29 research outputs found

    Fabrication and Pseudo-Analog Characteristics of Ta2O5 -Based ReRAM Cell

    Get PDF
    Memristori on yksi elektroniikan peruskomponenteista vastuksen, kondensaattorin ja kelan lisäksi. Se on passiivinen komponentti, jonka teorian kehitti Leon Chua vuonna 1971. Kesti kuitenkin yli kolmekymmentä vuotta ennen kuin teoria pystyttiin yhdistämään kokeellisiin tuloksiin. Vuonna 2008 Hewlett Packard julkaisi artikkelin, jossa he väittivät valmistaneensa ensimmäisen toimivan memristorin. Memristori eli muistivastus on resistiivinen komponentti, jonka vastusarvoa pystytään muuttamaan. Nimens mukaisesti memristori kykenee myös säilyttämään vastusarvonsa ilman jatkuvaa virtaa ja jännitettä. Tyypillisesti memristorilla on vähintään kaksi vastusarvoa, joista kumpikin pystytään valitsemaan syöttämällä komponentille jännitettä tai virtaa. Tämän vuoksi memristoreita kutsutaankin usein resistiivisiksi kytkimiksi. Resistiivisiä kytkimiä tutkitaan nykyään paljon erityisesti niiden mahdollistaman muistiteknologian takia. Resistiivisistä kytkimistä rakennettua muistia kutsutaan ReRAM-muistiksi (lyhenne sanoista resistive random access memory). ReRAM-muisti on Flash-muistin tapaan haihtumaton muisti, jota voidaan sähköisesti ohjelmoida tai tyhjentää. Flash-muistia käytetään tällä hetkellä esimerkiksi muistitikuissa. ReRAM-muisti mahdollistaa kuitenkin nopeamman ja vähävirtaiseman toiminnan Flashiin verrattuna, joten se on tulevaisuudessa varteenotettava kilpailija markkinoilla. ReRAM-muisti mahdollistaa myös useammin bitin tallentamisen yhteen muistisoluun binäärisen (”0” tai ”1”) toiminnan sijaan. Tyypillisesti ReRAM-muistisolulla on kaksi rajoittavaa vastusarvoa, mutta näiden kahden tilan välille pystytään mahdollisesti ohjelmoimaan useampia tiloja. Muistisoluja voidaan kutsua analogisiksi, jos tilojen määrää ei ole rajoitettu. Analogisilla muistisoluilla olisi mahdollista rakentaa tehokkaasti esimerkiksi neuroverkkoja. Neuroverkoilla pyritään mallintamaan aivojen toimintaa ja suorittamaan tehtäviä, jotka ovat tyypillisesti vaikeita perinteisille tietokoneohjelmille. Neuroverkkoja käytetään esimerkiksi puheentunnistuksessa tai tekoälytoteutuksissa. Tässä diplomityössä tarkastellaan Ta2O5 -perustuvan ReRAM-muistisolun analogista toimintaa pitäen mielessä soveltuvuus neuroverkkoihin. ReRAM-muistisolun valmistus ja mittaustulokset käydään läpi. Muistisolun toiminta on harvoin täysin analogista, koska kahden rajoittavan vastusarvon välillä on usein rajattu määrä tiloja. Tämän vuoksi toimintaa kutsutaan pseudoanalogiseksi. Mittaustulokset osoittavat, että yksittäinen ReRAM-muistisolu kykenee binääriseen toimintaan hyvin. Joiltain osin yksittäinen solu kykenee tallentamaan useampia tiloja, mutta vastusarvoissa on peräkkäisten ohjelmointisyklien välillä suurta vaihtelevuutta, joka hankaloittaa tulkintaa. Valmistettu ReRAM-muistisolu ei sellaisenaan kykene toimimaan pseudoanalogisena muistina, vaan se vaati rinnalleen virtaa rajoittavan komponentin. Myös valmistusprosessin kehittäminen vähentäisi yksittäisen solun toiminnassa esiintyvää varianssia, jolloin sen toiminta muistuttaisi enemmän pseudoanalogista muistia.The memristor is one of the fundamental circuit elements in addition to a resistor, capacitor and an inductor. It is a passive component whose theory was postulated by Leon Chua in 1971. It took over 30 years before any known physical examples were discovered. In 2008 Hewlett Packard published an article where they manufactured a device which they claimed to be the first memristor found. The memristor, which is a concatenation of memory resistor, is a resistive component that has an ability to change its resistance. It can also remember its resistance value without continuous current or voltage. Typically, a memristor has at least two resistance states that can be altered. This is the reason why memristors are also called resistive switches. Resistive switches can be used in memory technologies. A memory array that has been built using resistive switches is called ReRAM (resistive random access memory). ReRAM, like Flash memory, is a non-volatile memory that can be programmed or erased electrically. Flash memories are currently used e.g. in memory sticks. However, compared to Flash, ReRAM has faster operating speed and lower power consumption, for instance. It could potentially replace current memory standards in future. A ReRAM memory cell can also store multiple bits instead of binary operation (”0” or ”1”). Typically there exists multiple intermediate resistance states between ReRAM’s limiting resistances that could be utilized. Such memory could be called analog, if the amount of intermediate states is not limited to discrete levels. Analog memories make it possible to build artificial neural networks (ANN) efficiently, for instance. ANNs try to model the behaviour of brain and to perform tasks that are difficult for traditional computer programs such as speech recognition or artificial intelligence. This thesis studies the analog behaviour of Ta 2 O 5 -based ReRAM cell. Manufacturing process and measurement results are presented. The operation of ReRAM cell is rarely fully analog as there exists limited amount of intermediate resistance states. This is the reason why operation is called pseudo-analog. Measurement results show that a single ReRAM cell is suitable for binary operation. In some cases, a single cell can store multiple resistance values but there exists significant variance in resistance states between subsequent programming cycles. The proposed ReRAM cell cannot operate as pseudo-analog ReRAM cell in itself as it needs an external current limiting component. Improving the manufacturing process should reduce the variability such that the operation would be more like a pseudo-analog memory.Siirretty Doriast

    Fabrication, Characterization and Integration of Resistive Random Access Memories

    Get PDF
    The functionalities and performances of today's computing systems are increasingly dependent on the memory block. This phenomenon, also referred as the Von Neumann bottleneck, is the main motivation for the research on memory technologies. Despite CMOS technology has been improved in the last 50 years by continually increasing the device density, today's mainstream memories, such as SRAM, DRAM and Flash, are facing fundamental limitations to continue this trend. These memory technologies, based on charge storage mechanisms, are suffering from the easy loss of the stored state for devices scaled below 10 nm. This results in a degradation of the performance, reliability and noise margin. The main motivation for the development of emerging non volatile memories is the study of a different mechanism to store the digital state in order to overcome this challenge. Among these emerging technologies, one of the strongest candidate is Resistive Random Access Memory (ReRAM), which relies on the formation or rupture of a conductive filament inside a dielectric layer. This thesis focuses on the fabrication, characterization and integration of ReRAM devices. The main subject is the qualitative and quantitative description of the main factors that influence the resistive memory electrical behavior. Such factors can be related either to the memory fabrication or to the test environment. The first category includes variations in the fabrication process steps, in the device geometry or composition. We discuss the effect of each variation, and we use the obtained database to gather insights on the ReRAM working mechanism and the adopted methodology by using statistical methods. The second category describes how differences in the electrical stimuli sent to the device change the memory performances. We show how these factors can influence the memory resistance states, and we propose an empirical model to describe such changes. We also discuss how it is possible to control the resistance states by modulating the number of input pulses applied to the device. In the second part of this work, we present the integration of the fabricated devices in a CMOS technology environment. We discuss a Verilog-A model used to simulate the device characteristics, and we show two solutions to limit the sneak-path currents for ReRAM crossbars: a dedicated read circuit and the development of selector devices. We describe the selector fabrication, as well as the electrical characterization and the combination with our ReRAMs in a 1S1R configuration. Finally, we show two methods to integrate ReRAM devices in the BEoL of CMOS chips

    The Efficacy of Programming Energy Controlled Switching in Resistive Random Access Memory (RRAM)

    Get PDF
    Current state-of-the-art memory technologies such as FLASH, Static Random Access Memory (SRAM) and Dynamic RAM (DRAM) are based on charge storage. The semiconductor industry has relied on cell miniaturization to increase the performance and density of memory technology, while simultaneously decreasing the cost per bit. However, this approach is not sustainable because the charge-storage mechanism is reaching a fundamental scaling limit. Although stack engineering and 3D integration solutions can delay this limit, alternate strategies based on non-charge storage mechanisms for memory have been introduced and are being actively pursued. Resistive Random Access Memory (RRAM) has emerged as one of the leading candidates for future high density non-volatile memory. The superior scalability of RRAMs is based on the highly localized active switching region and filamentary conductive path. Coupled with its simple structure and compatibility with complementary metal oxide semiconductor (CMOS) processes; RRAM cells have demonstrated switching performance comparable to volatile memory technologies such as DRAMs and SRAMs. However, there are two serious barriers to RRAM commercialization. The first is the variability of the resistance state which is associated with the inherent randomness of the resistive switching mechanism. The second is the filamentary nature of the conductive path which makes it susceptible to noise. In this experimental thesis, a novel program-verify (P-V) technique was developed with the objective to specifically address the programming errors and to provide solutions to the most challenging issues associated with these intrinsic failures in current RRAM technology. The technique, called Compliance-free Ultra-short Smart Pulse Programming (CUSPP), utilizes sub-nanosecond pulses in a compliance-free setup to minimize the programming energy delivered per pulse. In order to demonstrate CUSPP, a custom-built picosecond pulse generator and feedback control circuit was designed. We achieved high (108 cycles) endurance with state verification for each cycle and established high-speed performance, such as 100 ps write/erase speed and 500 kHz cycling rate of HfO2-based RRAM cells. We also investigate switching failure and the short-term instability of the RRAM using CUSPP

    Characterisation of Novel Resistive Switching Memory Devices

    Get PDF
    Resistive random access memory (RRAM) is widely considered as a disruptive technology that will revolutionize not only non-volatile data storage, but also potentially digital logic and neuromorphic computing. The resistive switching mechanism is generally conceived as the rupture/restoration of defect-formed conductive filament (CF) or defect profile modulation, for filamentary and non-filamentary devices respectively. However, details of the underlying microscopic behaviour of the resistive switching in RRAM are still largely missing. In this thesis, a defect probing technique based on the random telegraph noise (RTN) is developed for both filamentary and non-filamentary devices, which can reveal the resistive switching mechanism at defect level and can also be used to analyse the device performance issues. HfO2 is one of the most matured metal-oxide materials in semiconductor industry and HfO2 RRAM shows promising potential in practical application. An RTN-based defect extraction technique is developed for the HfO2 devices to detect individual defect movement and provide statistical information of CF modification during normal operations. A critical filament region (CFR) is observed and further verified by defect movement tracking. Both defect movements and CFR modification are correlated with operation conditions, endurance failure and recovery. Non-filamentary devices have areal switching characteristics, and are promising in overcoming the drawbacks of filamentary devices that mainly come from the stochastic nature of the CF. a-VMCO is an outstanding non-filamentary device with a set of unique characteristics, but its resistive switching mechanism has not been clearly understood yet. By utilizing the RTN-based defect profiling technique, defect profile modulation in the switching layer is identified and correlated with digital and analogue switching behaviours, for the first time. State instability is analysed and a stable resistance window of 10 for >106 cycles is restored through combining optimizations of device structure and operation conditions, paving the way for its practical application. TaOx-based RRAM has shown fast switching in the sub-nanosecond regime, good CMOS compatibility and record endurance of more than 1012 cycles. Several inconsistent models have been proposed for the Ta2O5/TaOx bilayered structure, and it is difficult to quantify and optimize the performance, largely due to the lack of microscopic description of resistive switching based on experimental results. An indepth analysis of the TiN/Ta2O5/TaOx/TiN structured RRAM is carried out with the RTN-based defect probing technique, for both bipolar and unipolar switching modes. Significant differences in defect profile have been observed and explanations have been provided

    Design of Resistive Synaptic Devices and Array Architectures for Neuromorphic Computing

    Get PDF
    abstract: Over the past few decades, the silicon complementary-metal-oxide-semiconductor (CMOS) technology has been greatly scaled down to achieve higher performance, density and lower power consumption. As the device dimension is approaching its fundamental physical limit, there is an increasing demand for exploration of emerging devices with distinct operating principles from conventional CMOS. In recent years, many efforts have been devoted in the research of next-generation emerging non-volatile memory (eNVM) technologies, such as resistive random access memory (RRAM) and phase change memory (PCM), to replace conventional digital memories (e.g. SRAM) for implementation of synapses in large-scale neuromorphic computing systems. Essentially being compact and “analog”, these eNVM devices in a crossbar array can compute vector-matrix multiplication in parallel, significantly speeding up the machine/deep learning algorithms. However, non-ideal eNVM device and array properties may hamper the learning accuracy. To quantify their impact, the sparse coding algorithm was used as a starting point, where the strategies to remedy the accuracy loss were proposed, and the circuit-level design trade-offs were also analyzed. At architecture level, the parallel “pseudo-crossbar” array to prevent the write disturbance issue was presented. The peripheral circuits to support various parallel array architectures were also designed. One key component is the read circuit that employs the principle of integrate-and-fire neuron model to convert the analog column current to digital output. However, the read circuit is not area-efficient, which was proposed to be replaced with a compact two-terminal oscillation neuron device that exhibits metal-insulator-transition phenomenon. To facilitate the design exploration, a circuit-level macro simulator “NeuroSim” was developed in C++ to estimate the area, latency, energy and leakage power of various neuromorphic architectures. NeuroSim provides a wide variety of design options at the circuit/device level. NeuroSim can be used alone or as a supporting module to provide circuit-level performance estimation in neural network algorithms. A 2-layer multilayer perceptron (MLP) simulator with integration of NeuroSim was demonstrated to evaluate both the learning accuracy and circuit-level performance metrics for the online learning and offline classification, as well as to study the impact of eNVM reliability issues such as data retention and write endurance on the learning performance.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Resistive-RAM for Data Storage Applications.

    Full text link
    Mainstream non-volatile memory technology, dominated by the floating gate transistor, has historically improved in density, performance and cost primarily by means of process scaling. This simple geometrical scaling now faces significant challenges due to constraints of electrostatics and reliability. Thus, novel non-transistor based memory paradigms are being widely explored. Among the various contenders for next generation storage technology, RRAM devices have got immense attention due to their high-speed, multilevel capability, scalability, simple structure, low voltage operation and high endurance. In this thesis, electrical and material characterization is carried out on a MIM device system and formation / annihilation of nanoscale filaments is shown to be the reason behind the resistance switching. The MIM system is optimized to include an in-cell resistor which is shown to improve device endurance and reduce stuck-at-one faults. For highest density, the devices were arranged in a crossbar geometry and vertically integrated on CMOS decoders to demonstrate the feasibility of practical data storage applications. Next, we show that these binary RRAM devices exhibit native stochastic nature of resistive switching. Even for a fixed voltage on the same device, the wait time associated with programming is not fixed and is random and broadly distributed. However, the probability of switching can be predicted and controlled by the programming pulse. These binary devices have been used to generate random bit-streams with predicable bias ratios in time and space domains. The ability to produce random bit-streams using binary resistive switching devices based on the native stochastic switching principle may potentially lead to novel non-von-Neumann computing paradigms. Further, sub-1nA operating current devices have been developed. This ultra-low current provides energy savings by minimizing programming, erase and read currents. Despite having such low currents, excellent retention, on/off ratio and endurance have been demonstrated. Finally a scalable approach to simple 3D stacking is discussed. By implementation of a vertical sidewall-based architecture, the number of critical lithography steps can be reduced. A vertical device structure based on a W / WOx / Pd material system is developed. This scalable architecture is well suited for development of analog memory and neuromorphic systems.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110461/1/sidgaba_1.pd

    Applications of memristors in conventional analogue electronics

    Get PDF
    This dissertation presents the steps employed to activate and utilise analogue memristive devices in conventional analogue circuits and beyond. TiO2 memristors are mainly utilised in this study, and their large variability in operation in between similar devices is identified. A specialised memristor characterisation instrument is designed and built to mitigate this issue and to allow access to large numbers of devices at a time. Its performance is quantified against linear resistors, crossbars of linear resistors, stand-alone memristive elements and crossbars of memristors. This platform allows for a wide range of different pulsing algorithms to be applied on individual devices, or on crossbars of memristive elements, and is used throughout this dissertation. Different ways of achieving analogue resistive switching from any device state are presented. Results of these are used to devise a state-of-art biasing parameter finder which automatically extracts pulsing parameters that induce repeatable analogue resistive switching. IV measurements taken during analogue resistive switching are then utilised to model the internal atomic structure of two devices, via fittings by the Simmons tunnelling barrier model. These reveal that voltage pulses modulate a nano-tunnelling gap along a conical shape. Further retention measurements are performed which reveal that under certain conditions, TiO2 memristors become volatile at short time scales. This volatile behaviour is then implemented into a novel SPICE volatile memristor model. These characterisation methods of solid-state devices allowed for inclusion of TiO2 memristors in practical electronic circuits. Firstly, in the context of large analogue resistive crossbars, a crosspoint reading method is analysed and improved via a 3-step technique. Its scaling performance is then quantified via SPICE simulations. Next, the observed volatile dynamics of memristors are exploited in two separate sequence detectors, with applications in neuromorphic engineering. Finally, the memristor as a programmable resistive weight is exploited to synthesise a memristive programmable gain amplifier and a practical memristive automatic gain control circuit.Open Acces

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security

    Adaptive extreme edge computing for wearable devices

    Get PDF
    Wearable devices are a fast-growing technology with impact on personal healthcare for both society and economy. Due to the widespread of sensors in pervasive and distributed networks, power consumption, processing speed, and system adaptation are vital in future smart wearable devices. The visioning and forecasting of how to bring computation to the edge in smart sensors have already begun, with an aspiration to provide adaptive extreme edge computing. Here, we provide a holistic view of hardware and theoretical solutions towards smart wearable devices that can provide guidance to research in this pervasive computing era. We propose various solutions for biologically plausible models for continual learning in neuromorphic computing technologies for wearable sensors. To envision this concept, we provide a systematic outline in which prospective low power and low latency scenarios of wearable sensors in neuromorphic platforms are expected. We successively describe vital potential landscapes of neuromorphic processors exploiting complementary metal-oxide semiconductors (CMOS) and emerging memory technologies (e.g. memristive devices). Furthermore, we evaluate the requirements for edge computing within wearable devices in terms of footprint, power consumption, latency, and data size. We additionally investigate the challenges beyond neuromorphic computing hardware, algorithms and devices that could impede enhancement of adaptive edge computing in smart wearable devices
    corecore