1 and x2 = y2, and 0 otherwise. Then we
connect x1 and x2 with the two edges of [0, 1, 0] from the RHS. This creates
[0, 1, 0] on the LHS, with which we can take derivative of f ′ from the RHS.
Then we have ∂[0,1,0](f ′) = [1, 0, 0, 0, ±i]. Consider the gadget in Fig. 36b.
We assign f ′ to the circle vertices, [1, 0, 0, 0, ±i] to the triangle vertex, and
[1, 0, 1]⊗2 to the dashed subgadgets rotated so that it is equivalent to assigning

Fig. 36 Two gadgets used to obtain a signature whose signature matrix is redundant. The dashed sub-
gadgets are assigned [1, 0, 1]⊗2 rotated so that it is equivalent to assigning [1, 0, 1] to the square
vertices

Theory of Computing Systems

[1, 0, 1] to the square vertices. The signature f ′′ of this gadget is redundant, and

its compressed signature matrix is

⎡

⎣
2 0 0
0 1 ∓ i 0
0 0 ∓2i

⎤

⎦, which is nonsingular. Thus

Pl-#CSP2(f ′′) is #P-hard by Lemma 9.25. Moreover, we have

Pl-#CSP4(f ′′, [1, 0, 1]⊗2) ≤T Pl-#CSP4(f, [1, 0, 1, 0, 1], [1, 0, 1]⊗2)

and
Pl-#CSP2(f ′′) ≤T Pl-#CSP4(f ′′, [1, 0, 1]⊗2)

by Lemma 10.4 and we are done. Now Lemma 10.4 can work since f ′′ has
arity 4.

Now we are ready to prove the main theorem of this section, the dichotomy of
Pl-#CSP2(f), where f has a general even arity 2n. We will prove the theorem by
induction on the arity 2n. The base cases 2n = 2 and 2n = 4 are already done
in Theorem 9.21′ and Theorem 12.5, respectively. We always have f ′ = ∂(f) in
Pl-#CSP2(f) which has arity 2n−2. If f ′ /∈ P ∪ Ã ∪M̃ , then Pl-#CSP2(f ′) is #P-
hard by induction and Pl-#CSP2(f) is #P-hard. Otherwise, for f ′ ∈ P ∪Ã ∪M̃ , we
can explicitly express f by the integral operator

∫
(f ′). We will prove the theorem in

the following order:
(1) f ′ ∈ P , (2) f ′ ∈ A † \ P , (3) f ′ ∈ A \ P , (4) f ′ ∈ M̂ \ (P ∪ Ã), and (5)

f ′ ∈ M̂ † \ (P ∪ Ã).
Note that by Corollary 9.12, Case (2) is equivalent to f ′ ∈ A † \ (P ∪ A),

and Case (3) is equivalent to f ′ ∈ A \ (P ∪ A †). Similarly, by Corollary 9.13,
Case (4) is equivalent to f ′ ∈ M̂ \ (P ∪ Ã ∪ M̂ †), and Case (5) is equivalent
to f ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂). It is clear that these five Cases (1)–(5) exhaust all
possibilities.

In our proof, to use Theorem 12.5, we often construct arity 4 signatures by our
Calculus with binary signatures or =4.

Theorem 16.5 Let f be a symmetric signature of even arity 2n. If f ∈ P ∪Ã ∪M̃ ,
then Pl-#CSP2(f) is tractable. Otherwise, Pl-#CSP2(f) is #P-hard.

Proof If f ∈ P ∪ Ã ∪ M̃ , then tractability follows from the definition of P-
transformability, A -transformability, and M -transformability. Now suppose f /∈
P ∪ Ã ∪ M̃ . If 2n ∈ {2, 4}, then we are done by Theorem 9.21′ and Theorem 12.5
respectively.

For 2n ≥ 6, we will prove the theorem by induction on arity 2n. If f ′ = ∂(f) /∈
P ∪ Ã ∪ M̃ , then Pl-#CSP2(f ′) is #P-hard by induction. Thus Pl-#CSP2(f) is
#P-hard. Otherwise, f ′ ∈ P ∪ Ã ∪ M̃ .

1. For f ′ ∈ P , we have f ′ ≡ 0 or f ′ = [a, b]⊗2n−2 (where (a, b) �= (0, 0)) or
f ′ = [1, 0]⊗2n−2 + t[0, 1]⊗2n−2 with t �= 0 by definition. Note that 2n − 2 ≥ 4.

(a) f ′ ≡ 0. Then f = x[1, i]⊗2n +y[1, −i]⊗2n by Proposition 9.7 (the Explicit
List for

∫
(f ′)).

Theory of Computing Systems

If x = 0 or y = 0, then f ∈ P . If xy �= 0 and x4 = y4, then f ∈ A . In
the following, assume that xy �= 0 and x4 �= y4.

• For 2n ≡ 0 (mod 4), we have f ′′ = ∂
n−2
2=4 (f) = 2

n−2
2 x[1, i]⊗4 +

2
n−2
2 y[1, −i]⊗4. By xy �= 0, f ′′ is non-degenerate, and has the unique

recurrence type 〈1, 0, 1〉. Therefore f ′′ /∈ P∪A †∪M̃ by Lemma 9.11.
By x4 �= y4 it is also not in A . Thus f ′′ /∈ P ∪ Ã ∪ M̃ . Therefore
Pl-#CSP2(f ′′) is #P-hard by Theorem 12.5. So Pl-#CSP2(f) is #P-hard.

• For 2n ≡ 2 (mod 4), we cannot reduce the arity of f to 4 by=4 directly
as in the previous case. We will construct a binary signature that is not

λ[1, 0, 1] to reduce the arity of f . Firstly, we have f ′′′ = ∂
n−1
2=4 (f) =

2
n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1, −i]⊗2 = 2

n−1
2 [a, b, −a], where a = x +

y, b = (x − y)i. We remark that [a, b, −a] can reduce the arity of f ,
but it involves a case analysis of a and b. Instead we use [a, b, −a] to
construct a simpler binary signature.

Note that a �= 0 by x4 �= y4. Then we have ∂[a,b,−a](=4

) = a[1, 0, −1] on the left. Thus we have f (4) = ∂n−2
[1,0,−1](f) =

2n−2x[1, i]⊗4 + 2n−2y[1, −i]⊗4. With the same reason as in the previ-
ous case, f (4) /∈ P ∪ Ã ∪ M̃ by its type, and by xy �= 0, x4 �= y4.
Thus Pl-#CSP2(f (4)) is #P-hard by Theorem 12.5. So Pl-#CSP2(f) is
#P-hard.

(b) f ′ = [a, b]⊗2n−2 with ab �= 0. If a2 + b2 �= 0, we have ∂n−2(f) =
(a2 + b2)n−2[a, b]⊗2 and we are done by Lemma 10.3.

Suppose a2 + b2 = 0, i.e., f ′ = [1, ±i]⊗2n−2 up to a scalar.

• For 2n ≡ 0 (mod 4), we have ∂
n−2
2=4 (f ′) = 2

n−2
2 [1, ±i]⊗2 and are done

by Lemma 10.3.
• For 2n ≡ 2 (mod 4), we cannot get [1, ±i]⊗2 in Pl-#CSP2(f ′) by

Remark 7 (note that the arity of f ′ is 2n − 2 ≡ 0 (mod 4)). To get
[1, ±i]⊗2, we need the help of f . By Proposition 9.7 (the Explicit List
for

∫
(f ′)), f = x[1, i]⊗2n + y[1, −i]⊗2n + g, where g has arity 2n

and gk = 1
4 (εi)

k(2n − 2k). If x = y = 0, then f ∈ M̂ †. Oth-
erwise, let u = x + y, v = (x − y)i, then (u, v) �= (0, 0). We

have ∂
n−1
2=4 (f) = 2

n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1, −i]⊗2 + 2

n−3
2 [1, 0, 1], i.e.,

∂
n−1
2=4 (f) = 2

n−3
2 [2u + 1, 2v, −2u + 1].

If u �= 0, then we have ∂[2u+1,2v,−2u+1](=4) = [2u + 1, 0, −2u + 1]
on the left and ∂n−2

[2u+1,0,−2u+1](f ′) = (4u)n−2[1, ±i]⊗2. Then we are
done by Lemma 10.3.

If u = 0, then v �= 0 and we have [1, 2v, 1] and ∂n−2
[1,2v,1](f ′) =

(±4vi)n−2[1, ±i]⊗2. Then we are done by Lemma 10.3 again.

(c) f ′ = [1, 0]⊗2n−2. Then f = x[1, i]⊗2n+y[1, −i]⊗2n+[1, 0]⊗2n by Propo-
sition 9.7 (the Explicit List for

∫
(f ′)). If x = y = 0, then f ∈ P . In the

Theory of Computing Systems

following, assume that (x, y) �= (0, 0). Let a = x + y, b = (x − y)i, then
(a, b) �= (0, 0).

We have ∂n−1(f) = [1, 0]⊗2 and f ′′ = ∂n−2
[1,0]⊗2(f) = x[1, i]⊗4 +

y[1, −i]⊗4 + [1, 0]⊗4, i.e., f ′′ = [1 + a, b, −a, −b, a]. Note that f ′′ is
redundant. If a2 + b2 �= 0, then the compressed signature matrix of f ′′ is
nonsingular and we are done by Lemma 9.25.

Otherwise, we have a = ±ib. We claim that f ′′ /∈ P ∪ Ã ∪ M̃ . Note
that ab �= 0 by (a, b) �= (0, 0) and a = ±ib. If f ′′ is degenerate, then by
(f ′′

1)2 = f ′′
0 f ′′

2 , we have −a − a2 = b2. This implies that a = 0. It is a
contradiction. Moreover, note that f ′′ = [1 + a, ∓ia, −a, ±ia, a] and has
type 〈0, 1, ∓i〉. Since f ′′ is non-degenerate and has arity ≥ 3, the second
order recurrence relation 〈0, 1, ±i〉 is unique up to a scalar. Thus f ′′ /∈ P ∪
Ã ∪M̃ by Lemma 9.11. So Pl-#CSP2(f ′′) is #P-hard by Theorem 12.5 and
we are done.

(d) f ′ = [0, 1]⊗2n−2. The proof follows from the previous case by a holo-

graphic transformation using

[
0 1
1 0

]

.

(e) f ′ = [1, 0]⊗2n−2 + t[0, 1]⊗2n−2 with t �= 0. Then f = x[1, i]⊗2n +
y[1, −i]⊗2n + [1, 0]⊗2n + t[0, 1]⊗2n by Proposition 9.7 (the Explicit List
for
∫
(f ′)). If x = y = 0, then f ∈ P . Otherwise, we have (x, y) �= (0, 0)

and we are done by Lemma 16.3.

2. For f ′ ∈ A †\P , we have f ′ = [1, α]⊗2n−2+ir [1, −α]⊗2n−2 by definition (See
Fig. 24). Then f = x[1, i]⊗2n + y[1, −i]⊗2n + 1

1+α2 {[1, α]⊗2n + ir [1, −α]⊗2n}
by Proposition 9.7 (the Explicit List for

∫
(f ′)). If x = y = 0, then f ∈ A †. In

the following, assume that (x, y) �= (0, 0).
Note that f ′ has type 〈1, 0, ±i〉 up to a scalar. And this second-order recur-

rence relation is unique up to a scalar. Thus f ′ ∈ A † \(P ∪A ∪M̃) by Lemma
9.11. In the following, we complete the proof by constructing a signature of even
arity in (P ∪ A ∪ M̃) \ A † and apply Theorem 15.4, or constructing an arity
4 signature that is not in P ∪ Ã ∪ M̃ and apply Theorem 12.5.

Firstly, we have f ′′ = ∂n−3(f ′) = (1 + α2)n−3{[1, α]⊗4 + ir [1, −α]⊗4}.
We will discard the nonzero factor that are powers of 1 + α2. If r �= 2, we
have ∂(f ′′) = (1 + ir)[1, 1−ir

1+ir
α, α2] and we have ∂[1, 1−ir

1+ir
α,α2](=4) = [1, 0, α2]

on the left. For r = 2, ∂(f ′′) is a nonzero multiple of [0, 1, 0] and we have
∂[0,1,0](f ′′) = 2α[1, 0, α2] on the right. Either way, we can take the derivative
(for [1, 0, α2] in RHS we connect it via (=2) of LHS to f)

f ′′′ = ∂n−2
[1,0,α2](f) = (1 − α2)n−2{x[1, i]⊗4 + y[1, −i]⊗4}.

Note that ∂[1,0,α2]([1, ±α]2n) is the identically zero signature, since α4 = −1.
If xy = 0, or [xy �= 0 and x4 = y4], then f ′′′ ∈ A \ A †. So

Pl-#CSP2(f ′, f ′′′) is #P-hard by Theorem 15.4. Thus Pl-#CSP2(f) is #P-hard.
Otherwise, xy �= 0 and x4 �= y4, so f ′′′ /∈ P ∪ Ã ∪ M̃ (by the

same reason as before: first by its type 〈1, 0, 1〉 it could only possibly be
in A among the five classes by Lemma 9.11; but x4 �= y4 rules that out

Theory of Computing Systems

too). Thus Pl-#CSP2(f ′′′) is #P-hard by Theorem 12.5. So Pl-#CSP2(f) is
#P-hard.

3. For f ′ ∈ A \ P , we have f ′ = [1, ρ]⊗2n−2 + ir [1, −ρ]⊗2n−2 by definition
(See Fig. 24).

• If f ′ = [1, 1]⊗2n−2 + ir [1, −1]⊗2n−2, then f = x[1, i]⊗2n +y[1, −i]⊗2n +
1
2 {[1, 1]⊗2n + ir [1, −1]⊗2n} by Proposition 9.7 (the Explicit List for ∫ (f ′)).
If x = y = 0, then f ∈ A . In the following, assume that (x, y) �= (0, 0).

By a holographic transformation using H =
[
1 1
1 −1

]

, we have

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂) ≡ Pl-#CSP2(f ′, f),

where f̂ ′ = (H−1)⊗2n−2f ′ = [1, 0]2n−2 + ir [0, 1]2n−2 = [1, 0, . . . , 0, ir],
f̂ = (H−1)⊗2nf = x′[1, −i]⊗2n +y′[1, i]⊗2n + 1

2 {[1, 0]⊗2n + ir [0, 1]⊗2n},
where x′ = (1+i)2n

22n
x, y′ = (1−i)2n

22n
y. Note that (x′, y′) �= (0, 0).

Since we have [1, 0, 1] on the left and [1, 0, . . . , 0, ir] of arity 2n−2 ≥ 4
on the right in

Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂),

we can construct =2k on the right for k ≥ 1 in the following way: Firstly,
connect four copies of [1, 0, . . . , 0, ir] by three copies of [1, 0, 1] in a planar
fashion, to form an equality [1, 0, . . . , 0, 1] of arity 4(2n−2)−6 = 8n−14.
Then use 4n − 9 copies of [1, 0, 1] to form loops on (=8n−14), and we get
(=4). From this, and (=2) = [1, 0, 1] on the left, we can get all (=2k) on the
right for k ≥ 1. Then by =2 on the left, we can construct all of =2k on the
left. Thus

Pl-#CSP2(f̂ ′, f̂) ≤ Pl-Holant([1, 0, 1], [1, 0, 1, 0, 1], . . . | f̂ ′, f̂).

By Lemma 16.3 Pl-#CSP2(f̂) is #P-hard. Thus Pl-#CSP2(f) is #P-hard.
• If f ′ = [1, i]⊗2n−2+ir [1, −i]⊗2n−2, then f = x[1, i]⊗2n+y[1, −i]⊗2n+f̃ ,

where f̃ has arity 2n and f̃k = 1
4

{
ik(2n − 2k) + ir (−i)k(2n − 2k)

}
by

Proposition 9.7 (the Explicit List for
∫
(f ′)). Under the holographic trans-

formation by Z =
[
1 1
i −i

]

, the expressions are more revealing: f =
Z⊗2n[x, 1, 0, . . . , 0, ir , y], and f ′ = ∂(f) = Z⊗(2n−2)[1, 0, . . . , 0, ir].
However, if we apply the holographic transformation Z to Pl-#CSP2(f, f ′),
we have

Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂ , f̂ ′) ≡ Pl-Holant(EQ2 | f, f ′),
where f̂ = (Z−1)⊗2nf = [x, 1, 0, . . . , 0, ir , y], and f̂ ′ = (Z−1)⊗4f =
[1, 0, . . . , 0, ir]. Note that now we do not have =2 on the left in
Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′). This is inconvenient to con-
struct gadget. So, in the following steps we first try to construct [1, 0, −1]⊗2

on the LHS of Pl-#CSP2(f) to get Pl-Holant([1, 0, −1]⊗2 ∪ EQ2 | f).
This will be done with the help of Lemma 9.20. Then after the holographic
transformation by Z, we have [1, 0, −1]⊗2Z⊗2 = 4[1, 0, 1]⊗2 on the left.

Theory of Computing Systems

To apply Lemma 9.20, we construct [1, i]⊗4 + is[1, −i]⊗4 in
Pl-#CSP2(f, f ′) for some 0 ≤ s ≤ 3 as follows.

– If 2n ≡ 2 (mod 4), then we have ∂
n−3
2=4 (f ′) = 2

n−3
2 {[1, i]⊗4 +

ir [1, −i]⊗4}.
– If 2n ≡ 0 (mod 4), then we have ∂

n−2
2=4 (f ′) = 2

n−2
2 {[1, i]⊗2 +

ir [1, −i]⊗2} = 2
n−2
2 [1 + ir , (1 − ir)i, −(1 + ir)]. This is a nonzero

multiple of [1, ±1, −1] if r �= 0, 2, a nonzero multiple of [1, 0, −1] if
r = 0 and a nonzero multiple of [0, 1, 0] if r = 2.

If r �= 2, then we have ∂[1,±1,−1](=4) = [1, 0, −1] on the left and
∂n−2
[1,0,−1](f

′) = 2n−2{[1, i]⊗4 + ir [1, −i]⊗4}.
If r = 0, then we have ∂[1,0,−1](=4) = [1, 0, −1] on the left and again

∂n−2
[1,0,−1](f

′) = 2n−2{[1, i]⊗4 + ir [1, −i]⊗4}.

If r = 2, we have ∂n−2
[0,1,0](f ′) = (2i)n−2{[1, i]⊗4 +

ir (−1)n−2[1, −i]⊗4}.
Thus we have f ′′ = [1, i]⊗4 + is[1, −i]⊗4, for some 0 ≤ s ≤ 3, in
Pl-#CSP2(f, f ′). Then by Lemma 9.20, we have [1, 0, −1]⊗2 on the left,
i.e., we have

Pl-Holant(EQ2, [1, 0, −1]⊗2 | f, f ′′) ≡ Pl-#CSP2(f).

By a holographic transformation using Z =
[
1 1
i −i

]

, we have

Pl-Holant([1, 0, 1]⊗2, [0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′) ≡
Pl-Holant(EQ2, [1, 0, −1]⊗2|f, f ′′),

where f̂ = (Z−1)⊗2nf = [x, 1, 0, . . . , 0, ir , y], and f̂ ′′ = (Z−1)⊗4f =
[1, 0, 0, 0, is].

In Pl-Holant([1, 0, 1]⊗2, [0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′), by
[1, 0, 1]⊗2 on the left and f̂ ′′ on the right, we get =4 on the right as fol-
lows: Use 4 copies of f̂ ′′, connected together by 3 copies of [1, 0, 1]⊗2

in a planar way. Each copy of [1, 0, 1]⊗2 connects two edges of one copy
of f̂ ′′ to another copy of f̂ ′′ in such a way that the effect is equivalent to
connecting them by two copies of (=2) = [1, 0, 1]. This way we get an
arity 16 − 12 = 4 signature (=4) = [1, 0, 0, 0, (is)4]. Moreover, we have
=4k for k ≥ 1 on the right by [1, 0, 1]⊗2 on the left and =4 on the right in
a similar way. Then we can move f̂ to LHS by [1, 0, 1]⊗2 because f̂ has
even arity. Thus we have

Pl-Holant([1, 0, 1]⊗2, [1, 0, 1, 0, 1], f̂ |EQ4) ≤ Pl-Holant([1, 0, 1]⊗2,

[1, 0, 1, 0, 1], . . . |f̂ , f̂ ′′).

Theory of Computing Systems

Note that

Pl-#CSP4(f̂ , [1, 0, 1, 0, 1], [1, 0, 1]⊗2)

≡ Pl-Holant([1, 0, 1]⊗2, [1, 0, 1, 0, 1], f̂ | EQ4).

We will prove that Pl-#CSP4(f̂ , [1, 0, 1, 0, 1], [1, 0, 1]⊗2) is #P-hard to
complete the proof of this case.

Note that

⎡

⎣
f̂0 f̂1 f̂2
f̂1 f̂2 f̂3
f̂2n−3 f̂2n−2 f̂2n−1

⎤

⎦ =
⎡

⎣
x 1 0
1 0 0
0 0 ir

⎤

⎦ has rank 3. Thus f̂ does

not satisfy any second-order recurrence relation by Lemma 16.1. So f̂ /∈
P ∪ Ã ∪ M̃ by Lemma 9.11.

If (x, y) = (0, 0), we are done by Lemma 16.4. In the following, assume
that (x, y) �= (0, 0).

– If 2n ≡ 0 (mod 4), then

Pl-#CSP2(f̂) ≤ Pl-#CSP4(f̂ , [1, 0, 1]⊗2) (16.29)

by Lemma 10.4.
For Pl-#CSP2(f̂), we have f̂ ′′′ = ∂n−2(f̂) = [x, 1, 0, ir , y]. Note

that f̂ ′′′ is redundant. If (−1)rx +y �= 0, then the compressed signature
matrix of f̂ ′′′ is nonsingular and we are done by Lemma 9.25.

Otherwise, we have x = ±y, and thus both x, y �= 0. It is easy to see
that f̂ ′′′ does not satisfy the second order recurrence relations 〈0, 1, 0〉,
〈1, 0, ±1〉, 〈1, 0, ±i〉. Thus f̂ ′′′ /∈ P ∪ Ã by Lemma 9.11.

We consider three possibilities for f̂ ′′′.
• If f̂ ′′′ ∈ M̂ \ (P ∪ Ã), then Pl-#CSP2(f̂ , f̂ ′′′) is #P-hard by

Lemma 13.3, where we have f̂ /∈ M̂ because we have noted earlier that
f̂ /∈ P ∪ Ã ∪M̃ . Thus Pl-#CSP4(f̂ , [1, 0, 1]⊗2) is #P-hard by (16.29)
and we are done.

• If f̂ ′′′ ∈ M̂ † \ (P ∪ Ã), then f̂ ′′′ = [x, 1, 0, 1, −x] by Corol-
lary 9.18 (the other form [u, v, w, v, u] with (u + w)w = 2v2 in
Corollary 9.18 is impossible because w = 0 here and (u + w)w = 2v2

would force v = 0.) Then we are done by Lemma 13.4, because f̂ ′′′
plays the role of both f and g in Lemma 13.4, and f̂ /∈ M̂ † by
f̂ /∈ P ∪ Ã ∪ M̃ .

• If f̂ ′′′ /∈ P ∪ Ã ∪ M̃ , then Pl-#CSP2(f̂ ′′′) is #P-hard by
Theorem 12.5 and we are done.

– For 2n ≡ 2 (mod 4), we cannot claim the reduction in (16.29) since
Lemma 10.4 requires that all signatures on the right have arity ≡ 0
(mod 4). We get around this difficulty by constructing some arity 4 sig-
natures in Pl-#CSP4(f̂), and then use Lemma 10.4 for these arity 4
signatures.

Firstly, we have ĝ = ∂
n−3
2=4 (f̂) = [x, 1, 0, 0, 0, ir , y]. We also have

∂=4(ĝ) = [x, 1 + ir , y]. They are both on the right. Then we have
∂[x,1+ir ,y](=4) = [x, 0, y] on the left. We also connect [x, 0, y] and
[x, 1+ir , y] and then [x, 0, y] in a chain, to get another binary signature

Theory of Computing Systems

h = [x3, (1 + ir)xy, y3] on the left. This can be verified by
[

x 0
0 y

] [
x 1 + ir

1 + ir y

] [
x 0
0 y

]

=
[

x3 (1 + ir)xy

(1 + ir)xy y3

]

.

From these we produce two arity 4 signatures on the right:

ĝ′ = ∂[x,0,y](ĝ) = [x2, x, 0, iry, y2]
ĝ′′ = ∂h(ĝ) = [x4 + 2(1 + ir)xy, x3, 0, iry3, y4 + 2ir (1 + ir)xy].

Thus

Pl-#CSP4(ĝ′, ĝ′′, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]) ≤
Pl-#CSP4(f̂ , [1, 0, 1]⊗2, [1, 0, 1, 0, 1]).

Moreover, note that all signatures in {ĝ′, ĝ′′, [1, 0, 1, 0, 1])} have arity 4.
Then by Lemma 10.4, we have

Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1]) ≤ Pl-#CSP4(ĝ′′, ĝ′′, [1, 0, 1]⊗2, [1, 0, 1, 0, 1]).

It is easy to see that ĝ′ is non-degenerate and does not satisfy
the second-order recurrence relations 〈0, 1, 0〉, 〈1, 0, ±1〉, 〈1, 0, ±i〉,
because (x, y) �= (0, 0). Thus ĝ′ /∈ P ∪ Ã by Lemma 9.11. If ĝ′ /∈ M̃ ,
then Pl-#CSP2(ĝ′) is #P-hard by Theorem 12.5 and we are done.

Otherwise, ĝ′ ∈ M̂ \ (P ∪ Ã) or ĝ′ ∈ M̂ † \ (P ∪ Ã).
Note that [1, 0, 1, 0, 1] has type 〈1, 0, −1〉 and the second-order

recurrence relation is unique up to a scalar. Thus [1, 0, 1, 0, 1] /∈ M̂ by
Lemma 9.11. If ĝ′ ∈ M̂ \(P∪Ã), then Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1])
is #P-hard by Lemma 13.3 and we are done.

Therefore we may assume ĝ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂).
By Corollary 9.18, for ĝ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂), it cannot be of

the form [u, v, w, −v, u] with (u − w)w = 2v2; for if it were so, then
by w = 0 in this case, we would have v = 0, and this would imply
that x = iry = 0 in ĝ′. It contradicts that (x, y) �= (0, 0). So ĝ′ must
be of the form [u, v, 0, v, −u], i.e., x2 = −y2, x = iry. Thus we have
x = εiy and ir = εi, and x �= 0. Hence both x, y �= 0 and 1 + ir �= 0.
It follows that x3 = −εiy3 �= εiy3 = iry3.

Moreover, if ĝ′′ ∈ M̂ †, it cannot take the form [u, v, w, −v, u] with
(u−w)w = 2v2 in Corollary 9.18 because if so then w = 0 would force
v = 0 and that would force both x = y = 0. Then ĝ′′ must be of the
form [u, v, 0, v, −u]. But this would force x3 = iry3, a contradiction.
Thus ĝ′′ /∈ M̂ †.

If ĝ′′ /∈ P ∪ Ã ∪ M̃ , then Pl-#CSP2(ĝ′′) is #P-hard by Theo-
rem 12.5 and we are done. Otherwise, ĝ′′ ∈ (P ∪ Ã ∪ M̂) \ M̂ †,
Pl-#CSP2(ĝ′, ĝ′′, [1, 0, 1, 0, 1]) is #P-hard by Lemma 13.4 and we are
done.

4. For f ′ ∈ M̂ \ (P ∪ Ã), we are done by Lemma 13.3.
5. For f ′ ∈ M̂ † \ (P ∪ Ã), or equivalently by Corollary 9.13, f ′ ∈ M̂ † \ (P ∪

Ã ∪ M̂). By Lemma 9.14, we have f ′ = [s, ti]⊗2n−2 ± [t, si]⊗2n−2, st �= 0,

Theory of Computing Systems

s4 �= t4, or f ′ has arity 2n − 2 and f ′
k = (εi)k(2n − 2 − 2k). Note that we are

done if we have a nonzero binary signature that is not λ[1, 0, 1] by Lemma 13.7.
Moreover, if we have an arity 4 signature h that is not in M̂ † then we are done
by the following argument: if h ∈ (P ∪ Ã ∪M̂)\M̂ †, then Pl-#CSP2(h, f ′) is
#P-hard by Theorem 15.4 since f ′ ∈ M̂ † \ (P ∪ Ã ∪M̂); if h /∈ P ∪ Ã ∪M̃ ,
then Pl-#CSP2(h) is #P-hard by Theorem 12.5.

In the following, we obtain either a nonzero binary signature that is not
λ[1, 0, 1], or a signature of arity 4 not in M̂ †, or we show that f ∈ M̂ †. The
following are an exhaustive list of possibilities of f ′ ∈ M̂ † \ (P ∪ Ã ∪ M̂),
with the case f ′ = [s, ti]⊗2n−2 − [t, si]⊗2n−2 with 2n ≡ 0 (mod 4) being the
most resistant, and will be treated last.

• For f ′ = [s, ti]⊗2n−2 + [t, si]⊗2n−2 with 2n ≡ 0 (mod 4) or f ′ =
[s, ti]⊗2n−2 − [t, si]⊗2n−2 with 2n ≡ 2 (mod 4), we have ∂n−1(f) =
(s2 + t2)(s2 − t2)n−1[1, 2sti

s2+t2
, −1] �= λ[1, 0, 1].

• For f ′ = [s, ti]⊗2n−2 + [t, si]⊗2n−2 with 2n ≡ 2 (mod 4), f =
x[1, i]⊗2n + y[1, −i]⊗2n + 1

s2−t2
{[s, ti]⊗2n − [t, si]⊗2n} by Proposition 9.7

(the Explicit List for
∫
(f ′)). If x = y = 0, then f ∈ M̂ †. Otherwise, we

have

f ′′′ = ∂
n−1
2=4 (f) = 2

n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1,−i]⊗2 + (s4 + t4)

n−1
2

s2 − t2

{
[s, ti]⊗2 − [t, si]⊗2

}

= 2
n−1
2 x[1, i]⊗2 + 2

n−1
2 y[1,−i]⊗2 + (s4 + t4)

n−1
2 [1, 0, 1]

Let a = 2
n−1
2 (x + y), b = 2

n−1
2 (x − y)i and c = (s4 + t4)

n−1
2 , then

f ′′′ = [c + a, b, c − a]. Note that (a, b) �= (0, 0). If b �= 0, it is obvious
that f ′′′ �= λ[1, 0, 1]. If b = 0, then a �= 0. Then f ′′′ �= λ[1, 0, 1] by
c + a �= c − a.

• For the case that f ′ has arity 2n−2 and f ′
k = (εi)k(2n−2−2k)with 2n ≡ 2

(mod 4), we have f ′′ = ∂
n−3
2=4 (f ′)which has arity 4 and f ′′

k = 2
n−3
2 (εi)k(4−

2k). Moreover, we have ∂(f ′′) = 2
n+1
2 [1, εi, −1] �= λ[1, 0, 1]. We remark

that it is necessary to use =4 that many times, since f with two loops by =2
is already identically zero.

• For the case that f ′ has arity 2n − 2 and f ′
k = (εi)k(2n − 2 − 2k) with

2n ≡ 0 (mod 4), we may consider only the case where the sign ε is +.

Indeed under Z =
[
1 1
i −i

]

, for the + sign f ′ = Z⊗(2n−2)[0, 1, 0, . . . , 0]
and for the − sign f ′ = Z⊗(2n−2)[0, . . . , 0, 1, 0], a reversal under the Z-

transformation. If we take a holographic transformation by T =
[
1 0
0 −1

]

,

we have T Z =
[
1 1
−i i

]

= Z

[
0 1
1 0

]

, and so (T Z)⊗(2n−2)[0, . . . , 0, 1, 0] =
Z⊗(2n−2)[0, 1, 0, . . . , 0]. Meanwhile, EQ2 is invariant under T .

Thus we consider f ′ of arity 2n − 2 where f ′
k = ik(2n − 2 − 2k)

with 2n ≡ 0 (mod 4). Let f̂ ′ = (Z−1)⊗(2n−2)f ′ = [0, 1, 0, . . . , 0] and

Theory of Computing Systems

let f̂ = (Z−1)⊗(2n−2)f . Then we have (Z−1)⊗(2n−2)(∂(f)) = ∂[0,1,0](f̂)

up to a scalar. This implies ∂[0,1,0](f̂) = [0, 1, 0, . . . , 0]. Thus there exist
constants x and y such that f̂ = [x, 0, 1, 0, . . . , 0, y]. By the holographic
transformation using Z, we have

Pl-#CSP2(f) ≡ Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂).

We remark that, in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), all signatures
have even arities. And all signatures of arity 2m ≡ 2 (mod 4) satisfy the
odd parity constraints and all signatures of arity 2m ≡ 0 mod 4 satisfy
the even parity constraints. Then by the statement of Remark 6, any binary
signature constructed in Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂) can only
be of the form λ[0, 1, 0]. This implies that the binary signature constructed in
Pl-#CSP2(f) can only be of the form λ[1, 0, 1] before the Z-transformation.
This forces us to construct signatures of arity at least 4 to prove hardness.

In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . |f̂), note that by 2n ≡ 0 mod 4

we have 2n ≥ 8, and ĝ = ∂
n−2
2[1,0,1,0,1](f̂) = [x + n−2

2 · 6, 0, 1, 0, y]. It has
arity 4. If (x + n−2

2 · 6)y �= 1, then ĝ /∈ M , because symmetric match-
gate signatures must form geometric series in alternate terms. Thus we have
Z⊗4(ĝ) /∈ M̂ † in Pl-#CSP2(f, f ′) and we are done.

If (x + n−2
2 · 6)y = 1, then y �= 0. Firstly, we have an arity 8 signature

ĝ′ = ∂
n−4
2[1,0,1,0,1](f̂) = [x + n − 4

2
· 6, 0, 1, 0, 0, 0, 0, 0, y]

(note that n ≥ 4 when 2n ≡ 0 mod 4), and we have ∂2[0,1,0](ĝ′) =
[1, 0]⊗4 on the right. So we have [0, 1]⊗4 on the left. Moreover, we have
∂[0,1]⊗4(ĝ′) = y[0, 1]⊗4 on the right. So we have [1, 0]⊗4 on the left. Then

we have ĝ′′ = ∂
n−2
2

[1,0]⊗4(f̂) = [x, 0, 1, 0, 0] on the right. Note that ĝ′′ /∈ M .

Thus we have Z⊗4(ĝ′′) /∈ M̂ † in Pl-#CSP2(f, f ′) and we are done.
• For the last case of Case 5, f ′ = [s, ti]⊗2n−2 − [t, si]⊗2n−2 with 2n ≡ 0

(mod 4), we let u = s−t
s+t

, then u4 �= 0, 1 by Lemma 9.3. Let Z =
[
1 1
i −i

]

,

then

f̂ ′ = (Z−1)⊗2n−2(f ′)

= 1

22n−2

{
[s + t, s − t]⊗2n−2 − [s + t, t − s]⊗2n−2

}

= (s + t)2n−2

22n−2

{
[1, u]⊗2n−2 − [1, −u]⊗2n−2

}

= λ[0, u2, 0, u4, . . . , u2n−2, 0],
where λ = (s+t)2n−2

22n−3u
�= 0. Let (Z−1)⊗2nf = f̂ , then (Z−1)⊗2n−2

(∂(f)) = ∂[0,1,0](f̂) up to a scalar. This implies that ∂[0,1,0](f̂) =
λ[0, u2, 0, u4, . . . , u2n−2, 0]. Thus there exist constants x and y such that
f̂ = (Z−1)⊗2nf = λ[1 + x, 0, u2, 0, u4, . . . , u2n−2, 0, u2n + y], where we

Theory of Computing Systems

append the terms 1 and u2n for future convenience. (This can be accom-
modated by naming different x and y.) If x = y = 0, then f̂ ∈ M and
f ∈ M̂ †. In the following, assume that (x, y) �= (0, 0). By the holographic
transformation using Z, we have

Pl-#CSP2(f) ≡ Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂).

By the same argument as the previous case, it is impossible to construct a
“good” binary signature in this case. So we have to construct signatures of
arity at least 4 to prove hardness.

We will repeatedly use the following computation in the remainder of this
proof: Let ḡ = ∂[1,0,v,0,v2](g) for some v, then arity(ḡ) = arity(g) − 4 and
ḡk = gk + 6vgk+2 + v2gk+4.

We will complete the proof by constructing some arity 4 signatures ĥ in
the setting after the Z-transformation Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . |
f̂) that cannot all belong to M . We note that if ĥ /∈ M then h = Z⊗4ĥ /∈
M̂ †. This will imply Pl-#CSP2(h, f ′) is #P-hard as noted earlier, thus
complete the proof of this Case 5.

In Pl-Holant([0, 1, 0], [1, 0, 1, 0, 1], . . . | f̂), we have ∂n−2
[0,1,0](f̂) which

is a nonzero multiple of [1, 0, u2, 0, u4]. Then we have [u4, 0, u2, 0, 1] =
u4[1, 0, u−2, 0, u−4] on the left. Ignoring λ �= 0, we write

f̂ = [1, 0, u2, 0, u4, 0, . . . , 0, u2n] + [x, 0, 0, 0, 0, . . . , 0, y]
which has arity 2n ≥ 8, and we have

f̂ (4) = ∂
n−4
2

[1,0,u−2,0,u−4](f̂)

= 8
n−4
2 [1, 0, u2, 0, u4, 0, u6, 0, u8] + [x, 0, 0, 0, 0, 0, 0, 0, yu−2(n−4)]

= [x + 8
n−4
2 , 0, 8

n−4
2 u2, 0, 8

n−4
2 u4, 0, 8

n−4
2 u6, 0, 8

n−4
2 u8 + yu−2(n−4)].

Let x′ = x

8
n−4
2
, y′ = yu−2(n−4)

8
n−4
2

(since (x, y) �= (0, 0) and u �= 0, we have

(x′, y′) �= (0, 0)), then f̂ (4) = [x′ + 1, 0, u2, 0, u4, 0, u6, 0, u8 + y′] up
to the scalar 8

n−4
2 . Further, we have f̂ (5) = ∂[1,0,u−2,0,u−4](f̂ (4)) = [x′ +

8, 0, 8u2, 0, 8u4 + y′u−4]. If x′ = 0 or y′ = 0, then exactly one of them is
zero, and thus f̂ (5) /∈ M by (x′ + 8)(8u4 + y′u−4) �= (8u2)2 and we are
done. So we can assume that x′y′ �= 0 in the following.

In the following, if we have a signature [1, 0, v, 0, v2] with v �= 0 on the
left, then we have ∂[1,0,v,0,v2](f̂ (4)) = [x′ + c, 0, cu2, 0, y′v2 + cu4], where
c = 1+ 6u2v +u4v2. If c = 0, then we have [x′, 0, 0, 0, y′v2] /∈ M and we
are done. So in the following, we always suppose that c = 1+6u2v+u4v2 �=
0. Moreover, if (x′ +c)(y′v2+cu4) �= (cu2)2, then [x′ +c, 0, cu2, 0, y′v2+
cu4] /∈ M and we are done. So we assume that (x′ + c)(y′v2 + cu4) =
(cu2)2. This implies that x′+c �= 0 and, by expanding this equation the term
c2u4 cancel and we get x′y′v2 + (x′u4 + y′v2)c = 0. To summarize, in the

Theory of Computing Systems

following if we have [1, 0, v, 0, v2] with v �= 0 on the left, then we have

c = 1 + 6u2v + u4v2 �= 0,

x′ + c �= 0,

x′y′v2 + (x′u4 + y′v2)c = 0. (16.30)

Firstly, by f̂ (5) = ∂[1,0,u−2,0,u−4](f̂ (4)) = [x′ + 8, 0, 8u2, 0, 8u4 + y′u−4]
and (16.30) (in this case c evaluates to 8), we have

x′ + 8 �= 0,

x′y′u−4 + 8(x′u4 + y′u−4) = 0. (16.31)

Note that we have [1, 0, 1, 0, 1] on the left, so we have f̂ (6) =
∂[1,0,1,0,1](f̂ (4)) = [x′ +c1, 0, c1u2, 0, y′ +c1u

4], where c1 = 1+6u2+u4.
Then by (16.30), we have c1 �= 0 and

x′ + c1 �= 0,

x′y′ + (x′u4 + y′)c1 = 0. (16.32)

By (16.31), (16.32), and x′y′ �= 0, we have

1 + (
u8

y′ + 1

x′)8 = 0,

1 + (
u4

y′ + 1

x′)c1 = 0.

Then we have

1

x′ = c1 − 8u4

8c1(u4 − 1)
= − 7u2 + 1

8(u2 + 1)(u4 + 6u2 + 1)
,

1

y′ = 8 − c1

8c1(u8 − u4)
= − u2 + 7

8u4(u2 + 1)(u4 + 6u2 + 1)
.

Since 1/x′ �= 0, we have 7u2 + 1 �= 0.
For f̂ (5), f̂ (6), let v2 = x′+8

8u2
and v3 = x′+c1

c1u
2 , then v2 �= 0, v3 �= 0

by x′ + 8 �= 0 and x′ + c1 �= 0, and f̂ (5) = [1, 0, v−1
2 , 0, v−2

2], f̂ (6) =
[1, 0, v−1

3 , 0, v−2
3] up to the scalars x′ + 8, x′ + c1 respectively. So we have

[1, 0, v2, 0, v22], [1, 0, v3, 0, v23] on the left. Moreover, let c2 = 1 + 6u2v2 +
u4v22, c3 = 1 + 6u2v3 + u4v23, then we have by (16.30)

x′y′v22 + (x′u4 + y′v22)c2 = 0,

x′y′v23 + (x′u4 + y′v23)c3 = 0. (16.33)

Theory of Computing Systems

In (16.33), we have

c1 = u4 + 6u2 + 1,

1

x′ = c1 − 8u4

8c1(u4 − 1)
= − 7u2 + 1

8(u2 + 1)(u4 + 6u2 + 1)
,

1

y′ = 8 − c1

8c1(u8 − u4)
= − u2 + 7

8u4(u2 + 1)(u4 + 6u2 + 1)
,

v2 = x′ + 8

8u2
= −u4 − 7u2

7u2 + 1
,

c2 = 1 + 6u2v2 + u4v22 = u12 + 14u10 + 7u8 − 300u6 + 7u4 + 14u2 + 1

(7u2 + 1)2
,

v3 = x′ + c1

c1u2
= − u2 + 7

u2(7u2 + 1)
,

c3 = 1 + 6u2v3 + u4v23 = 8u4 − 272u2 + 8

(7u2 + 1)2
.

Note that all of them are functions of u. Thus (16.33) gives the following
two equations of u:

8u4c21(u
2 + 1)2 · p1(u)

(7u2 + 1)4
= 0,

3072u2(u2 + 1)2c1 · p2(u)

(7u2 + 1)4
= 0, (16.34)

where p1(u) = u12 + 14u10 − 49u8 − 700u6 − 49u4 + 14u2 + 1, p2(u) =
7u4+2u2+7. Note that q1(u)p1(u)+q2(u)p2(u) = 244224, where q1(u) =
−188− 315u2, q2(u) = 34916− 9555u2 − 32872u4 − 2058u6 + 644u8 +
45u10, thus gcd(p1(u), p2(u)) = 1. So p1(u) and p2(u) have no common
zeros. Then by u4 �= 0, 1, c1 �= 0 (so the factors other than p1(u) and p2(u)

in the numerators of (16.34) are nonzero), the two equations in (16.33) have
no common solution in u. This is a contradiction and we have finished the
proof.

We hereby finish the proof of Theorem 16.5, and hence we complete the proof
of the main theorem of Part II—Theorem 9.2 is a straightforward combination of
Theorem 11.13, Theorem 16.5 and Theorem 15.4.

Acknowledgements We wish to express our enormous gratitude to the three anonymous referees, who
went through the incredibly labor-intensive verification of all the proof in this long paper. Their 20 plus
pages of detailed and thoughtful comments were extremely helpful. We benefited greatly from their
suggestions and ideas. This resulted in the proofs of several lemmas being rewritten with a clearer presen-
tation. We also thank the editors of the journal for their insight and patience who guided us through the
careful revision process.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

Theory of Computing Systems

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Backens, M.: A new holant dichotomy inspired by quantum computation. In: ICALP, vol. 80 of LIPIcs,
pp. 16:1–16:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

2. Backens, M.: A complete dichotomy for complex-valued holantc . In: ICALP, vol. 107 of LIPIcs,
pp. 12:1–12:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)
4. Cai, J.-Y., Chen, X.: Complexity dichotomies for counting problems. Cambridge University Press

(2018)
5. Cai, J.-Y., Chen, X., Lipton, R.J., Lu, P.: On Tractable exponential sums. In: FAW, pp. 148–159.

Springer, Berlin (2010)
6. Cai, J.-Y., Choudhary, V.: Some results on matchgates and holographic algorithms. Int. J Softw.

Inform. 1(1), 3–36 (2007)
7. Cai, J.-Y., Choudhary, V., Lu, P.: On the theory of matchgate computations. Theory Comput. Syst.

45(1), 108–132 (2009)
8. Cai, J.-Y., Fu, Z.: Holographic algorithm with matchgates is universal for planar #CSP over boolean

domain. In: STOC, pp. 842–855, ACM, 2017, Journal version to appear in SIAM J. Comput., available
at https://doi.org/10.1137/17M1131672

9. Cai, J.-Y., Fu, Z., Guo, H., Williams, T.: A Holant dichotomy: Is the FKT algorithm universal? In:
FOCS, pp. 1259–1276. IEEE Computer Society (2015)

10. Cai, J.-Y., Gorenstein, A.: Matchgates revisited. Theory Comput. 10(7), 167–197 (2014)
11. Cai, J.-Y., Guo, H., Williams, T.: A complete dichotomy rises from the capture of vanishing signatures.

SIAM J. Comput. 45(5), 1671–1728 (2016)
12. Cai, J.-Y., Guo, H., Williams, T.: Holographic algorithms beyond matchgates. Inf. Comput. 259(1),

102–129 (2018). Preliminary version appeared in ICALP 2014
13. Cai, J.-Y., Kowalczyk, M.: Spin systems on k-regular graphs with complex edge functions. Theor

Comput. Sci. 461, 2–16 (2012)
14. Cai, J.-Y., Kowalczyk, M., Williams, T.: Gadgets and anti-gadgets leading to a complexity dichotomy.

ACM Trans. Comput. Theory 11(2), 7:1–7:26 (2019). Preliminary version appeared in ITCS 2012
15. Cai, J.-Y., Lu, P.: On symmetric signatures in holographic algorithms. Theory Comput. Syst. 46(3),

398–415 (2010)
16. Cai, J.-Y., Lu, P.: Holographic algorithms: from art to science. J. Comput. Syst. Sci. 77(1), 41–61

(2011)
17. Cai, J.-Y., Lu, P., Xia, M.: Computational complexity of Holant problems. SIAM J. Comput. 40(4),

1101–1132 (2011)
18. Cai, J.-Y., Lu, P., Xia, M.: The complexity of complex weighted Boolean #CSP. J. Comput. System

Sci. 80(1), 217–236 (2014)
19. Cai, J.-Y., Lu, P., Xia, M.: Holographic algorithms with matchgates capture precisely tractable planar

#CSP. SIAM J. Comput. 46(3), 853–889 (2017)
20. Cai, J.-Y., Lu, P., Xia, M.: Dichotomy for Real Holantc Problems. In: SODA, pp. 1802–1821. SIAM

(2018)
21. Cai, J.-Y., Lu, P., Xia, M.: Dichotomy for Holant* problems on the Boolean domain. Theory Comput.

Syst. 64(8), 1362–1391 (2020). Preliminary version appeared in SODA 2011
22. Dodson, C.T.J., Poston, T.: Tensor Geometry. Graduate Texts in Mathematics. Springer, 2nd edn

(1991)
23. Draisma, J., Gijswijt, D.C., Lovász, L., Regts, G., Schrijver, A.: Characterizing partition functions of

the vertex model. J. Algebra. 350, 197–206 (2012)

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1137/17M1131672

Theory of Computing Systems

24. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism
of graphs. J. Amer. Math. Soc. 20(1), 37–51 (2007)

25. Guo, H., Lu, P., Valiant, L.G.: The complexity of symmetric Boolean parity Holant problems. SIAM
J. Comput. 42(1), 324–356 (2013)

26. Guo, H., Williams, T.: The complexity of planar Boolean #CSP with complex weights. J. Comput.
Syst. Sci. 107, 1–27 (2020). Preliminary version appeared inn ICALP 2013

27. Huang, S., Lu, P.: A dichotomy for real weighted Holant problems. Comput. Complex. 25(1), 255–304
(2016)

28. Ising, E.: Beitrag zür Theorie des Ferromagnetismus. Zeitschrift für Physik 31(1), 253–258
(1925)

29. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)
30. Kasteleyn, P.W.: Graph theory and crystal physics. In: Graph Theory and Theoretical Physics, pp. 43–

110. Academic Press, London (1967)
31. Kowalczyk, M.: Dichotomy theorems for Holant problems. PhD thesis, University of Wisconsin—

Madison. Available at http://cs.nmu.edu/∼mkowalcz/research/main.pdf (2010)
32. Landsberg, J.M., Morton, J., Norine, S.: Holographic algorithms without matchgates. Linear Algebra

Appl. 438(2), 782–795 (2013)
33. Lee, T.-D., Yang, C.-N.: Statistical theory of equations of state and phase transitions. II. Lattice gas

and Ising model. Phys. Rev. 87(3), 410–419 (1952)
34. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162(1), 162–172 (1967)
35. Lieb, E.H., Sokal, A.D.: A general lee-Yang theorem for one-component and multicomponent

ferromagnets. Comm. Math. Phys. 80(2), 153–179 (1981)
36. Lin, J., Wang, H.: The complexity of Boolean Holant problems with nonnegative weights. SIAM J.

Comput. 47(3), 798–828 (2018). Preliminary version appeared in ICALP 2017
37. Margulies, S., Morton, J.: Polynomial-time solvable #CSP problems via algebraic models and Pfaffian

circuits. J. Symbolic Comput. 74, 152–180 (2016)
38. Morton, J.: Pfaffian circuits. CoRR, arXiv:abs/1101.0129 (2011)
39. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys.

Rev. 65(3-4), 117–149 (1944)
40. Schrijver, A.: Characterizing partition functions of the spin model by rank growth. Indag. Math. (N.S.)

24(4), 1018–1023 (2013)
41. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics—an exact result. Philos.

Mag. 6, 1061–1063 (1961)
42. Valiant, L.G.: Expressiveness of matchgates. Theor. Comput. Sci. 289(1), 457–471 (2002)
43. Valiant, L.G.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput.

31(4), 1229–1254 (2002)
44. Valiant, L.G.: Accidental Algorthims. In: FOCS, pp. 509–517. IEEE Computer Society (2006)
45. Valiant, L.G.: Holographic algorithms. SIAM J. Comput. 37(5), 1565–1594 (2008)
46. Valiant, L.G.: Some observations on holographic algorithms. Comput. Complex. 27(3), 351–374

(2018). Preliminary version appeared in LATIN 2010
47. Vertigan, D.: The computational complexity of Tutte invariants for planar graphs. SIAM J. Comput.

35(3), 690–712 (2005)
48. Vertigan, D.L.: On the computational complexity of Tutte, Jones, Homfly and Kauffman invariants.

PhD thesis University of Oxford (1991)
49. Welsh, D.: Complexity: Knots, Colourings and Countings. London Mathematical Society Lecture

Note Series. Cambridge University Press, Cambridge (1993)
50. Yang, C.-N.: The spontaneous magnetization of a two-dimensional Ising model. Phys. Rev. 85(5),

808–816 (1952)
51. Yang, C.-N., Lee, T.-D.: Statistical theory of equations of state and phase transitions. I. Theory of

condensation. Phys. Rev. 87(3), 404–409 (1952)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://cs.nmu.edu/~mkowalcz/research/main.pdf
http://arxiv.org/abs/abs/1101.0129

Theory of Computing Systems

Affiliations

Jin-Yi Cai1 ·Zhiguo Fu2 ·Heng Guo3 ·TysonWilliams4

Jin-Yi Cai
jyc@cs.wisc.edu

Zhiguo Fu
fuzg432@nenu.edu.cn

Tyson Williams
tdw@cs.wisc.edu

1 Department of Computer Science, University of Wisconsin–Madison, Madison, WI, USA
2 School of Computer Science & Information Technology, Northeast Normal University, Changchun,

China
3 School of Informatics, University of Edinburgh, Edinburgh, UK
4 Blocher Consulting, Champaign, IL, USA

http://orcid.org/0000-0001-8199-5596
mailto: jyc@cs.wisc.edu
mailto: fuzg432@nenu.edu.cn
mailto: tdw@cs.wisc.edu

	FKT is Not Universal — A Planar Holant Dichotomy for Symmetric Constraints
	Abstract
	Part I Planar Holant Dichotomy
	Introduction
	Preliminaries
	Problems and Definitions
	Holographic Reduction
	Counting Constraint Satisfaction Problems
	Realization
	Tractable Signature Sets
	Affine Signatures
	Product-Type Signatures
	Matchgate Signatures
	Vanishing Signatures

	Some Known Dichotomies
	Redundant Signature Matrices and Related Hardness Results

	A-, P-, and M-transformable Signatures
	Characterization of A- and P-transformable Signatures
	Characterization of M-transformable Signatures

	Mixing with Vanishing Signatures
	Dichotomy for Pl-#CSP2 and Related Lemmas
	Related Lemmas

	Single Signature Dichotomy
	Lemmas Applied to Non-Degenerate Signatures in the Inductive Step
	Lemmas Applied to Degenerate Signatures in the Inductive Step
	Proof of the Single Signature Dichotomy

	Mixing P2 and M4—Equalities and Matchgates in the Z Basis
	Hardness when k = 3 or 4
	Tractability when k 5
	Lemmas Related to M4 and P2

	Full Dichotomy of Pl-Holant(F)
	Part II Planar #CSP2 Dichotomy
	Preliminaries
	Reduction from Pl-#CSP to Pl-#CSP2
	Dichotomy Theorem when F Contains an Odd Arity Signature
	Arity 4 Dichotomy for Pl-#CSP2(f)
	An Application of Cyclotomic Field
	Dichotomy Theorem with a Signature in M"0362M (P A"0365A)
	Dichotomy Theorem with a Signature in M"0362M (P A"0365A)

	No-Mixing of a Pair of Signatures of Even Arity
	Mixing with S5=P
	Mixing with S4=A
	Mixing with S3=A
	Mixing with S2=M"0362M

	No-Mixing of Even Arity Signature Set
	Dichotomy Theorem for an Even-Arity Signature*1pt
	References
	Affiliations

