18 research outputs found

    Algebraic Methods in Computational Complexity

    Get PDF
    From 11.10. to 16.10.2009, the Dagstuhl Seminar 09421 “Algebraic Methods in Computational Complexity “ was held in Schloss Dagstuhl-Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    09421 Abstracts Collection -- Algebraic Methods in Computational Complexity

    Get PDF
    From 11.10. to 16.10.2009, the Dagstuhl Seminar 09421 ``Algebraic Methods in Computational Complexity \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    The Poetry of Logical Ideas: Towards a Mathematical Genealogy of Media Art

    Get PDF
    In this dissertation I chart a mathematical genealogy of media art, demonstrating that mathematical thought has had a significant influence on contemporary experimental moving image production. Rather than looking for direct cause and effect relationships between mathematics and the arts, I will instead examine how mathematical developments have acted as a cultural zeitgeist, an indirect, but significant, influence on the humanities and the arts. In particular, I will be narrowing the focus of this study to the influence mathematical thought has had on cinema (and by extension media art), given that mathematics lies comfortably between the humanities and sciences, and that cinema is the object par excellence of such a study, since cinema and media studies arrived at a time when the humanities and sciences were held by many to be mutually exclusive disciplines. It is also shown that many media scholars have been implicitly engaging with mathematical concepts without necessarily recognizing them as such. To demonstrate this, I examine many concepts from media studies that demonstrate or derive from mathematical concepts. For instance, Claude Shannon's mathematical model of communication is used to expand on Stuart Hall's cultural model, and the mathematical concept of the fractal is used to expand on Rosalind Krauss' argument that video is a medium that lends itself to narcissism. Given that the influence of mathematics on the humanities and the arts often occurs through a misuse or misinterpretation of mathematics, I mobilize the concept of a productive misinterpretation and argue that this type of misreading has the potential to lead to novel innovations within the humanities and the arts. In this dissertation, it is also established that there are many mathematical concepts that can be utilized by media scholars to better analyze experimental moving images. In particular, I explore the mathematical concepts of symmetry, infinity, fractals, permutations, the Axiom of Choice, and the algorithmic to moving images works by Hollis Frampton, Barbara Lattanzi, Dana Plays, T. Marie, and Isiah Medina, among others. It is my desire that this study appeal to scientists with an interest in cinema and media art, and to media theorists with an interest in experimental cinema and other contemporary moving image practices

    Algebraic Stream Processing

    Get PDF
    We identify and analyse the typically higher-order approaches to stream processing in the literature. From this analysis we motivate an alternative approach to the specification of SPSs as STs based on an essentially first-order equational representation. This technique is called Cartesian form specification. More specifically, while STs are properly second-order objects we show that using Cartesian forms, the second-order models needed to formalise STs are so weak that we may use and develop well-understood first-order methods from computability theory and mathematical logic to reason about their properties. Indeed, we show that by specifying STs equationally in Cartesian form as primitive recursive functions we have the basis of a new, general purpose and mathematically sound theory of stream processing that emphasises the formal specification and formal verification of STs. The main topics that we address in the development of this theory are as follows. We present a theoretically well-founded general purpose stream processing language ASTRAL (Algebraic Stream TRAnsformer Language) that supports the use of modular specification techniques for full second-order STs. We show how ASTRAL specifications can be given a Cartesian form semantics using the language PREQ that is an equational characterisation of the primitive recursive functions. In more detail, we show that by compiling ASTRAL specifications into an equivalent Cartesian form in PREQ we can use first-order equational logic with induction as a logical calculus to reason about STs. In particular, using this calculus we identify a syntactic class of correctness statements for which the verification of ASTRAL programmes is decidable relative to this calculus. We define an effective algorithm based on term re-writing techniques to implement this calculus and hence to automatically verify a very broad class of STs including conventional hardware devices. Finally, we analyse the properties of this abstract algorithm as a proof assistant and discuss various techniques that have been adopted to develop software tools based on this algorithm

    Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education

    Get PDF
    International audienceThis volume contains the Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education (ERME), which took place 9-13 February 2011, at Rzeszñw in Poland

    Wellesley College Courses [2005-2006]

    Get PDF
    https://repository.wellesley.edu/catalogs/1103/thumbnail.jp

    Ohio State University Bulletin

    Get PDF
    Classes available for students to enroll in during the 1983-1984 academic year for The Ohio State University

    Ohio State University Bulletin

    Get PDF
    Classes available for students to enroll in during the 1980-1981 academic year for The Ohio State University
    corecore