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Resumo

Os computadores modernos, baseados na arquitectura determinística de von Neumann, onde a

memória e o processamento estão fisicamente separados, não conseguem aprender e adaptar-se

a novos ambientes de maneira eficiente e prática. Assim, é necessária uma nova abordagem e

dispositivos capazes de simultaneamente armazenarem e processarem informação são blocos

essenciais de construção. O memresistor é uma memória não volátil de dois terminais baseada em

estruturas metal-isolador-metal que estabelece uma relação não-linear entre o historial de corrente

e tensão através de comutação resistiva. Satisfaz os dois critérios de memória e computação,

sendo um candidato promissor para esta nova era de informação.

Neste trabalho, estudámos a comutação resistiva de dois tipos de estruturas metal-isolador-

metal, utilizando óxido de magnésio como camada isoladora e a dinâmica do sistema silício/prata.

Começámos por estudar a estrutura Pt/MgO/Ta/Ru e observámos comportamento unipolar em

múltiplos modos, ditados pelas polaridades de tensão. Usando a análise de XPS, observámos

a existência de uma camada de TaOx na interface MgO/Ta, que actua como um reservatório de

oxigénio e é responsável por este comportamento. Testámos ainda estruturas de Pt/MgO/Pt e

obtivemos tensões mais altas, quando comparando com o eléctrodo de Ta. Além disso, dispo-

sitivos sem um passo de quebra de vácuo na interface superior de MgO/Pt mostram um passo

inicial de forming. Para metais reactivos como eléctrodos de cima, observámos a transição para

comutação resistiva bipolar no caso de Ag. Neste caso, os filamentos metálicos responsáveis

pelas mudanças de resistência são compostos por iões de prata. Foram usadas duas técnicas

de deposição diferentes foram usadas para depositar a camada de MgO, nomeadamente, pul-

verização com magnetrão e deposição por feixe de iões. Para a mesma espessura de óxido, a

primeira origina estruturas com a necessidade de um passo de forming, ao contrário da última.

Camadas duplas de óxido Al2O3/MgO foram ainda fabricadas e observou-se que as tensões de

operação aumentam com a espessura. O modelo Random Circuit Breaker foi implementado

e a dependência das tensões de forming, Set e Reset na espessura do óxido foi comparada

com dados experimentais. Para ambos os casos, apenas a tensão de forming aumenta com a

espessura, mostrando que, após o primeiro passo, a formação e ruptura do filamento conductor

ocorre apenas numa espessura menor. Uma maior percentagem de defeitos conductivos iniciais

na camada isoladora também promove o processo de forming.

A estrutura metal-isolador-metal Pt/Si/Ag/TiW foi fabricada e caracterizada. O comportamento

de comutação resistiva bipolar observado é consistente com a formação e ruptura de filamentos

metálicos de prata. A mesma estrutura foi depositada em cima de substratos rígidos de Si e

substratos flexíveis de PET e de celulose (comercial e bacteriana), tendo sido obtida comutação
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resistiva em ambos os casos. Usando um eléctrodo de baixo de ITO, em vez de Pt, em cima

de PET as tensões de Set e Reset diminuem. O espaço corrente–tensão foi modelado com

sucesso através do cálculo de pontos de transição e descrição dos diferentes estados no espaço

de carga–fluxo. Caracterizámos a probabilidade de transição no espaço tempo–tensão, como

resultado da estocasticidade do fenómeno.

Também implementámos memresistores como sinapses e neurónios, usando simulações nu-

méricas. Uma memória associativa Willshaw foi estudada em Spice com memresistores binários

como junções sinápticas e testada a capacidade e robustez da rede na presença de ruído. Con-

cluimos que os defeitos dos memresistores e a variabilidade não implicam (até certo ponto) a

falha catastrófica de operação da rede e podem de facto ser superados usando uma estratégia

de operação bem informada. Dois memresistores em `̀ anti-fase´́ foram usados para definir cada

peso de um Perceptrão de uma camada. O algoritmo em Python foi utilizado para classificar os

dados gerados de índice de massa corporal e as bases de dados de sonar e cancro da mama.

Por fim, o circuito de Hodgkin-Huxley com memresistors imitando canais iónicos foi implementado

em Spice e um potencial de membrana preliminar foi observado.

Palavras-chave: Cumutação Resistiva, Memresistors, Memórias, Redes Neuronais Artificiais,

Metal-Isolador-Metal, Óxido de Magnésio, Silício.
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Abstract

Modern-day computers, based on the deterministic von Neumann architecture, where memory and

processing are physically separated, cannot learn and adapt to new environments in an efficient

and practical way. A novel approach is thus necessary and devices capable of simultaneously

storing memory and processing information are essential building blocks. The memristor is a

non-volatile two-terminal nanoscale memory device based on metal-insulator-metal structures that

establishes a nonlinear relationship between the histories of current and voltage, through resistive

switching. It comprises both criteria of memory and computing, being a promising candidate for

this new data era.

In this work, we studied the resistive switching of two types of metal-insulator-metal structures,

namely using magnesium oxide as the insulator layer and silicon/silver system dynamics. We

started to study the Pt/MgO/Ta/Ru stack and observed unipolar multi mode operation, dictated

by the voltage polarities. Using XPS analysis we observed the existence of a TaOx layer at the

MgO/Ta interface, acting as an oxygen reservoir and being responsible for this behavior. We

further tested Pt/MgO/Pt structures and obtained higher operating voltages, comparatively to the

Ta electrode. Furthermore, devices without a vacuum break step at the top MgO/Pt interface

show an initial forming step. For reactive metals as top electrodes, we observed the transition to

bipolar resistive switching in the case of Ag. In this case, the metallic filaments responsible for the

resistance changes are composed of silver ions. Two different deposition techniques were used

to deposit the MgO layer, namely magnetron sputtering and Ion Beam Deposition. For the same

oxide thickness, the former results in structures with the need of a forming step, unlike the latter.

Double Al2O3/MgO oxide layers were further fabricated and it was observed that the operating

voltages increase with the thickness. The Random Circuit Breaker model was implemented and

the dependence of the forming, Set and Reset voltages on the oxide thickness was compared with

experimental data. For both cases, only the forming voltage increases with the thickness, showing

that, after the first step, the conductive filament formation and rupture happens only at a thinner

thickness. A higher percentage of initial conductive defects in the oxide layer also promote the

forming step.

The Pt/Si/Ag/TiW metal-insulator-metal structure was fabricated and characterized. The ob-

served bipolar resistive switching behavior is consistent with formation and rupture of metallic Ag

filaments.The same stack was deposited and resistive switching behavior was obtained on top of

Si rigid substrates, and cellulose (commercial and bacterial) and PET flexible substrates. Using

an ITO bottom electrode on top of PET, instead of Pt, decreases Set and Reset voltages. The

current–voltage space was successfully modeled through the calculation of transition points and
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different states description in the charge–flux space. We characterized the switching probability in

the time–voltage, as a result of the phenomenon stochasticity.

We further implemented memristors as synapses and neurons using numerical simulations. A

Spice Willshaw associative memory was studied with binary memristors as synaptic junctions and

the capacity and robustness to noise of the network was tested. We concluded that memristor

defects and variability do not imply (to some extent) the catastrophic failure of a network operation

and can in fact be overcome by using a well informed operation strategy. Two memristors in `̀ anti-

phase´́ were used to define each weight of a single layer Perceptron. The Python algorithm was

used to classify generated body mass index data, and sonar and breast cancer databases. Finally,

the Hodgkin-Huxley circuit with memristors mimicking ionic channels was implemented in Spice

and a preliminary action potential signature was observed.

Keywords: Resistive Switching, Memristors, Memories, Artificial Neural Networks, Metal-

Insulator-Metal, Magnesium Oxide, Silicon.
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CHAPTER 1

Introduction

The extraordinary rise in processing power, speed and storage capacity of present day computers

is coming to a stall due to physical scaling and energy efficiency limits [1, 2]. Furthermore, with

the huge increase of digital data and the emerging era of the Internet of Things (IoT), there

is the need for fast and scalable technologies for memory and computation [3]. Furthermore,

personal computers cannot cope with the amount of information inherent to complex, real world

environments or with the intricacy of making real-time decisions based on that information [4].

Such gap is intrinsic to the underlying (von Neumann) architecture in which instructions and data

flow over a limited capacity bus. It becomes increasingly less efficient when large amounts of data

have to be moved around and processed quickly [5, 6]. There is thus an enormous opportunity

to completely rethink the foundations of the present information age and open new paths into

alternative forms of computation. This new era of creativity is further encouraged by the near end

of Moore’s law [7, 8, 9].

Memory. The search for novel memory approaches has gained new momentum due to grow-

ing demands for high-density digital information storage and the approach to integration limit in

Flash memories. Flash memories represent the state-of-the-art nonvolatile memory technology,

because of their high density and low fabrication costs. However, they suffer from low endurance,

low write speed, high writing voltages and complicated data management. Furthermore, the con-

tinuing increase in Flash density (scaling) is already running into physical limits [10, 11]. Dynamic

Random Access Memories (DRAMs) also have high density and low fabrication costs. However,

they use a capacitor as the storage element and are consequently volatile. Moreover, they are

also reaching the physical limits of further downscaling of the capacitor footprint [12]. Resistive

Random Access Memory (RRAM) based operation relies on the ability of the device to reversely

change its resistance from a high value state to a low value upon an electrical stimulation [13, 14].

Due to its high speed, high density (nanoscale two-terminal structure) and low fabrication cost

[3], it offers the potential for a cheap, simple memory capable of replacing current market-leading

memory technologies [15, 16, 12].

Neuromorphic computation. Computational architectures departing from the present von

Neumann paradigm, which relies on a deterministic approach in which learning and adaptation to
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new environments cannot be captured, are being intensively sought after. In particular, biological

systems relying on an indeterministic approach with massive parallelism of simple processing

units (neurons), have memory and adaptation as the essential building blocks for learning and

decision-making [1, 2, 17]. In the brain, virtually every element (neuron) of the neural network

simultaneously stores information (as synaptic strength) and uses it to compute in a massively

parallel architecture [5, 6]. This results in huge power efficiency, adaptation, and resilience to unit

failure [1, 2]. In fact, when compared to artificial systems, biological networks are six to nine orders

of magnitude more effective in real world scenarios. As an example, just to simulate a part of the

complexity of a cat’s brain (at an 83 times slower pace) IBM’s Blue Gene supercomputer requires

clusters of 147 456 microprocessors and 144 TB of memory, which translates into a staggering

power consumption of 1.4 MW. On the contrary, even the human brain, with all its complexity,

dissipates a mere 10 W [2, 18]. Furthermore, the brain is adaptive and defect tolerant, constantly

changing connectivities, and still being able to perform at the same time [19].

Artificial systems in which processing and memory functions are located in the same level have

for long been a scientific dream, since they promise large improvements in performance along

with the opportunity to design and build brain-like systems. The advent of nanotechnology and

the recent experimental realization of memristor nanodevices is paving the way for the fabrication

of new memories and brain-inspired artificial intelligence systems within our epoch. Memristors

are two terminal electronic structures whose nonvolatile dynamic resistance can be controlled by

an external current or voltage, and whose function strongly resembles the dynamical properties

of biological synapses. The stored resistance without external power and the reduced dimension

favor their implementation in low-power intelligent machines [20].

1.1 Memristors and Memristive Systems

In 1971, L. Chua theoretically introduced the concept of the memristor (abbreviation of memory-

resistor) as the fourth basic circuit element alongside the resistor, the capacitor, and the inductor

[22]. Chua postulated that there are four fundamental circuit variables (voltage V , current I, charge

q and magnetic flux ’) which can be combined two at a time in six possible ways, corresponding

to Eqs. (1.1)-(1.6) [see Fig. 1.1(a)]:

Def inition of current : dq = Idt (1.1)

Faraday ′s law : d’ = V dt (1.2)

Resistor : dV = RdI (1.3)
Capacitor : dq = CdV (1.4)
Inductor : d’ = LdI (1.5)

Memristor : d’ = M(q)dq ; (1.6)

where R, C, L, M and t are resistance, capacitance, inductance, memristance and time respec-

tively. In short, the resistor relates voltage and current, and the memristor relates flux and charge

[Eq. (1.6)]. In 1976, Kang and Chua [23] further extended the previous analysis to memristive

systems and showed that diverse systems such as thermistors, Josephson junctions, neon bulbs

and even the ionic transport in neurons are special cases of memristive systems [23, 24, 25].
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Figure 1.1 – (a) The four fundamental circuit variables (q, ’, I, V ) can be combined in six possible ways: two of
them correspond to fundamental relationships, and four correspond to the canonical two-terminal passive circuit
elements (Adapted from Ref. [21]). (b) Equivalent circuit (left; RON and ROFF are the minimum and the maximum
memristance, respectively) and symbol of the memristor (right; polarity indicated by a black bar – the memristance
is decreased/increased when current flows from the left/right to the right/left). (c) I–V hysteresis collapses with a
ten fold increase in sweep frequency. The inset shows the representation in the charge–flux space (Reprinted by

permission from Springer Nature [21], Copyright © 2008).

Although Chua’s formulation and the observation of pinched hysteresis loops in the I–V character-

istics of different solid state materials took place around the same time [26, 27, 28, 29, 30, 31, 32],

the memristor was only experimental identified in 2008, with the pioneering work of Strukov et al.

[21]. They showed that a sinusoidal voltage produces a pinched-hysteretic I–V characteristic in

Pt/TiO2/Pt nanostructures due to the motion of charged dopants. Since its experimental realiza-

tion, the memristor has become one of the most promising candidates for the post-complementary

metal oxide semiconductor (CMOS) era.

1.1.1 Theory

An ideal current-controlled memristor [equivalent circuit and symbol shown in Fig. 1.1(b)] is defined

as:

V (t) = M (q (t)) I (t) = M

»Z t

−∞
dt ′I

`
t ′
´–
I (t) ; (1.7)

where the proportionality function, M (q (t)), has the dimensions of a resistance (memristance)

and q (t) is the charge that flows in the system. If M (q (t)) is independent of time, Eq. (1.7)

reduces to the Ohmic form. An ideal voltage-controlled memristor is defined by the relation [25]:

V (t) = M

»Z t

−∞
dt ′V

`
t ′
´–
I (t) : (1.8)

The memristor belongs to a more complex class of dynamical systems [25, 33], where the state

variable that determines the state of the system at a given time could be other than the charge in

which case a memristive system is defined instead. So, let one define x as the set of n possible
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state variables (related with a particular device) with the time evolution:

dx

dt
= f (x; I; t) ; (1.9)

where f (x; I; t) is a continuous n-dimensional vector function. As the state variable of a memristor

is not a bias but an integration of the total current, it can also work as a multi-state memory [34].

The functions defining a current-controlled and a voltage-controlled memristive system are then:

V (t) = M (x; I; t) I (t) ; (1.10) V (t) = M (x; V; t) I (t) : (1.11)

Hysteretic Loop. The response of a memristive system to a periodic current (or voltage)

input is a "pinched hysteretic loop” [Fig. 1.1(c)], which is one of the most important properties

of these systems, as hysteresis is a typical signature of memory devices. With respect to the

periodic stimulus, for very high frequencies (10w0) a memristive system operates as a typically

linear resistor since the state variable is not able to follow the stimulus in each oscillation, while

for low frequencies (w0) it operates as a non-linear resistor, in which the state variable is given

enough time to adjust. A variety of I–V characteristics depending on the excitation frequency [24]

and voltage time history [33] are then possible.

1.2 Resistive Switching

Resistive switching (RS) stands for the reversible change in resistance in two-terminal devices,

upon an electrical stimulus and in a nonvolatile fashion. Nonvolatile means that the resistance

remains constant for a (long) retention time after the stimulus has been removed [35].

1.2.1 Metal-Insulator-Metal Memristors

The simplest nanostructure displaying resistive switching and memristive properties is the metal-

insulator-metal (MIM) junction. A MIM device is simply an insulator material sandwiched between

electrochemically active and/or inert metallic electrodes in a capacitor structure [36, 13, 37, 38].

The recent interest in these structures aims at a new class of memories called resistive random

access memories (RRAMs), since their switching is fast, non-volatile and can result in a large

resistance variation. Furthermore, MIM structures are the only where both types (bipolar and

unipolar; see below) of RS can be observed, depending on the metal/insulator interfacial properties

[36].
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Figure 1.2 – The two most common operation modes of ReRAMs. I–V sweep operation (left) and pulse modes (right)
for both (a) unipolar and (b) bipolar resistive switching (Reprinted by permission of John Wiley & Sons, Inc. [35]

Copyright © 2016).

1.2.2 Operation

The most appealing property of memristive systems (for memory applications) is their RS between

a low resistance state (LRS; RON) and a high resistance state (HRS; ROFF), upon the application of

an external voltage or current. The HRS to LRS switching is called Set (or write), while the reverse

is called Reset (or erase) [39]. When the switching direction does not depend on the polarity of the

applied bias, but just on its amplitude, the switching is called unipolar. Thus, Set and Reset can

occur for the same bias polarity [Fig. 1.2(a)]. On the other hand, when it depends on the polarity,

it is called bipolar switching and Reset can only occur at the reverse polarity of the Set process

[Fig. 1.2(b)] [36]. Figure 1.2 schematically shows the two operation modes: current–voltage (I–V)

diagrams under periodic voltage sweeps (left) and voltage pulse excitation with current response

(right). Voltage or current sweeps are frequently used for the identification of switching behavior

and to determine the approximate threshold voltages for the pulse operation, whereas pulses are

useful for the quantitative investigation of switching kinetics. The information can be retrieved by

measuring the electrical current when a small read voltage is applied [35, 40].

Unipolar switching allows simple circuits and unipolar diodes as selectors, if operating with only

positive polarity. However, it usually has lower uniformity and endurance. In bipolar switching, the

higher endurance can be attributed to the re-utilization of the migrating defects during Set and
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Reset [3]. The coexistence of unipolar and bipolar RS in the same device has also been reported

due to a defective microstructure or the generation of a highly disordered network in the conductive

filament region, which is likely to act as a migration channel, during forming (see Section 1.2.3

below for more details). Both unipolar and bipolar operation modes were obtained after forming in

TiN/HfO2/Pt, where a high-quality amorphous HfO2 layer was prepared by ALD [41]. Coexisting of

the two modes were also evidenced in TiO2 cells [42] as well as in perovskite systems [43].

Forming. For some devices an (electro)forming step is a pre-requisite for RS, before the first

Set. Electroforming, or just forming, denotes an electrochemical process during which metal ions or

particles are injected into and cause semi-permanent structural modifications inside the otherwise

insulating medium [18]. In general, it requires a higher voltage and enables the subsequent Sets at

lower voltages [10]. Under electrical stress, defects are generated in the oxide bulk and at the inter-

faces, being forming triggered when a critical density of defects is reached. From physical analysis,

it is observed that the average density of defects required for dielectric breakdown decreases with

the oxide thickness, while the statistical variations increase. The defect generation rate increases

with the voltage and also depends on the temperature [44]. The most common forming method is

applying a voltage/current sweep, resulting in a drastic change in the measured current (resistance

decrease). During this process, the current must be limited by a current compliance, since the as-

sociated high current overshoot can cause significant local self-heating (reaching several hundred
◦C) and hard dielectric breakdown effects [40, 45]. In the case of filamentary RS (see Section

1.2.3.1 below), before the forming the conduction is uniformly distributed in area either by tunnel-

ing injection or by defect (trap)-assisted mechanisms such as Poole–Frenkel emission or inelastic

trap-assisted tunneling, while after forming the electrical conduction is localized in a nanoscale

filament, whose size has been estimated to be from 1 to 10 nm [44]. As soon as one conductive

filament is formed, the resistance of the structure is dramatically reduced, which results in the drop

of both the current and electrical field across the oxide. This typically prevents the formation of

further filaments, self-limiting the process ("winner-take-all procedure") [39, 13, 46].

Note that forming differs from hard dielectric breakdown, where there is a permanent resistance

degradation and the high resistance cannot be recovered. Dielectric breakdown is an undesired

event in CMOS circuits, since it might cause circuit failure. However, in RRAM structures it is

intrinsic to the device operation [44].

1.2.3 Resistive Switching Mechanisms

Besides polarity, other criteria have been established to distinguish the different types of resistive

switching observed, including: i) location; ii) filamentary or surface area; iii) mobile cations or

anions; iv) with or without a tunnel gap; v) using organic or inorganic films for ion transport [47].

Regarding the location, RS can occur at/near the electrode interfaces, at the center or the entire

path between the electrodes [35]. Regarding RS type, it can be filamentary, in which switching

occurs due to the formation and dissolution of a conducting filament, or area-proportional, where it
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Figure 1.3 – Geometrical location (vertical and lateral) of the switching in a MIM structure (Reprinted by permission of
John Wiley & Sons, Inc. [35] Copyright © 2016).

takes part over the entire cross section. The latter is called interface-type, since it typically occurs

close to one of the electrodes. Figure 1.3 schematically illustrates these scenarios. In reality,

many intermediate cases have been reported, such as single and multiple filament RS or entire

and partial area RS [48, 49, 50, 51, 52, 53]. The most frequent resistive switching reported in the

literature is filamentary switching and will therefore be detailed here [35].

1.2.3.1 Filamentary Switching

A conducting filament (CF) that acts as a circuit switch between two electrodes is believed to

be responsible for most resistive switching phenomena. Such CF formation occurs during the

electroforming and Set processes and can be described by nucleation and growth process. Its initial

growth is an electric-field-driven phenomenon, that imparts the directionality of the subsequent

growth [46]. Most of the filamentary RS phenomena are related with ionic motion [13, 54], involving

the transport and electrochemical reactions of cations and/or anions [39, 55]. Ionic motion may

occur because of a concentration gradient (diffusion), an electrical potential gradient (drift) or a

temperature gradient (thermodiffusion) [56]. Both single and multiple CF may occur, depending

on the thickness and microstructure of the insulator and the forming conditions [57]. Usually the

resistance of the HRS is lower than the resistance before forming. This can be understood by an

incomplete CF dissolution during Reset [Fig. 1.4(a)] [3], with the Set process then recovering the

electrical conductivity of the locally ruptured part of the CF [39, 46].

The filamentary RS model is widely accepted and to our knowledge no reasonable alternative has

been suggested up to date. The arguments supporting it are the drastic change in the resistance,

the possibility to vary the ON resistance (filament size) using the applied current and the fact

that the ON resistance does not scale with the electrode diameter [12]. Furthermore, several

techniques have been used to reveal this, such as conductive atomic force microscopy (CAFM)

[59], thermal (infrared) imaging [60] and in situ transmission electron microscopy (TEM) during

switching [61, 62, 63, 64]. Waser et al. confirmed the confinement of the current path and showed

where the CF touches the anode, while Yang et al. reported in-situ and ex-situ TEM imaging of

nanoscale conducting filaments in SiO2-based resistive memories [65].

The mechanisms involved in the filamentary RS can be subdivided into Electrochemical Met-
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Figure 1.4 – Memory cell structure schematics and I–V characteristics for (a) ECM, (b) VCM and (c) TCM (Reprinted
by permission of John Wiley & Sons, Inc. [58] Copyright © 2016).

allization (ECM), Valence Change (VCM) and Thermochemical Mechanisms (TCM). TCMs and

VCMs can be placed into one group in which the insulating materials play the dominant role, while

in ECMs the metal electrodes are crucial [11]. Figure 1.4 compares the structure and I–V behavior

for the three types of mechanisms.

Electrochemical Metallization Mechanism. The electrochemical metallization mechanis-

m/memory (ECM or conductive-bridge) stands for devices based on cation motion [39, 47, 66].

It relies on mobile cations created by the oxidation of an electrochemically active electrode (Ag,

Cu or Ni), their drift in the insulating layer due to an applied electric field and reduction at the

(inert) counter electrode (Pt, Ir, W or Au), forming a highly conductive filament in the ON state.

When reversing the electric field polarity, an electrochemical dissolution of the filament takes place,

resetting the system into the OFF state [10, 11].

In the initial high resistance state, no electrodeposit of the metal M from the active electrode

is present on the inert electrode [Fig. 1.5(a)]. The Set occurs if a sufficiently high positive bias

voltage is applied to the active electrode, involving the following steps:

(i) anodic dissolution of the active metal (M ) [Fig. 1.5(b)]:

M −→ Mz+ + ze−; (1.12)

where Mz+ represents the metal cations in the insulator;

(ii) migration (drift) of the Mz+ cations across the insulator under the applied electrical field;

(iii) reduction of M (nucleation and growth of metallic electrodeposits) on the surface of the inert

electrode [Fig. 1.5(c)]:

Mz+ + ze− −→ M: (1.13)

The reduction process is electric field-enhanced and leads to the formation of a metallic filament
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Figure 1.5 – Sketch of the steps of the (a)–(d) Set and (e) Reset operations of ECM (© IOP Publishing. Reproduced
with permission. All rights reserved [12]).

growing preferentially in the direction of the active electrode. The ON state [Fig. 1.5(d)] is kept

unless a sufficient voltage of opposite polarity is applied and an electrochemical dissolution of

the CF takes place [Fig. 1.5(e)], resetting the system into the OFF state. During the initial Reset

stage there is both an electronic current through the CF and an electrochemical current (Faradaic

current) which dissolves the metallic filament [13, 39, 55, 11]. Figure 1.5 sketches the principle

of operation of an ECM memory cell and its typical I–V switching cycle under a triangular voltage

signal [12]. The theoretical description of the cation mobility inside the dielectric can be found in

detail in Ref. [11].

An extraordinary variety of insulating or semiconducting materials can be utilized in ECM, such

as chalcogenides, e.g. GeSx , GeSex , GeTe, GeSbTe, CuS, and oxides, e.g. SiO2, WO3, Al2O3,

TiO2. Regarding the active electrode material that acts as the source of ions to form the filament,

Ag and Cu are the most widely used. For counter electrodes Pt, W, TiN, Au, TiW and Ru for

example have been used [12, 67].

The distinguishing feature of ECM devices is that the active electrode is a metal that can be

easily electrochemically dissolved into, and conducted through the insulator, whereas the counter

electrode cannot [12]. ECM cells can be tuned to switch at currents below 1 nA (albeit with low

retention), by reducing the device size or optimizing the switching materials [68].

Valence Change Mechanism. The valence change mechanism/memory (VCM or OxRAM)

stands for devices based on anion motion (Fig. 1.6(a)) [47, 66]. It results from a valence change

in cations, triggered by the drift of anions, such as oxygen (or their vacancies), due to the internal

electric field, towards the anode (or cathode), as shown in Fig. 1.6(b). A subsequent change of
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Figure 1.6 – Sketch of the steps of the (a)–(b) Set and (c) Reset operations of VCM (Reprinted by permission of John
Wiley & Sons, Inc. [69] Copyright © 2015).

the stoichiometry leads to a redox reaction expressed by a valence change of the cation sublattice

and a change in the electronic conductivity [Fig. 1.6(d)] [39, 70, 11]. During Reset, oxygen ions

migrate back to the bulk either to recombine with the oxygen vacancies or to oxidize the metal

precipitates [Fig. 1.6(c)] [36, 46].

VCM cells consist of an insulating layer (metal oxide) stacked between a top and a bottom

electrode [3] and differ from the ECM structure mainly by the type of material used for active

electrode (Ta, Hf and Ti) and insulators (Ta2O5, HfO2, TiO2, SrTiO3, SrRuO3, ZrO2, etc). Different

combinations have been reported in the literature. In particular, HfOx, AlOx, NiOx, TiOx, MgOx and

TaOx have drawn the most attention [36, 39, 71, 72, 16]. The counter electrode material is Pt or

other high work function, chemically inert material that ensures a sufficiently high Schottky barrier

[47]. VCM materials are most likely to be quite insulating in their pristine state, with the exception

to already leaky materials (semiconducting) [70].

Initially, it has been suggested that only oxygen ions (vacancies) are mobile. However, it has been

recently found that also cations in many metal oxides have comparable mobility and participate in

the formation of filaments [47, 73, 74, 75].

Thermochemical Mechanism. The thermochemical mechanism/memory (TCM) stands for

devices based on both cation and anion motion [47, 66], since the switching is dominated by

thermally controlled diffusion and redox reactions. On these devices a change of the stoichiometry

occurs due to a voltage induced increase of temperature [11]. As the change in voltage polarity is

not required, TCM cells are inherently unipolar and involve currents in the mA range [35].
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1.3 Resistive Random Access Memory

In resistive random access memory (RRAM) the resistance serves as a state variable, between

only two external terminals, instead of the three terminals in conventional CMOS-based DRAM or

Flash [3]. It is operated by changing the device resistance using an external electrical bias [76],

and information is stored on different resistance states, with the OFF state as Boolean 0 and the

ON state as Boolean 1 [47].

RRAM is a general name that includes ReRAM (redox-based RRAM), PCM (phase change

memories), MRAM (magnetoresistance RAM), among others. From the above mechanisms,

the resistive switching in MIM structures belongs to the ReRAM class. ReRAMs are fast (sub-

nano seconds regime) nanoionc systems, since they rely on redox reactions and ionic motion

[47], can work at very low temperatures (e.g. 4 K) [77], are resistant to high energy particles

(cosmic rays, neutrons etc.) and electromagnetic noise, making them ideal for space and medical

applications [78]. Other advantages of ReRAMs include their high scalability (atomic level), low

operation voltages (from some hundred mV up to few volts), and thus low power consumption, high

OFF/ON resistance ratio, multi-level resistance states (analog memory), over 10 years retention

time and over 1012 cycles endurance. ReRAMS can also be used as selector devices or as building

units of beyond von Neumann architectures (neuromorphic computing) [34, 79, 80, 81], and are

compatible with 3D stacking, nanobatteries, neuroelectronics and Boolean logic operations [76].

Moreover, they can be fabricated in the back end of line at relatively low temperatures, allowing

easy integration with existing CMOS devices [3]. For these reasons, ReRAM are considered the

most favorable alternative to conventional memories in the future nanoelectronics [47]. In addition,

they can also fill the gap between DRAM (high performance, low density) and Flash (high density,

slow operation) [3]. The ReRAM endurance required depends on the technological application:

1015 cycles for DRAM replacement and as few as 103 cycles for Flash memory replacement [12].

Table 1.1 presents the status of the technology for different memory storage devices [82].

1.4 Device structure and material choices

1.4.1 Crossbar

Passive crossbar memory arrays are simple matrices consisting only of bit and word connecting

lines and a resistive switch at each junction [MIM structure; Fig. 1.7(a)] [40, 83]. Therefore,

ReRAMs can be densely built in a crossbar array, allowing an extremely small bit area of only

4F2, where F is the minimum feature size allowed by the technology (lithography) [3]. Higher

memory density can be achieved in crossbar architectures than in typical CMOS architectures

and even more is possible with 3D stacking [39]. Crossbar ReRAMs also have the advantage

of device individually program operation, while Flash memories require block erasing [3], and

vector matrix multiplication can be directly performed using Ohm’s and Kirchhoff’s laws [84]. In the

crossbar architecture each junction should be associated with a nonlinear selector, both to select
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Table 1.1 – Characteristics of different storage devices, including competing ReRAM and PCM technologies, and more
standard Spin-Transfer Torque (STT), DRAM, Flash and Hard Disk (HD) (Adapted from Ref. [82]).

ReRAM PCM STT-RAM DRAM Flash HD

Chip area per bit (F2) 4 10 14–64 6–8 4–8 n/a

Energy per bit (pJ) 0.1–3 101−2 0.1–1 1 103 104

Read time (ns) <10 20–70 10–30 10–50 104−5 104

Write time (ns) 20-30 101−2 101−2 10 105 106

Retention (years) 10 10 10−1 10−5 10 10

Cycles endurance 1012 107−8 1015 1017 105−8 1015

3D capability yes no no no yes n/a

the addressed memory cell (high current) and to electrically isolate the nonaddressed cells (limited

current), in order to avoid programming disturbs [Fig. 1.7(b)] [57].

As an example employing memristive crossbar structures, Hewlett-Packard Labs proposed a

revolutionary supercomputer, The Machine, an all-in-one portable device (server, workstation, PC

and phone) that uses photonic memories, using light to connect hundreds of memristive racks

in a low-latency 3D structure [85]. Moreover, in a crossbar structure, the two-terminal memristor

formed at each crosspoint can be seen as a synapse connecting pre- and post-synaptic neurons

(see Section 1.7) [18, 40].

1.4.2 Materials

Several materials have been used for the fabrication of ReRAMs, both as storage medium and

electrode materials. Figure 1.8 shows some examples of the oxides and metals used in the case

of binary oxides.

Interface Dynamics. Interfaces provide rich interaction dynamics, including neutral particle

diffusion, chemical dissolution and surface formation of barrier films. All these lead to chemical

asymmetry of electrode/storage medium interfaces and chemical potential gradients within the

storage medium films [66].

Storage Medium. The choice of storage medium determines the cell stability, RS repro-

ducibility and device performance. At the nanoscale several different effects, such as overlapping

space charge layers, small effective diffusion length, high electric fields and extremely high cur-

rent densities combine [87]. Therefore, even nanoscale insulating (high-k) oxides can conduct

ions (and electrons) and their properties are better described as mixed ionic-electronic conductors

rather than insulators [88]. Thus, ReRAMs can use oxide thin films from macroscopic insulators

to conduct ions [47]. For instance, macroscopic room temperature insulators, also used as high-k
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Figure 1.7 – Schematics of (a) a RRAM crossbar array (the inset shows each cross point of bit lines and word lines,
composed of a RRAM and a selector device) and (b) of the leakage paths in the array (the current may flow into

selected, green, and unselected, red, devices) (Reprinted by permission © 2013 IEEE [86]).

dielectrics (Ta2O5, HfO2 ,Al2O3, etc.), demonstrate a sufficient ability to transport either oxygen

ions or cations to ensure resistive switching in times scales bellow 100 ns [66, 89]. A vast number

of combinations of materials exhibit RS, due to nanoscale ionic transport and redox reactions [10].

Various oxide, chalcogenide and halide materials are used to transport ions in ECM [3, 90, 91],

VCM [88] and TCM [87] cells. Oxides are typically the choice for both ECM and VCM, since they

are chemically stable, allow deviations in stoichiometry without decomposition, can be doped to

improve properties and many of them are compatible with CMOS processes [47].

Electrode Material. The choice of the active electrode has to take into account the reversibil-

ity of the redox reaction, the interface contact (Schottky or Ohmic) and interactions between the

storage medium and the inert electrode. Inert metals are typically preferred as electrodes to avoid

any parasitic redox reactions. Nevertheless, the use of different inert electrodes is not thoroughly

studied, with Pt being the electrode of choice so far [66, 68].

1.5 Performance

1.5.1 Defects

The small size of ReRAMs (down to <10 nm) combined with applied electric fields in the range of E

∼ 108 Vm−1 and current densities of j ∼ 109 Acm−2 imply that imperfections of the interfaces will

strongly affect the local charge and mass fluxes, leading to statistical deviation in their performance.

The main types of imperfections include: 1) surface roughness higher than approximately 10% of

the film thickness; 2) formation of hillocks; 3) intermixing of electrode and storage medium during

the deposition procedures (e.g. high-energy particles penetrating into the underlying film during

sputtering deposition); 4) chemical dissolution of the electrode or formation of barrier layers due

to the interaction with the storage medium or the environment (e.g. oxygen or moisture) [66].
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Figure 1.8 – Summary of the materials used in ReRAMs. Metals of the corresponding oxides are in yellow and metals
used for the electrodes are in blue (Reprinted by permission © 2011 IEEE [36]).

1.5.2 Stability

The most important characteristics of ReRAM are the ON and OFF states stability (retention) and

the maximum number of Set/Reset cycles attainable (endurance). Both are inherently related to

the chemical stability and the mechanical degradation of the system. The chemical stability is

influenced by the nature of the active metal and the storage medium, and by environmental factors

such as temperature, ultraviolet/visible light exposure and moisture. The mechanical degradation

is determined by the ionic dynamics, high local electrical fields, high current densities, high power

dissipation (several TWcm−3) and high temperature (above 1000 ◦C) attained during the repeated

formation/dissolution of new phases, including volume expansion and void formation [3, 66].

There is also a trade-off between energy consumption and retention. In general, higher resistive

filaments (low current operation) tend to show a reduced retention. Moreover, endurance is

shorter for unipolar than for bipolar devices, due to the higher temperature required for Reset

(electromigration) and the gradual loss of species (metalic ions, oxygen vacancies, etc.), since the

same polarity voltage is always applied [57]. Endurance is one of the highest priorities especially for

memory applications, where the memory might be frequently accessed by the central processing

unit (CPU) for in-memory computing purposes [3, 92].

1.5.3 Variability

As the structure of the device is being constantly modified (CF systematic formation/dissolution),

ReRAMs are strongly affected by switching variability. The variability in all read and switching

parameters comes from the stochastic nature of the CF at the atomic scale. The wide distributions

of the LRS and HRS resistances may shrink the memory window below critical values [3, 35]. In

general, the voltage distribution is wider for unipolar than for bipolar RS, which may be attributed to

the difficulty in controlling the Reset mechanism, since it is a self-accelerated process. Variability
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also increases in the case of multiple-CF [93].

Moisture. Another source of variability was shown to be moisture, absorbed from the local

environment or during fabrication [47], since many deposition processes (CVD or ALD) cannot

avoid its presence. The water molecules act as a source for a counter electrode reaction [73, 94],

provide additional charges in the oxide matrix (oxygen protons), enhance the ion diffusion and

act as corrosive agents. However, without moisture no forming (and subsequent RS) appears

to be possible in ReRAMs. Water can easily undergo electrode reactions with the formation of

oxygen and hydrogen (and/or intermediate ionic products), where in parallel ionic charge carriers

are generated. Thus, H2O molecules can contribute to the increase of the total conductivity

(decrease of the OFF state resistance), by providing mobile species (both oxygen and hydrogen

ions). Moisture influences not only Set/Reset processes, but also the ON and OFF states [47].

1.5.4 Scaling

Memristive effects are appreciable only at the nanoscale and in order for a proper scaling, the

RS mechanisms need to be understood in detail [3, 24, 39, 46]. Filamentary switching cells are

considered to be highly scalable devices, since the ON-state current is carried by a very narrow

filament or multiple filaments with non-uniform distribution over the area. In this case, the resistance

of the LRS is independent on the area, whereas the HRS increases with the inverse of the area

(Ohm’s law). Thus, the HRS/LRS (memory window) ratio benefits from device scaling [13, 12, 36].

The ultimate size of the CF is of just two atomic defects (oxygen vacancies or M atoms) connect-

ing the top and bottom electrodes. Consequently, the minimum thickness of the switching layer

is of two atomic units (2‹), while the width of the active area is of around 10‹ to allow for lateral

displacement of the two defects from the CF. Thus, the minimum device size that is envisaged for

ReRAMS is of around 10‹ = 2.6 nm [3]. This extreme scaling was already confirmed by the fabri-

cation of devices with an electrode size in the range of 2–3 nm [95]. State-of-the-art ReRAM cells

are scalable laterally below 10 nm per side [96] and vertically down to some tens of nanometers.

Pi et al. fabricated a 2×2 nm2 memristor crossbar array using Pt nanofins as electrodes [97]. At

these dimensions, the physical and chemical properties will differ from the macroscopic systems

and the opportunity of using unconventional systems is enhanced [66].

There are potential reliability concerns regarding such small device sizes, since data retention,

noise and variability have a dependence on the CF size. The limitation of the CF size is imposed

by the mandatory Set/Reset current reduction (to avoid excessive voltage drop). This trade-off

between reliability and low-current operation can be partially solved by adopting ReRAM devices

with relatively large resistance windows [3]. The issue regarding the high electrode resistance

limiting the performance of devices at the nanoscale, also needs to be addressed [98, 99].
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1.6 Neuromorphic Properties of Memristors

Two fundamental units of the human brain, the neuron and the synapse, play essential roles in

learning and memory formation. Neurons are electrically excitable cells and are able to respond

to stimuli, to conduct impulses, and to communicate with each other. Synapses are specialized

junctions between neurons that allow the rapid transmission of electrical and chemical signals so

that neurons can communicate with each other [100]. Thus, they are responsible for providing

a neuron with a converted input from another neuron that is proportional to the importance of

that signal. When an action potential, generated by a neuron, reaches a pre-synaptic terminal, a

cascade of events leads to the release of neurotransmitters that give rise to a flow of ionic currents

into or out of the post-synaptic neuron.

Learning and memory in human brains are the capabilities to gain new information and store it

in a recallable way. It is now generally accepted that information is stored in the synaptic strength

(weight), with learning being accomplished by modifying (either increasing or decreasing) this

strength [101]. Such synaptic plasticity makes possible to store information and to react to inputs

based on past knowledge [102]. As shown in Fig. 1.9, a similarity can be seen between a

biological synapse and a metal– insulator–metal structure, if one thinks of adjustable synaptic

strength between two neuron terminals as adjustable resistance between two electrodes.

Different examples of biological learning rules where mimicked using memristors, such as heb-

bian learning, spike timing dependent plasticity and short and long term memory, as will be dis-

cussed below.

1.6.1 Spike Timing Dependent Plasticity

According to the hebbian learning, objects once experienced together tend to become associated,

so that when any one of them is thought of, the others are likely to be thought of also, in the same

order of coexistence as before [101]. Spike timing dependent plasticity (STDP) is an experimentally

verified biological phenomenon in which the precise timing of spikes affects the sign and magnitude

of changes in synaptic strength. STDP can be divided into long-term potentiation (LTP) and long-

term depression (LTD). In the former, synapses increase their efficiency as a pre-neuron is

activated momentarily before a post-neuron, while in the latter synapses decrease their efficiency

as a post-neuron is activated momentarily before a pre-neuron [104].

To relate memristance to biological STDP, one requires a voltage/flux controlled bipolar memristor

with voltage threshold, below which no variation of the resistance is observed and an exponential

behavior beyond threshold, to be able to continuously increment and decrement the conductance

[105]. Jo et al. were the first to demonstrate STDP in nanoscale Si-based memristors in a crossbar

structure [Fig. 1.10(a)]. The conductance continuously increases (decreases) during the positive

(negative) voltage sweeps, and the I–V slope of each subsequent sweep picks up where the last

sweep left off [Fig. 1.10(b)] [18]. It was also found that the strength of STDP learning in memristors
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Figure 1.9 – Schematic illustration of the natural (biological) and ReRAM-based artificial synapses (Reprinted with
permission from [18]. Copyright 2010 American Chemical Society.).

can be modulated by changing the amplitudes (or shapes) of the electric spikes, which means

that the conductivity can be tuned depending on the precise timing between the post- and pre-

synaptic spikes and the learning window by changing the shape of the pulses [105, 106]. Choi et

al. fabricated Pt/Cu2O/W MIM structures and experimentally demonstrated the successful storing

of synaptic weight variations. They also showed the reliability of plasticity by varying the amplitude

and pulse-width of the input voltage signal, matching their results with biological plasticity [102].

Pavlov’s experiment was also implemented using memristive synapses in a two-input, one-output

system [Fig. 1.10(c)] [37]. The output is initially only triggered by one input but after a “learning

step”, in which both inputs fire, the output can be triggered by either input. Furthermore, Zarudnyi

et al. successfully showed STDP in unipolar SiOx resistive switching devices through appropriate

stimulation pulse programming [106].

1.6.2 Short and Long Term Memory

Memory is believed to occur in the human brain as a result of two types of synaptic plasticity:

short-term potentiation (STP) and long-term potentiation (LTP). Here, synaptic plasticity refers

to changes that occur in the organization of the brain as a result of experience. STP is achieved

through the temporal enhancement of a synaptic connection, which then quickly decays to its initial

state. However, repeated stimulation can cause a permanent change in the connection to reach

LTP and shorter repetition intervals enable efficient LTP formation from fewer stimuli [34, 101, 107].

Depending on the input voltage pulses, different memorization behaviors were observed in

memristive devices: short term memory (STM) for low and long term memory (LTM) for high

repetition rates [38] (STP and LTP are terms used in neuroscience, whereas STM and LTM

are terms used to describe psychological phenomena [107]). STM can only be sustained by

constantly rehearsing the same stimulus, while LTM, despite the presence of natural forgetting,

can be maintained for a longer period of time without follow-up stimuli. The transition from STM to

LTM also happens through repetitions (rehearsal) but involves a much more intricate process with
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Figure 1.10 – (a) Memristor synaptic weight as a function of the relative timing of the neuron spikes. The inset shows
the SEM image of the crossbar array. (b) Measured (blue) and calculated (orange) I–V characteristics (Reprinted
with permission from [18]. Copyright 2010 American Chemical Society). (c) Pavlov’s dog implementation with two
memristive synapses (S1 and S2 ), two input (N1 and N2 ), and one output (N3 ) neurons. In the initial probing phase,
output only fires when input 1 fires. In the learning phase, S2 is adjusted such that, in the probing phase, the output

fires when either input 1 or input 2 fires (Reprinted from [103] © 2010, with permission from Elsevier).

structural changes (consolidation) [17, 107]. Three memory stages (unmemorized, STM and LTM)

were observed in a Ni-rich nickel oxide device by Liu et al. and memorization from STM to LTM can

also be obtained by repeated forward and backward voltage sweepings [1]. Tsuruoka et al. found

LTM in an Ag/Ta2O5/Pt cell under voltage bias for a high repetition rate of input pulses, which is

analogous to the behavior of biological synapses [38] and Wan et al. mimicked STM and LTM in

nanogranular phosphorus-doped SiO2 films by tuning the pulse gate voltage amplitude [108].

1.7 Artificial Neural Networks

As seen in the previous section, several attempts are being made to mimic the biological learning

rules in artificial synapses. The next natural step is to construct artificial neural networks (ANNs)

capable of performing complex functions. A neural network is based on the transmission of events

from one source node (neuron) to multiple nodes by edges [synapses; see examples in Fig. 1.11].

In most ANN models, synapses are dynamical two-terminal entities that connect a pre- (source)

to a post-synaptic neuron (sink). The source emits a signal that is modified by a synaptic transfer
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function and delivered to the sink. To facilitate the communication between neurons, the action

potential is propagated as a digital pulse [109]. The output of a neural network node is a function

of the sum of all input signals [37]. The sink has a state variable that partially depends upon

the history of incoming signals received from synapses that drive it. This variable, along with the

source signal, determine the evolution of the synaptic state variable.

A radical approach in the construction of artificial neural networks is to use very large scale

integration (VLSI) to implement directly in silicon the required computational model of a neural

system. IBM researchers built a complex chip using 5.4 billion transistors to simulate 1 million

neurons and 256 million synapses [110]. In neuromorphic implementations, the key challenge is

to design circuits with large time constants while keeping the neuronal structure simple, occupying

small silicon area and using only one electronic device as an artificial synapse. However, the

silicon area occupied by the synaptic circuit can vary significantly, as it depends on the choice of

layout design solutions and more conservative solutions use large transistors. Implementing the

large connectivity of the brain with transistors on a single chip is a huge challenge, since a large

number of transistors is needed [100, 104]. Therefore, the electronic conventional implementation

is not practical and a simple and scalable device able to emulate synaptic functions is required

[104]. The resistance of such device must be continuously variable, depending on the history

of the input signals, mimicking the gradual potentiation (or depression) of biological synapses

[102, 104]. The memristor displays such properties, making it the most promising candidate to be

used in scalable neural networks. Note that the memristor is a promising candidate to emulate both

neurons and synapses. Wang et al. successfully implemented a fully memristive neural network for

pattern classification using diffusive memristors as artificial neurons, connected with non-volatile

memristive synapses [81].

A possible architecture for brain-based nano-electronic computation is the crossbar array, which

is a simple matrix consisting only of orthogonal crossing lines linking the nodes (neurons; source

and sink) and an edge (synapse) at each junction, as shown in Fig. 1.11(b) [40, 83]. Every neuron

in the pre-neuron layer of the crossbar configuration is directly connected to every neuron in the

post-neuron layer [18, 40]. The information can be stored changing the value at the edges through

an applied voltage between the nodes that they link and can have the meaning of a memory

representation (data storage) or of a function representation (computation).

In the following sections we will introduce the most prominent artificial neural networks, namely

the classic perceptron and the associative memories.

1.7.1 Perceptron

In 1957, F. Rosenblatt developed a simple neural network for pattern classification problems of

linearly separable patterns: the perceptron [111]. It is the simplest kind of neural network capable

of learning and parallel processing [112]. It consists of a main neuron that accepts several inputs

from sensory neurons, connected by adjustable synaptic weights, and sums all weighted inputs [Fig.

1.12(a)]. Depending on the result this neuron will fire (or not) if the result is positive (or negative),
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Figure 1.11 – (a) Graph and (b) crossbar network architectures (Reprinted by permission from Springer Nature [79],
Copyright © 2013).

based on error-correlation learning [113, 114, 85]. The learning process for pattern classification

occupies a finite number of iterations. Rosenblatt also proved that, if the patterns (vectors) used to

train the perceptron are drawn from two linearly separable classes, then the perceptron algorithm

converges and positions the decision surface in the form of a hyperplane between the two classes

[114], a division of space into two halves by a straight line, for 2D classification, where one half is

"positive" and the other is "negative" [Fig. 1.12(b)] [85].

The learning algorithm of the perceptron is based on the knowledge that in brains the neuron

firing rate defines how "activated" it is. Therefore, based on how much the input neurons fire and

how strong the neural connections are, the main neuron will respond accordingly [85].

Mathematically, the perceptron can be modulated as an input vector x = x1; x2; :::; xm arriving

from m neurons, with m stored weights, w1, w2, ... , wm, at the main neuron that computes a sum,

a. Also, it is often convenient to have a non-zero threshold, which is achieved introducing a single

scalar bias term into the neuron, so that activation is always increased by some fixed value b. The

overall sum a, parameterized by m weights, and a bias value b is given by [85]:

a = [
mX
d=1

wdxd ] + b ; (1.14)

which for the two inputs case is the line (decision boundary) separating the data in the (x1; x2)

plane shown in Fig. 1.12(b):

w1x2 + w2x2 + b = 0 : (1.15)

The weights are easy to interpret: if one input has a zero weight, then the activation is the same

regardless of its value and it is ignored. Furthermore, positive (negative) weights are indicative of

positive (negative) examples because they cause the activation to increase (decrease).

This is the first learning algorithm in which the abilities of learning and pattern classification were

achieved by Artificial Intelligence [113] and one of those algorithms that is incredibly simple and

yet works amazingly well for some types of problems [85]. As a classifier, perceptron applications

include pattern recognition (fingerprint and iris) [112, 115, 116], classification of medical images

[112] (cancer classification for example [117]) or gene array analysis [117], surface classification,

object detection, distance measurement [116], and forecast ozone and nitrogen dioxide levels
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Figure 1.12 – (a) Single layer perceptron and (b) illustration of the hyperplane for a two-dimensional (2D) classification
problem (Copyright © 2009 by Pearson Education, Inc., [114]).

measurement in real-time [118]. The perceptron can thus be determinant in many fields such as

obstacle detection for autonomous robots or vehicles, identification, surveillance, security systems,

medical applications, industrial processes and navigation [112, 116]. As an example, imagine, for

the medical case, that you have databases from previous diagnosed patients for different disease

indicators, each with a certain influence on the diagnosis. You can then train your perceptron to

learn to identify the given disease and even make it more probable to give false positives than false

negatives or vice-versa. You can compute the results of several medical exams to help determine

if the patient is ill or not.

1.7.2 Associative Memories

The associative memory is the fundamental learning block of the human brain. We learn how to

adapt to changing environments and retain/recall events by making associations. In biological

systems, this transmission, processing and storage of information occurs in neuronal circuits. The

most famous associative memory experiment is that of Pavlov’s dog and was already replicated

using memristive synapses (see Section 1.6.1) [119].

There are many models describing information storage in neuronal populations that only consider

that a neuron can be active or inactive. Although the data storage process usually involves

spatio-temporal neuronal patterns of activity, in associative memories only spatial coding is used.

Regarding memory storage capacity, if for a population of N neurons a memory is represented

by M active neurons, there are
`N
M

´
possible patterns. This means, for example, that if 5% of a

1000 neurons population are active, there are 1085 different patterns. In the simplest case, the

connections are also considered to be binary (weak or strong). To avoid information corruption

these models divide operation into two modes: storage and retrieval. The typical model choice for

the neuronal activation criteria is the McCulloch-Pitts model [120]: the output neuron is active only
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Figure 1.13 – Schematic of an associative neural network.

if the sum of its inputs is equal or above a threshold value, T. As for the choice of the learning rule

applied to the synapses, it lies in the Hebb rule.

These memories can be subdivided into auto- and hetero-associative memories. In the first

type the information is stored in the recurrent connections of a single population, whereas in the

latter information is stored in the feed-forward connections between two populations. Regarding

architecture, input and output populations are fully connected, with each neuron in the input

population connected to all neurons in the output population (Fig. 1.13). It is thus obvious that the

best architecture to implement associative memories is the crossbar array.

Associative memories are a type of content-addressable memory and are a special type of

computer memory used in very-high-speed searching applications. As the name implies, the

search operation is performed by comparing the input data against a table of stored data, returning

the matching data. Unlike random access memory, where the information is stored in and retrieved

from explicit locations, and content-addressable memory, that only recognizes an input if it matches

a stored vector (memory address), an associative memory is able to retrieve information from

incomplete or corrupted inputs. In other words, as the information is encoded in groups of units,

the loss of individual storage units does not result in an abrupt memory failure, thus circumventing

natural degradation. This shows how this type of memory is robust to noise and incomplete

information, abilities of huge importance in the solution of problems such as pattern recognition.

Furthermore, since an associative memory searches its entire memory in a single operation, it

is much faster than the standard computer memory in virtually all search applications. The main

disadvantage is that each individual memory bit needs its own associated comparison circuit to

detect a match between the stored and the input, which increases physical size, manufacturing

cost and power dissipation. Therefore, it is appropriate for specialized searching applications

only. For instance, it would be well suited for real-time pattern recognition, which could be used in
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autonomous robotics.

As discussed above, memristors both present synaptic properties and support crossbar archi-

tecture fabrication, being therefore excellent candidates to mimic biological neural networks. They

have already been shown to have a good performance in hetero-associative [121, 122] and auto-

associative [123, 124, 125, 126] memories. Here we will briefly review the hetero-associative

Willshaw and the auto-associative Hopfield memories.

1.7.2.1 Willshaw Network

The Willshaw network is an associative memory that stores associations (data) between the activity

patterns of an input population of neurons and the activity patterns of an output population. As

it involves two different populations of neurons, it is denominated a hetero-associative memory

[127]. It uses a matrix of binary synapses and stores sparse data vectors, as represented on

Fig. 1.13. Being known that the neural activity in parts of the brain is sparse (visual and auditory

cortices) and that this is beneficial in metabolic efficiency, sparse vector searches in Willshaw

network are a good approach to reduce the power consumption of hardware implementations

[121]. This network presents high capacity, robustness to noise and auto-completion properties.

Its computational implementation using memristors has been considered by Lehtonen et al. and

by us [121, 122].

1.7.2.2 Hopfield Network

The alternative content-addressable associative memory architecture is the auto-associative net-

work [128], where all the neurons are connected to each other in a single population, i.e. each

neuron acts both as input and output. This network has been used to solve, for example, the

traveling salesman problem and the location allocation problem [123, 129, 130].

Hopfield networks have already been realized using transistors as synapses [131, 132]. However,

and as pointed out above, the chip area and power consumption are too large to scale such system,

which makes memristive-based systems the most promising technology to realize hardware based

Hopfield networks [123, 124, 125, 126, 133]. To this end, Guo et al. realized a Hopfield network

with hybrid CMOS/memristor circuits [124] and Hu et al. have developed a Hopfield network using

HfO2-based memristors that proved to be capable to retrieve pieces of data [123]. The Hopfield

network requires analog synaptic weights and it is a dynamical system, whose neurons need to

communicate with each other multiple times during each search to find the output, which increases

the complexity of its realization. Also, it has a capacity directly proportional to the size of the input

vector. Since the Willshaw network gives the same or higher capacity with a simpler implementation,

in our perspective, it seems to be best suited for a memristive implementation [121].
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1.8 Summary

Beyond the incapability of continuing to satisfy our technological needs, the performance of

present day computers is a limiting factor in the progress of computational research. Many

metal– insulator–metal systems show electrically induced resistive switching and have therefore

been proposed as the basis for future non-volatile memories [13]. ReRAMs look promising from

several perspectives regarding its speed, scalability and operation power. The simple ReRAM

concept might resemble that of a switch, which can be settled in two different configurations to

allow an electrical current to flow or not. Although simple, the explanation of the physical processes

responsible for the switching has not been completely unveiled yet [35]. Moreover, there are still

reliability, technology and knowledge limits which must be overcome with the improvement in our

understanding of resistive switching mechanisms and the relation between materials properties

and device functionalities [3, 47]. There is also still a high complexity involved to achieve a working

technology, such as a crossbar nonvolatile memory [35].

Furthermore, it is envisaged that the understanding of biological brains will lead to the con-

struction of future brain-like computer systems, and that the overall architecture and principles of

operation of these future computing devices could be closely modeled on those of biological brains.

Considering memory an essential building block in learning and decision-making, the demonstra-

tion of such functionalities in a nanoscale memristor synapse is crucial to emulate neuromorphic

systems and ANNs [17]. As memristors are able to mimic basic neuron and synapse functionality,

they are promising to bringing us closer to achieving a true intelligent machine and helping to

expand our knowledge of neuroscience [134].

Forty years after the first projection regarding the similarity between resistive switching in a

metal/insulator interface and the axon coupling in a synaptic junction [23], the development of a

solid-state electronic device to replicate the functions of the human brain is finally within our grasp.

Ten years after the HP realization of a nanoscale memristor, there are still no revolutionary com-

puter paradigm available in the market [21]. The goal of a human-level intelligence machine will

only be possible by the convergence of interdisciplinary knowledge from neuroscientists (observing

learning at the single synapse level), psychologists (looking deeply at human behaviors), compu-

tational neuroscientists (developing neural models to describe neural mechanisms) and engineers

(developing computer hardware).

1.9 Thesis Outline

This Doctoral Thesis focus on the resistive switching phenomenon of two types of structures: MgO

and Si/Ag. This work describes the fabrication, characterization and simulation of memristor-based

systems and is organized as follows. Chapter 2 describes the different experimental techniques

and processes used here to fabricate and characterize our structures. The fabrication steps were

all performed at INESC-MN, the electrical characterization at IFIMUP and structural characteriza-
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tion at CQFM (XPS), INL (TEM) and CEMUP (AFM). Chapter 3 focus on the characterization

of MgO structures. Multi mode resistive switching was observed in Pt/MgO/Ta/Ru structures and

attributed to the presence of a thin TaOx layer at the interface. The influence of vacuum breaks

at metal/insulator interfaces was also analyzed, as well as the effect of different electrode mate-

rials on the resistive switching behavior. The dependence of the switching parameters on the

insulator thickness and defect percentage was inferred from simulation with the random circuit

breaker model. A double oxide layer structure (Al2O3/MgO) was further characterized for variable

Al2O3 thickness. In Chapter 4, Si/Ag structures are studied on top of Si rigid substrates, and

cellulose and PET flexible substrates. For the latter, measurements were performed both in flat

and bent configurations. The inherent stochasticity of resistive switching devices was studied in the

switching time–voltage amplitude domain for pulses down to 100 ns. Furthermore, the electrical

current–voltage response was modeled in the charge–flux space. Chapter 5 reports the results

on numerical simulations for a memristor-based Willshaw network, a Perceptron driven by experi-

mental memristor conductance curves and an Hodgkin-Huxley model circuit using memristors as

ion channels. Finally, Chapter 6 states the major conclusions of this work, as well as the open

prospects, focusing on the characterization of the resistive switching behavior and the fabrication

of crossbar arrays.
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CHAPTER 2

Experimental Methods

The microfabrication of metal-insulator-metal (MIM) structures where nanoscale filamentary re-

sistive switching (RS) takes place is one of the most critical steps to obtain successful devices.

This process was developed taking advantage of INESC-MN clean room facilities. Furthermore,

chemical, structural and electrical techniques are keys to characterize and understand the phe-

nomenon. These were performed using tools at IFIMUP, CQFM, INL and CEMUP. Complementary

simulations were performed using the software to simulate electronic circuits LTspice and the

programming language Python 2.7.

2.1 Deposition Systems

Two main physical vapor deposition (PVD) methods were used throughout this work, namely

magnetron sputtering and ion beam deposition (IBD). Both are based on the volatilization of

the target material by means of the impact of high-energy inert gas particles. The material then

condensates on the substrate, maintaining its stoichiometry and with a uniform deposition in large

areas. Any material can be deposited using these techniques, since they only imply its volatilization.

Below follows the technical details of the used systems, available at INESC-MN. Unless specified

otherwise, the MIM structures were always deposited on top of a Si/SiO2 substrate.

2.1.1 Magnetron Sputtering Deposition

Sputtering is the most used PVD method and is performed in vacuum. A plasma is created

between the target and the substrate by introducing an inert gas (Ar or Xe) in the chamber and

applying a voltage to the target. The transfer of momentum between the ions of the plasma and

the atoms in the target leads to their volatilization and subsequent condensation on the substrate.

The cascade of collisions that originates the plasma starts with the presence of a small amount

of ions within the mostly electrically neutral gas atoms. The fundamental component of sputtering

deposition is the magnetron, which allows the plasma to ignite with a lower concentration of atoms

(as the confinement increases the ionization probability), although at the expense of a higher

target wear in the region of larger ionization which follows the shape of the magnetic field lines.

Figure 2.1 shows the schematic representation of the phenomenon. Magnetron sputtering can be
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Figure 2.1 – Schematic of a Magnetron Sputtering system (Credits to Ref. [135]).

operated in two modes: DC and RF. In the former, the target is biased with a negative voltage,

which accelerates the positively charged ions towards it. If they have enough energy they will

ionize more neutral atoms along the way. The trajectory of the resulting electrons is confined by

the permanent magnets under the target, and can also favor plasma ignition if carrying enough

momentum. Target atoms can also get ionized, contributing with electrons to this process. Finally,

if the incoming ions have an energy larger than the binding energy of the atoms in the target,

the collision results in emission of these atoms. As they are neutral, they are not affected by the

electrical and magnetic fields and travel across the vacuum chamber to the substrate. Relatively

low pressures are required in order for the atoms not to loose momentum. This mode is used to

deposit metallic materials. For the deposition of insulating materials the target is biased by an

RF power supply so that electrical charges are not accumulated at the surface, which would repel

incoming ions. With an RF voltage, sputtering takes place in the negative voltage part of the cycle

while neutralization of the target with plasma electrons takes place in the positive part of the cycle.

The rest of the process is similar to that of DC deposition. In both cases the generated heat is

dissipated through a cooling water circuit to prevent any damage to the magnetrons.

2.1.1.1 Nordiko 2000

The Nordiko 2000 tool is an automated magnetron sputtering system with a loadlock connected to

the deposition chamber reaching a base pressure of 5×10−8 Torr (cryo pump). It allows 6 different

targets in the chamber and one sample loaded at a time, with substrate rotation. In this work the

Nordiko 2000 tool was used for the deposition of MgO, Ta and Ru thin films using the standard

conditions shown in Appendix A. Our 1 inch2 substrates are placed directly on the substrate holder

for deposition.
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2.1.1.2 Alcatel SCM 450

Alcatel SCM 450 is a manual magnetron sputtering tool with a single chamber, no loadlock and

connected to a turbo molecular pump (2×10−7 Torr). The chamber has three magnetrons in

the bottom, four substrate holders on the top and three shutters that can be moved to cover the

magnetrons selectively. The substrate table has four possible static positions including the three

positions directly aligned over each magnetron. The magnetrons can be supplied with either RF

or DC power. In this work, the Alcatel SCM 450 tool was used for the deposition of Si and Ag

(Appendixes A.2 and A.3). Our 1 inch2 substrates were mounted with kapton onto a 3 inch metallic

holder for deposition.

2.1.1.3 Nordiko 7000

The Nordiko 7000 tool is an automated system that consists of a central module connected to a

loadlock and four other process modules. Each process module is pumped with cryogenic pumps

which provide base pressures of 5×10−9 Torr, while the loadlock is pumped with a turbo pump

(5×10−6 Torr).

Module 2 was here used to perform a soft sputter etching step with ions from an Ar plasma.

An RF power source is connected to the substrate and accelerates the ions used to remove the

material, with a plasma being maintained by a second RF source. This step is essential to remove

the native oxide on top of a pre-existing metal, ensuring good ohmic contact before a new metal

is deposited. Module 3 was used for the DC sputtering deposition of TiW from a Ti10W90 target.

Standard conditions used in both modules are shown in Appendixes A.2 and A.3. Nordiko 7000

is installed in a class 100 clean room at INESC-MN. Our 1 inch2 substrates were mounted with

kapton onto a 3 inch metallic holder for deposition.

2.1.2 Ion Beam Deposition

Ion Beam Deposition (IBD) is an appropriate method for the fabrication of metal-insulator-metal

structures, with the advantage of operating with any material both for target and substrate. Similarly

to sputtering, ion beam deposition is performed by acceleration of the inert gas ions towards the

target, removing atoms that are then deposited on the substrate. The ions are generated inside

an ion gun and accelerated in a collimated beam to the chamber. Therefore, the sample is not

exposed to the plasma, since this is confined to the ion gun. Furthermore, the incoming energy

to the substrate is well controlled because all generated ions have the same energy. Thus, more

homogeneous and denser films can be produced. Although it is not as fast as magnetron sputtering,

this technique allows close monitoring of the process conditions (power, pressure, deposition rate),

improving layer thickness control. Also, since the deposition pressure is lower, there is a smaller

amount of contaminants.
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Figure 2.2 – Schematic of an Ion Beam Deposition system (Credits to Ref. [135]).

2.1.2.1 Nordiko 3000

The Nordiko 3000 ion beam system has one deposition module and one loadlock. It incorporates

two ion beam guns, a substrate table and a target assembly in a "Z" configuration (Fig. 2.2). Up

to 6 targets can rotate around the holder axis in order to align each one with the deposition gun,

with a shutter covering all the other to minimize target contamination. Another shutter covers the

substrate holder to protect the samples during the guns preparation steps. This holder can rotate

up to 30 rpm to improve deposition uniformity. Furthermore, it can also be rotated in the plane

defined by the two ion beam guns to change the angle between the substrate and the ion beams:

0° pan angle for horizontal substrate (loading/unloading position) and 90° pan angle for vertical

substrate (facing the assist gun). There are two neutralizers at the ion beams exiting from both

assist and deposition guns, emiting electrons with the purpose of neutralizing the beams to avoid

surface charge accumulation in an insulator target. When pointed at the sample, the assist gun

can be used for ion milling (physical etching), reactive deposition, assisted deposition, oxidation

processes and ion beam smoothing.

Both the main chamber and the loadlock are pumped with turbo molecular pumps which are

backed by rotary mechanical pumps. The chamber is further pumped with a cryogenic pump

(3.8×10−8 Torr base pressure) which is backed by an oil free mechanical pump. The plasma

is created inside the positively charged gun, being the power required to ionize the gas atoms

provided through an RF power supply. A set of three voltage biased grids are used to accelerate

the plasma ions and focus the beam into the target. The ions inside the gun are attracted towards

the negative grid (and also by pressure gradient) and have the chance to escape towards the

chamber. The openings of the three grids are aligned in order to collimate the beam. The gun is

surrounded by a grounded shield to prevent the leakage of electromagnetic fields to the vacuum

chamber. The heat generated by the plasma is evacuated through a water cooling circuit carved
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inside the gun body. An array of 20 permanent magnets is placed around the gun, creating a

magnetic field that prevents most of the electrons from reaching the wall, increasing the density of

electrons in the plasma and promoting secondary ionization, thus lowering the RF power required

to maintain the plasma.

This system was used to deposit Ti, Pt, MgO, Ta, Al and Al2O3. The standard deposition

conditions are shown in the corresponding Runsheets (Appendixes A.2 and A.3). Since the N3600

tool handles 6 inch wafers, our 1 inch2 substrates were mounted with kapton onto a 6 inch metallic

holder for deposition.

2.2 Microfabrication Techniques

Microfabrication consists in the fabrication of individual devices in the micrometer (µm) range by

selectively adding and removing material from a substrate, patterned with a mask, using etching

and lift-off steps.

2.2.1 Mask Definition

2.2.1.1 Shadow Mask

A pattern can be defined by a thin physical hard mask (metal sheets for instance; Fig. 2.3). The

minimum feature size is decreased to the size of the mechanical drill able to design the pattern

in the hard mask, plus the shadow effect from the metal thickness. In this work, this process

was used for substrates sensitive to chemical products (Appendix A.1) using 0.12 mm thick brass

sheets with 0.4 mm diameter circular holes.

2.2.1.2 Optical Lithography

Optical Lithography is a process widely used to create the masks required for pattern transfer.

The sample is coated with a photo sensitive polymer (photo-resist), which breaks or reinforces its

molecular connections when exposed to a certain light wavelength. A physical shadow mask can

be placed between the sample and light source (mask aligner) or a laser beam can be swept over

the coated surface and turned on and off according to a software defined mask layout (direct write

laser; DWL). Depending on the type of photo-resist, it can become soluble (positive photo-resist)

or insoluble (negative photo-resist) to a proper developer solution by the exposure light.

At INESC-MN, 1.5 µm thick positive resist (PFR7790G27cP, by JSR Electronics) is deposited

using a Silicon Valley Group resist automatic coating track. A Heidelberg DWL 2.0 direct write

laser system using a 440 nm NeAr laser is used to transfer the mask layout, being the minimum

feature size limited by the size of the laser spot (0.8 µm) and the alignment precision by the

stage resolution (0.1 µm). The same automatic coating track is used for the development process
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Figure 2.3 – Schematic of the physical shadow mask process. (a) The (a) bottom electrode is deposited on the
substrate, (b) covered by a physical shadow mask with circular holes, (c) that leaves the pillars of insulating layer

and top electrode when removed.

(Pth70eg or TMA 238WA solutions from JSR). DWL and automatic coating track are installed in a

class 100 clean room. Since the coating track handles 6 inch wafers, our 1 inch2 substrates were

mounted with kapton onto a Si wafer for coating, exposure and developing. For more technical

detail on the parameters relating process, time and temperature please see Appendix A.

2.2.2 Etching (Ion Milling)

For the etching process, the substrate with the material already deposited is selectively covered

with a mask, made with optical lithography for example, that protects portions of its surface. The

protected material is then removed during the ion milling step. Ion milling consists on the physical

remotion of a material from a substrate by the collision of inert gas ions (similarly with the target

case for sputtering deposition). Other methods can be used such as reactive plasma etch, wet

etch, etc. When the mask is removed, the material shaped in the pattern of the mask is left on the

substrate. This method allows sharp features, but needs good calibration for the stop timing when

removing the material and depends on a physical or chemical process for material removal.

In this work, the remaining photo-resist after the etching process was removed in a resist strip

process where the sample is heated up to 60 ◦C in a Microstrip 2001 solvent in ultra-sounds

(Appendix A). Afterwards, the sample is rinsed with IPA (isopropilic alcohol), then with deionized

water and finally blow dried with N2 flow.

2.2.2.1 Nordiko 3600

While this system is very similar to the Nordiko 3000 from a conceptual stand, it is considerably

larger, enabling the processing of 8 instead of 6 inch wafers. This system was here used to perform

ion milling, using the standard conditions shown in the Appendix A. Again, the angle between

the assist gun beam and the substrate holder is varied depending on the type of milling to be

performed. A pan angle of 30° (40° between the sample surface and the assist gun beam) is used

during the pilar definition and a pan angle of 70° (80° between sample and assist beam) is used

whenever material re-deposition is not an issue. In both cases the milling rate with the shown
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Figure 2.4 – Schematic of the physical single-step process. (a) The bottom electrode is deposited on the substrate, (b)
then the insulating layer and top electrode, (c) finally the pillars are defined by a single step of photolithography and

physical etching.

conditions is close to 1 Å/s. This system was used for soft etch steps and the deposition of Cu and

Ru. Since the N3600 tool handles 8 inch wafers, our 1 inch2 substrates were mounted with kapton

onto a 8 inch metallic holder for ion milling.

2.2.3 Lift-off

When using the lift-off process, the material to be patterned is deposited on top of a mask selectively

covering the substrate. When the mask is removed the material on top is also taken away, letting

the deposited material with the pattern of the mask empty spaces. This method is a good option to

pattern on top of an existing stack, but does not provide sharp features and can originate "rabbit

ears" defects on the sides, not being suitable for multilayer patterning.

In this work, the mask is defined by photo-resist that is removed in a resist strip process where the

sample is put in acetone in ultra-sounds (Appendix A) after the top material deposition. Afterwards,

the sample is rinsed with IPA (isopropilic alcohol), then with deionized water and finally blow dried

with N2 flow.

2.3 Microfabrication Processes

Using the above techniques, two processes were established and used in this work. The majority

of structures in this work were deposited and microfabricated on top of plasma oxidized commercial

Si substrates (SiO/Si/SiO) and Ti (25 nm adhesion layer) / Pt (150 nm) layers as bottom electrode.

2.3.1 Single-step

In order to quickly and easily test interfaces, the single-step method allows to measure micrometer

junctions in the perpendicular configuration. After the total deposition of the metal-insulator-metal

stack, the junctions patterns are defined by a lithography step. Then, using physical etching, the

surrounding material is removed, leaving only the junctions defined (Fig. 2.4). In this work, circular
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Figure 2.5 – Schematic of the physical two-steps process. (a) The bottom electrode is deposited and defined by a
photolithography and physical etching step, (b) then the insulating layer and top electrode are deposited inside the

areas defined by a second photolithography step and lift-off.

pillars of 300 —m of diameter were defined. The complete process is described in Appendix A.2.

2.3.2 Two-steps

To defined more complex connecting networks between single devices, a two-steps method was

established. In this case, the bottom electrode is firstly defined by optical lithography and then

etching at 45◦ angle to smooth the step between layers [Fig. 2.5(a)]. Then the remaining stack is

deposited inside pattern defined again using lithography and revealed by a lift-off step. The final

structures can be seen in Fig. 2.5(b). The step by step process is described in Appendix A.3.

2.4 Characterization Methods

2.4.1 X-Ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) allows the quantitative measurement of the elemental

composition, chemical and electronic states of the elements within surface resolution (0-10 nm

depth). The material is irradiated with a beam of X-rays in vacuum and the kinetic energy and

number of the resulting electrons is measured.

In this work, XPS was performed at CQFM to characterize the MgO/Ta and MgO/Pt interfaces in

detail. Given the surface specificity of X-ray photoelectron spectroscopy (XPS), thinner samples

consisting of MgO (30 nm) / Ta (2 nm) / Ru (1 nm) and MgO (30 nm) / Pt (3 nm) were prepared.

Ex-situ XPS was performed to characterize the chemical states using a dual anode non monochro-

matic XSAM800 spectrometer from KRATOS. The spectrometer was operated in FAT mode, with

a pass energy of 20 eV. Samples were irradiated with Al K¸ radiation (h = 1486.6 eV) applying

at the source a voltage of 12 kV and a current of 10 mA. Data were acquired for a take-off angle

of 0° (relative to the surface normal) and recorded by the software Vision 2 for Windows, Version

2.2.9 from KRATOS. Data treatment was performed as referred in Ref. [136], except for the Ru 3d

region that was fitted with asymmetric profiles with TS and TL parameters equal to 0.34 and 116,

respectively (TS and TL are peak shape and tail extension asymmetry parameters in XPSPeak

4.1 asymmetric Gaussian-Lorentzian sum function54). No charge correction was needed. For

quantification purposes, sensitivity factors were 0.278 for C 1s, 0.78 for O 1s, 4.273 for Ru 3d,

2.043 for Ru 3p, 5.158 for Ta 4d, 2.171 for Ta 4p3=2, 2.26 for Mg 1s and 0.252 for Mg 2s.
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Figure 2.6 – (a) Electrical measurement setup showing the tungsten microprobes on the sample, support microscope
and lamp. (b) LabView control program panel.

2.4.2 Electrical Characterization

Direct Current (DC) measurements were performed at room temperature using two tungsten micro-

probes connected to a Keithley SourceMeter 2400 [Fig. 2.6(a)]. For all measurements, the voltage

was applied on the top electrode with the bottom electrode grounded. Positive and negative

current compliances were established to avoid damaging the sample when justified. To control the

SourceMeter an existing interface developed in LabView was used [Fig. 2.6(b)]. Below are the

details of the used operation modes.

Since the minimum voltage pulse duration that can be applied using the Keithley SourceMeter

2400 is∼ 200 ms, the ArC ONE hardware platform from ArC Instruments [137] was used for higher

speed and optimized memristive analysis in Section 4.3.

I–V characteristic. The current–voltage (I–V) measurement method is widely used for the

characterization of ReRAM devices. The principle of the method is based on a linear variation

of the applied potential with the time (voltage ramp). During the measurements, the voltage was

swept in the 0 → Vmax → 0 → Vmin → 0 sequence (where Vmax is the maximum positive and

Vmin is the maximum negative applied voltage; allowing asymmetric cycles to be performed), with

separately defined voltage steps (‹V+, ‹V−) and delay times (‹t+, ‹t−) for positive and negative

ranges [Fig. 2.7(a)]. The delay time is the duration each voltage step is applied.

Pulsed Mode. Pulsed measurements are performed by applying a time defined rectangular

voltage (or current) pulse where the current– or the voltage–time transients are recorded, respec-

tively. This switching mode (write, read, erase, and read steps) was also implemented, using a

defined number of pulses of VSet , VRead , VReset , tSet , tRead , tReset and twait , with a limiting current

(compliance) for each [Fig. 2.7(b)].

Endurance. Retention reliability tests were performed applying a fixed small voltage over

time, reading the current at each defined time step. The same mode can be used to apply higher

constant voltages over time.
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Figure 2.7 – Schematic of the the applied (a) voltage swept and (b) voltage pulses over time.

2.5 Simulations

2.5.1 Random Circuit Breaker

The 2D Random Circuit Breaker network was established on Python 2.7, using ahkab v0.18

package [138], a spice-like electronic circuit simulator, to map the network and the Python Imaging

Library (PIL) for the graphical representation. The circuit solution uses a modified version of the

Newton Rhapson method. This language is open-source. To look for the source code please go to

Appendix C.

2.5.2 Willshaw Network

A 128×128 memristor-based Willshaw Network was implemented using LTspice and the memristor

model developed by Pino et al. [139]. An equivalent Python 2.7 algorithm developed by us is made

available to the public for particular testing, implementation and further development [140, 141].

2.5.3 Perceptron

A single layer memristor-based Perceptron was impplemented using Python 2.7. More details can

be seen on Appendix D and the algorithm developed by us is made available to the public for

particular testing, implementation and further development [140, 141].
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CHAPTER 3

Resistive Switching in MgO structures

Many materials have been shown to display resistive switching [93, 37, 142, 143], including binary

oxides (e.g., SiOx [144, 61]) and particularly binary metal oxides (e.g., TiOx [21, 145], TaOx [146,

147], Al2O3 [148], HfO2 [149], NiOx [150], MgOx [151, 152, 153, 154, 155, 156, 157, 158, 159, 160],

ZnOx [161], CuOx [162] and WOx [163]). Among such variety of RS materials, binary oxides show

the best switching performance in terms of speed and endurance [16]. Furthermore, they are

compatible with conventional complementary metal-oxide-semiconductor (CMOS) processes due

to their simple composition and easy fabrication. For example, HfOx based materials have a high

dielectric constant and are usually implemented for bipolar RS; AlOx shows low reset currents

due to the large band gap (8.9 eV); NiOx shows unipolar RS and is compatible with a large

number of electrodes but has a poor switching uniformity; TiOx is the most studied material for

both bipolar and unipolar RS, having a higher reset current for the unipolar mode than for the

bipolar one; TaOx is well known for its large endurance [36]. On the other hand, MgO has been

intensively studied in magnetic tunnel junctions [164, 165, 166], acting as the insulating barriers

for magnetic random access memories (MRAMs). More recently, it has also been suggested for

ReRAMs [157, 156, 167, 168, 151, 169, 170]. Although the origin of RS in MgO structures is

still not completely understood, the formation of conductive filaments has been suggested as the

responsible mechanism [155]. MgO is a binary oxide with a large bandgap in the 7.3 eV–7.8 eV

range, ensuring sufficiently large band offsets with Si, and a high breakdown field (12 MV/cm),

improving the reliability [171]. It has an empirical formula of MgO and consists of a lattice of Mg2+

ions and O2− ions held together by ionic bonding in a NaCl-type crystal structure [172].

3.1 Multi Mode Resistive Switching

Here, we studied the resistive switching of Si / SiO2 / Ti (25) / Pt (150) / MgO (30) / Ta (20) / Ru

(5) (nm) structures with a yield of 96% of working devices obtained. The influence of the voltage

polarity operation mode, regarding Set and Reset voltage polarities [(VSet ,VReset ): (+,+), (+,-),

(-,-) and (-,+)], on switching voltages and resistance variabilities were analyzed from the statistical

distribution of consecutive voltage sweep cycles.
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Figure 3.1 – XPS spectrum and fitting of the Ta 4d region for a Pt / MgO / Ta (2) / Ru (1) (nm) sample.

3.1.1 Structural Characterization

Given the surface specificity of X-ray photoelectron spectroscopy (XPS; performed at CQFM), a

thinner sample consisting of MgO (30) / Ta (2) / Ru (1) (nm) was prepared, in order to study

the MgO/Ta interface. Figure 3.1 shows the XPS region of Ta 4d, revealing that it is composed

by 2 doublets with main components (Ta 4d5=2) centered at 226.6 and 229.9 eV and assigned

to Ta0 and Ta2O5, respectively [173]. Given the high affinity of Ta to oxygen, the presence of

this TaOx interfacial layer results from the migration of oxygen from the MgO. The approximate

fraction of oxidized tantalum (Ta5+) is estimated to be 72 % (∼ 1.4 nm) neglecting any stratification

within the layer (see Appendix B for calculation details). This TaOx layer then already exists in the

as-prepared devices and its influence on the subsequent resistive switching processes must be

considered, as will be shown below. Quantitative analysis of XPS data shows that the only striking

difference between the experimental XPS ratios and the ones estimated based on the deposited

nominal structure was found for the Mg 2s/Mg 1s ratio. That difference may be explained by the

existence of intermixing between the layers.

3.1.2 Resistive Switching

All measured devices initially exhibited a high resistance state (R0 ∼ 1×1010 Ω). Independently of

the polarity, when increasing the voltage from the initial state, the current starts to abruptly increase

at a high voltage value of ∼ 9 V, indicating the transition to the low resistance state [LRS ∼ 140

Ω; step 1 in Fig. 3.2(a)]: forming process. Starting again from 0 V and without limiting the current,

the device switches to a HRS of 2 × 105 Ω (lower than the initial state; step 2): Reset process.

The LRS and HRS can then be reproducibly obtained by increasing the voltage with (step 3; Set)

and without (step 4; Reset) current compliance, respectively, leading to a HRS to LRS ratio of 3
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Figure 3.2 – I–V characteristics (a) of a pristine device showing the forming process (step 1) and the switchings
between the two resistance states (steps 2 and 3) in the (+,+) operation mode, and (b) showing resistive switching
with different combinations of voltage polarity - (steps 1 and 2: +,-); (steps 3 and 4: -,+) and (steps 5 and 6: -,-).

The inset shows the conduction mechanisms involved in the resistance states.

orders of magnitude. The first Set is a forming process, since it occurred at a much higher voltage

(∼ 9 V) than the following ones (∼ 2 V) and the subsequent HRS were always smaller than R0.

This shows that structural changes, that cannot be fully reversed, took place in the device during

forming. This indicates that a metallic filament was created during forming that is only partially

ruptured from then on. Given the presence of the TaOx layer formed by capturing oxygen from

the MgO, we can infer that this metallic-like filament is composed by oxygen vacancies. This is

confirmed by the conduction mechanism involved in the ON state being the ohmic (unitary slope

in the log-log scale) and space-charge limited current (SCLC) in the OFF state, as shown in the

inset of Fig. 3.2(b).

Even though the second Set was performed with a higher current compliance than the first, the

final ON resistance is similar to that after forming. This shows that there are typically only two

resistance states in our devices. Interestingly, the same low and high resistance states could be

obtained by switching the devices with the other voltage polarity combinations: positive Set and

negative Reset, (+,-) [steps 1 and 2 in Fig. 3.2(b)]; negative Set and positive Reset, (-,+) (steps

3 and 4); and negative Set and Reset (-,-) (steps 5 and 6). The devices can also be arbitrarily

switched between switching modes. Furthermore, retention reliability tests up to 14 h under 10 mV

showed that both resistance states are stable, with a resistance ratio of two orders of magnitude

on average and no degradation being observed for more than 104 s for the (+,+) mode (Fig. 3.3).

This indicates that a 10-year lifetime is expected and further confirms the nonvolatile nature of the

fabricated MgO-based resistive switching device.

One of the major problems associated with these type of devices is the still large variability of

the switching parameters, such as Set and Reset voltages or ON and OFF resistances on cycling.
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Figure 3.3 – Retention time for the OFF and ON resistance states up to 14 h for the (+,+) mode, measured with 10 mV
every 2 s (lines show a linear fit to the data).

This is a critical device characteristic as successful applications require low variability [79, 174].

Such variability is associated with material and fabrication defects typical of nanoscale processes

and to the intrinsic stochasticity of the switching process. Several strategies are being studied to

diminish this problem, including current compliance control, forming voltage polarity and operation

voltages magnitude and polarity [148, 175, 176, 145, 177, 178, 179, 180, 149].

We then performed a thorough study on the voltage and current variability (vertical and horizontal

bar plots in Fig. 3.4, respectively) for all voltage modes up to 50 cycles. The same current

compliance was used in all cases (2.5 mA) and the voltage sweeps were always performed in the

ranges 0 V→ 7.5 (-7.5) V→ 0 V for Set and 0 V→ 2.5 (-2.5) V→ 0 V for Reset, with a voltage

step of 0.25 and 0.05 V, respectively. The insets of Fig. 3.4 show the evolution of the ON and

OFF resistance states when voltage pulses are applied to perform the switching. Note that, as the

devices are unipolar, they get easily stuck in the low resistance state by doing a Set in the place

of a Reset (higher current), therefore damaging the structure. Both Set and Reset transitions are

always abrupt except for the case of the Reset step of the (+,-) mode [Fig. 3.5]. In this mode there

is an semi-abrupt initial current decrease (step 1) followed by a smooth decrease (step 2). This

smooth decrease may be related with the diffusion of the oxygen vacancies after the major filament

ruptures.

The cumulative probabilities of the Reset [Fig. 3.6(a)] and Set [Fig. 3.6(b)] voltages show that the

variability is always higher in the Set case than in the Reset one. Nevertheless, lower variability for

both Set and Reset voltages was observed when the Set was performed under positive voltages

[modes (+,+) and (+,-); Figs. 3.4(a) and 3.4(c)], particularly for the (+,-) mode [Fig. 3.6(a)].

Furthermore, the average values of the Reset voltage and current during cycling are also the
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Figure 3.4 – I-V curves for the four voltage polarity combinations: (a) (+,+), (b) (+,-), (c) (-,+) and (d) (-,-). The right
(top) axis denotes the voltage (current) distribution. The insets show the resistance values for the pulsed operation

mode (|VSet | = 7.5 V, IC = 2.5 mA, |VReset | = 2.5 V, ∆t = 1 s and VRead = 1 mV).

Figure 3.5 – Reset cycles of the (+,-) mode [Fig. 3.4(b)] showing an initial abrupt transition (step 1) followed by a
smooth variation (step 2). The green line shows the average of all the cycles point by point.
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Figure 3.6 – Cumulative probability of the absolute (a) Set and (b) Reset voltages for all voltage polarity combinations.

smallest for the (+,-) case [1 V, 5 mA versus 2 V, 10 mA; Fig. 3.7(a)]. Note that this improvement

in the switching distribution was observed irrespectively of the order that the measurement modes

were performed [Fig. 3.7(b)].

Considering the resistance variability, values of 102 Ω for ON and 103 - 105 Ω for OFF states were

obtained, both considering each voltage polarity separately [Fig. 3.8(a)] or all the measurements

together [Fig. 3.8(b)]. The variability is higher for the OFF state as it is common in this type of

devices [181] and again a lower variability is obtained for the (+,-) mode, although it is also the one

with the smallest resistance ratio.

Figure 3.7 – Reset voltage (left axis; symbols) and current (right axis; lines) for two different devices with all switchings
in the order (a) (+,+)→ (+,-)→ (-,+)→ (-,-) and (b) (-,-)→ (-,+)→ (+,-)→ (+,+).
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Figure 3.8 – Cumulative probability of the ON (closed symbols) and OFF (open symbols) resistance states for (a) each
voltage polarity combination and (b) all measurements combined.

Table 3.1 summarizes average resistance and voltage values for the forming step and all opera-

tion modes. The analysis of the forming voltage variability gives an average value of (7.5 ± 1.9) V.

Also, the forming voltage polarity was not observed to have a meaningful influence on the RS be-

havior, implying that the filament grows from the Ta electrode towards the Pt one, independently of

the applied voltage polarity, since the TaOx layer works as an oxygen reservoir (oxygen vacancies

created in MgO).

Additional measurements for positive and negative formings were performed in order to confirm

that the polarity of the forming has no influence on the resistive switching behavior. Figure 3.9

shows the cumulative probabilities of Set and Reset voltages with formings at both positive and

negative voltages for the (+,-) [Fig. 3.9(a)] and (-,-) [Fig. 3.9(b)] modes. A good repeatability

was obtained for both cases, showing that there is no influence from the forming polarity on the

resistive switching behavior. Figure 3.10 depicts the same study for (+,+) and (-,-) [Fig. 3.10(a)]

Table 3.1 – Mean values of the resistive switching parameters of Pt/MgO/Ta/Ru for all four measurement modes. The
statistical data was calculated from 50 cycles.

Operation ROFF ff/— RON ff/— VSet ff/— VReset ff/—

Mode (Ω) (%) (Ω) (%) (V ) (%) (V ) %

Forming 1:3× 1010 - - - 7.5 25 - -

(+,+) 5:5× 104 179 217 25 3.25 18 1.66 18

(+,-) 7:8× 103 20 221 9 1.08 97 -1.15 7

(-,+) 2:9× 104 46 170 21 -4.17 39 1.76 22

(-,-) 3:5× 104 50 161 28 -5.14 27 -1.84 16
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Figure 3.9 – Cumulative probability of the Set and Reset voltages for the (a) (+,-) and (b) (-,-) modes with forming at
positive and negative voltages.

and (+,-) with (-,+) [Fig. 3.10(b)]. If the filament growth direction changed with the forming polarity,

the results for the modes would just be reversed as: (+,+)←→ (-,-) and (+,-)←→ (-,+). As can

be seen, this does not occur, as the modes behave equally between then for different forming

polarities and differently from the other modes.

The mixed ionic electronic conduction model can predict this behavior by attempting to solve

the coupled ionic and electronic continuity equations. It shows that the positive charges are

attracted towards the cathode, to form a conductive region, unless their concentration in the vicinity

of the anode is sufficient to initiate the formation of a conductive region there, followed by its

propagation towards the cathode [182, 183]. Yalon et al. obtained this result from the Gummel plot

characteristics of HfO2 devices with two and only one inert electrodes [178].

It is also observed that the OFF resistance is always lower than the initial resistance (before

forming) and that the ON resistance is independent of the operation mode (∼ 2× 102 Ω; complete

filament). Although the resistance ratio is smaller for the (+,-) mode, it has the lowest Set (0.99 V)

and Reset (-1.15 V) voltages of all combinations. Such values are comparable to those obtained in

bipolar devices. The second mode with smaller average Set (3.25 V) and Reset (1.66 V) voltages

Figure 3.10 – Cumulative probability of the Set and Reset voltages for the (a) (+,+) and (-,-), and (b) (+,-) and (-,+)
modes at positive and negative forming voltages.
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Figure 3.11 – First Set (a) 10 cycles for (-,+) after (+,-) and (b) 6 for (+,-) after (-,+). The insets show the evolution of
the Set voltage over cycle number for each case.

is the (+,+) mode, that also shows the highest OFF resistance (5:5 × 104 Ω). This reinforces

the influence of a positive Set voltage on the switching behavior of our devices, as it is reported

that devices having an oxygen exchange layer (Ta for example) at the anode exhibit superior

resistive switching characteristics [178]. These results are further confirmed by the endurance

data presented in the insets of Fig. 3.4, with the (+,-) mode showing the highest number of cycles.

In order to determine the mechanism underlying the influence of the Set voltage polarity, we

looked closer to the first cycles at the transition between (+,-) and (-,+) modes for the devices

depicted in Fig. 3.7. This analysis showed that, at the polarity changes [(+,-) to (-,+), (-,+) to (+,-)],

there is an overall increase/decrease of the voltage amplitude for the first few cycles, respectively

(Fig. 3.11). This suggests a change on the filament morphology, from hourglass to conical [as one

changes the switching mode from (+,-) to (-,+)] and then from conical to hourglass [(-,+) to (+,-)].

Returning to Table 3.1, the mode with the highest Set voltage (-5.14 V) is the (-,+). These results

indicate that Set is facilitated when the electric field points from the Ta to the Pt electrode, i.e. with

decreasing work function for the electrons (4.25 eV versus 5.65 eV). This may be understood by

the growth direction of the filament (Ta → Pt). Regarding only the Reset voltage, it can also be

observed that the absolute value for the (+,+), (-,+) and (-,-) modes is very similar, which can be

explained by the rupture of the filament being aided by Joule heating [184]. Figure 3.12 shows the

average value of the Reset power for each mode, highlighting the smaller value for the (+,-) mode

and, between the filament shapes, for the hourglass.

The schematic representation of the processes involved in resistive switching is shown in Fig.

3.13. For forming and both Set voltage polarities the filament composed of oxygen vacancies

connects the two electrodes, growing from Ta towards Pt. For positive Set voltages [(+,+) and
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Figure 3.12 – Reset power for two different devices with switchings in the order (+,+)→ (+,-)→ (-,+)→ (-,-) (full line)
and (-,-)→ (-,+)→ (+,-)→ (+,+) (dashed line).

(+,-); left panel], the drift direction is the same as that of the filament growth and therefore smaller

voltages are needed (1.08 V and 3.25 V, respectively) and the filament has a hourglass shape.

Then, for negative Reset (+,-), the direction of the electric field is opposite to the filament growth

so that its rupture will be facilitated (small Reset voltage; -1.15 V) in contrast with the case of

positive voltage (1.66 V; Joule heating only). However, note that for the first case, the final OFF

resistance is the smallest of the modes, showing that a smaller portion of the filament was ruptured.

This also explains why, between the two operating modes, (+,-) has the smallest Set voltage (less

Figure 3.13 – Schematic filament formation and rupture for the four differente operation modes (the blue spheres
represent the oxygen vacancies with +2 of relative charge, V··

O ).
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Figure 3.14 – Sample obtained using a two step lithography process, showing individual device areas of 2×2, 3×3,
5×5 and 10×10 —m2 and 9×9 crossbar networks of 10×10 —m2 devices.

filament left to regrow). When applying negative Set voltage [(-,-) and (-,+); right panel], oxygen

vacancies are attracted to the anion (Ta) and therefore the growth towards the cathode implies a

higher voltage (-5.14 V and -4.17 V, respectively) and the filament has a conical shape. For both

Reset polarities a similar amount of voltage is needed, showing that the filament breaks due to

Joule heating, even for negative Reset, since the filament is thin.

3.1.3 Resistive Switching in Smaller Areas

Using the Pt/MgO/Ta/Ru stack we defined smaller device areas and crossbar networks using a two

step lithography process (Section 2.3.2) as shown in Fig. 3.14. Similarly to the 300 —m diameter

devices, 10 × 10 —m2 devices start in a high resistance state (∼ 109 Ω) and need a forming

voltage of 9.6 V to switch to a low resistance state (∼ 102 Ω) for the first time [Fig. 3.15(a); step 1].

The device then returns to a high resistance state, lower than the initial (104 Ω), at -1.75 V (step

Figure 3.15 – I–V characteristics (a) of a virgin device with an area of 10×10 —m2 showing the forming process (inset;
step 1) and the following Resets (steps 2 and 4) and Set (step 3), and (b) 100 consecutive cycles. The right (top)
axis denotes the voltage (current) distribution. The inset shows the resistance values for ON and OFF states over

the cycles.
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2) and to the low resistance state at 1.2 V (step 3). A statistical analysis was performed for 100

consecutive voltage sweep cycles, as shown in Fig. 3.15(b). An average resistance ratio of one

order of magnitude is achieved (104 Ω / 103 Ω), as well as averages of (1.09 ± 0.17) V and (-0.43

± 0.26) V for Set and Reset voltages, respectively.

Note that all the RS parameters are very similar to the ones of the bigger area. This was expected

for the ON resistance, since it does not scale with the area (metallic filament) and comprehensible

for the OFF resistance, since the area decrease was not considerable. The same can be assumed

for the forming voltage or that the identical value for the two areas meaning an independence

of the voltage on the area. Set and Reset voltages are also unchanged between them. We

observed resistive switching behavior, however the process needs to be further optimized, to

enable measurements of complete crossbar arrays.

3.2 Influence of Vacuum Break on Resistive Switching

Knowing that the presence of defects influences the resistive switching behavior of metal-insulator-

metal structures, we studied three different Pt/MgO interface combinations, using a noble metal

(Pt) as both bottom and top electrode. The first combination, A, is based on the above discussed

structures and consists on the deposition of 30 nm of MgO and 25 nm of Pt on top of pre-deposited

Si/SiO2Ti/Pt substrates. In the second structure, B, there is an intentional vacuum break after the

deposition of the MgO layer and right before the Pt top electrode is grown. Finally, we produced a

structure, C, without interfaces exposed to air, by depositing a 5 nm Pt layer on top of the existing

bottom electrode. The remaining stack follows the typical MgO/Pt structure. All these structures

were deposited using Ion Beam Deposition (Section 2.1.2.1) and 300 —m circular pillars were

defined using a single lithography and physical etch steps (Section 2.3.1). For ease of reading, the

structures were labeled according to Table 3.2.

3.2.1 Structural Characterization

As in Section 3.1.1, a XPS analysis was performed (at CQFM) to characterize the influence of the

vacuum break on the MgO/Pt interface. Two A and C thinner samples consisting of MgO (30) / Pt

(3) (nm) were prepared. Given the known specificity of XPS to the surface, being able to probe

an utmost layer of 10 nm in depth, no Si or Ti from the underneath layers were detected. Figure

3.16 shows the relevant XPS regions of both structures. The XPS spectra show much more Pt

for the A stack; in other words, the Pt layer is much thicker in the no vacuum break case (∼ 22

Table 3.2 – Labels of structures with vacuum breaks at different interfaces.

A B C
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Figure 3.16 – XPS spectra and corresponding fitting of the (a) Mg 1s, (b) O 1s, (c) Mg 2s and (d) Pt 4f regions for two
Pt/MgO/Pt (3 nm) samples: without (A) and with (C ) top vacuum break. Spectra were vertically offset for clarity

purposes.

nm versus ∼ 7 nm). Also, an excess of oxygen was detected and quantified (from the O 1s and

Mg 2s areas) at the surface, giving an O/Mg atomic ratio of 2.3 for A and 2.0 for C. If the oxygen

contribution arose only from the MgO, this value was expected to be equal to 1 (O/Mg atomic ratio).

After subtracting the contribution of the carbonaceous contamination (C–O, C=O and/or O–C=O

species), the experimental (O–C oxidized)/Mg atomic ratio is 1.6 ± 0.1 for both cases, which is

compatible with the existence of OH− groups replacing O2− at the surface and/or an oxidation of

the Pt layer. Furthermore, particularly for C, a model assuming some degree of mixture of the Mg

on the Pt layer fits better the experimental results, which indicates the presence of roughness at

the interface.

3.2.2 Morphological Characterization

Atomic Force Microscopy (AFM) measurements were performed (at CEMUP) on the Pt/MgO/Pt

structures with (C ) and without (A) vacuum break before the 30 nm Pt top electrode deposition to

infer the possible roughness change due to a vacuum break, as suggested by the XPS analysis.

The measurements were performed in the non-contact tapping mode. Figure 3.17 shows the AFM

maps of the samples. The roughnesses calculated from the mean square of the pixels height are

of 0.66 nm when there is a vacuum break and 0.80 nm when there is no vacuum break. These
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Figure 3.17 – AFM map for a Pt/MgO/Pt structure (a) without (B) and (b) with (C ) vacuum break before the top
electrode deposition. The height is given by the color bar on the side of the images.

values reveal a very low surface roughness (< 1nm) in both structures, although no significant

difference between the interfaces could be inferred.

3.2.3 Resistive Switching

The devices without a vacuum break before the deposition of the Pt top electrode, A, show unipolar

RS without the need of a forming step. They start in a HRS (∼ 105 Ω) and switch to a LRS (∼ 101

Ω) at around -4.5 V (Set; step 1) [Fig. 3.18(a)]. The HRS (∼ 106 Ω) is then recovered at 1.2 V

(Reset; step 2). The two following transitions occur around the same voltage values, demonstrating

that the first Set did not make any permanent structural changes is the structure and thus, that

there was no forming process. Figure 3.18(b) shows 10 consecutive I–V cycles for the (+,-) and

(+,+) modes, demonstrating the unipolar behavior of this structure, with no apparent influence of

the voltage polarity. The statistical analysis [Fig. 3.18(c)] shows the typical distribution for 93/100

successful cycles, with a good separation between the two resistance states (108 Ω / 10 Ω), and

average Set and Reset voltages of (-5.1 ± 1.3) V and (1.6 ± 0.6) V for Set and Reset voltage,

respectively.

For the structure without any vacuum break, B, we also observed unipolar RS without a forming

step. Starting from an OFF state of around 108 Ω, the Set transition occurs under a voltage of

6.8 V (step 1) to an ON state of around 102 Ω, as shown in Fig. 3.19(a). The Reset transition

to the OFF state (108 Ω) then occurs at -3.8 V (step 2). As the following Set voltages are similar

to the first one, we again conclude that there is no forming process in these structures. Figure

3.19(b) shows two consecutive complete cycles in the (-,+) operation mode, revealing the unipolar

behavior of this structure and similar voltage amplitudes for each step at opposite polarities. Both

operating voltages and resistance values are similar to the ones involved in the resistive switching

of structure A.

In the case of the devices with a vacuum break at both interfaces, C, a forming voltage of 14.6

V (step 1) is necessary to switch the device from the initial HRS (1010 Ω) to the LRS (102 Ω) for
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Figure 3.18 – Pt/MgO/Pt structure A. I–V characteristics (a) of a pristine device showing the first Set (step 1) and the
following switchings between the two resistance states (steps 2-4) in the (+,-) operation mode, and (b) showing 10
seeping cycles for the (+,-) (top) and (+,+) (bottom) switching modes. (c) I–V characteristics for the (-,+) mode.
The right (top) axis denotes the voltage (current) distribution. The inset shows the resistance values over the cycles.

Figure 3.19 – Pt/MgO/Pt structure B. I–V characteristics (a) of a pristine device showing the first Set (step 1) and
the following switchings between the two resistance states (steps 2-4) in the (+,-) operation mode, and (b) two

consecutive cycles in the (-,+) operation mode.
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Figure 3.20 – Pt/MgO/Pt structure C. I–V characteristics of a pristine device showing the forming process (step 1), the
respective Reset (step 2) and the following switchings between the two resistance states in the (+,-) mode, steps 3

and 4, respectively.

the first time [Fig. 3.20]. The Reset then occurs around -3.7 V (step 2), putting the device again

in a HRS (104 Ω), which is lower than the pristine resistance due to the structural changes that

happened during forming. The following Set (8.2 V; step 3) and Reset (-0.9 V; step 4) occur at

voltages similar to the ones of the structures above.

3.2.4 Discussion

Table 3.3 shows the resistive switching parameters of the three structures. Note that the structure

with the largest initial resistance (1010 Ω) is the one with a vacuum break after the MgO layer

deposition (sample C ), indicating a possible contamination (e.g. oxygen) that resulted in the

increase of the oxide resistance. Considering that the structure without vacuum breaks (B) better

represents the intrinsic MgO layer resistance (108 Ω), for negligible Pt resistivity, it seems that the

contamination at the bottom Pt/MgO (e.g. carbon) may have decrease the initial resistance (107

Ω). This high initial resistance explains the need for a forming voltage only for structure C and,

consequently, the permanent and abrupt structural change occurring at high energy that resulted

Table 3.3 – Resistive switching parameters resume for the three structures with vacuum breaks at different interfaces.

Stack
Rinitial VForming VSet VReset RON ROFF

(Ω) (V) (V) (V) (Ω) (Ω)

A 107

–
5.1 1.6 10 108

B 108 6.7 3.7 102 108

C 1010 14.6 8.2 3.7 102 104
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Figure 3.21 – I–V characteristics of a Pt/MgO/Al/Ru device showing the first Set and Reset steps.

in the lowest OFF resistance of the three structures (104 Ω versus 108 Ω). Regarding the Set

voltage, A and B have similar values, whereas the value for C is slightly larger. The explanation

for this must involve the contamination at the bottom electrode, since it is the differentiating factor

between the two groups. Possibly, some contaminants at the bottom Pt/MgO interface increase

the threshold energy needed to grow the conductive filament. From the values of the Reset voltage

and the ON resistance, we observe that the Reset power is the same for both structures B and C

(∼ 0.14 W).

3.3 Influence of Top Electrodes on Resistive Switching

Different materials (Al, Ag, Cu) were studied to replace Ta (same thickness) as top electrode and

to analyze the influence of the insulator/metal interface on the MgO RS behavior. To complete

the stack and prevent oxidation, a 5 nm Ru layer was subsequently deposited on top. The MgO

and Ag layers were deposited using magnetron sputtering (Sections 2.1.1.1 and 2.1.1.2), while

Al, Cu and Ru were deposited by Ion Beam Deposition (Sections 2.1.2.1 and 2.2.2.1). Note that

for the samples with Ag and Al there was a vacuum break before and after the top contact (Ru)

deposition. Therefore, before Ru deposition there was a soft etch step (Section 2.2.2.1) to remove

any residual oxide at the surface of the top electrode.

Figure 3.21 shows the electrical characterization of the Pt/MgO/Al structure. The devices start

in a high resistance state (∼ 108 Ω) and switch to a low resistance state (∼ 10 Ω) at around

13.5 V (step 1) under a current compliance of 1 —A. The new high resistance state (∼ 104 Ω) is

achieved at -0.7 V (step 2). The following cycle with a Set at a current compliance of 0.1 mA (step

3) also results in a OFF state of ∼ 104 Ω at -0.6 V (step 4). However, when the compliance is

increased for 0.2 mA (step 5), the next OFF state has a considerably higher resistance, similar
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Figure 3.22 – I–V characteristics for the four voltage polarity combinations with Al electrodes, each over 10 cycles: (a)
(+,-), (b) (-,+), (c) (-,+) and (d) (-,-). The right (top) axis denotes the voltage (current) distribution. The insets show

the resistance values over the cycles.

to the pristine value (∼ 109 Ω). This may be justified by the higher current resulting in a stronger

filament that easily overheats during the Reset process and completely breaks it, originating a very

large OFF resistance. We do not consider the first Set step as an electroforming process, since

the amplitude of the following operating voltages, within a certain variability, falls into the same

values. The statistical study of the unipolar RS in the four operation modes, each over 10 sweeping

cycles, is shown in Fig. 3.22. Unlike the Pt/MgO/Ta/Ru stack, there seems to be no influence of

the operation mode on the RS behavior. The voltage sweeps were performed in the ranges 0 V→
15 (-15) V→ 0 V for Set and 0 V→ 1.5 (-1.5) V→ 0 V for Reset, with a voltage step of 0.2 and

0.05 V, respectively, imposing a current compliance of 0.2 mA during Set.

The Pt/MgO/Cu/Ru structure also shows unipolar RS behavior, starting in a HRS (∼ 109 Ω)

and switching to a LRS (∼ 10 Ω), without the need of a forming step at 8 V (step 1), as seen in

Fig. 3.23(a). The switching back to the HRS (∼ 109 Ω) occurs at -1.3 V (step 2). A comparable

negative voltage (-9.2 V; step 3) is also able to induce Set, followed by a negative Reset around

the same value (-0.95 V; step 4) for a different device. The variability involved in the switching

parameters over 50 cycles is shown in Fig. 3.23(b) for the (+,-) mode. The Reset voltage has a

high variability, as well as the ON (∼ 10 Ω) and OFF (∼ 109 Ω) resistances, almost overlapping

for some cycles.

When using Ag as top electrode, the behavior is completely different. The resistive switching in

these structures is bipolar, starting in a comparatively lower OFF state (∼ 105 Ω) and switching to

the ON state (∼ 10 Ω) only at positive voltages [3.8 V, step 1; Fig. 3.24(a)]. The Reset back to the

OFF state occurs at -0.75 V (step 2). The amplitude of the voltages involved is also much smaller,

as it is typical for bipolar RS. However, the device endurance is not very high, as can be seen

in the insets of Fig. 3.24(a). Nevertheless, the study over time of the resistance states showed
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Figure 3.23 – (a) I–V characteristics of a Pt/MgO/Cu/Ru pristine device showing the first Set and Reset steps for two
different devices (1, 2 and 3,4). (b) I–V characteristics for the (+,-) mode. The right (top) axis denotes the voltage

(current) distribution. The inset shows the resistance values over the cycles.

stability up to 104 s under a reading voltage of 1 mV, as shown in Fig. 3.24(b). Zhang et al. studied

a similar stack with a thicker (70 nm) Ag layer and obtained a volatile resistive switching behavior

that was used to mimic synaptic plasticity [185].

3.3.1 Discussion

The parameters involved in the resistive switching of the different structures are shown in Table

3.4. Interestingly, although Cu and Al are reactive and mobile metals as Ag, the RS in the former

remains unipolar. This suggests that the oxide formed at the MgO/metal interface is crucial for

the phenomenon. This may also explain the difference in the initial resistance (108 Ω and 109 Ω

versus 105 Ω). Moreover, they where deposited by a less energetic method than Ag (IBD versus

sputtering). For the case of Ag, only bipolar behavior was observed, suggesting a different RS

mechanism, originating in the diffusion of Ag+ ions inside the MgO matrix. The resistance ratio

is also smaller (4 orders of magnitude versus 7) as it is typical of the bipolar behavior. Note

Figure 3.24 – (a) I–V characteristics of a Pt/MgO/Ag/Ru pristine device showing the first Set and Reset steps. The
top inset shows I–V characteristics over 9 consecutive sweeping cycles and the bottom inset the corresponding
resistance states. (b) Retention time for the OFF and ON resistance states up to 104 s, measured with 1 mV every

5 s.
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Table 3.4 – Resistive switching parameters resume for the three structures with different top electrodes.

Top Electrode
Resistive Rinitial VForming VSet VReset RON ROFF

Switching (Ω) (V) (V) (V) (Ω) (Ω)

Al
unipolar

108

–

6.1 0.5 10 108

Cu 109 3.4 0.4 10 108

Ag bipolar 105 3.4 1.2 10 105

that although the Reset voltage is higher for Ag, the Reset power involved is considerably lower

(∼ 100 mW versus ∼ 1 mW), since the Reset current is smaller (∼ 10 mA versus ∼ 100 mA).

Furthermore, the higher Set voltage observed for the Al top electrode may be explained by a lower

carrier mobility.

3.4 Resistive Switching in Al2O3/MgO Double Layer

Double layer structures of MgO/Al2O3 were investigated with the aim of reducing the device variabil-

ity comparatively to a MgO single layer, if the random formation and rupture of conducting filaments

is limited within the Al2O3 film [186]. Furthermore, the Al2O3 layer will increase the resistance and

prevent the permanent break-down of devices [187]. Al2O3 was adopted because of its CMOS

compatibility, high break-down voltage and easy formation of a stable oxide thin film at low temper-

atures [188]. It is a material increasingly studied in double layer ReRAMs for showing improved

properties together with TiO2 [189, 190, 187, 191, 192, 193], HfO2 [186, 187, 191, 194, 195],

NbO [196] and itself [197]. Stathopoulos et al. tested different double layers with fixed TiO2 and

observed a better performance with Al2O3 [192]. Furthermore, its resistive switching behavior

in single layer devices was also already reported [198, 199, 200]. Several other works report

performance improvements with different double oxide layers [201, 202, 203, 204, 205, 206, 207].

Aiming to study the influences of the Al2O3 layer on the resistive switching behavior, structures

with different Al2O3 thicknesses (0.5, 1, 2, 5 and 10 nm) for a fixed MgO thickness of 30 nm were

fabricated. The samples were deposited using Ion Beam Deposition (Section 2.1.2.1) and 300

—m circular pillars were defined using a single lithography and physical etch steps (Section 2.3.1).

Platinum (150 nm) was used as bottom electrode and Tantalum (25 nm) as top. The thin films were

deposited subsequently, without vacuum break, ensuring better adhesion and interfaces quality.

Note that, as we verified, if there is a vacuum break between the deposition of the two oxides

during deposition no reliable resistive switching behavior is observed for any of the thicknesses.

3.4.1 Structural Characterization

Transmission Electro Microscopy (TEM) analysis were performed at the International Iberian Nan-

otechnology Laboratory (INL). The lamellas for TEM/STEM analysis were prepared using a Helios
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Figure 3.25 – (a) HAADF and (b) STEM EDX images of the double layer structures with 0.5 nm Al2O3 thickness, and
(c) and (d) with 1 nm.

NanoLab 450S dual beam Focused Ion Beam (FIB) instrument. The TEM/STEM analysis of the

FIB-lamellas was carried out with a Titan Themis double Cs corrected microscope (HV-200 kV),

equipped with a Super-X EDX System for the chemical analysis.

The high resolution HAADF analysis for the structures with 5 and 1 nm of Al2O3 reveals a rough

Pt surface at the interface with the Al2O3 layer, see Figs. 3.25(a) and (c), respectively. The STEM

EDX maps showing Al K indicate some discontinuity in the 0.5 nm Al2O3 present between Pt and

MgO [Fig. 3.25(b)] and a continuous (or nearly continuous) layer for 1 nm of Al2O3 [Fig. 3.25(d)].

3.4.2 Resistive Switching

As shown in Section 3.1, the single layer MgO structure shows unipolar resistive switching. Here,

for a single 30 nm MgO layer deposited using Ion Beam Deposition and a vacuum break before Ta

deposition, the devices start in a HRS (∼ 108 Ω) and need a forming step of around 3.2 V (step

1) to switch to the LRS (∼ 103 Ω), as shown in Fig. 3.26(a). A negative voltage of -2 V (step 2)

takes it back to the HRS (∼ 105 Ω). The following complete cycle has Set and Reset voltages of

1 V (step 3) and -0.3 V (step 4), respectively, and occurs between ∼ 103 Ω (ON) and ∼ 104 Ω

(OFF) resistance states. These small operation voltages and OFF/ON resistance ratio are typical

of bipolar RS, suggesting this behavior from the structure. The operation in the pulsed mode is
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Figure 3.26 – I–V characteristics of a Pt/MgO/Ta pristine device showing forming (step 1) and first Reset (step 2) and
Set (Step 3). (b) Resistance states over 100 pulses (VSet = 2 V, IC = 1 mA, VReset = -2 V, tpulse = 0.5 s). (c) I–V
characteristics for the (+,-) mode over 100 cycles. The right (top) axis denotes the voltage (current) distribution.

The inset shows the resistance values over the cycles.

not successful for the first 20 pulses, specially for the OFF state, but then the device converges to

∼ 103 Ω for ON and ∼ 104 Ω for OFF for the remaining 80 pulses [Fig. 3.26(b)]. Figure 3.26(c)

shows the device performance over 100 sweep cycles, with 94 successful switchings for average

values of (0.9 ± 0.1) V for Set voltage and (-0.5 ± 0.6) V for Reset. Note that the device eventually

fails due to the decrease of the OFF resistance (close to the ON resistance).

When introducing the Al2O3 layer, initially, all devices also start in a high resistance state, with

no dependence on the Al2O3 layer for this small range, except for the 10 nm stack that shows an

increase in the resistance (Fig. 3.27). Furthermore, if the initial resistance is higher than 5×108 Ω,

the device will probably not show resistive switching. Therefore, the sample with 10 nm of Al2O3

does not show reliable switching due to the too thick insulating layer.

For a thin layer (0.5 nm) of Al2O3, the devices start in the OFF state (∼ 106 Ω) and switch to the

ON state (∼ 101 Ω) under a voltage of 11.5 V (step 1) [Fig. 3.28(a)]. The same magnitude OFF

state is recovered for -0.5 V (step 2). We conclude that there is no forming process both since
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Figure 3.27 – Initial resistance for the double layer structures as a function of Al2O3 thickness.

the OFF state is the same after the first cycle and the Set voltage at the third cycle (step 5) has a

similar value as the first one. The inset of Fig. 3.28(a) shows the unipolar behavior of the structure,

as, in a different device, the first Set occurs at -8 V (step 1) and the Reset also at -0.5 V (step 2).

Applying positive voltage for the following Set (9 V; step 3) no evident differences were observed.

Figure 3.28 – I–V characteristics for 0.5 nm of Al2O3. (a) In the pristine state (the inset shows a different device) and
(b) for the four polarity modes. (c) I–V characteristics for the (+,-) mode over 100 voltage sweep cycles. The right
(top) axis denotes the voltage (current) distribution. The inset shows the resistance values over the cycles. (d)

Evolution of the resistance under incremental voltage pulses (the line is a guide to the eye).
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Figure 3.29 – (a) Initial I–V characteristics and for the four voltage polarity combinations over 10 cycles: (b) (+,+), (c)
(+,-), (d) (-,+) and (e) (-,-) for 1 nm of Al2O3. The insets show the resistance states over the cycles.

The four polarity operation modes were observe and are shown in Fig. 3.28(b): (+,-) steps 1 and

2; (-,-) steps 3 and 4; (-,+) steps 5 and 6; (+,+) steps 7 and 8. The statistical analysis of the (+,-)

mode distribution gives 96/100 successful switchings [Fig. 3.28(c)] and shows a large variability

of the Set voltage [(2.2 ± 0.7) V] and both resistance states, specially at the OFF state (∼ 104

Ω - 108 Ω / 102 Ω). Studies under pulsed mode revealed the possibility to obtain an incremental

OFF resistance decrease by incrementally increasing the positive voltage amplitude. The resulting

resistance after each voltage pulse is shown in Fig. 3.28(d). Note that if more pulses are applied

at each voltage increment no resistance changes are observed, which means that only one pulse

(the first) is responsible for this change. The pulse duration is around the SourceMeter temporal

resolution (∼ 200 ms).

As shown in Fig. 3.29(a), for 1 nm of Al2O3 the device starts in a HRS (∼ 108 Ω) and needs a

voltage of around 14.5 V (step 1) to switch to a LRS (10 Ω). The OFF state (∼ 105 Ω) is recovered

at -1.8 V (step 2) and the following complete Set and Reset cycle at 9 V (step 3) and -0.5 V

(step 4), respectively. The four polarity modes are observed, showing the unipolar behavior of

the structure, although with pour reliability and very high Set voltages in all modes [Fig. 3.29(b)-

(e)]. The resistance states are similar for the four cases, keeping a separation ratio of 6 orders of

magnitude [∼ 107 - 108 Ω /∼ 10 - 102 Ω]. Furthermore, as the OFF state magnitude is comparable

with the pristine state and the first Set value is within the statistical distribution, we conclude that

there was no forming process.

The unipolar RS continues to be observed for 2 nm of Al2O3, as shown in Fig. 3.30. The initial

high resistance (∼ 106 Ω) switches to a low resistance (54 Ω) at 5.3 V (step 1) and is recovered at

1.8 V (step 2). As the next complete cycle has very similar values (5 V, step 3; 1.7 V, step 4), we

conclude that no forming process is needed for this structure. The statistical analysis of the four

modes each over 100 cycles shown in Fig. 3.31 shows Set and Reset voltages (∼ 6 V and 1.5

V, respectively) independent of the operation mode, as well as well separated ON (∼ 101 Ω) and

OFF (∼ 108 Ω) resistances. Regarding the distributions, no particular dependence is observed.

For 5 nm of Al2O3, the initial resistance is around 108 Ω, switches to the LRS (∼ 102 Ω) at 6 V
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Figure 3.30 – I–V characteristics for 2 nm of Al2O3 pristine state showing the forming process (step 1) and the
switchings between the two resistance states (steps 2-4) in the (+,+) operation mode.

(step 1) and back to the same HRS at -3 V (step 2), as shown in Fig. 3.32(a). No forming process

was needed, as confirmed by the second Set step (step 3). The unipolar behavior of the device

is stated by the negative Set (-9.8 V; step 5) in the following cycle, with the corresponding Reset

(-3.6 V; step 6). However, the attempts to perform Reset with positive polarity on the top electrode

are not successful. In other words, the behavior is unipolar but only with two feasible operation

modes [(+,-) and (-,-)], since for positive Reset the process is incomplete and the OFF state is

not recovered. As shown in Fig. 3.32(b), the (+,-) and (-,-) modes are complete, but in the (+,+)

Figure 3.31 – I–V characteristics for 2 nm of Al2O3 over 100 cycles for the four voltage polarity combinations: (a) (+,+),
(b) (+,-), (c) (-,+) and (d) (-,-). The right (top) axis denotes the voltage (current) distribution. The insets show the

resistance values over the cycles.
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Figure 3.32 – I–V characteristics for 5 nm of Al2O3 (a) in the pristine state (step 1) and unipolar behavior: mode (+,-)
steps 3 and 4 and mode (-,-) steps 5 and 6. (b) I–V showing complete (+,-) and (-,-) modes (steps 1-2 and 3-4,
respectively), incomplete (+,+) mode (steps 5-6) and final negative Reset (step 7). The inset shows an incomplete
(-,+) mode for a different device. (c) Retention time for the OFF and ON resistance states up to 104 s, measured
with 1 mV every 5 s and (d) resistance states separation under pulsed operation mode (VSet = 10 V, IC = 1 mA,

VReset = -5 V, tSet = 200 ms, tReset = 500 ms and Vread = 1 mV).

mode, after the Set (step 5), the supposed Reset cycle ends being a Set (step 6) at high current

(100 mA), which results in a lower ON state (10 Ω instead of 102 Ω). The same is shown in the

inset of Fig. 3.32(b) for another device, when the voltage is increased to force Reset (steps 2-4)

and the Set value is reached, the device switches to the LRS (step 5). Therefore, positive Reset

switchings are not practicable, since Set can occur instead although without a current compliance

and the device becomes permanently damaged. The retention study showed resistance states

with a well defined separation (104 Ω / 103 Ω) up to 104 s [Fig. 3.32(c)] and the pulsed operation

mode was successful for the same two states up to a maximum of 80 pulses [Fig. 3.32(d)]. The

statistical study of the two modes (Fig. 3.33) shows no evident difference between them, both

operating between 102 Ω and 104 Ω. For the (+,-) mode [Fig. 3.33(a)] we obtained average values

of (8 ± 2) V for Set voltage and (-2.3 ± 0.6) V for Reset, and (-9 ± 4) V and (-4 ± 1) V for the (-,-)

mode [Fig. 3.33(b)].

We further observed that for this structure (sometimes) the Reset switching is not abrupt. As

seen in Fig. 3.34(a), these gradual Resets can even be smooth (step 2) or by steps (step 4). To

study this effect, we did the Reset using incremental cycles as shown in Fig. 3.34(b) to obtain
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Figure 3.33 – I–V characteristics for 5 nm of Al2O3 for the two voltage polarity combinations over 100 cycles: (a) (+,-)
and (b) (-,-). The right (top) axis denotes the voltage (current) distribution. The insets show the resistance values

over the cycles.

the intermediate resistance values at the end of each cycle [inset of Fig. 3.34(b)]. The resistance

levels averaged over 50 repetitions for incremental Reset cycles (-1 V → -1.25 V → -1.5 V →
-1.75 V → -2 V → -2.5 → -3 V → -3.5 V → -4 V → -4.5 V → -5 V) after a Set cycle up to 10 V

under a current compliance of 1 mA are shown in Fig. 3.34(c). This result shows the possibility of

operating a multilevel resistance device if the Reset cycle is properly tunned.

As already stated, the structure with 10 nm of Al2O3 does not show reliable RS. For devices that

do not start in a large HRS (∼ 108 Ω), switching to a LRS (∼ 10 Ω) at around 16 V (step 1) and

Figure 3.34 – (a) I–V for 5 nm of Al2O3 showing gradual Reset (smooth - step 2; by steps - step 4). (b) Incremental
Reset cycle amplitude (steps 2-8). The inset shows the resistance value at the end of each cycle. (c) Resistance
dependence on the maximum negative voltage averaged over 50 repetitions. Incremental Reset cycles (-1 V →
-1.25 V→ -1.5 V→ -1.75 V→ -2 V→ -2.5→ -3 V→ -3.5 V→ -4 V→ -4.5 V→ -5 V) after a Set cycle up to 10 V

under a IC of 1 mA.
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Figure 3.35 – I–V characteristics for 10 nm of Al2O3 (a) in the pristine state (step 1) and following cycles (steps 2-4).
(b) I–V for 10 repetitions. The inset shows the resistance states over the cycles.

back (∼ 108 Ω) at -0.6 V (step 2) is still possible, as shown in Fig. 3.35(a). However, even these

devices do not show more than 10 consecutive cycles [Fig. 3.35(b)]. Furthermore, the variability

of the voltages and, mainly, the resistance states is very high, as shown in the inset of Fig. 3.35(b).

On the other limit, a reference structure with an oxide layer constituted by 10 nm of Al2O3, and a

vacuum break before Ta deposition, only starts in a lower OFF state (∼ 107 Ω) and switches to the

ON state (∼ 102 Ω) at 1.8 V (step 1), as shown in Fig. 3.36(a). The Reset to 105 Ω occurs at -3

V (step 2). Similar values are involved in the following cycle (steps 3 and 4). Note that the Reset

voltage being larger than the Set voltage suggests a bipolar RS behavior, as well as the lower

resistance ratio. The voltage values are considerably smaller than the previous stacks, although a

low endurance is seen [9/20 cycles; Fig. 3.36(b)].

Figure 3.36 – I–V characteristics for only 10 nm of Al2O3 (a) in the pristine state (step 1) and following cycles (steps
2-4). (b) I–V for 20 repetitions. The inset shows the resistance states over the cycles.
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Table 3.5 – Resistive switching parameters resume as a function of Al2O3 thickness.

Al2O3 thickness Resistive Rinitial VForming VSet VReset RON ROFF IC

(nm) Switching (Ω) (V) (V) (V) (Ω) (Ω) (A)

0 bipolar 108 3.2 0.9 0.5 103 104 10−3

0.5

unipolar

106 – 2.2 0.2 102 106 10−4

1 108 14.5 7 0.9 10 108 10−3

2 106 – 6.9 1.4 10 108 10−3

5 108 – 8.3 2.3 102 104 10−5

10 107 – 1.5 0.7 102 106 10−3

10 (no MgO) bipolar 107 – 1.9 1.2 103 104 10−3

3.4.3 Discussion

The parameters of the resistive switching for all the structures with a double insulating layer

Al2O3/MgO and single MgO or Al2O3 layers are summarized in Table 3.5. The bipolar behav-

ior of the single layer Al2O3 structure may be attributed to the vacuum break experienced after

the oxide deposition. It shows the same resistance levels (104 Ω / 103 Ω) of the single layer MgO

structure that also had the vacuum break and, besides the forming voltage, shows small operation

voltages typical of bipolar behavior. The initial resistance is larger for the ticker oxide (108 Ω versus

107 Ω) and a forming voltage is needed (3.2 V), although with final Set and Reset voltages (0.9 V

and 0.5 V, respectively) lower than those of the thinner oxide (1.9 V and 1.2 V, respectively).

The structures without a vacuum break all show unipolar behavior, but only for 1 nm there is

the need of a forming step, maybe due to the high initial resistance. Interestingly, the thinner (0.5

nm) and the thicker (10 nm) structure have the smallest Set and Reset voltages, although the last

sometimes shows extremely large initial resistances that do not lead to resistive switching. Both

Figure 3.37 – (a) Set and Reset voltages for the double layer structures as a function of Al2O3 thickness. (b) Resistance
ratio for the double layer structures as a function of the current compliance. The inset shows ON and OFF resistances

as a function of the current compliance.
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Set and Reset voltages increase with Al2O3 thickness, as can be seen in Fig. 3.37(a). This is

understandable since the filament grows and ruptures across a longer distance. The differences

in the resistance ratio are explained by the current compliance used during the measurements,

as shown in Fig. 3.37(b). It is expected that the ON resistance decreases with the increase of

the current compliance, due to the resulting stronger conductive filament [inset of Fig. 3.37(b)].

However, we also observed an increase of the OFF resistance, that represents a more complete

filament rupture and may be indirectly explained by a higher current compliance (1 mA) originating

a higher Reset current (100 mA) that through Joule heating better dissolves the filament (108 Ω).

3.5 Influence of MgO Thickness on Resistive Switching

In previous works by our group, structures with different MgO thicknesses (15 nm [170], 22.5 nm,

30 nm and 40 nm [208]) were also electrically characterized. The measurements were performed

by methods similar to the ones already described here and the results regarding the dependence of

the characteristic voltages on the thin film thickness can be seen in Fig. 3.38(a). It is observed that

for 15 nm of MgO there is no forming voltage and, for thicker layers, the forming voltage increases

with the MgO thickness, while the Set and Reset voltages are mostly thickness independent. This

reinforces the idea that, in this type of devices, resistive switching occurs due to the formation and

rupture of metallic filaments inside the oxide layer. In other words, a thicker oxide needs a higher

voltage to start the resistive switching process, but since the filament only suffers a partial rupture,

the following switching voltages are independent of the total thickness [Fig. 3.38(b)]. This behavior

was also observed by Waser et al. for a variable oxide thickness in a Cu/SiO2 cell, with the forming

voltage linearly increasing with thickness and the Set voltage being independent of the thickness

[11]. Mao et al. and Yang et al. further observed the Reset voltage independence on the thickness

of ZnO thin films [209, 210], while Kang et al. reported the independence of the Reset voltage on

the ZnO thickness, but a linear dependence of the Set voltage [211].

Having the oxide thickness has a variable, it is interesting to understand how it affects the

switching parameters. For this purpose, a numerical simulation using the Random Circuit Breaker

Model [212, 213, 214] was implemented in Python.

3.5.1 Random Circuit Breaker Model

The identification and control of RS parameters is one of the key points in this area. Admitting

that the switching phenomenon is attributed to the formation and rupture of conducting filaments,

the Random Circuit Breaker Model (RCB) is a good model to describe unipolar reversible resistive

switching, allowing to simulate what is happening inside an actual device. The RCB is a percolation

model that assumes the insulator layer to be composed of a lattice network of circuit breakers

(resistors), as shown in Fig. 3.39(a). Each circuit breaker can have either one of two changeable

resistance values: RH (high resistance/OFF state; grey) or RL (low resistance/ON state; green),

where RH � RL [212]. The lattice can then be compared to a metal-insulator mixture. In response
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Figure 3.38 – (a) Forming, Set and Reset voltages as a function of MgO thickness (Adapted from Refs. [170] and
[208]). (b) Simplified schematic of filament complete growth and partial rupture in a MIM structure.

to an external voltage, the network will reconfigure in a similar way to physical MIM structures. In

other words, ON and OFF states in unipolar RS can be viewed as the formation and rupture of a

percolation cluster in a network. This model yields a quantitative tool to understand and control

the RS phenomenon, yielding strategies to reduce switching parameter distributions. Note that

this model explains both I–V curves and resistance fluctuations [215]. Another advantage of this

model is that it is material-independent, focusing only on the overall behavior of the circuit breakers.

Furthermore, the RCB network model explains that the wide distributions of switching voltages is

due to the randomly turning on or off of circuit breakers in the network which corresponds to the

formation and rupture of a small segment of the conductive filaments.

However, this model has the disadvantage of only simulating 2D structures with orthogonal

current flow [216], being a more accurate approach to consider 3D cubes, for instance [217].

Figure 3.39 – (a) Schematic of a network model composed of circuit breakers (resistors) in between two parallel
electrodes (blue). Grey resistors stand for RH and green ones for RL. Transitions between (b) RH to RL and (c) RL

to RH resistance states for each circuit breaker in the network when subjected to a critical (switching) ∆V .
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However, that is also a much more complex numerical problem, whereas if one restricts to the

transverse plane of the filament formation/rupture, a satisfactory solution is already obtained.

Furthermore, the standard RCB model does not include migration and temperature effects. For

this considerations please see Refs. [215], [218] and [219].

3.5.1.1 Principle of operation

In order to operate the network, an external voltage Vext is applied across the two parallel elec-

trodes and the corresponding voltage drop (∆V ) is calculated at each resistor. To emulate the

natural presence of defects in as-grown devices (e.g. oxygen vacancies affecting transport proper-

ties) and not to have a deterministic result, a fraction of the circuit breakers is randomly set to the

ON state with a probability pini at the initial stage of the simulation.

The resistance of the network depends on the circuit breaker resistances, which switch depending

on the magnitude of the voltage ∆V applied across each one by solving Kirchhoff’s equations:

1) a local Set process occurs if ∆V > VS and R = RH [Fig. 3.39(b)]; 2) a local Reset occurs if

∆V > VR and R = RL [Fig. 3.39(c)], where VS � VR and RH � RL. Thus, if a resistor is in

the low resistance state and the local voltage is higher than a certain value VS, it switches to the

high resistance state. If it is in the high resistance state and the voltage is sufficiently high (VR ), it

changes to the low resistance state. If there are no changes, the voltage in the lattice is increased.

The iteration process is followed until the system attains a metastable state. Otherwise, the new

resistance is calculated and the algorithm stops when the ratio with the initial resistance is above a

certain value. In physical terms, this corresponds to the formation and rupture of small conductive

segments inside the network. The pseudo code is shown in Algorithm 3.1, while the complete

code can be seen in Appendix C.

Algorithm 3.1 RCB Model Pseudo Code

while Vext < Vmax do
apply Vext
calculate the set of ∆V
calculate I
if R=Rini > ratio then

Stop
else

if R = RL and ∆V > VR then
R← RH

else if R = RH and ∆V > VS then
R← RL

else
Vext ← Vext + ∆V

end if
end if

end while
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Table 3.6 – RCB model simulations parameters.

columns lines RH (Ω) RL (Ω) VR (V) VS (V) Vmax (V) ∆V (V) IC (A) pini (%)

50 20 1000 1 0.01 0.2 3 0.05 0.5 0.5

For convergence purposes we made the assumption that, if a resistor changes from RH to RL,

it cannot switch back before the full Set of the structure occurs. This assumption is based on the

experimental knowledge that filament rupture occurs below the microsecond range and forming at

the nanosecond range. Moreover, continuity (boundary) conditions are imposed to the network,

meaning that the left and right borders are connected. Table 3.6 summarizes the typical values

used during the simulations. Note that the ratio between the dimensions is not proportional with

a real device, since it would be of the order of 300 —m / 30 nm ∼ 104 (for our case). However, a

rectangular matrix is sufficient to understand the phenomenon. Moreover, the results will only be

qualitatively analyzed, since to obtain more reliable results, larger values of RH/RL, as well as 3D

simulations, should be used, at the expense of much longer simulation times.

3.5.1.2 Results

Figure 3.40 shows a typical forming-Reset-Set unipolar cycle simulated in a 25×50 lattice. The

network starts in the pristine state and, at 2.95 V, a conductive filament is formed in an avalanche

Figure 3.40 – (a) Dendritic evolution of the conductive filament in the forming operation, starting from the pristine state
with a small number of circuit breakers in the ON state (pini = 0:5%), then the generation of a conductive channel
and finally the percolated state connecting the two electrodes (ON). The growth direction of the filament is parallel
to the electric field established by the external bias in an avalanche process (3 iterations). (b) One-iteration Reset
process with partial filament rupture and (c) two-iterations Set process ending again with the formation of a complete

filament. (d) Corresponding I–V data for the processes occurring in (a)-(c).
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Figure 3.41 – Forming, Set and Reset voltages in a 2D simulation as a function of thickness, for fixed width, an initial
probability of defects of 0.5% and averaged over 100 simulations.

process [Fig. 3.40(a)]. Then, this filament is partially broken at 0.15 V [Reset; Fig. 3.40(b)]. The

missing filament part is grown again instantly at 0.7 V [Set; Fig. 3.40(c)]. The representation on

the typical I–V curve is shown in Fig. 3.40(d). We observed that defect location is the critical

parameter determining the filament grown direction. In other words, the filament will start to grow

from the electrode with the closest defect. This corresponds to the bottom electrode in the case

shown in Fig. 3.40(a).

Insulator thickness dependence. If we fix the lattice width and vary the height, we can study

how the voltage distribution depends on insulator thicknesses. These simulations were performed

in a 2D lattice with fixed width (25 columns), an initial probability of defects (ON states) of 0.5% and

averages over 100 repetitions. Figure 3.41 shows the switching voltages obtained for variable thick-

ness. The forming voltage shows a linear dependence on the thickness, almost being suppressed

for small thicknesses as experimentally observed (VForming ∼ VSet ), while Set and Reset voltages

show no dependence on the insulator thickness for the horizontal configuration. There is only a

small voltage increase in the vertical configuration. This may be explained by the Reset process

involving one incomplete dissolution of conductive filaments at the electrode/dielectric interface,

and the subsequent Set process only needing to connect this local area and not the whole filament

[as seen in Figs. 3.40(a)-(c)]. Hence, Set and Reset can be considered local effects, whereas

forming has a "bulk" behavior. These results are in good agreement with the experimental data

for MgO [Fig. 3.38], with a linear dependence of the forming voltage on the thickness and no

dependence from the Set and Reset voltages.
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Figure 3.42 – Voltage needed for switching in a 2D device as a function of initial defects percentage, averaged over
100 repetitions.

Defects percentage. We can also study how the percentage of initial defects in the lattice

affects the switching voltages by varying its value for a fixed lattice size. The Set and Reset

voltages seem to be once again independent on the initial defect concentration, as can be seen

in Fig. 3.42, either considering 100 consecutive cycles after the same forming step (full symbols)

or only the first Set and Reset cycles for 100 different forming steps (open symbols). On the other

hand, the forming voltage decreases almost linearly with the defects percentage up to 20% and

becomes constant for higher values. As the number of ON defects increases, so does the number

of conductive filaments possibilities as well as their initial size, which leads to a decrease of the

voltage needed for their completion.

The detailed study of RCB networks configuration helped understanding forming, Reset and Set

processes, as well as the influence of defects, seed layers and geometry parameters on the RS

behavior. From a scale analysis, the percolation structures can be seen as a fractal: a memristor

described as a network of memristors.

3.6 Conclusions

We studied the resistive switching behavior of MgO based structures. For Pt/MgO/Ta/Ru devices

we obtained unipolar resistive switching after a forming step. This behavior was observed with all

voltage polarity combinations and we found that operation is better (lower variability and operating

voltages) for positive Set voltages. The best operating mode is the (+,-) with bipolar-like properties.

We also studied the conduction mechanisms involved in the switching and attributed it to the

formation and rupture of oxygen vacancy filaments, from the Ta to the Pt electrode. Knowing
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Table 3.7 – Resume of resistive switching parameters for all MgO structures discussed in this chapter. The initial
parameters are taken from different devices and the other values from different cycles of a single device.

Stack comments
Resistive Rinitial VForming VSet VReset RON ROFF

ratio mode
Switching (Ω) (V) (V) (V) (Ω) (Ω)

Pt/MgO/Ta/Ru
magnetron 300 —m

unipolar
1010 7.5 1 1.7 102 105 3 (+,+)

sputtering 10 × 10 —m2 109 9.6 1.1 0.4 102 104 2 (+,-)

Pt/MgO/Pt IBD

A

unipolar

107 – 5.1 1.6 10 108 7 (-,+)

B 108 – 6.7 3.7 102 108 6
(+,-)

C 1010 14.6 8.2 3.7 102 104 2

Pt/MgO/Al/Ru magnetron
unipolar

108 – 6.1 0.5 10 108 7

(+,-)
Pt/MgO/Cu/Ru sputtering / IBD 109 – 3.4 0.4 10 108 7

Pt/MgO/Ag/Ru
magnetron

bipolar 105 – 3.4 1.2 10 105 4
sputtering

Pt/MgO/Al2O3/Ta
IBD

0 nm bipolar 108 3.2 1 2 103 105 2

(+,-)

0.5 nm

unipolar

106 – 2.2 0.2 102 106 4

1 nm 108 14.5 7 0.9 10 108 7

2 nm 106 – 6.9 1.4 10 108 6

5 nm 108 – 8.3 2.3 102 104 2

10 nm 107 – 1.5 0.7 102 106 4

Pt/Al2O3/Ta 10 nm bipolar 107 – 1.9 1.2 103 104 1

the influence of the operation mode on the parameters variability, our results open the prospect

to improve switching performance in other resistive switching systems. The influence of vacuum

breaks at the metal/insulator interfaces in MIM structures was analyzed using the inert metal Pt for

both bottom and top interfaces. The studies with different top electrodes showed also a unipolar

resistive switching for Cu and Al, and bipolar for Ag. Furthermore, we used the RCB model to

study the influence of initial defects and network geometry on the switching parameters. We also

studied Al2O3/MgO double layer structures with different Al2O3 thicknesses.

Table 3.7 resumes the resistive switching parameters of all the structures discussed in this

chapter. The resistive behavior of the 10 × 10 —m2 devices is comparable to the 300 —m, as

can be seen by the similar operation voltages and resistance states. When using a Pt electrode

deposited by IBD and a vacuum break just after the Pt bottom electrode as in the Ta electrode case

(structure A), a considerable increase of the Set voltage and of the OFF resistance are observed.

We do not have enough data to conclude if this is due to the Pt electrode or the deposition method.

The same magnetron sputtering deposited MgO layer but with Al, Cu and Ag top electrodes after

a vacuum break also shows an increase of the Set voltage and decrease of the Reset voltage for

the first two cases. For Al and Cu the resistance ratio is also higher (7 versus 3) since the OFF

resistance is larger (108 Ω versus 105 Ω), whereas for Ag the behavior changes to bipolar. The

single layer IBD deposited MgO layer with a vacuum break before the Ta top electrode deposition

shows bipolar resistive switching and voltages and resistance states similar to the initial MgO/Ta

stack. Comparing to structure C, with Pt but also deposited by IBD and the vacuum breaks at
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the same interfaces, the influence of Ta is evident. The oxygen reservoir created at the MgO/Ta

interface considerably decreases the operating voltages (forming, Set and Reset). It can also be

compared to the single layer Al2O3 structure, displaying similar results for 30 nm of MgO and 10

nm of Al2O3. The double layer stacks show unipolar resistive switching mostly without the need of

a forming process and showing higher Set voltages and larger OFF resistances. Looking at the

forming voltage column, we may infer that the deposition technique influences the forming step,

since most of the sample fabricated with this technique do not need one. Also, the existence of a

vacuum break after the oxide layer seems to have a similar effect.
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CHAPTER 4

Resistive Switching in Si/Ag structures

Silicon, as the most widely used material in the semiconductor industry, is the ideal choice to

integrate new devices and systems that would take full advantage of a mature technology and

easily adapted processes. From the electrochemical metallization mechanism category, Si based

devices have the advantage of continuous (analog) switching, by the gradual change of amplitude

or duration of the electrical bias [220]. A typical Si-based device consists of a layered metal/Si/metal

structure, where Si is the storage medium [221]. In order to obtain reliable resistive switching in

silicon-based devices, one needs to combine it with materials, such as Ag, Cu or Al, that can

diffuse within its bulk [221, 220, 222]. Several reports are present in the literature of resistive

switching in Si/Ag structures. For instance, the works of Jo et al. and Kim et al. showed resistive

switching for Set voltages of 3.5 V and 1.5 V, respectively [221, 223]. Jo et al. also showed that

this system is well suited for memory or logic operations [224], crossbar array integration [225]

and reported neuromorphic properties [18]. Si nanowires have also been used aiming flexible

applications, showing average Set voltages of 2.9 V [226, 227]. Different metal interfaces were

also reported, such as W [228]. Other studies further approach the combination of amorphous

(a-Si) and p-type crystalline (p-Si) silicon as the bottom electrode [221, 225, 229], from which

light-activated devices can even be obtained [230, 231]. In addition, resistive switching properties

have been observed in silicon oxide (SiOx ) since 1962 [26] to more recent reports describing SiOx

as the active switching medium [232, 144, 233, 234, 235, 236]. Metal doping (Al, Cu or Ni, for

instance) of SiOx also showed successful resistive switching [201, 237, 238, 239], as well as the

use of nanoporous SiOx [240]. Neuromorphic capabilities have also been observed in Si-rich SiOx

[241, 106], together with the integration of SiOx resistive switching devices with Si diodes [242].

4.1 Resistive Switching

Here, we studied the resistive switching of Si / SiO2 / Ti (25) / Pt (150) / Si (20) / Ag (5) / TiW (100)

(nm) thin films with circular top electrodes of 300 —m in diameter and observed ultra-low operation

voltage (< 0.6 V). Figure 4.1 shows the first resistive switching curve of one of the fabricated

devices. The device starts in a high resistive state (OFF; 3.7×103 Ω) but, with increasing positive

voltage, switches to a low resistance state (ON; 490 Ω) at around 0.35 V (Set; step 1). No forming

process is needed, as the first switching already occurs at a low voltage. Then, with increasing
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Figure 4.1 – I–V characteristics of the Pt/Si/Ag/TiW device. The left inset shows the schematic diagram of the device
and measurement set up. The right inset (in a log-log scale) shows the transport mechanisms involved.

negative voltage, the device switches back to the high resistance state at approximately -0.4 V

(Reset; step 3). As Set and Reset occur at opposite voltage polarities, switching is bipolar. This is

further confirmed by the fact that the magnitude of the Reset voltage is higher than that of the Set.

The right inset of Fig. 4.1 depicts the measured curves in a log-log scale with the linear fits to the

small voltage area showing the conduction mechanisms involved in both resistance states: ohmic

for the ON state (unitary slope) and space charge limited current for the OFF state. The resistive

switching phenomenon is then attributed to the formation/rupture of metallic Ag filaments inside

the Si layer. When a positive voltage is applied to the TiW electrode (negative at Pt), Ag ions drift

from the Ag to the Si layer, creating a conduction path between top and bottom electrodes (low

resistance/ON state). If a negative voltage is then applied, the Ag ions move back towards the Ag

layer and the filament is ruptured (high resistance/OFF state).

Figure 4.2 shows the statistical analysis of the resistive switching behavior for 100 consecutive

and successful cycles. The applied voltage was swept in the 0 V→ 1 V→ 0 V→ -1 V→ 0 V range,

with a voltage step of 0.05 V and a current compliance of 1 mA for Set. The bar plots for Set and

Reset voltages and currents are also displayed in the bottom and left axis, respectively. Despite

some curve shape variability, the operating voltages show a Gaussian distribution with small

deviation [GSet (0.233, 0.005), GReset (-0.214, 0.002)]. The inset shows the separation between

the two resistance states over the 100 cycles, confirming that a separation of at least one order of

magnitude is obtained (103 Ω / 102 Ω). The same conclusion can be taken from the cumulative

probability of the ON and OFF resistances [Fig. 4.3(b)].

The analysis of the cumulative probability of the Set and Reset voltages shows that the distribu-

tion of theses parameters is small and that the operation is always below 0.4 V for Set and -0.6
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Figure 4.2 – I–V characteristics for 100 consecutive switching cycles and their average. The inset shows the variation
of the resistance of both ON and OFF states for each cycle, measured at 0.1 V. The distribution and Gaussian fit of

the Set and Reset voltages and currents are shown in the bottom and left axis, respectively.

V for Reset [Fig. 4.3(a)]. Using these values to calculate the power consumption, we obtain in

average (0.13 ± 0.09) mW and (0.2 ± 0.1) mW for Set and Reset, respectively. Furthermore,

power consumption is only slightly higher for the Reset transition (filament rupture) than for Set

(filament formation). This implies that Reset is mainly driven by ionic drift rather than Joule heating,

which involves high currents.

The evolution of both resistance states was measured each 5 s over 10 h with a small reading

voltage (1 mV) in an attempt not to change the resistance states. For this, Set was first performed

in the same conditions as for Fig. 4.2 and the ON state measured as a function of time. A similar

process was performed to Reset the device and measure the evolution of the OFF state. Figure

4.4 shows that the resistances keep a good separation of up to 2 orders of magnitude. The higher

variability of the OFF resistance compared to the ON resistance is again characteristic to these

Figure 4.3 – Cumulative probability for (a) Set and Reset voltages (the lines are guides to the eye) and (b) ON and
OFF resistances over the 100 cycles shown in Fig. 4.2.
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Figure 4.4 – Evolution of both ON and OFF resistance states over 10 h with a reading voltage of 1 mV.

type of resistive switching devices [181]. The observed fluctuations after 1.5×104 s show that even

a voltage as small as 1 mV is enough to influence the resistance states. Note also that this can be

explained by the flux that has flown through the device.

The pulsed switching mode (using consecutive write, read, erase, and read steps) was also

successfully operated for 50 pulses with VSet = 1 V, VRead = 1 mV, VReset = -1 V, ∆t = 1 s and IC
= 1 mA [Fig. 4.5(a)]. The separation between the resistance states (ROFF ≈ 104 Ω and RON ≈
103 Ω) is kept, as shown in Fig. 4.5(b). Note that the oscillations of the resistances in the initial

20 cycles look like an adaptation of the device to the operation mode and parameters that then

stabilize over cycling.

We further observed an inverse dependence of the ON resistance on the current compliance

Figure 4.5 – (a) Applied voltage over time in the pulsed mode [VSet = 1 V, VReset = -1 V, VRead = 1 mV (inset), ∆t = 1
s and IC = 1 mA] and (b) resistance states over pulse number for the pulsed switching mode.
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Figure 4.6 – Dependence of (a) the ON resistance, (b) resistance ratios and (c) ff=— (in percentage; Set and Reset
voltages in the inset) on the current compliance used during Set (the lines are guides to the eye).

[Fig. 4.6(a)]. We can infer that, the higher the current given for filament formation, the larger the

filament will be, since the final ON conductivity is higher.

To estimate the size of the conductive filament (circular constriction of radius r ), which separates

the two electrodes characterized by the mean free path ‘, in the ON state, we considered the

resistance defined from the electron transport through an orifice (point contact). This resistance

includes the Maxwell (diffusive regime, ‘ << r ) and Sharvin (ballistic regime, ‘ >> r ) resistances

and is given by

R(‘=r) = RSharvin + RMaxwell =
4‘

3ır2
+ ‚(‘=r)



2r
; (4.1)

where  is the resistivity and ‚ a function numerically calculated in Ref. [243] as

‚ =
1 + 0:83‘=r

1 + 1:23‘=r
: (4.2)

Considering the case of pure Ag (‘ ∼ 20 nm;  ∼ 1.59×10−8 Ω.m), one obtains r = 0.54, 0.59 and

0.99 nm for the ON resistances shown in Fig. 4.6. Knowing that the ionic radius Ag(I) is around

129 pm, these filaments are formed by around 8, 9 and 15 Ag ions, respectively.

These results also reveal the possibility of multilevel operation if the current compliance is properly

chosen. However, the ratio between the OFF and ON resistances also decreases with the increase

of the current compliance [Fig. 4.6(b)]. Therefore, the resistance states separation is better for

smaller current compliances. Furthermore, we calculated the ratio between the standard deviation

(ff) and the average value (—) of Set and Reset voltages for different current compliances [for 100

cycles; Fig. 4.6(c)]. We observed that the higher the current compliance, the lower the voltage

variability in both cases. Higher compliance currents result in the formation of stronger and more

robust filaments and thus smaller parameter fluctuations. Note that the actual values of the voltages

do not show a dependence on the current compliance [inset of Fig. 4.6(c)]. These results indicate
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Figure 4.7 – (a) Resistance evolution over time for constant applied voltage. (b) Dependence of the switching time on
the amplitude of the constant applied voltage. The inset shows the linear fit for the Reset dependence on a semi-log

scale.

that there must be a compromise between higher resistance ratios or smaller voltage distributions,

when choosing the Set current compliance.

Furthermore, resistive switching was also achieved when applying a constant voltage over time,

as shown in Fig. 4.7(a) for the case of Reset at different voltages. As can be observed, the higher

the voltage amplitude, the shorter the time needed for switching to occur (∼ 5 s, 79 s and 237 s for

-0.2 V, -0.1 V and -0.05 V, respectively). Figure 4.7(b) shows this time dependence on the constant

voltage amplitude for both Set and Reset. This result reinforces the idea of a filament being formed

or ruptured by a diffusion of ions, that is faster, the higher is the electric potential.

4.2 Charge-Flux Model

To further understand our results, we analyzed them using the charge–flux model [244, 245, 246,

247] that uses charge and flux as the main variables instead of the classical current and voltage

representation. As seen in Section 1.1, the charge (q) is defined as the first momentum of the

current (I ), and the flux (’) is defined accordingly for the voltage (V ):

q(t) =

Z t

−∞
I(fi)dfi ; (4.3)

’(t) =

Z t

−∞
V (fi)dfi : (4.4)

The following analysis is performed according to the piecewise model developed by Al Chawa et

al. for bipolar devices [248]. Here the model is implemented in a Ti (25) / Pt (150) / Si (20) / Ag

(10) / TiW (100) (nm) stack. The characterization in the q–’ space [Fig. 4.8(a)] was performed

by numerically integrating the I–V measurements [Fig. 4.8(b)], considering the staircase signal as

a ramp input [V (t) = ¸ · t]. The cycle corresponding to the Set transition is described by three

equations, one before the Set and two after. The Set point, defining the beginning of the filament



4.2 Charge-Flux Model 81

formation, corresponds to the maximum of the second derivative of the charge, as shown in the

inset of Fig. 4.8. Another point is defined, as the complete (com) filament formation, which is

calculated as the first point at maximum (positive) current (compliance). After this, the device is

defined as a resistor (ohmic behavior). The electrical charge is shown in Fig. 4.8(a) and fitted by:

q(’) =

8>>>>>><>>>>>>:

qSet · (
’

’Set
)k (0 ≤ ’ ≤ ’Set)

qSet · e
z·( ’

’Set
−1)

(’Set ≤ ’ ≤ fficom)

qend − qSet
’end − ’Set

· (’− ’Set) + qSet (’ ≥ ’com)

(4.5a)

(4.5b)

(4.5c)

where k = 1.01 is a constant and

z =
ln(qcom=qSet)

(’com − ’Set)=’Set
: (4.6)

As our devices show an abrupt Set transition, here we consider complete filament formation at

the point just after the Set point and therefore do not use Eq. (4.5b) and set the range of Eq. (4.5c)

as ’ ≥ ’Set .

For the Reset step, four equations are defined. The first extracted point is the Reset, the point with

maximum (negative) current in the I–V space. The total filament rupture is defined by the break

point (brk ), that is calculated as the maximum of the second derivative of the current. Another

equation is written for the voltage decrease sweep after the maximum absolute value [max ; Fig.

4.8(b)]. The charge for the Reset cycle can then be defined as:

q(’) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

qReset · (
’

’Reset
)n (0 ≤ ’ ≤ ’Reset)

qReset · (1 + ln(
ffi

ffiReset
)m) (’Reset ≤ ’ ≤ ’brk)

qd − qbrk
’d − ’brk

· (’− ’brk) + qbrk (’brk ≤ ’ ≤ ’d)

qmax · (
’

’max
)a (’d ≤ ’ ≤ ’max)

(4.7a)

(4.7b)

(4.7c)

(4.7d)

where n = 1 is a constant,

m =
(qbrk − qReset)=qReset

ln(’brk=’Reset)
(4.8)

and

a =
ln(qd=qmax)

ln(’d=’max)
: (4.9)
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Figure 4.8 – Set and Reset transitions in (a) q–’ (the inset shows ‹2q used to calculate Set point) and (b) I–V spaces.
The lines represent the fitting using calculated points, which are highlighted with circles.

For these devices the Reset point corresponds to the break point and thus m [Eq. (4.8)] has no

meaning and therefore Eq. (4.7b) is not considered.

The modeling of the Set and Reset parts of the I–V curve [Fig. 4.8(b)] is then given by the time

derivative of the charge [Eqs. (4.5) and (4.7)]. Note that the last and first part of Eqs. (4.5) and

(4.7), respectively, correspond to the ON state with an ohmic behavior. The switching voltages

variability [Fig. 4.9(a)] is also visible in this space, translating in flux variability [Fig. 4.9(b)].

Using this representation, one can also compare the dependences of the Reset voltage [Fig.

4.10(a)] and Reset flux [Fig. 4.10(b)] on the time needed for Reset. In this case, we can calculate

in a straightforward manner the relation between both variables. If the input voltage is a ramp

[V (t) = ¸ · t], then the flux at the Reset point will be:

Figure 4.9 – Statistical distribution of the (a) voltage and (b) flux for 100 cycles.
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Figure 4.10 – Dependence of the (a) Reset voltage and (b) square root of the flux on the time needed for the Reset.

’Reset =

Z fiReset

0
¸ · tdt =

1

2
¸ · fi2

Reset : (4.10)

This relation is shown in Fig. 4.10(b), and predicts fairly well the observed behavior. We can

also calculate the Reset voltage as:

VReset = ¸ · fiReset =
p

2 · ¸ · ’Reset : (4.11)

Thus, using a fairly simple model, we can relate the Reset time with the Reset voltage. This

behavior is different from the one in Fig. 4.7 since they correspond to different operation modes.

In summary, this analysis reinforces the idea that the conductance during resistive switching is

a function of the flux, in other words, the magnitude, polarity and duration of the applied voltage.

Furthermore, the different regions considered by the model have a physical meaning related with

the different states of the device and can help to understand the involved processes. Models like

these can then be integrated in a circuit simulator such as Spice to allow the study of the transient

response of circuits including memristive devices.

4.3 Stochastic Resistive Switching

A resistive switching device is inherently stochastic, as shown in the previous sections, and as

has been widely observed during the dynamic switching process and in the large variations of

the switching parameters [249, 250, 251]. Such variations are spatiotemporal, as they occur from

device to device and even cycle to cycle. This randomness is related with the stochastic nature

of filament formation, which is responsible for the RS phenomenon [251]. Medeiros-Ribeiro et

al. attributed their distribution to the nonlinear drift/diffusion behavior of the oxygen vacancies in

TiO2 [249]. This issue is an obstacle to RS devices successful commercialization, since extra

energy and time are required to make a deterministic application based on memristors. However,

instead of enforcing determinism, why not take advantage of the inherent variability for a stochastic
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computing paradigm [251, 252, 253]? In fact, randomness is a valuable resource in computation

for areas such as cryptography (security), communication (encryption), computational biology and

quantum physics [252, 253].

Stochastic computing was first proposed in 1967 as a low cost computing paradigm based on

probabilistic bit streams. Numbers are represented by the probability that the bit 1 is in the given

bit stream. For example, the number 0.5 can be represented by a stream of 8 bits {0, 1, 1, 0, 1,

0, 0, 1}, where the probability of finding 1 in the sequence is 50% [251, 254]. This architecture

is much more tolerant to soft errors (bit flips), being suited for applications that do not require

high precision. Furthermore, these systems can be very simple, since memristors stochasticity is

built-in and needs no extra circuitry to maintain [255, 254, 251].

Regarding security aplication, the intrinsic variability of RS devices enables mechanisms for

computing tasks such as physical unclonable function [256], key destruction [257] and random

number generator (RNG) [252]. Scalable, low-power RNGs are essential for encryption in today’s

communication systems for the era of the IoT. Balatti et al. demonstrated a RNG based on (cycle to

cycle) Set variability in a single RS device, which is repeatedly programmed at a constant voltage

(close to the Set voltage) being the resistance distribution converted into a digital (0/1) output

voltage [258]. Other authors also proposed RNGs based on the stochastic behavior of memristors

[251, 259, 253].

Furthermore, biological noise has been proven to be quite beneficial for learning, information

processing and decision making in the brain [260]. As the brain is a highly stochastic system

that operates using noisy elements, the variability of memristors allows to emulate the stochastic

nature of the opening and closing of ion channels in biological synapses and develop brain-inspired

probabilistic computation [98]. Moreover, it can also be used to implement stochastic neurons

[250]. Traditionally, stochasticity is added into neural networks through injected background noise

[260]. Bill et al. concluded that the stochasticity of combined memristors allows to define one

synapse [261]. Yu et al. proposed using the Set variability to realize the stochastic learning rule

in synapses [262]. Al-Shedivat et al. proposed a neural soma circuit that uses RS for triggering

spike events [263, 264] and Feali et al. showed that the stochastic nature of memristors leads to a

higher reliability in response to a fluctuating stimulus, similar to biological neurons [265]. Naous

et al. tested memristor-modeled stochastic neurons and synapses with MNIST (Modified National

Institute of Standards and Technology) data for classification applications [260, 266].

4.3.1 Time-Voltage Stochasticity

As was clearly shown in the previous results, our resistive switching devices exhibit significant

stochasticity in both Set and Reset transitions. This can be explained by the randomness of the

silver ions dissolution and migration. Based on nanoparticle dynamic simulation and analytical

estimations, Jiang et al. attributed the stochasticity in the switching delay time to the probabilistic

detachment of Ag particles from the electrode [253].
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Figure 4.11 – (a) ON/OFF resistance states after each Set/Reset pulse for fixed 1 V and 100 ns, 100 —s and 100
ms of duration (from left to right) followed by a hard Reset of -2 V and 100 ms, over 500 repetitions. (b) ON/OFF
resistance states after each Set/Reset pulse for fixed -2 V and 1 —s, 50 —s and 50 ms of duration (from left to right)
preceded by a hard Set of 1 V and 100 ms, over 500 repetitions. (c) Switching probability distribution over pulse

amplitude and duration for both Set (V>0) and Reset (V<0) transitions.

Here, we studied Set and Reset probabilities in a Si / SiO2 / Ti / (25) / Pt (150) / Si (15) / Ag (5)

/ TiW (100) (nm) stack by tuning the applied voltage and pulse width. For that, we used a weak

programming condition, which consists in applying a pulse amplitude/time smaller than the nominal

switching amplitude/time, that ensures 100% switching probability. Note that a hard Set/Reset is

implemented to switch the device to a complete ON/OFF state before the next cycle. We observed,

as expected, that with the increase of the Set pulse duration from 100 ns to 100 ms at a fixed

1 V amplitude, the switching probability increases from 0.2% to 100%, as shown in Fig. 4.11(a).

The resistance remains constant at a high resistance state (∼ 106 Ω) for most of the pulses with

duration below 100 ms and a well separated low resistance state (∼ 102 Ω) for all Set pulses of

100 ms. A hard Reset of -2 V and 100 ms is implemented in this case. A similar behavior was

observed for the Reset pulse duration [Fig. 4.11(b)]. For a fixed amplitude of -2 V and a duration

of 1 —s the high resistance state is not clearly separated from the low resistance state (∼ 102 Ω),

while for 50 —s and 50 ms the separation is really well defined (∼ 104 Ω / ∼ 102 Ω). These Reset

pulses are preceded by a hard Set of 1 V and 100 ms.
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The heat map in Fig. 4.11(c) presents the result of this study for different voltage amplitudes and

durations, where the probability increases from cold (blue) to hot (red) colors. The higher the pulse

amplitude and duration, the higher the switching probability. The behavior is almost symmetric

regarding the voltage polarity. For example, if we look at the amplitude of 0.5 V (dashed vertical

lines), for the same pulse duration the probability of switching is always higher for Set (positive)

than for Reset (negative), which can be seen by the bigger proximity of the light blue band to the

zero vertical axis on the right pane. This is also visible for pulses of 100 ms and 1 V amplitude, at

which the probability for Set is 99.8% (red color) and 89.4% (orange color) for Reset. There seems

to exist one practical limit from which the applied pulse does not result in a well defined separation

of resistance states. It corresponds to very small voltages (< 0.1 V), at which the pulse duration

gets too long (hundreds of ms). On the other hand, pulses of amplitude of -2 V almost guarantee

a full switching (99.4% probability) even for the ultra short regime (< 100 ns).

4.4 Flexible Substrates

Additional demands of next-generation electronic devices include portability, wearability, trans-

parency and lightweight. Therefore, novel flexible, nonvolatile, fast, compact and reliable data

storage devices are being pursued [267]. Another possible application of nonvolatile memory de-

vices for the IoT is as single-use disposable and biodegradable devices [268]. Flexible electronics

is an emerging research field, which is being intensively investigated [269]. Memristive devices, as

scalable two terminal devices, are highly promising for this type of applications.

Some of the popular choices for flexible and stretchable substrates include polyethylene tereph-

thalate (PET) [270, 271, 272, 273, 274], plastic [275], paper [269, 268, 276, 277], polyimide (PI)

[278, 279], metal foil [280], polyethersulfone (PES) [281, 282], parylene-C [283], textile [199] and

muscovite [284]. As switching medium, different additional materials can also be used, such as

polymers (PEDOT:PSS [285, 286, 287], pEGDMA [277, 288, 289] and PS-PMMA [290] for exam-

ple), metal nanoparticles, 2D materials, organic small molecules, ferroelectric materials and many

others [267]. Kim et al. were able to successfully fabricate a memristive memory array on top of a

plastic substrate [275], while Wu et al. showed 3D artificial synapse networks on a PET substrate

[291]. Furthermore, Lin et al. developed a memristive synapse transferable to different flexible

substrates (e.g. PMMA, PEN, printing paper, glass dome hemisphere, pectin and PDMS), through

a NaCl sacrificial substrate [292].

Here, we studied the Si-Ag system on three different flexible substrates: commercial and bacterial

cellulose, and PET. Figure 4.12(a) shows the schematic representation of our devices, always with

the Si/Ag/TiW stack on top of a flexible substrate. A curvature radius (r ) of 3.5 mm was used to

study the behavior on the bending mode [Fig. 4.12(b)]. The devices on the PET substrate were

fabricated following the same process as that of the Si rigid substrate, although the deposition and

etching steps were performed at a lower power not to damage the substrate. Note that, as the

single step process is used and due to the thick bottom electrode, the transparency of the PET
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Figure 4.12 – (a) Schematic of the Pt/Si/Ag/TiW stack on a flexible substrate. The measuring bottom tip is placed on
the Pt bottom layer close to the pillar and the top one directly on the pillar. (b) Radius of curvature (r) between two

edges of the substrate. For a support of 7 mm in diameter, the radius is 3.5 mm.

substrate is not available. On the other hand, in the case of the cellulose substrate, no chemical

solutions were used in the whole microfabrication process not to damage the substrates. The

deposition was performed by IBD (Pt) and magnetron sputtering (Si, Ag and TiW), and the top

electrodes with 300 —m in diameter were defined by a physical shadow mask.

4.4.1 Cellulose

A paper-based memory device is one of the most promising options for flexible electronics because

cellulose is the most abundant renewable material. Cellulose is an environment-friendly, dispos-

able substrate due to its biodegradability [268]. However, the choice of paper and compatible

development process are the most crucial considerations for successful paper electronics. Diffi-

culties regarding the use of paper include its rough and porous surface due to the fibrous nature.

This is a major obstacle to obtain thin (microscale) and uniform devices, as well as the inability for

ordinary paper to accommodate a conventional silicon process based on high temperature, wet

cleaning and intense chemical treatment [277, 293]. One possible solution consists in fabricating

the entire device on a silicon substrate and then transfer it to a paper substrate [277, 294].

ReRAM is one of the most suitable solutions for paper-related applications [293]. Celano et al.

demonstrated a nonvolatile resistive memory composed of a 500 nm nanocellulose layer between

ITO and Ag electrodes on top of a nanopaper substrate [268]. Nagashima et al. then showed an

ultra flexible resistive memory based on Ag-decorated cellulose nanofiber paper [269] and Lien

et al. demonstrated a resistive switching memory printed on commercial copy paper with titanium

oxide as the switching layer [276].

4.4.1.1 Commercial cellulose

We tested the Ti (25) / Pt (100) / Si (20) / Ag (10) / TiW (100) (nm) stack on commercial paper for

laser printers as substrate. The roughness of this substrate is high [Fig. 4.13(a)], so that 25/100

nm layers of Ti/Pt were deposited to guarantee a resistivity of ∼ 10−5 Ω.m [(88 ± 7) Ω for 3.5
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Figure 4.13 – (a) SEM image of the Pt/Si/Ag/TiW stack on a paper flexible substrate. (b) First electrical response of a
measured device. The inset (in a log-log scale) shows the involved transport mechanisms.

Figure 4.14 – (a) Consecutive I–V cycles in the flat configuration. The right (top) axis denotes the voltage (current)
distribution. The inset shows the variation of the resistance of both ON and OFF states for each cycle, measured
at 0.05 V. (b) Retention time for the OFF and ON resistance states up to 104 s, measured with 1 mV every 1 s. (c)
Resistance states separation under pulsed operation mode (VSet = 2 V, IC = 10 —A, VReset = -2 V, tpulse = 0.5 s and

Vread = 10 mV).
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Figure 4.15 – I–V electrical response when the substrate is flat (red), bent (blue) in a curvature radius of 3.5 mm
(orange) and again flat (green).

mm of parallel Au tips separation] versus ∼ 10−7 Ω.m [(0.32 ± 0.01) Ω] in a Si rigid substrate.

During the RS measurements, the bottom tip is placed next to the top electrode to account for

this roughness (poor conductivity). The devices show bipolar RS behavior without the need of a

forming step. Unlike the case of Si substrates, the devices start in a low resistance state (∼ 102 Ω)

and switch to a high resistance state (∼ 108 Ω) when a negative voltage (-3.4 V; step 1) is applied

to the TiW electrode [Fig. 4.13(b)]. The high resistance state is recovered for positive voltages

(0.6 V; step 2) and, after that, the Reset occurs at -0.6 V (step 3). The conduction mechanisms

involved are Ohmic (I ∝ V) for the ON state and space charge limited current (I ∝ Vm, 2 ≤ m ≤ 4)

for the OFF state [inset of Fig. 4.13(b)]. The device only shows up to 20 voltage sweep cycles, with

switching voltages bellow 2 V [(0.96 ± 0.35) V for Set and (-0.83 ± 0.27) V for Reset], as shown

in Fig. 4.14(a). Our retention study demonstrated resistance states with a well defined separation

(107 Ω / 104 Ω) up to 104 s [Fig. 4.14(b)]. Furthermore, pulsed operation mode, with VSet = 2 V,

IC = 10 —A, VReset = -2 V, tpulse = 0.5 s and Vread = 10 mV, was successfully accomplished (107

Ω / 105 Ω) for at least 100 pulses [Fig. 4.14(c)].

Figure 4.15 shows the I–V behavior for both flat (before and after bending) and bent over a

curvature radius of 3.5 mm configurations. The response is similar in both voltage and resistance

values. The Set in the flat configuration after being bent was performed at 100 —A instead of the

previous 10 —A, since it would be volatile otherwise. Furthermore, the Reset occurs at a smaller

voltage after bending. The first can be related with the device degradation over measurements and

the second with the device variability, instead of directly with the bending process. Consecutive

bending measurements were not performed, since each time the tip was disconnected from the top

electrode, even in the flat configuration, the next measurement always started in the low resistance

state (∼ 102 Ω). This issue needs to be further investigated.
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Figure 4.16 – (a) SEM image of the Pt/Si/Ag/TiW stack on a cellulose flexible substrate. (b) First electrical response of
a measured device. The inset (in a log-log scale) shows the transport mechanisms involved.

Figure 4.17 – (a) I–V cycles for Pt/Si/Ag/TiW on a cellulose flexible substrate over 100 voltage sweep cycles in the
flat configuration. The right (top) axis denotes the voltage (current) distribution. The inset shows the variation of
the resistance of both ON and OFF states for each cycle, measured at 0.05 V. (b) Retention time for the OFF and
ON resistance states up to 104 s, measured with 1 mV every 1 s. (c) Resistance states separation under pulsed

operation mode (VSet = 3 V, IC = 1 mA, VReset = -3 V, tpulse = 0.5 s and Vread = 1 mV).
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4.4.1.2 Bacterial cellulose

The same stack was studied on top of (nanofibrous) bacterial cellulose due to its biocompatibility

and lower roughness (∼ 2 —m). The same Ti/Pt layers were deposited and a resistivity of ∼ 10−6

Ω.m [(6 ± 4) Ω for 3.5 mm of parallel Au tips separation] was achieved. Figure 4.16(a) shows the

surface of the stack on top of the bacterial cellulose. The bottom tip was placed next to the top

electrode and tip. As before, the devices start in a low resistance state (∼ 10 Ω) and switch to

a high resistance state (∼ 103 Ω) when a negative voltage (-1.5 V; step 1) is applied to the TiW

electrode. The low resistance state is recovered for positive voltage (0.5 V; step 2), although it has

a higher value (∼ 103 Ω) than the pristine state, and the following Reset occurs at -0.5 V [step 3;

Fig. 4.16(b)]. The conduction mechanisms observed for the RS are Ohmic for both ON and OFF

states in Set and Reset cycles, except for higher voltages in the first cycle (step 1), where SCLC

plays a role [inset of Fig. 4.16(b)]. Despite the small separation between the resistance states, the

device supports at least 100 voltage sweep cycles, showing switching voltages bellow 1 V (0.35 ±
0.11 V for Set and -0.2 ± 0.07 V for Reset), as shown in Fig. 4.17(a). A retention study showed

well defined resistance states, although with small separation (∼ 105 Ω / 104 Ω), up to 104 s [Fig.

4.17(b)] and the pulsed operation mode was successful (∼ 105 Ω / 104 Ω) for 999/1000 pulses

[Fig. 4.17(c)]. As in the previous case, each time the tip is disconnected from the top electrode,

even in the flat configuration, the next measurement starts in the low resistance state (∼ 102 Ω).

Figure 4.18(a) shows the I–V behavior averaged over 10 consecutive sweep cycles for both flat

(full line) and bent (dashed line; over a curvature radius of 3.5 mm) configurations. Although higher

switching voltages are needed in the bent mode, the response in resistance is similar, as it is also

shown in the inset for the resistance states over the 10 cycles. Besides the higher voltages in the

bent mode, their distribution is also larger [Fig. 4.18(b)]. This difference in the switching voltages

may be explained by a decrease in the conductivity when the substrate is not flat. Furthermore,

note that a metal cylindrical bending support had to be used to dissipate the generated heat since,

when a plastic one was used, the substrate degraded (melted). This is an issue to take into

consideration in the future, since the substrate may be in contact with less conductive supports in

real applications.

4.4.2 Polyethylene Terephthalate

We deposited our Si/Ag/TiW stacks both directly on polyethylene terephthalate (PET), after Ti

(5) / Pt (25) nm (PET/Pt), or on top of an indium tin oxide (ITO) conducting layer on the PET

substrate, with (PET/ITO/Pt) and without (PET/ITO) the Ti/Pt layers below. Shang et al. observed

an extension on the mechanical failure threshold when replacing the Pt electrode by ITO [274].

However, in our case, due to adhesion problems (ITO peeling), the PET/ITO and PET/ITO/Pt

devices showed poor reliability. Figure 4.19(a) shows several arrays on the PET substrate in the

bending mode. All the devices show bipolar resistive switching.

For an ITO bottom electrode [Fig. 4.19(b)], the devices start in a low resistance state (∼ 102
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Figure 4.18 – (a) I–V characteristic averaged from 10 consecutive measurements when the substrate is flat (red) or
bent (tension) under a curvature radius of 3.5 mm (blue). The inset shows the resistance states over 10 voltage
sweep cycles for both flat and bent cases (filled and open symbols, respectively). (b) Distribution of Set and Reset

voltages for 100 consecutive cycles in flat (top) and 10 in bent (down) modes.

Ω) and switch to a high resistance state (∼ 103 Ω) when a negative voltage (-3.8 V; step 1) is

applied to the TiW electrode. The low resistance state is recovered for positive voltage (0.25 V;

step 2), although higher than the pristine state, and then Reset at -0.3 V (step 3). Regarding the

conduction mechanisms, the cycles are always in the Ohmic regime [inset of Fig. 4.19(b)]. Note

that although technically no electroforming step was needed, as the device was already in the ON

state, the first switching voltage is considerably higher than the following ones. This may indicate

some initial and permanent change in the device. Consecutive voltage sweep cycles (50) show

switching voltages bellow 1 V [(0.37 ± 0.15) V for Set and (-0.37 ± 0.22) V for Reset], as shown

in Fig. 4.20.

When using Pt as bottom electrode [Fig. 4.19(c)], the devices also start in a low resistance state

(∼ 102 Ω) and switch to a high resistance state (∼ 107 Ω) when a negative voltage (-4.4 V; step

1) is applied to the TiW electrode. The low resistance state is recovered for positive voltage (2 V;

step 2), although higher (∼ 104 Ω) than the pristine state, and the following Reset occurs at -1

V (step 3). Unfortunately, the operation is not satisfactory and only a few cycles are achieved in

some devices.

Interestingly, for the case of ITO/Pt bottom electrodes [Fig. 4.19(d)], the devices start in a high

resistance state (∼ 105 Ω) and switch to a low resistance state (∼ 104 Ω) when a positive voltage (1

V; step 1) is applied to the TiW electrode. The high resistance state (∼ 105 Ω) is then recovered for

negative voltages (-0.4 V; step 2). This is also the configuration showing poorer results, likely due

to the thicker stack used that resulted in lower adhesion. A further improvement of the fabrication

process is thus needed.

4.4.3 Discussion

Table 4.1 summarizes the parameters involved for all types of substrates studied. The substrate

showing the most similar results with the rigid Si substrate is the bacterial cellulose in both operating
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Figure 4.19 – Si/Ag/TiW stack (a) on a PET flexible substrate and first electrical response for (b) ITO, (c) Pt and (d)
ITO/Pt bottom electrodes. The insets (in a log-log scale) show the mechanisms involved in the electrical transport.

Figure 4.20 – Repetition over 50 voltage consecutive cycles for ITO bottom electrode. The right (top) axis denotes the
voltage (current) distribution. The inset shows the variation of the resistance of both ON and OFF states for each

cycle, measured at 0.05 V.
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Table 4.1 – Main resistive switching parameters (first cycle) for the Si/Ag/TiW stack on different substrates.

Substrate Initial Resistance VInitial VSet VReset RON ROFF

(Ω) (V) (V) (V) (Ω) (Ω)

Si/Pt 3.7×103 - 0.4 -0.45 490 3.7×103

commercial

cellulose/Pt
801 -3.4 0.6 -0.6 1.2×105 1.0×108

bacterial

cellulose/Pt
19 -1.5 0.5 -0.5 543 6.3×103

PET/ITO 240 -3.8 0.25 -0.3 1.1×103 5.3×103

PET/Pt 250 -4.4 2 -1 2.5×105 2.0×107

PET/ITO/Pt 1.1×105 - 1 -0.4 4.4×104 9.0×105

voltages and resistance states, despite the initial low resistance state (101 Ω versus 103 Ω).

Furthermore, all of the other substrates show both low and high resistance states higher than the

rigid Si substrate case. Commercial cellulose shows the largest resistance ratio (108 Ω / 105 Ω)

and the initial voltage needed in the case of cellulose is usually lower than the PET one. Looking

at the bottom electrode in the PET susbtrate, ITO needs lower operation voltages (<0.5 V), while

Pt needs higher voltages (>1 V).

4.5 Conclusions

We obtained bipolar resistive switching without the need for an electroforming process in Ti (25) /

Pt (150) / Si (20) / Ag (5) / TiW (100) (nm) stacks in different substrates. For rigid Si substrate, the

devices operate in the sweeping and pulsed modes, and are stable over 100 cycles with a clear

separation between resistance states. We also studied the dependencies of the ON resistance,

resistance ratios and Set/Reset voltages variability on the current compliance. Furthermore, we

used a simple model in the charge–flux representation to relate the Reset time with the Reset

voltage and modeled the current–voltage curves. Regarding the stochasticity of the resistive

switching behavior, we performed a study on the probability of switching under pulses in the

soft mode operation. As expected, the higher the pulse duration and amplitude, the larger the

probability of switching. Finally, we implemented this type of stack in flexible substrates, namely

commercial and bacterial cellulose, and PET. The devices also showed bipolar resistive switching,

even when bent under a curvature radius of 3.5 mm. Unlike the rigid substrate, some of the devices

fabricated on top of flexible substrates start on a low resistance state and all of them recover this

state every time the measuring tip is moved on the top electrode.
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CHAPTER 5

Artificial Neural Networks Simulations

Knowing all the difficulties involved in a hardware implementation of memristive devices (fabrication

and variability, for instance), numerical simulations are a great tool to study complex systems and

try to optimize them in a more controlled environment, in a faster and cheaper way.

In this chapter we will detail the implemented simulations of memristors-based Willshaw and

Perceptron Artificial Neural Networks. The first was performed on LTspicei while the later was

implemented in Python.

5.1 Willshaw Network

One of the possible applications of the memristor is as a synapse in neuromorphic computation

[295, 18, 296, 297, 298, 299]. Artificial Neural Networks are a popular subject within this field, and

one example of such networks is the Willshaw hetero-associative memory [127]. The Willshaw

network is a content-addressable associative memory system, known for its high capacity, robust-

ness to noise and auto-completion properties, designed to model how information can be found in

synapses in the nervous system. It comprises an input vector mapped into an output vector via a

matrix of binary synapses [127] (here memristors), whose modification (learning) is performed in

a single step. Its implementation using memristors has been considered before [121], albeit with a

different aim than the one presented here.

Of particular interest when assessing a memristor-based Willshaw network is the case where

defective elements are present. Nanodevices inherently have high defect rates, so that any applica-

tion that makes use of them needs to be sufficiently robust to accommodate faults [300, 301]. There

are some studies on the causes and consequences of defects on memristors, namely concerning

the fabrication conditions of individual devices [302], crossbars with static defects as logic blocks

[303, 304] and image recognition using adaptation [301, 305, 306], but not for instant-training and

storage crossbar arrays. One of the most common defects, resulting from the lithographic process,

is the inability to switch between resistive states, leaving the memristor permanently in the OFF

(stuck-at-0) or in the ON (stuck-at-1) states. Previous studies have addressed the impact of this

iAnother Python algorithm developed by us is made available to the public for particular testing, implementation and
further development [140, 141].
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Figure 5.1 – (a) 4×4 Willshaw network arranged in a crossbar configuration; squares represent neuron units from
two populations: ˛ - input and ¸ - output; white circles represent memristors in the OFF state and shaded circles
represent memristors in the ON state. Different shades represent different patterns. Two pattern associations
are depicted: {˛1; ˛2} → {¸1; ¸2} and {˛2; ˛3} → {¸2; ¸3}. Each input neuron is connected to the input of all
memristors along that line, and each output neuron is connected to the output of all memristors along that column.
The inset shows the I–V characteristic of the used memristor model. (b) Average number of incorrect units in the

retrieved patterns for 50 random repetitions.

type of defects in different contexts [301, 304, 307, 308] but Willshaw networks have so far been

overlooked.

5.1.1 Principle of Operation

Here we present simulations of a memristor-based Willshaw network, both with and without defects.

We study how defects affect the capacity and robustness to noise of the network, and how this

determines the manner in which the network should be operated. We also address the effects of

variability (distribution of values) on the most relevant switching parameters of individual memristors

(threshold voltage, ON/OFF resistances) on the network’s performance. The network is arranged

in a nanowire crossbar configuration. Extensive studies have considered the implementation of

this architecture, including additional CMOS circuitry [121, 309, 310, 311] and sneak and leakage

currents issues [312, 313, 314]. While the analysis of the former falls beyond the scope of this

work, the latter is inherently regarded within our simulations with the results already taking them

into account. Our results show that even with relatively low OFF/ON resistance ratios (and far

below those obtainable today), the related sneak path and leakage currents do not significantly

impair memory performance, which attests to the resilience of this type of memory network. These

results should then be seen as the lower bound for the performance of a Willshaw network in the

presence of defective memristors.

The simulations were performed in LTspice [315], using the memristor model developed by Pino

et al. [inset of Fig. 5.1(a)] [139]. This model was chosen for its well defined voltage threshold,

meaning that when voltages above this threshold are applied to the memristor its state is switched

from OFF (here 1.2 kΩ) to ON (160 Ω; write operation). Voltages below threshold do not alter

the memristor conductivity, thus allowing for a straightforward read operation. The network can be
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reset by applying a negative voltage above threshold to all memristors.

Figure 5.1(a) shows a 4×4 Willshaw network to illustrate its operation. It comprises two neuron

populations (˛ - input and ¸ - output) with the same number of units, N˛ = N¸ = 4, and a matrix

of synapses arranged in a crossbar configuration. In our simulations we use voltage sources as

neurons and memristors as synapses. The value of the voltage source encodes the neuron state,

which is also binary: active or inactive. Each association — can be represented as an input vector

˛— mapped onto an output vector ¸—, where the number of active units in each pattern is defined

by M˛ and M¸. For example, in the association {˛1; ˛2} → {¸1; ¸2}, neurons ˛1; ˛2; ¸1 and ¸2

are simultaneously active, while all others are inactive (M˛ = M¸ = 2).

5.1.1.1 Method

The training protocol for the writing operation initiates with all memristors in the OFF state (except

for the stuck-at-1 cases). Then, for each association, the activity patterns are simultaneously

applied by the appropriate (matching) units in the input and output populations, and the synapses

are switched ON only at the nodes where the signals coincide. This is achieved using an activation

protocol where active input neurons apply a positive voltage, below the synapse’s writing threshold,

while active output neurons apply a negative voltage value, symmetrical to the input neurons’

voltage. The synapse in the intersection will be subject to the sum of the corresponding modules,

which is above its writing threshold, so that it switches to the ON state.

After K associations (— = 1; :::; K ), the binary state of each memristor/synapse between unit

b from the input population ˛ and unit a from the output population ¸ is thus given by wba =

min(1;
PK
—=1 ˛

—
b¸

—
a ). A value w = 0 implies a high resistance ROFF , while w = 1 corresponds to

the ON state (low resistance RON ).

For the reading operation, the input pattern (hereafter referred to as cue) is applied by the input

neurons only, so that the voltage is always kept below the writing threshold. Each output neuron will

receive a current that is the sum of the contribution of each synapse along that column. Synapses

in the ON state, having lower resistance, yield higher current values, which allow to distinguish the

neurons that belong to the association. Here one assumes that 1=RON >> M˛=ROFF . An output

neuron is considered to be active if the sum of the contribution of the input synapses is above a

reading (current) threshold T . If Vread is the voltage applied in the reading operation, the value

for T that maximizes capacity is M˛ × Vread=RON (in amperes). Lower T values indicate that the

memory system has increased robustness to spurious bits in the input population (when 1 or more

bits of the cue are incorrect) and improved auto-completion properties, although at the cost of a

reduced memory capacity.

In Fig. 5.1(a) the written associations were {˛1; ˛2} → {¸1; ¸2} and {˛2; ˛3} → {¸2; ¸3}. The

first step in our simulations is to write all the associations, and only then perform the reading

operation. After the writing operation, the shaded nodes (memristors) are in the ON state, while

the others remain OFF. In the reading stage, for (˛1; ˛2), only output neurons (¸1; ¸2) will have two
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active synapses, while for (˛2; ˛3) this occurs only for (¸2; ¸3), thus recalling the correct written

associations if T = 2 (in units of Vread=RON ).

As we will see further ahead, there are cases where a different reading threshold should be

used. If we repeat the above reading operation, but with T = 1, the resulting output would be:

{˛1; ˛2} → {¸1; ¸2; ¸3} and {˛2; ˛3} → {¸1; ¸2; ¸3}. In this case, the recalled associations are

incorrect, as in each output an extra neuron was identified as being part of the pattern. The error is

here defined as the number of output units with incorrect values (Hamming distance). Under this

definition, the error in the above example is 1 (note that a missing neuron in the output vector also

gives an error count of 1). In our simulations the output error is used to measure the performance

of the network [Fig. 5.1(b)]. To improve visualization, the error values are presented in logarithmic

scale, with a fixed translation factor applied to match the value 1 in the error scale to the unitary

Hamming distance (i.e. a value of 1 in the error scale corresponds to an output error count of 1).

For our simulations we used a 128×128 network, with association vectors of size 7 (both input

and output), that is N˛ = N¸ = 128 and M˛ = M¸ = 7. M˛ and M¸ are chosen in order to

optimize memory capacity (M = log2N ) [127]. With this parameterization, the memory capacity

Kmax of the network is [127]:

Kmax =
N˛N¸
M˛M¸

ln 2 ≈ 231 ; (5.1)

which is defined as the maximum number of associations it can store, while keeping an average

reading error count equal to or less than 1 when using a read out threshold of T = M˛ (in

Vread=RON units). This standard was also used to measure the network’s robustness to noise.

We are interested in studying how the capacity of the network and its robustness to noise are

affected when stuck-at-0 and stuck-at-1 defects [301] are present in the synaptic matrix. The

defects were randomly introduced in the network with different probabilities, being the patterns

also generated randomly. Videos depicting the memristor-based Willshaw network dynamics under

defect-free, stuck-at-0 and stuck-at-1 conditions are available in Ref. [316]. Furthermore, we tested

the effect of the variability of the most relevant switching parameters of individual memristors

(threshold voltage and ON/OFF resistances) on the robustness of the network, this time in the

absence of defects. For statistical significance, SPICE simulations were performed ten times and

an average reading error count and corresponding deviation were extracted.

5.1.2 Results

We started by assessing the capacity of the network in a defect-free scenario, in order to compare

it with the defective cases. We found the capacity of the network to be reasonably close to the

theoretical value: approximately 205 associations (Kmax = 231) for a T = 7 reading threshold, as

shown in Table 5.1. The effective capacity value approaches the theoretical one only for a very

large network.

We then proceeded to test how stuck-at-0 and stuck-at-1 defects affect the capacity of the

network (Table 5.1), studying defect percentages from 1% up to 10%. One immediately sees that
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Table 5.1 – Capacity of a 128×128 network for control (defect-free) and different probabilities of both stuck-at-0 and
stuck-at-1 defects. The null capacity indicates that the average error count was already above 1 for the first stored

association.

defect-free
stuck-at-0 stuck-at-1

theoretical
1% 2% 5% 7% 9% 10% 2% 5% 10%

T = 7 205± 2 183± 3 0 0 0 0 0 205± 3 193± 4 176± 4 231

T = 6 118± 3 123± 5 116± 4 114± 6 100± 4 70± 7 0 111± 3 104± 4 91± 3 197

a scenario of only 2% of stuck-at-0 defects has already a drastic effect on the network’s capacity as

the memory system can no longer operate at T = 7: all associated patterns are retrieved with an

average error count above 1. Nevertheless, reducing the reading threshold to T = 6 (gaining error

correction capabilities), it is possible to recover a performance which is close to the defect-free

condition. However, a critical point to notice is that above 9% of stuck-at-0 defects the network is

no longer viable.

For the case of stuck-at-1 memristors one sees that the capacity of the network is close to the

defect-free case for the considered reading thresholds up to 5% of defects. The capacity then

decreases for a 10% defect percentage although, for both reading thresholds, the network remains

operational. We thus conclude that the network’s capacity is, to some extent, resilient to the mild

presence of stuck-at-1 defects (by still allowing T = M˛ ).

These results show that the type and number of defects strongly constrains the threshold setting

strategy, and that this parameter is what directly determines the network’s capacity.

We then tested how different probabilities of stuck-at-0 and stuck-at-1 defects affect a network

at 25% capacity (57 patterns, calculated for T = 7), in order to avoid overload effects. In Fig.

5.2 we see the average error counts for different probabilities of both types of defects. As the

Figure 5.2 – Average error counts in the 128×128 network for different reading thresholds, as a function of defects
percentage: a) percentage of stuck-at-0 and b) of stuck-at-1 defects. The standard deviations for the error counts

are represented in dark on top of each bar. The blue plane helps visualize when the error count is below 1.
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Figure 5.3 – Response of a 128×128 network to noise in the cue: a) control (defect-free), b) 5% probability of stuck-at-
0 defects and c) 5% probability of stuck-at-1 defects. The standard deviations for the error counts are represented

in dark on top of each bar. The blue plane helps visualize when the error count is below 1.

number of stuck-at-0 defects increases, the reading threshold T must be decreased to reduce the

reading error [Fig. 5.2(a)]. In fact, close to 20% of defects we can still have a mean error count

below 1 for a reading threshold T = 5, which corresponds to a theoretical Kmax ∼ 159. For higher

defect numbers the error count is always greater, and for very large defect numbers the choice of

reading threshold becomes irrelevant. Note that, in accordance with Table 5.1, with 5% of defects

a threshold of T = 7 never allows an average error count below 1. Interestingly, the network

responds to stuck-at-1 defects in quite a different way [Fig. 5.2(b)]. For a T = 7 threshold the

network is insensitive to the defects up to some extent. This is understandable, as this is similar to

the situation of using a network with previously stored associations. This holds until approximately

45% of defects, above which a large increase in the error count is seen. It is worth noting that the

Willshaw network maximum capacity is reached when 50% of the synapses are activated. For all

other reading thresholds the error count is quite large when compared with the stuck-at-0 scenario.

We further tested the networks’ robustness to noise in the cue for the defect-free and with 5% of

stuck-at-0 or stuck-at-1 defects cases. Again the capacity was kept at 25%. The defect probability

of 5% was used as an overestimation of errors in the fabrication process, as this is expected to be
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Figure 5.4 – Robustness to (a) threshold voltage and (b) ON/OFF resistances distributions of a 128×128 network. The
standard deviations for the error counts are represented in dark on top of each bar. The blue plane helps visualize

when the error count is below 1.

closer to 2% for a mature technology [309]. For the defect-free case, as seen before, a maximum

reading threshold of 7 yields the lowest error count in the absence of noise [Fig. 5.3(a)]. However,

when just 1 spurious bit is introduced in the cue, the output error count increases sharply for T

= 7, and one has to reduce it to 6 to minimize the error. A maximum T = 7 leaves no margin to

accommodate the noise, as it requires all inputs to be correct. Accordingly, as noise increases,

one has to reduce the reading threshold to minimize the error count. However, with 3 spurious bits

in the cue, an average error count below 1 can never be obtained.

We can see in Figs. 5.3(b) and 5.3(c) that this trend is similar for the two types of studied defects

(at 5%), although the reduction of the threshold in these cases allows one to accommodate only

1 spurious bit in the cue. In the case of stuck-at-0 defects this occurs for T = 5 (theoretical

Kmax ∼ 159), while for stuck-at-1 it occurs for T = 6 (theoretical Kmax ∼ 197). A similar study

was performed for both types of defects at 2% and 10% (not shown). For 10% of stuck-at-0

defects, an average error count below 1 is only obtained without spurious bits and a threshold of 5.

Furthermore, in the case of 2% defects, the network works up to a maximum of 1 spurious bit for

T = 5.

Finally, the effects of memristor parameters variability (threshold voltage, and ON/OFF resis-

tances) on the robustness of the network was studied. In these simulations the parameters were

individually drawn from a Gaussian distribution with a predefined standard deviation (ff). For the

threshold voltage, as shown in Fig. 5.4(a), the error count only starts to increase when the variation

goes above 15% and for small T values. The 1 error count criteria is maintained up to ff =20%

for T = 6,7. On the other hand, the network is quite sensitive to the distribution of the ON and

OFF resistances, being the error count higher than 1 already for ff = 5%, remaining approximately

constant up to ff = 20% [Fig. 5.4(b)]. This shows that, within devices, resistance rather than thresh-

old voltage variations is the most critical parameter to control to avoid the network’s deterioration.

Also, the condition 1=RON >> M˛=ROFF plays an important role in improving the robustness to
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resistances variation.

5.1.3 Discussion

Memristor-based hardware is in active development and it is necessary to understand its implica-

tions and devise strategies to cope with memristor defects and variability. We presented a study on

the performance of a memristor-based Willshaw network in the presence of two common defects,

stuck-at-0 and stuck-at-1, and concluded that the type and estimate of the fraction of defective

memristors strongly constrains the threshold setting strategy. This, in turn, sets the network’s ca-

pacity and it’s robustness to cue noise. In summary, we observed that the impact of the two types

of analyzed defects in memory performance is distinct: stuck-at-1 defects are more amenable and

can more easily be compensated through an increase in the readout current threshold, as they

show a slower decrease of the network capacity with increasing defect percentage. Furthermore,

we found that it is critical to control device-to-device resistance variance, more than threshold

voltage variance. Our findings show that memristor defects and variability do not imply (to some

extent) the catastrophic failure of a network’s operation and can in fact be overcome by using a

well-informed operation strategy.

In this work a static threshold mechanism was used to select the active output units, but our

results can be combined with more sophisticated strategies for setting the readout threshold,

leading to improvements in network performance [317, 318]. However, these strategies, such

as winners-take-all or minimization of output error, require prior knowledge about size of output

patterns, unit usage, number of stored patterns and noise levels in cue (and therefore impose

more complex readout systems).

5.2 Perceptron

The perceptron is a neural network classifying algorithm based on the information processing

mechanism of a single neural cell (neuron). As a neuron receives input signals via its dendrites,

passing each other electrical signals higher than the threshold potential, the perceptron receives

inputs first from the training data (examples with known solution), that are then weighted and

computed into an activation equation. Using the step function as a transfer function, the output

value (prediction) is then calculated, as well as the error. The weights are estimated for each

input of the training data using the stochastic gradient descent (first-order iterative optimization

algorithm) learning rule, which updates the weights of a neural network by trying to minimize the

error in the output. In other words, this optimization procedure finds the set of weights that result

in the smallest error for the training data in a finite number of steps [319]. The perceptron is the

simplest algorithm with similarities with biological learning: neurons also modify their connectivity

and adapt connection strengths over time [85]. The perceptron algorithm was the first to achieve

Artificial Intelligence [113], being used in many practical applications such as pattern recognition

(fingerprint and iris) [112, 115, 116], classification of medical images (cancer) [112], forecast ozone
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Figure 5.5 – Single-layer memristive perceptron schematics for 2 inputs (x1 and x2 ), 1 bias (b) and 1 output (y ), with 4
memristors as weights (w1A, w1B w2A and w2B ). Electrical connections are simplified.

and nitrogen dioxide levels measurement in real-time [118] and many others.

The single-layer perceptron, i.e. with no hidden layers between input and output, is the simplest

kind of neural network able to process information for pattern classification and decision making of

linearly separable patterns. Therefore, it is a good starting point for the incorporation of memris-

tive devices as weights, due to their reconfigurable and analogue resistance, nanoscale size and

nonvolatility [112]. In hardware implementations, with memristive nanodevices as weights, bipolar

pulses can be used to emulate spikes [320, 37, 321, 322, 2, 323]. Alibart et al. achieved pattern

classification using a single-layer perceptron network implemented with a TiO2 memrisitive cross-

bar circuit [324] and Li et al. showed in-situ learning of a HfO2 two-layer perceptron [325]. This

section describes in detail the perceptron algorithm and its applicability using memristive-based

devices.

5.2.1 Principle of Operation

One obstacle in the implementation of memristive-based perceptrons is the fact that the conduc-

tance is always positive, in contrast to the required positive and negative weights of the perceptron

algorithm [Eq. (1.14)]. Alibart et al. overcome this issue by using two memristors in anti-series

to reproduce the weight (Fig. 5.5) [324]. This way the resulting weight is a subtraction of con-

ductances with normalized value ([0, 1]). Each weight will hence be given by wi = G+
i − G

−
i ,

where G+;−
i is the conductance of each memristor at a given time. In hardware implementation

this is equivalent to a subtraction of the two currents in the memristors. Furthermore, since we

need to use continuous values for weights, the memristors must be continuous, i.e. show a large

number of resistance states. The learning process of memristors (weights update process) is

here implemented by using a predefined plot of the conductance change as a function of the

conductance itself, one for the Set process (∆GSet(G); conductance increase) and another for the

Reset process (∆GReset(G); conductance decrease). These curves are characteristic of the used

devices and should be obtained prior to the physical implementation. These plots are exemplified
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in Fig. 5.6 for the case of Pt/TiO2−x /Pt memristors [326]. In a physical implementation, these

conductance changes can be achieved applying the respective voltage pulses.

5.2.1.1 Algorithm Implementation

This subsection gives an example of an algorithm that mimics the behavior of a memristive-based

perceptron. The aim is to provide an algorithm that can be used with different experimental data

(Fig. 5.6) and be implemented in the training of hardware networks. In order to have normalized

conductance (G = [0, 1] S) and increase the conductance change (∆G = [0, 10−2] S), a normal-

izing factor of 103 is used in the experimental data. For a real circuit implementation this can be

performed using an electronic amplifier. In this example each weight consists of 2 memristors,

whose conductance is randomly initialized between 0 and 1. Nevertheless, these values can be

given as inputs if previously read from a physical network. The conductance change (∆G ) is cal-

culated by the perceptron learning rule for each training pattern and then the conductance of each

memristor ideally changed by the same amount (∆G=2) but with opposite signs. For this purpose,

voltage pulses are applied to each memristor until the desired conductance change is achieved.

In fact, the conductance of analog memristors can be tuned using pulse-based programming, in

which the conductance variation depends on the number and amplitude of the pulses. In this simu-

lation the resulting conductance after each pulse is computed from the experimental curves, but

in a real application it should be an input to the code. The pseudocode for one training iteration is

shown in Algorithm 5.2 for an array of positive memristors (memPos), negative memristors (memNeg)

and input vector (Input). The output [Heaviside((memPos - memNeg) . Input))] stands both

for the prediction and reading operations. Note that, as we use the Heaviside step function, the

inputs should be of the same magnitude, in order to obtain the best performance. The training

data is shown more than once to the perceptron in order to have zero error on the output. Each

complete training dataset defines one epoch. Regarding the Perceptron code, more details can be

seen on Appendix D.

It is clear from Fig. 5.6 that both ∆GSet and ∆GReset are small for the majority of the conductance

range. Therefore, for time and computational purposes, we impose that each while loop stops at

a maximum of 1000 iterations if the previous condition is not satisfied before, assuming the risk of

a slower convergence. Furthermore, due to the normalization limits, after each weight update loop,

the weight is truncated to 0 if it ends with a negative value and to 1 if it ends with a higher value.

5.2.2 Results

To test this memristive perceptron algorithm, an example is given below to determine if the body

mass index (kg/m2) of a person with a given weight and height is below or above the normal value

(upper limit, 25). This is a simple example chosen for having a straightforward 2D representation

(only 2 attributes) and therefore a straightforward interpretation of the perceptron performance.

The inputs are the weight (kg) divided by a factor of 100 and height (m). The complete python
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Figure 5.6 – Experimental conductance change as a function of initial conductance, when applying -1.7 V pulses for
Set transitions and 2.6 V for Reset. The conductance is measured at a read bias of 0.5 V (Adapted from Ref. [326]).

code can be seen in Appendix D. Figure 5.7(a) shows the scatter plot of the 50 points used for the

training (40) and test (10) dataset, and the resulting class classification (hyperplane) for a learning

rate of 0.1, after 50 epochs. It is clear that 100% of the test data is classified correctly (correct

side of the line). Figure 5.7(b) shows the error sum over the training process. One can observe

Algorithm 5.2 Memristive Perceptron Pseudo Code

error← expected - output
for i in size(Input) do

dG← rate × error × input[i ]
idealGA← memPos[i ] + dG / 2
idealGB← memNeg[i ] - dG / 2
if error > 0 then

while memPos[i ] < idealGA do
memPos[i ] += dGSet

end while
while memNeg[i ] > idealGB do

memNeg[i ] -= dGReset
end while

end if
if error < 0 then

while memPos[i ] > idealGA do
memPos[i ] -= dGSet

end while
while memNeg[i ] < idealGB do

memNeg[i ] += dGReset
end while

end if
end for
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Figure 5.7 – (a) Training (36 points) and test (4 points) dataset, and resulting classification (hyperplane). Red crosses
represent the over weighted class and blue dots the normal weight. (b) Error sum over the training process. Each

epoch represents one complete training dataset.

that the training process results in a fully error free output after 20 epochs. The perceptron weight

variations after each training data point are shown in Fig. 5.8(a) for each memristor. Note that the

perceptron weight variations, and respective error, stop around 800 iterations, which corresponds

to the 20 epochs observed before (20×40). The needed voltage pulses for these changes to take

place are all represented together in an asynchronous way in Fig. 5.8(b). The necessary high

number of pulses is related with the small conductance changes resulting from each individual

pulse (Fig. 5.6).

Note that a very large training dataset results in overfitting, which translates into a non-zero error

sum (the weights do not converge to a final value). This can be solved by a dynamic adjustment of

the learning rate. Furthermore, as we are only implementing a single-layer perceptron (no hidden

layers), we are always restrained to the classification of two linearly separable classes.

To further test the algorithm classification performance with higher number of attributes, the

Sonar and Breast Cancer Wisconsin (Original) datasets from the UCI Machine Learning repository

were used [327]. The sonar dataset contains 111 “mines” (metal cylinder) and 97 “rock” patterns

obtained by bouncing sonar signals off a metal cylinder at various angles and under various

conditions. Each pattern is a set of 60 numbers (NA = 60) in the range 0.0 to 1.0, representing

the energy within a particular frequency band, integrated over a certain period of time. The labels

associated with each record are "M" and "R" (for mines and rocks, respectively). For a 0.1 learning

rate, 138 training and 69 test points (3 folds), and 20 epochs we obtained an accuracy classification

value of 73% over 3 training operations. This classification performance is comparable to that of

other single-layer perceptron algorithms that are known to dependent largely on the adopted

training procedure [328].

The breast cancer dataset is also a two-class database, containing 699 samples with nine inputs

(NA = 9). Some of the sample data are missing, and therefore, the actual number of samples

used here is 683, of which 444 cataloged as benign cancers (label “2”) and 239 cataloged as

malignant tumors (label “4”). Since each dimension is an integer value ranging from 1 to 9 and
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Figure 5.8 – (a) Individual weights variation over each iteration and (b) asynchronous voltage pulse application for
each memristor. The label b stands for the bias input.

we use the Heaviside step function as transfer function, the inputs are divided by 10. Also, note

that the initial patient identification number should be removed from the data before classification.

For a 0.1 learning rate, 455 training and 227 test points (3 folds), and 25 epochs, we obtained

an accuracy classification value of 93% over 3 training operations. These values are comparable

to those obtained using multi-layer perceptron algorithms (95 - 99%), showing that, for linearly

separable data, the developed single layer perceptron gives excellent results [329, 330].

Note that these two example do not result in a final null error after training, hence the accuracy

is lower than 100%. This shows how more complex data needs further parameter tuning and

model optimization. A natural step in these situations would be to change from a single perceptron

configuration to a multi-layer architecture, well-known for its increased classification capabilities.
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Figure 5.9 – (a) Hodgkin-Huxley model circuit (Reprinted by permission of John Wiley & Sons, Inc. [331] Copyright ©
1952) and (b) schematic of the action potential of the squid giant axon.

5.3 Hodgkin-Huxley Model

The Hodgkin–Huxley model, proposed in 1952, is a mathematical description of how action po-

tentials in the squid giant axon are initiated and propagated, using a set of nonlinear differential

equations [332]. It can be described by the electrical circuit shown in Fig. 5.9(a), where sodium

(Na) and potassium (K ) ion channels are described by variable resistors (RNa and RK , respec-

tively), the lipic bilayer by a capacitor (CM ) and the leak channels by a linear resistor (RL). The

voltage sources (ENa, EK and EL) represent the electrochemical gradients responsible for the flow

of ions.

Figure 5.9(b) shows the output action potential mimicked by this model. The membrane is initially

at a resting potential of -70 mV, and a stimulus above the threshold of -55 mV makes it spike. When

the axon is excited, the membrane potential spikes because sodium Na+ and potassium K+ ions

flow through the membrane. Firstly the Na+ channels open, increasing the potential up to a

maximum of 58 mV (ENa; depolarization), then the Na+ channels close and the K+ ones open,

decreasing the voltage down to a minimum of -93 mV (EK ; repolarization). The K+ channels then

close and the membrane recovers to the resting potential (-55 mV). During the refractory period, at

which the potential is lower than the resting value (hyperpolarizaton) the neuron does not respond

to stimulus.

Based on the nonlinear dynamics of the memristor, in 2012 Chua et al. mathematically suggested

a memristive Hodgkin–Huxley axon circuit model [333]. This circuit is composed by a potassium

ion channel memristor and a sodium ion channel memristor in the place of the variable resistors,

as shown in Fig. 5.10(a).
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Figure 5.10 – (a) Memristor-based Hodgkin-Huxley circuit implemented in LTSpice (VNa = −50 mV , VK = −157 mV ,
VL = −54:4 mV , RL = 3 kΩ, CM = 1 —C, I = 2 mA, tpulse = 0:1 ms and tsimulation = 40 ms ) and (b) memristors
I–V and respective model paramaters (RNa

ON = 120 Ω,RNa
OFF = 1 kΩ, RK

ON = 160 Ω, RK
OFF = 1:2 kΩ, V Na

Th = 35
mV , V Na

T l = −10 mV , V K
Th = 165 mV and V K

T l = 100 mV ).

5.3.1 Results

Preliminary studies were performed to implement the Hodgkin-Huxley neuron model in a memristor-

based circuit using LTspice. We used Pino et al. model to describe the memristors [302]. The

ON and OFF resistances of the model corresponding to the Na channel were decreased in order

to agree with its higher conductance, comparatively with the K channel (120 Ω and 1 kΩ versus

160 Ω and 1.2 kΩ). The resulting curves can be seen in in Fig. 5.10(b). Figure 5.11 shows the

dynamic evolution of the circuit with CM = 1 —F, VNa = -50 mV, VK = -157 mV, RL = 3 kΩ and VL
= -54.5 mV for a pulse stimulus of I = 2 mA over 0.1 ms. Both memristors Set (VTh ) and Reset

(VT l ) voltages were also adjusted for the Na channel (orange) to be the first to open (resistance

decrease) when the voltage starts to increase (35 mV and -10 mV versus 165 mV and 100 mV,

respectively). This is then followed by the openning of the K channel (green) and right after the

closure of the first (resistance increase) and of the second [Fig. 5.11(c)]. The output voltage

signal resembles an action potential spiking from a resting potential of around -47 mV, including

the three stages of depolarization (up to ∼ 151 mV), repolarization and hyperpolarization (down to

∼ -68 mV), with a refractory period of approximately 1 ms [Fig. 5.11(e)]. However, to satisfy this

result, the I–V response of the memristors is not typical, as can be seen in Figs. 5.10(b), 5.11(a)

and 5.11(b). This is related with the lack of flexibility of the memristor model to changes in the

parameters. Therefore, a more robust model is needed to both better describe real devices and

to satisfy the criteria giving rise to an action potential. After this, a physical circuit implementation

with memristive devices should be straightforward.
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Figure 5.11 – Dynamics evolution of the circuit with the parameter described in Fig. 5.10: (a) K+ and (b) Na+

memristors I-V response; (c) K+ (green) and Na+ (orange) memristors resistance and (d) voltages across K+

(green) and Na+ (orange) memristors and leak resistor over time; (e) input current stimulus (red; right axis) and
output action potential (blue; left axis). The inset shows the first input current pulse.

5.4 Conclusions

The fast growing machine learning field will deeply benefit from memristive devices in order to build

promising and efficient neuromorphic physical systems. The main advantages in using these new

circuit elements come from their nonvolatility, speed, nonlinear dynamics, low power and nanosize.

Memristive devices can be both implemented as digital synapses, taking advantage of their two

well separated resistance states, or as analog synapses, by using the continuous response of the

conductance on the voltage. Here we have shown that the implementation of associative memories

becomes straightforward using memristive-based architectures. In particular, we have numerically

implemented the Willshaw network. On the other hand, artificial neural network architectures can

be seen as a large number of perceptrons connected to each other. In that respect, the single-layer

memristive perceptron here presented may allow to scale devices made of memristors to complex

artificial neural networks. Besides synaptic mimicking, memristors can also be implemented for

neuron replication, as in the case of the Hodgkin-Huxley model.
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CHAPTER 6

Conclusions and Outlook

This thesis dealt with the electrical characterization of MgO and Si/Ag Metal-Insulator-Metal struc-

tures. The document can be divided in two main parts. Chapter 3 and 4 relating to experimental

results and Chapter 5 to numerical simulations.

From the Pt/MgO/Ta/Ru structure, we observed that there is the formation of TaOx at the interface,

which plays an essential role in the resistive switching behavior. The resistance change was

attributed to a voltage-driven oxygen vacancy motion in the MgO layer that leads to the formation

and rupture of conductive filaments. A multi mode operation was observed with the performance

being influenced by the polarity of the applied voltages, being the positive Set and negative Reset

mode the one with lower variability and operating voltages. The importance of the Ta electrode was

further confirmed by the comparison with a Pt top electrode, whose structure shows larger forming,

Set and Reset voltages. Furthermore, the resistive switching was changed from unipolar to bipolar

when using Ag as top electrode, revealing a change in the switching mechanism from oxygen

vacancies driven to silver ions. We inferred that the existence of a forming step is a consequence of

the deposition technique (magnetron sputtering) and the non-existence of a vacuum break after the

MgO layer deposition. We also observed increasing Set and Reset voltages in Al2O3/MgO double

layer structures for the Al2O3 thickness. A maximum initial resistance, dictated by the total oxide

layer thickness, was obtained for reliable resistive switching behavior. Using the Random Circuit

Breaker model, we observed that the thickness of the insulator layer in a metal-insulator-metal

structure mainly affects the forming voltage and not the Set or Reset ones. This implies that, after

the initial conductive filament formation, the resistive switching takes places at a thinner section

close to the interface, therefore being independent of the total thickness. The initial percentage

of defects also only affects the voltage magnitude needed for the forming step, facilitating its

occurrence.

The Si/Ag system was intensively studied using the Pt/Si/Ag/TiW stack. Resistive switching

was successfully achieved using both Si rigid substrates, and cellulose and PET flexible sub-

strates, including in the bent configuration. The observed phenomenon was explained by the

formation/rupture of metallic Ag filaments in the otherwise insulating Si host layer. Concerning the

flexible substrates, a bottom electrode of ITO on top of PET was also considered and showed lower

operation voltages than Pt. Furthermore, we used a model in the charge–flux space to describe

the current–voltage hysteretic curves. The intrinsic stochastic behavior of the resistive switch-
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ing processes was explored in the time–voltage space aiming the future replication of neuronal

stochasticity. We observed, as expected, that the longer is the input pulse duration and voltage

amplitude, the higher is the switching amplitude.

Finally, the numerical simulations enabled us to understand the behavior of memristor-based

artificial neural networks without the necessity to fabricate a physical device. The memristive

devices were implemented both as artificial synapses (in the case of the Willshaw memory and

the Perceptron) and neurons (ion channels) using the Hodgkin-Huxley model. For the first and last

cases a Spice model was used, whereas for the Perceptron, experimental data is used in Python

to described the memristor behavior. We tested the performance/tolerance of a memristor-based

Willshaw network under two types of defects. We found that stuck-at-1 defects are more amenable

and can more easily be compensated through an increase in the readout current threshold. We

also tested device parameter variations and found that device-to-device resistance variance are

more critical to control than threshold voltage variability. A memristive Perceptron was successfully

trained to classify three data cases: body height and weight (body mass index), rock and metal

(sonar), and benign and malignant breast cancer (Wisconsin database). Preliminary studies

performed in a Hodgkin-Huxley neuron model using memristors as ion channels showed an output

voltage signal resembling an action potential spike.

The work developed showed some of the possible parameters to explore in the optimization of these

type of devices and several questions were left open. Studies on the temperature dependence

of the electrical resistance and resistive switching hysteresis cycle should be performed to better

understand the conduction mechanisms involved. Also, a deeper study of the structural properties

of the stacks at different interfaces and resistance states would be fruitful. The origin of the

low resistance initial state observed for the devices on top of the flexible substrates must be

investigated.

Since CMOS processes are not optimized for the patterning of inert metals (e.g. Pt or Pd), the

effect on resistive switching of the substitution of the bottom electrode by TiN and TaN, for example,

should be pursued. After this, the downsizing of individual devices and their interconnections in

crossbar configurations should become more practical.

Aiming to take full advantage of the stochastic properties of the memristive systems to mimic

learning behaviors, the voltage-time space must be characterized and the connection with biolog-

ical components should be attempted. Furthermore, the full capacities of the bacterial cellulose

substrates may be explored from its malleability and ionic conduction when in contact with wa-

ter. This would increase the range of applications to environments with moisture (e.g. in-vivo

applications).

Regarding the implementation of the Hodgkin-Huxley neuron, memristor model improvements

are needed to better understand the parameters and therefore succeed in the mimicking of neuronal

behavior through the connection of two real metal-insulator-metal devices in the electric circuit.
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Run Sheet 
 

Shadow Mask Single junction definition 
 

Process Start    ____________________ Process Finish  ___________ 

 
 

Flexible substrate/Ti(25)/Pt(1000)/Si(200)/Ag(100)/TiW(1000) (Å) 

 

 

 

 
STEP 1 Bottom deposition Date:   /   /    

 

Machine: N3000 

 

Deposit Ti(25 Å)/Pt (1000 Å) on the substrate and check if the conductivity is good. 

 

Assist Neut: 50% subst.rot 80º subst.pan 

 

 

Assist Gun 
Power 

(W) 
 

V+ (V) 
 

I+ (mA) 
 

V- (V) 
 

I- (mA) 
Xe Flux 

(sccm) 

Set Values 100 1022 24 300 - 1.8 
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APPENDIX A

Runsheets

A.1 Shadow Mask



 2/2 
 

 
 

STEP 2 Sample preparation Date:   /   /    
 

Use physical shadow masks on top of Pt before depositing Si/Ag  

and TiW, in order to avoid chemical solutions in the process. 

 

Put kapton tape near the holes and everywhere needed to avoid  

space left between the substrate and the mask.  

 

 

 

 
STEP 3 Stack Deposition Date:   /   /    

 

Machine: Alcatel 

 

Si(200 Å)/Ag(100 Å) 

 

Power: 20 W; Ar Flux: 20 sccm; Pressure: 1.83 x10-3 Torr 

 
 
 

STEP 4 Top deposition Date:  /     /       

 
Machine:  N7000 

 
1000 Å – No N2 with 10s etching – corner covered with tape to give access to the bottom 
 
Mod 3-f.19: (TiWN2 deposition) - Power: 0.5 kW; Pressure: 3 mTorr; Flux: 50 sccm Ar + 10 sccm N2 

 

Read Values 0.5 kW 428 V 1.18 A 49.8 sccm 3.3 mTorr 
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Run Sheet 

 

Single junction definition 
 

Process Start    ____________________ Process Finish  ___________ 

 
 

Si/SiO/Ti (250)/Pt (1500) (Å) substrates 

 

->Substrate corners covered with tape to give access to the bottom 

 

 

   

 

 
STEP 1 Stack Deposition Date:   /   /    

 

 

- Si, Ag: Alcatel 

- TiW: N7000 

- MgO, Ta, Ru: N2000 

- Al2O3, Al, Cu: N3000 

 

 
 
 

STEP 2 Lithography – Top contact definition Date:   /   /     
 
 

Machine: Vacuum bake/vapour prime; photoresist tracks; DWL 
  

1) Lithography 

  

Mask: IFIMUP_Shadow.dxf  - (INVERTED)  Map:  2x2 
 
 
 
 

Origin of the die: 

X, Y = 3000, 3000 
um 

 

 

 

 

 

Energy : ______% 
Power : ____mW           Focus : ______ 

Alignment marks:  not used 

 

 

 

 

 
 

X, Y 
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Inset here the corresponding Autocad layer for this lithography step: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
2) Develop :  Recipe 6/2     Developer: TMA238WA 
 

Development parameters: 

Bake at 110°C for 60s 

Cool for 30s 

Developer for 60s 

Note:  Check the feature size and shape under the optical microscope; check if resist is in 
expected areas. Check the resist thickness using profilometer. 

 
 

 
STEP 3 Etching – Top contact definition Date:    /   /    

 
Machine:  N3600 

Total thickness to etch: ___250+50____ Å  (etch rate: ~1 Å /s  - >  time: ____300 s_____) 

Base Pressure (Torr): 2.04x10-7 Torr 

Batch: etch junction 
Recipe etch junction stack all : etch pan 60 deg 

cool_down_200s 
Assist Gun: 160W  105mA  +750V/-350V  12sccm Ar; Assist Neut: 30% subst.rot 60º subst.pan 

 
 

Assist Gun 
Power 

(W) 
 

V+ (V) 
 

I+ (mA) 
 

V- (V) 
 

I- (mA) 
Ar Flux 

(sccm) 

Set Values 190 735 105 350 - 11 

 

Read Values 201 724.3 104.2 344.8 2.3 10.2 
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STEP 5 Resist Strip Date:   /   /     

 
Machine: Chemical Workbench:  

 
Started:             Stopped:   

 
Total Time in Hot Micro-Strip : __________ Ultrassonic Time : ________________ 

 

Optical Inspection: 

 

Sample Comments 
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Run Sheet 
 

Memristor crossbar network 
 

Process Start    __________ Process Finish  ______ 

 
 
Si/SiO/Ti(250)/Pt(1500)/MgO(300)/Ta(200)/Ru(50) (Å) 
  
 

STEP 1 1st  Lithography – Bottom contact definition Date:  /   /    
 
 

Machine: Photoresist tracks; DWL 

 

1) Lithography 

Mask: Network_BOTTOM.dxf – BOTTOM (INVERTED)  Map:  AMSION 

 
 
 

Easy  Axis 

 

Origin of the die: 

X, Y = 3000, 3000 
um 

 

 

 

 

 

Energy : ______% 
Power : ____mW           Focus : ______ 

Alignment marks:  not used

 

Inset here the corresponding Autocad layer for this lithography step: 

 

 

 

 

 

 

 

 

 

 

 

 

 
2) Develop:  Recipe 6/2     Developer: TMA238WA 
 

Development parameters: 

Bake at 110°C for 60s 

Cool for 30s 

Developer for 60s 

 

 
 

X, Y 
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Note:  

Check the feature size and shape under the optical microscope; check if resist is in expected 
areas.  

Check the resist thickness using profilometer. 
 
 
 

STEP 2 1st  Ion Milling – Bottom contact definition Date:  /   /    

 
Machine:  N3600                                 

Total thickness to etch: 1750+50 Å  (etch rate: ~1 Å /s  - >  time:    1800 s ) 

Base Pressure (Torr): 2.04x10-7 Torr 

 
Standard Etching Recipe (Junction Etch):  

Recipe etch junction stack all : etch pan 45 deg    (9x 200 s) 
 cool_down_200s 

 
Assist Gun:  150W/ 735V/-350V, 105mA,   10sccm Ar; 30rpm    45º subst.pan 
 

 
Assist Gun 

Power 

(W) 

 
V+ (V) 

 
I+ (mA) 

 
V- (V) 

 
I- (mA) 

Ar Flux 

(sccm) 

Set Values 190 735 105 350 - 11 

 
Read Values 

202
.0 

724.3 104.5 344.8 2.3 10.2 

 
 
 
 

STEP 3 Resist Strip Date:  /   /    

 
Machine: Chemical Workbench:  

 
Started:                  Stopped:             

 
Total Time in Hot Micro-Strip : __________ Ultrassonic Time : ___________________ 

 

 

Optical Inspection: 

 

Sample Comments 
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STEP 4 2nd Lithography – Junction/Top Definition                  Date:  /   /    

 
 

Machine: Photoresist tracks; DWL 

 

1) Lithography 

Mask: Network_TOP.dxf – JUNCTION (NON-INVERTED)  Map:  AMSION 

 
 
Energy : ______% 
Power : ____mW           Focus : ______                                                                        Alignment marks:  __________ 

 

Inset here the corresponding Autocad layer for this lithography step: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
2) Develop:  Recipe 6/2     Developer: TMA238WA 
 

Development parameters: 

Bake at 110°C for 60s 

Cool for 30s 

Developer for 60s 

 

Note:  

Check the feature size and shape under the optical microscope; check if resist is in expected 
areas.  
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STEP 5 Stack Deposition                                                                     Date:  /   /    

  
 

Machine: N2000 

 

 

Target 
Power 

(W) 
 

I (mA) 
Ar Flux 
(sccm) 

Pressure 
(mTorr) 

Rotation 

(rpm) 

Sep 
(%) 

MgO 130 (RF) - 9 13 5 50 

Ta - 40 10 4.5 5 100 

Ru - 40 8 5 5 100 

 
 
 

STEP 6 Resist Strip                                                                     Date:  /   /    

 
Machine: Chemical Workbench  

 
Started:                  Stopped:             

 
Total Time in Hot Micro-Strip : __________ Ultrassonic Time : ___________________ 

 
 

 

Optical Inspection: 

 

Sample Comments 
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APPENDIX B

Quantitative analysis of XPS data

A useful XPS analysis is the quantification of a single element through different peaks. Since

the respective photoelectrons have different kinetic energies, they are differently attenuated when

crossing the solid and therefore the ratio of the integrated intensities between different peaks

is related to the stratification of the sample especially if their kinetic energies are quite different.

Table B.1 presents the atomic ratios that one would expect assuming the model and respective

nominal thicknesses [(MgO (30) / Ta (2) / Ru (1) (nm)], compared with the experimental atomic

ratios computed from the areas of the different XPS peaks and considering the sensitivity factors

mentioned in the experimental section.

For magnesium photoelectrons coming from the MgO layer, the expected intensities of Mg X

photoelectrons, that is Mg 2s or Mg 1s, considering atomically flat layers and neglecting any

shadow effects, should be given by Eq. B.1 that accounts for the attenuation of the photoelectrons

when crossing the different layers. Tantalum and ruthenium X photoelectrons (i.e. Ta 4d, Ta 4p3=2,

Ru 3d and Ru 3p) intensities are described by Eqs. B.2 and B.3.

IMgX ∝ [1− exp(− ‘MgO
–MgX(MgO)

)]× exp(− ‘Ta
–MgX(Ta)

)× (− ‘Ru
–MgX(Ru)

) (B.1)

ITaX ∝ [1− exp(− ‘Ta
–TaX(Ta)

)]× exp(− ‘Ru
–TaX(Ru)

) (B.2)

IRuX ∝ [1− exp(− ‘Ru
–RuX(Ru)

)] (B.3)

Table B.1 – XPS ratios expected vs. experimental.

Expected Experimental

Mg 2s/Mg 1s 72.0 1.2

Ta 4d/Ta 4p3=2 1.0 0.9

Ru 3d/Ru 3p 0.9 0.9
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where ‘MgO, ‘Ta and ‘Ru are the nominal thicknesses of the MgO, Ta and Ru layers, respectively,

and –MgX (MgO), –MgX (Ta), –MgX (Ru), –TaX (Ta), –TaX (Ru) and –RuX (Ru) are the Inelastic Mean

Free Paths (IMFP) of Mg 2s or Mg 1s, Ta 4d or Ta 4p3=2, Ru 3d or Ru 3p photoelectrons in the

different materials. IMFP of photoelectrons crossing MgO, Ta and Ru were interpolated from the

IMFP (calculated from TPP-2M equation or from optical data) reported in [334, 335].

Considering the nominal thicknesses ‘Ta and ‘Ru equal to 2 and 1 nm, respectively, the calculated

expected ratios Ta 4d/Ta 4p3=2 and Ru 3d/Ru 3p are quite close to the experimental XPS ratios.

However, since the couples of chosen photoelectrons have close kinetic energies (1257 eV and

1082 eV for Ta 4d and Ta 4p and 1207 eV and 1025 eV for Ru 3d and Ru 3p, respectively) they are

not very sensitive to the ‘Y values, Y being the material of the different layers. For the Mg 2s and

Mg 1s regions (kinetic energies are 1397 eV and 184 eV, respectively) a striking difference between

the expected and the experimental Mg 2s/Mg 1s ratios exists. The most plausible explanation is the

existence of some intermixing between Mg and the “external” layers or, alternatively, the existence

of holes in those layers. Taking into consideration that some MgO diffusion through the metallic

overlayers may occur, Eq. B.1 should be as follows:

IMgX ∝ [1− exp(− ‘MgO
–MgX(MgO)

)]× exp(− ‘Ta
–MgX(Ta)

)× (− ‘Ru
–MgX(Ru)

)

+fi [1− exp(− ‘MgOi

–MgX(MgO)
)]× exp(−(‘Ta + ‘Ru)− ‘MgOi

–X(Ta;Ru)

)

(B.4)

Being fi ratio between the intermixed magnesium and the layered one, ‘MgOi the intermixing

extent and –MgX(Ta;Ru)
a weighted average IMFP value of magnesium X photoelectrons crossing

Ta and Ru. The experimental Mg 2s/Mg 1s ratio is found for fi = 0.375 and considering a maximum

length of intermixing ‘MgOi = 3 nm.

Since the MgO layer thickness is very high compared to the Mg 1s IMFP, even when compared

to the one for Mg 2s, the expected decrease of its value when the intermixing occurs has no impact

on the estimated values.

Regarding the fraction of oxidized tantalum, the XPS spectrum shows that most of tantalum is

Ta5+. In fact the experimental atomic ratios Ta/Ru, computed, from different XPS regions (Ta 4d or

4p3=2 and Ru 3d or 3p) and considering the atomic densities 0.123, 0.092 and 0.037 mol/cm3 for

Ru, Ta and Ta2O5, respectively, shows that (72 ± 5)% of tantalum is in the Ta5+ oxidation state.

The value obtained is the average of the 4 fitted values for 4 atomic ratios (Ta 4d/Ru 3d, Ta 4d/Ru

3p, Ta 4p3=2/Ru 3d and Ta 4d/Ru 3p). Equation B.5 was used to estimate the fraction of oxidized

tantalum, fox, neglecting the impact that the oxidation has on ‘Ta
–TaX(Ta)

.The nominal thicknesses of

Ru and Ta (oxidized and not oxidized) layers, described above, were considered.

Ta

Ru
=

(1− fox)× dTa + fox × dTa2O5

dRu
×

[1− exp(− ‘Ta
–TaX(Ta)

)]× exp(− ‘Ru
–TaX(Ru)

)

[1− exp(− ‘Ru
–RuX(Ru)

)]
(B.5)



1 #RCB.py

2 ---

3

4 from ahkab import new_ac, new_op, run, devices

5 from ahkab.circuit import Circuit

6 from ahkab.plotting import plot_results # calls matplotlib for you

7 import numpy as np

8 from random import*

9

10 from PIL import Image, ImageDraw

11

12 import matplotlib.pylab as plt

13

14 from collections import Counter

15 from collections import OrderedDict

16

17

18 #V=R*I

19 Roff=1000

20 Ron=1

21 p=0.005 #% (probability of initial defects)

22 Icomp=0.5 #A (fixed in the paper)

23 Icomp2=5. #A (for the RESET and SET process)

24 #von>>voff

25 voff=0.01

26 von=0.2

27 #it was assumed the absolute value of the voltage differential for boundary conditions,

28 #since it can "switch" in either direction

29

30 #Source voltage parameters

31 Vmax=4.

32 Vmin=0.

33 deltaV=0.1

34

35 #switching ratio (for iteration to stop)

36 ratioF=20.

37 ratioR=2.

38 ratioS=2.

39

40 #MxN network

41 M=2 #rows

42 N=3 #coulmns (it counts less one column by default)

43 #for more than 20x20 to work, the value dense_matrix_limit in file options.py (line 65) was

44 #changed from 400 to 2000 because otherwise there was an error when creating the sparse matrix
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45 #n file dc_analysis.py (line 797)

46

47 #for drawing

48 s=50 #scaled up by 10

49

50 #if M=3 and N=2 and not boundary:

51 # ------------------------

52 # R1 R3

53 # R2

54 # R4 R6

55 # R5

56 # R7 R8

57 # ------------------------

58

59 #if M=3 and N=2 and boundary:

60 # ------------------------

61 # R1 R3

62 # R2 R4

63 # R5 R7

64 # R6 R8

65 # R9 R10

66 # ------------------------

67

68 #draw the circuit ----------------------------------------------------------------------------

69 def draw_circ(S,Rs,s,step,it,v,boundary):

70 """draws the circuit

71 S: simulation number

72 Rs: resistances matrix

73 s: scale

74 step: 'forming', 'set' or 'reset'

75 it: iteration number

76 v: voltage value

77 boundary: 0 for no boundary conditions and 1 for boundary conditions"""

78 # create a new pixel image surface (default is black bg)

79 if boundary:img = Image.new("RGB", (s*(N-1)+s+1, s*M+1),'#313131')

80 else:img = Image.new("RGB", (s*(N-1)+1, s*M+1),'#313131')

81 # set up the new image surface for drawing

82 draw = ImageDraw.Draw (img)

83

84 R_per_r=2*N-1 # resistors per row - N+(N-1)=2N-1

85 #R_last=R_per_r*M # last row resistor (except for last row)

86 #R_total=M*N+(M-1)*(N-1) +M-1 # total number of resistors in the systems - M*N+(M-1)*(N-1)

87 #N_per_r=N # nodes per row (+1 - name of the node)

88

89 #middle definition

90 #counters for rows and columns

91 Mc=1

92 Nc=1

93 index_counter=0

94 jump=1 #1 for vertical resistors and 0 for horizontal

95 for r in Rs: #define color

96 if r==Roff: col='#AFAFAF' #OFF resistance - black

97 elif r==Ron: col='#35DB24' #ON resistance - green

98
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99 #vertical resistors

100 if jump:

101 if Nc<=N: draw.line(((Nc-1)*s,(Mc-1)*s, (Nc-1)*s, (Mc-1)*s+s-1), fill=col,width=15)

102 if Mc<M: jump=0

103 if Mc==M: Nc+=1 #last row

104 if index_counter+1==R_per_r*Mc: #last column

105 if not boundary: #no boundary

106 Mc+=1

107 Nc=1

108 jump=1

109 else: #boundary

110 if Mc<M: jump=0

111

112 #horizontal resistors

113 #no boundary

114 elif not boundary and index_counter+1<R_per_r*Mc: #if not the last column

115 if Mc<M: draw.line(((Nc-1)*s,(Mc-1)*s+s, (Nc-1)*s+s, (Mc-1)*s+s), fill=col,width=15)

116 Nc+=1

117 jump=1

118 #boundary

119 else: #if not the last row

120 if boundary:

121 draw.line(((Nc-1)*s,(Mc-1)*s+s, (Nc-1)*s+s, (Mc-1)*s+s), fill=col,width=15)

122 Nc+=1

123 if Nc-1==N:

124 Nc=1

125 Mc+=1

126 jump=1

127

128 index_counter+=1

129

130 if boundary:

131 draw.line((0,0, s*(N-1)+s, 0), fill='#0A6AFF',width=20) #top electrode definition

132 draw.line((0, M*s, (N-1)*s+s, M*s), fill='#0A6AFF',width=20) #bottom electrode definition

133 else:

134 draw.line((0,0, s*(N-1), 0), fill='#0A6AFF',width=20) #top electrode definition

135 draw.line((0, M*s, (N-1)*s, M*s), fill='#0A6AFF',width=20) #bottom electrode definition

136 img.save("S"+str(S)+"_b_"+step+str(it)+'_'+str(v)+"V.png") #save picture

137 del img, draw

138 return None

139

140 def circ_Rs(cir,rs, boundary):

141 """Defines the existing matrix of resistances

142 cir: created circuit

143 rs: matrix of previous resistances or 0 if first iteration"""

144 if rs: #existing circuit

145 Rs_history=rs

146 Rs=rs[-1]

147 R_count=1

148 for i in range(1,M+1): #row

149 for j in range(1,N+1): #column

150 if i==1: #first row

151 cir.add_resistor('R'+str(R_count), 'n1', 'n'+str(i+j), Rs[R_count-1])

152 R_count+=1
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153 if j!=N: #horizontal - except last column

154 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n'+str(i+j+1), Rs[R_count-1])

155 R_count+=1

156 else: #last column of the first row

157 if boundary: #connecting resistor

158 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n2', Rs[R_count-1]) #boundary

159 R_count+=1

160 elif i==M: #last row - verticals only

161 if not M%2:cir.add_resistor('R'+str(R_count), 'n'+str(N*(M-2)+j+1), cir.gnd,Rs[R_count-1])

162 else: cir.add_resistor('R'+str(R_count), 'n'+str(N*(M-2)+j+1), cir.gnd, Rs[R_count-1])

163 R_count+=1

164 else:

165 cir.add_resistor('R'+str(R_count),'n'+str((i-2)*N+1+j), 'n'+str((i-1)*N+1+j),

166 Rs[R_count-1])

167 R_count+=1

168 if j!=N: #except last column

169 cir.add_resistor('R'+str(R_count), 'n'+str((i-1)*N+1+j),

170 'n'+str((i-1)*N+1+j+1), Rs[R_count-1])

171 R_count+=1

172 else:

173 if boundary: #connecting resistor

174 cir.add_resistor('R'+str(R_count), 'n'+str((i-1)*N+1+j),

175 'n'+str((i-1)*N+1+1), Rs[R_count-1]) #boundary

176 R_count+=1

177 else:

178 Rs_history=[]

179 R_count=1

180 Rs=[]

181 for i in range(1,M+1): #row

182 for j in range(1,N+1): #column

183 if i==1: #first row

184 if random()<=p:R=Ron

185 else:R=Roff

186 cir.add_resistor('R'+str(R_count), 'n1', 'n'+str(i+j), R)

187 Rs+=[R]

188 R_count+=1

189 if j!=N: #horizontal - except last column

190 if random()<=p:R=Ron

191 else:R=Roff

192 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n'+str(i+j+1), R)

193 Rs+=[R]

194 R_count+=1

195 else:

196 if boundary: #connecting resistor

197 if random()<=p:R=Ron

198 else:R=Roff

199 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n2', R) #boundary

200 Rs+=[R]

201 R_count+=1

202 elif i==M: #last row - verticals

203 if random()<=p:R=Ron

204 else:R=Roff

205 if not M%2:cir.add_resistor('R'+str(R_count), 'n'+str(N*(M-2)+j+1), cir.gnd,R)

206 else: cir.add_resistor('R'+str(R_count), 'n'+str(N*(M-2)+j+1), cir.gnd, R)
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207 Rs+=[R]

208 R_count+=1

209 else:

210 if random()<=p:R=Ron

211 else:R=Roff

212 cir.add_resistor('R'+str(R_count),'n'+str((i-2)*N+1+j), 'n'+str((i-1)*N+1+j), R)

213 Rs+=[R]

214 R_count+=1

215 if j!=N: #except last column

216 if random()<=p:R=Ron

217 else:R=Roff

218 cir.add_resistor('R'+str(R_count), 'n'+str((i-1)*N+1+j),

219 'n'+str((i-1)*N+1+j+1), R)

220 Rs+=[R]

221 R_count+=1

222 else:

223 if boundary: #connecting resistor

224 if random()<=p:R=Ron

225 else:R=Roff

226 cir.add_resistor('R'+str(R_count), 'n'+str((i-1)*N+1+j),

227 'n'+str((i-1)*N+1+1), R) #boundary

228 Rs+=[R]

229 R_count+=1

230 return cir,Rs,Rs_history

231

232 def run_circ(cir):

233 """Defines the analysis

234 cir: circuit to evaluate"""

235 dc1 = new_op()

236 res = run(cir, dc1) # run it

237 return cir,res

238

239 def I_calc(v,res,Rs,Is,Is_top,boundary):

240 """Calculates the current flowing in the circuit

241 v: voltage applied

242 res: calculated resistances in the circuit

243 Rs: matrix of resistances

244 Is: list of currents

245 Is_top: list of top currents

246 boundary: 0 for no boundary conditions and 1 for boundary conditions"""

247 #current calculation

248 I=0

249 I_top=0

250 R_count=1

251 rs_contados=[]

252 if boundary: #boundary conditions

253 for i in range(1,M+1): #row

254 for j in range(1,N+1): #column

255 if i==1 and R_count%2: #first row - verticals (odd resistors)

256 I_top+=(v-res['op']['Vn'+str(i+j)])/Rs[R_count-1]

257 rs_contados+=[R_count]

258 R_count+=2

259 elif i==M: #last row - verticals

260 I+=res['op']['Vn'+str(N*(M-2)+j+1)]/Rs[R_count-1]
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261 rs_contados+=[R_count]

262 R_count+=1

263 else:R_count+=2

264 else: #no boundary conditions

265 for i in range(1,M+1): #row

266 for j in range(1,N+1): #column

267 if i==1 and R_count%2: #first row - verticals (odd resistors)

268 I_top+=(v-res['op']['Vn'+str(i+j)])/Rs[R_count-1]

269 rs_contados+=[R_count]

270 if j!=N:R_count+=2

271 else: R_count+=1

272 elif i==M: #last row - verticals

273 I+=res['op']['Vn'+str(N*(M-2)+j+1)]/Rs[R_count-1]

274 rs_contados+=[R_count]

275 R_count+=1

276 else:

277 if j==N:R_count+=1

278 else:R_count+=2

279

280 Is+=I.tolist()[0]

281 #print 'Rini =', np.float64(0.1)/I[0][0],'ohms' #I is zero, some v would be needed

282 Is_top+=I_top.tolist()[0]

283 print 'I_top=',I_top[0][0],'A'

284 print 'I_bottom=',I[0][0],'A'

285 if abs(I_top[0][0]-I[0][0])>1e-11:raw_input('error: Different top and bottom currents')

286 return I,Is,Is_top

287

288 def ratio(v, step,Is,I,I_compare):

289 """Checks the ratio criteria for each step"""

290 if step=='forming' and len(Is)>3 and abs(Is[-1])>1e-3 and (deltaV/I_compare)/(v/I)>=ratioF:

291 I=Icomp #if the ratio is high, it is ON in principle, so it can stop

292 print 'Resistance change higher than',str(ratioF), '(Forming)'

293 elif step=='reset' and v and (v-deltaV) and abs(Is[-1])>1e-3 and

294 (v/I)/(deltaV/I_compare)>=ratioR:

295 I=Icomp #if the ratio is high, it is ON in principle, so it can stop

296 print 'Resistance change higher than',str(ratioR), '(Reset)'

297 elif step=='set' and v and (v-deltaV) and abs(Is[-1])>1e-3 and

298 (deltaV/I_compare)/(v/I)>=ratioS:

299 I=Icomp #if the ratio is high, it is ON in principle, so it can stop

300 print 'Resistance change higher than',str(ratioS), '(Set)'

301 return I,I_compare

302

303 #define the circuit and do the iterations ---------------------------------------------------

304 def circ_cal(rs,Is,S,step,Vmin,Vmax,deltaV,f,it,Ising,boundary):

305 """The actual circuit solution uses a modified version of the Newton Rhapson method.

306 rs: matrix of previous resistances or 0 if first iteration

307 Is: matrix of previous currents or 0 if first iteration

308 S: Simulation number

309 step: 'forming', 'reset' or 'set'

310 Vmin: starting voltage value

311 Vmax: ending voltage value

312 deltaV: voltage increment

313 it: iteration number

314 Ising: file name for data saving
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315 boundary: boundary conditions (1) or no boundary conditions (0) """

316 # Define the circuit

317 cir = Circuit('Circuit')

318 #Voltage source

319 voltage_step = devices.pulse(v1=0, v2=1, td=500e-9, tr=1e-12, pw=1, tf=1e-12, per=2)

320 cir.add_vsource("V1", "n1", cir.gnd, 0, 1, function=voltage_step) #0 volts

321

322 cir,Rs,Rs_history=circ_Rs(cir,rs, boundary) #Rs in place

323

324 print 'Vext = 0 V\nIteration: 0'

325 #circuit calculation

326 cir,res=run_circ(cir)

327 #currents calculation

328 Is=[]

329 Is_top=[]

330 I,Is,Is_top=I_calc(0,res,Rs,Is,Is_top,boundary)

331 #iteration drawing - before starting

332 draw_circ(S,Rs,s,step,0,0, boundary)

333 #save and clean resistances

334 Rs_history+=[Rs]

335 Rs=[]

336

337 #next iterations----------------------------------------------

338 Rs_changed=[0]*len(Rs_history[-1]) #Rs cannot switch back to OFF

339 for v in np. arange(Vmin,Vmax+deltaV,deltaV): #the first one is 0V again

340 changed=1

341 print '----------------------------------------------------------------------------------'

342 print '\nVext = '+str(v)+'V'

343 if I>=Icomp:

344 print 'Icomp reached'

345 break

346 while changed and I<Icomp:

347 it+=1

348 print 'Iteration:',it

349 print step

350 changed=0#at least one resistance must change

351 # Define the circuit

352 cir = Circuit('\nCircuit')

353 voltage_step = devices.pulse(v1=0, v2=1, td=500e-9, tr=1e-12, pw=1, tf=1e-12, per=2)

354 cir.add_vsource("V1", "n1", cir.gnd, v, 1, function=voltage_step) #v volts

355 R_count=1

356 Rs=[]

357 #all R's for all v's

358 for i in range(1,M+1): #row

359 for j in range(1,N+1): #column

360 if i==1: #first row

361 if Rs_history[-1][R_count-1]==Roff and

362 (res['op']['Vn1']-res['op']['Vn'+str(i+j)])>von:

363 R=Ron

364 print 'R',R_count,': Roff to Ron'

365 Rs_changed[R_count-1]=1 #this R cannot change again

366 changed=1 #do the rest of the circuit for the rest of Rs equal to obtain all Vs

367 elif Rs_history[-1][R_count-1]==Ron and

368 (res['op']['Vn1']-res['op']['Vn'+str(i+j)])>voff and not Rs_changed[R_count-1]:
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369 R=Roff

370 print 'R',R_count,': Ron to Roff'

371 changed=1 #do the rest of the circuit for the rest of Rs equal to obtain all Vs

372 else: R=Rs_history[-1][R_count-1] #same R

373 VV=res['op']['Vn1']-res['op']['Vn'+str(i+j)] #voltage accross R

374 cir.add_resistor('R'+str(R_count), 'n1', 'n'+str(i+j), R)

375 Rs+=[R]

376 R_count+=1

377 if j!=N: #horizontal - except last column

378 if Rs_history[-1][R_count-1]==Roff and

379 (res['op']['Vn'+str(i+j)]-res['op']['Vn'+str(i+j+1)])>von:

380 R=Ron

381 print 'R',R_count,': Roff to Ron'

382 Rs_changed[R_count-1]=1

383 changed=1

384 elif Rs_history[-1][R_count-1]==Ron and

385 (res['op']['Vn'+str(i+j)]-res['op']['Vn'+str(i+j+1)])>voff

386 and not Rs_changed[R_count-1]:

387 R=Roff

388 print 'R',R_count,': Ron to Roff'

389 changed=1

390 else: R=Rs_history[-1][R_count-1]

391 VV=res['op']['Vn'+str(i+j)]-res['op']['Vn'+str(i+j+1)]

392 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n'+str(i+j+1), R)

393 Rs+=[R]

394 R_count+=1

395 if j==N and boundary: #boundary

396 if Rs_history[-1][R_count-1]==Roff and

397 abs(res['op']['Vn'+str(i+j)]-res['op']['Vn2'])>von:

398 R=Ron

399 print 'R',R_count,': Roff to Ron'

400 Rs_changed[R_count-1]=1

401 changed=1

402 elif Rs_history[-1][R_count-1]==Ron and

403 abs(res['op']['Vn'+str(i+j)]-res['op']['Vn2'])>voff

404 and not Rs_changed[R_count-1]:

405 R=Roff

406 print 'R',R_count,': Ron to Roff'

407 changed=1

408 else: R=Rs_history[-1][R_count-1]

409 cir.add_resistor('R'+str(R_count), 'n'+str(i+j), 'n2', R)

410 Rs+=[R]

411 R_count+=1

412 elif i==M: #last row

413 point=(M-1)*N+1-N+j

414 if Rs_history[-1][R_count-1]==Roff and (res['op']['Vn'+str(point)]-[[0]])>von:

415 R=Ron

416 print 'R',R_count,': Roff to Ron'

417 Rs_changed[R_count-1]=1

418 changed=1

419 elif Rs_history[-1][R_count-1]==Ron and (res['op']['Vn'+str(point)]-[[0]])>voff

420 and not Rs_changed[R_count-1]:

421 R=Roff

422 print 'R',R_count,': Ron to Roff'
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423 changed=1

424 else: R=Rs_history[-1][R_count-1]

425 VV=(res['op']['Vn'+str(point)]-[[0]])

426 cir.add_resistor('R'+str(R_count), 'n'+str(point), cir.gnd, R)

427 Rs+=[R]

428 R_count+=1

429 else:

430 if Rs_history[-1][R_count-1]==Roff and

431 (res['op']['Vn'+str((i-2)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+j)])>von:

432 R=Ron

433 print 'R',R_count,': Roff to Ron'

434 Rs_changed[R_count-1]=1

435 changed=1

436 elif Rs_history[-1][R_count-1]==Ron and

437 (res['op']['Vn'+str((i-2)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+j)])>voff

438 and not Rs_changed[R_count-1]:

439 R=Roff

440 print 'R',R_count,': Ron to Roff'

441 changed=1

442 else: R=Rs_history[-1][R_count-1]

443 cir.add_resistor('R'+str(R_count),'n'+str((i-2)*N+1+j), 'n'+str((i-1)*N+1+j), R)

444 Rs+=[R]

445 R_count+=1

446 if j!=N: #except last column - horizontal

447 if Rs_history[-1][R_count-1]==Roff and

448 (res['op']['Vn'+str((i-1)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+j+1)])>von:

449 R=Ron

450 print 'R',R_count,': Roff to Ron'

451 Rs_changed[R_count-1]=1

452 changed=1

453 elif Rs_history[-1][R_count-1]==Ron and

454 (res['op']['Vn'+str((i-1)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+j+1)])>voff

455 and not Rs_changed[R_count-1]:

456 R=Roff

457 print 'R',R_count,': Ron to Roff'

458 changed=1

459 else: R=Rs_history[-1][R_count-1]

460 VV=res['op']['Vn'+str(i+j+1)]-res['op']['Vn'+str(i+j+2)]

461 cir.add_resistor('R'+str(R_count),

462 'n'+str((i-1)*N+1+j), 'n'+str((i-1)*N+1+j+1), R)

463 Rs+=[R]

464 R_count+=1

465 if j==N and boundary: #boundary

466 if Rs_history[-1][R_count-1]==Roff and

467 abs(res['op']['Vn'+str((i-1)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+1)])>von:

468 R=Ron

469 print 'R',R_count,': Roff to Ron'

470 Rs_changed[R_count-1]=1

471 changed=1

472 elif Rs_history[-1][R_count-1]==Ron and

473 abs(res['op']['Vn'+str((i-1)*N+1+j)]-res['op']['Vn'+str((i-1)*N+1+1)])>voff

474 and not Rs_changed[R_count-1]:

475 R=Roff

476 print 'R',R_count,': Ron to Roff'
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477 changed=1

478 else: R=Rs_history[-1][R_count-1]

479 cir.add_resistor('R'+str(R_count),

480 'n'+str((i-1)*N+1+j), 'n'+str((i-1)*N+1+1), R)

481 Rs+=[R]

482 R_count+=1

483

484 cir,res=run_circ(cir)

485

486 I,Is,Is_top=I_calc(v,res,Rs,Is,Is_top,boundary)

487

488 print 'R =', '%.3f'%(np.float64(0.1)/I[0][0]),'ohms'

489 fig=plt.figure("resistance")

490 if step=='forming':plt.plot(it,np.float64(v)/I[0][0],'ok')

491 if step=='reset':plt.plot(it,np.float64(v)/I[0][0],'xr')

492 if step=='set':plt.plot(it,np.float64(v)/I[0][0],'.b')

493 plt.xlabel('Iteration (#)')

494 plt.ylabel('Resistance (ohms)')

495 plt.legend(loc=2)

496 fig.savefig('S'+str(S)+'_Resistance(iteration)')

497

498 #update files

499 f.write(str(v)+'\t'+str(I[0][0])+'\t'+'%.3f'%(np.float64(v)/I[0][0])+'\n')

500

501 if v==deltaV: I_compare=Is[-1] #first I of each step

502 if v: I,I_compare=ratio(v, step,Is,I,I_compare) #ratio criteria

503

504 #iteration drawing

505 if I<Icomp: #don't count last iteration if >Icomp

506 if changed: draw_circ(S,Rs,s,step,it,v,boundary) #do not draw if nothing happens

507 #save and clean resistances

508 Rs_history+=[Rs]

509 Rs=[]

510

511 Ising.write(str(v)+'\t'+str(Rs_history[-1].count(Ron))+'\n') #Ising 2D

512

513 return v-deltaV,Rs_history,Is,it

514

515

516 def I_it(Is,S,it,step):

517 """Plots and saves the evolution of the current with the number of iterations

518 Is: currents

519 S: simulation number

520 it: iteration

521 step: 'forming', 'set' or 'reset'"""

522 fig=plt.figure("current")

523 if step=='comp':plt.plot(np.ones(it+2)*Icomp,'k',label='Icomp')

524 else: plt.plot(range(len(Is))+np.ones(len(Is))*it,Is,'.',label=step)

525 plt.yscale('log')

526 plt.xlabel('Iteration (#)')

527 plt.ylabel('Current (A)')

528 plt.legend(loc=2)

529 fig.savefig('S'+str(S)+'_Current(iteration)')

530 return None
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531

532 def R_it(Rs,S,it,step):

533 """Plots and saves the evolution of the current with the number of iterations

534 Rs: resistances

535 S: simulation number

536 it: iteration

537 step: 'forming', 'set' or 'reset'"""

538 fig=plt.figure("resistance")

539 plt.plot(range(len(rs))+np.ones(len(rs))*it,rs,'.',label=step)

540 plt.yscale('log')

541 plt.xlabel('Iteration (#)')

542 plt.ylabel('Resistance (ohms)')

543 plt.legend(loc=2)

544 fig.savefig('S'+str(S)+'_Resistance(iteration)')

545 return None

546

547 def plot_bars(ss,vs_f,vs_r,vs_s):

548 """Plots and saves the bar plots of the voltages

549 ss: total number of simulations

550 vs_f: forming voltages

551 vs_r: reset voltages

552 vs_s: set voltagess"""

553 #bar ploting of voltages for all simulations

554 VS_F=Counter(vs_f)

555 VS_R=Counter(vs_r)

556 VS_S=Counter(vs_s)

557 VS_F=OrderedDict(sorted(VS_F.items(), key=lambda t: t[0]))

558 VS_R=OrderedDict(sorted(VS_R.items(), key=lambda t: t[0]))

559 VS_S=OrderedDict(sorted(VS_S.items(), key=lambda t: t[0]))

560 fig=plt.figure()

561 plt.bar(VS_F.keys(),VS_F.values(),color='blue', width=0.05,label='Forming')

562 plt.bar(VS_R.keys(),VS_R.values(),color='red', width=0.05,label='Reset')

563 plt.bar(VS_S.keys(),VS_S.values(),color='black', width=0.05,label='Set')

564 plt.legend()

565 plt.xlabel('Voltage (V)')

566 plt.ylabel('# switchs')

567 fig.savefig('S='+str(ss)+'_Vs')

568

569 SAVE=open('S='+str(ss)+"bar_plot_V_forming.txt",'w')

570 SAVE.write("Voltage (V)\tRepetition\n")

571 vs=[]

572 no=[]

573 for data in VS_F.keys():

574 vs+=[data]

575 for data in VS_F.values():

576 no+=[data]

577 for ii in range(len(vs)):

578 SAVE.write(str(vs[ii])+"\t\t"+str(no[ii])+"\n")

579 SAVE.close()

580

581 SAVE=open('S='+str(ss)+"bar_plot_V_reset.txt",'w')

582 SAVE.write("Voltage (V)\tRepetition\n")

583 vs=[]

584 no=[]
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585 for data in VS_R.keys():

586 vs+=[data]

587 for data in VS_R.values():

588 no+=[data]

589 for ii in range(len(vs)):

590 SAVE.write(str(vs[ii])+"\t\t"+str(no[ii])+"\n")

591 SAVE.close()

592

593 SAVE=open('S='+str(ss)+"bar_plot_V_set.txt",'w')

594 SAVE.write("Voltage (V)\tRepetition\n")

595 vs=[]

596 no=[]

597 for data in VS_S.keys():

598 vs+=[data]

599 for data in VS_S.values():

600 no+=[data]

601 for ii in range(len(vs)):

602 SAVE.write(str(vs[ii])+"\t\t"+str(no[ii])+"\n")

603 SAVE.close()

604 return None

605

606 def files(i,boundary):

607 """Saves two files with I,R(V) and the # of ON resistors for each voltage applied

608 i: iteration number

609 boundary: boundary conditions (1) or no boundary conditions (0)"""

610 f=open('S'+str(i+1)+"I(V).txt",'w')

611 f.write("#Icomp="+str(Icomp)+'A\n')

612 f.write("Voltage\tCurrent\tResistance\n")

613 f.write("(V) \t (A) \t (ohms)\n")

614 Ising=open('RON(V)_S'+str(i)+'.txt','w')

615 if boundary: Ising.write('with boundary conditions\n')

616 else: Ising.write('without boundary conditions\n')

617 Ising.write('Total # Rs = '+str(M*N+(M-1)*(N-1) + M-1)+'\n')

618 Ising.write('Voltage\tRon\n')

619 return f,Ising

620

621 def conditions():

622 c=open("conditions.txt",'w')

623 c.write('M = '+str(M)+' V\n')

624 c.write('N = '+str(N)+' V\n')

625 c.write('Roff = '+str(Roff)+' ohms\n')

626 c.write('Ron = '+str(Ron)+' ohms\n')

627 c.write('p = '+str(p)+'\n')

628 c.write('voff = '+str(voff)+' V\n')

629 c.write('von = '+str(von)+' V\n')

630 c.write('Vmax = '+str(Vmax)+' V\n')

631 c.write('Vmin = '+str(Vmin)+' V\n')

632 c.write('deltaV = '+str(deltaV)+' V\n')

633 c.write('Icomp = '+str(Icomp)+' A\n')

634 c.write('Icomp2 = '+str(Icomp2)+' A\n')

635 c.write('ratioF = '+str(ratioF)+' V\n')

636 c.write('ratioR = '+str(ratioR)+' V\n')

637 c.write('ratioS = '+str(ratioS)+' V\n')

638 c.write('s = '+str(s)+' V\n')

166 Random Circuit Breaker



639 c.close()

640 return None

641

642 def RCB(simulations,cycles,boundary=1):

643 """Performs the Random Circuit Breaker model to a MxN resistor matrix

644 ss: number of simulations (forming-reset-set, each)

645 c: number of cycles (reset-set) for each simulation

646 boundary: boundary conditions (1) or no boundary conditions (0)"""

647 vs_f=[]

648 vs_r=[]

649 vs_s=[]

650 first=1

651 print '[',M,'x',N,'] network'

652 for i in range(simulations):

653 print '############### Simulation no.:', i+1,'/',simulations

654 f,Ising=files(i,boundary)

655 if first: #forming+first reset

656 v,rs,Is,it=circ_cal(0,0,i+1,'forming',Vmin,Vmax,deltaV,f,0,Ising,boundary)

657 first=0

658 vs_f+=[v]

659 I_it(Is,i+1,0,'forming')

660 it_previous=it #to plot starting on the previous

661 v,rs,Is,it=circ_cal(rs,Is,i+1,'reset',Vmin,Vmax,deltaV,f,it,Ising,boundary)

662 vs_r+=[v]

663 I_it(Is,i+1,it_previous+1,'reset')

664 for med in range(cycles):

665 print '\n############### Cycle no.:', med+1,'/',cycles,'(',i,')'

666 it_previous=it

667 v,rs,Is,it=circ_cal(rs,Is,i+1,'set',Vmin,Vmax,deltaV,f,it,Ising,boundary)

668 vs_s+=[v]

669 I_it(Is,i+1,it_previous,'set')

670 it_previous=it

671 v,rs,Is,it=circ_cal(rs,Is,i+1,'reset',Vmin,Vmax,deltaV,f,it,Ising,boundary)

672 vs_r+=[v]

673 I_it(Is,i+1,it_previous+1,'reset')

674 I_it(Is,i+1,it,'comp') #current compliance line plotted in the end

675 first=1

676 f.close()

677 Ising.close()

678

679 print '\n**END of iterations**'

680 print 'Switching Voltages'

681 print 'forming:', vs_f

682 print 'Resets:', vs_r

683 print 'Sets:', vs_s

684

685 plot_bars(simulations,vs_f,vs_r,vs_s) #plot the voltages and save into files

686 conditions() #save simulation conditions

687 return None
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APPENDIX D

Perceptron

To illustrate with a simple example of how a memristor-based perceptron works, a simulation

example using an algorithm written in python 2.7 is given here. The needed libraries are numpy,

matplotlib, pylab and csv. To see comments and the details of the algorithm please go to https:

//github.com/danieljosesilva/memristivenetworks. There are two possible ways to run the

code. The first is by simply running the .py file, where the simulation conditions are stated and can

be changed inside the condition if name == " main ": at the end of the file. The other

way is by creating objects and making operations, step by step, in a python shell, which gives a

deeper understanding of the algorithm. The following tutorial will help with the last one.

Opening the python shell in the directory where the .py file is located one must use the command

from perceptron import *. To import data from a .csv file or randomly generate data for the

weight/height classification example used in the main text, a class called Data was created. If an

input file (e.g. ‘data.csv’) is given, the respective init function converts the first N-1 elements

of each row of length N to floating point format and creates a dictionary between the two possible

last values (usually in the string format) and the integers 0 and 1, in order to perform calculations.

If there is no input file, a given number (npoints, set to 20 by default) of pairs (weight, height)

are randomly generated, using the BMI = 25 criteria for group separation. The function folds

separates the data into the training (training_data) and test (test_data) datasets, of sizes

(1− 1=k) and 1=k of total data size, respectively.

>>> from perceptron import *
>>> data = Data ( f i lename= ’BMI . csv ’ )

D i c t i o n a r y : { ’O ’ : 0 , ’N ’ : 1}

>>> len ( data . dataset )

46

>>> data . f o l d s ( 5 )

>>> len ( data . t r a i n i n g _ d a t a )

36

>>> len ( data . tes t_da ta )

9

The conductance variation values are given by the class SetReset, whose object loads the data of

the conductance variation as a function of the actual conductance from a .csv file (conductance

https://github.com/danieljosesilva/memristivenetworks
https://github.com/danieljosesilva/memristivenetworks
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in the first column and conductance variation in the second). Function deltaG returns the inter-

polation of the conductance variation for a given conductance. The network object is created by

the class Perceptron, initialized ( init ) by the number of input neurons (NA; 2 by default ),

the number of output neurons (NB; 1 by default ), bias constant input (1 by default) and Set and

Reset conductance change file names (`set.csv' and `reset.csv' by default, respectively). It

creates two matrices, A_memristors and B_memristors, that represents all the pairs of weights

mentioned in the last section. Empty lists to save the errors at present iteration (errors), errors

history (errorshist), weights history (Ahist and Bhist) and voltage pulses (VA and VB) are also

created.

>>> network = Perceptron (NA=2 , NB=1 , b ias =1 ,

setFileName= ’ set . csv ’ , resetFi leName= ’ rese t . csv ’ )

>>> network . A_memristors

ar ray ( [ [ 0.82141779] ,

[ 0.68005111] ,

[ 0.17115392] )

>>> network . e r r o r s

[ ]

Four remaining methods perform the perceptron training and classify operations. The first is the

train method that allows the training of the perceptron by weight actualization. The input is the

index (iteration) of the pattern (inputs and expected value) to compute in the training data list.

This method is called inside the second method trainMany that allows one to train the perceptron

under a set of data and over a given number of iterations (n_epoch). Therefore, the set of data

to train and the number of iterations are the inputs. The third is the read method, that gives

the classification of the data in the form of 0 or 1. Once more this is used in the fourth method

readMany, which updates the list errors with the number of errors for each test pattern in the list

test_data give as input. An additional method (eq_hyperplane) gives the 2D equation of the

hyperplane for visualization purposes.

>>> network . t ra inMany ( data . t r a i n i ng_da ta ,

number I te ra t ions =25 , l _ r a t e =0.1 )

epoch = 1 , l r a t e = 0.100 , e r r o r = 15

epoch = 2 , l r a t e = 0.100 , e r r o r = 16

epoch = 3 , l r a t e = 0.100 , e r r o r = 16

epoch = 4 , l r a t e = 0.100 , e r r o r = 16

epoch = 5 , l r a t e = 0.100 , e r r o r = 18

epoch = 6 , l r a t e = 0.100 , e r r o r = 10

epoch = 7 , l r a t e = 0.100 , e r r o r = 6

epoch = 8 , l r a t e = 0.100 , e r r o r = 6

epoch = 9 , l r a t e = 0.100 , e r r o r = 6

epoch = 10 , l r a t e = 0.100 , e r r o r = 6

epoch = 11 , l r a t e = 0.100 , e r r o r = 6
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epoch = 12 , l r a t e = 0.100 , e r r o r = 6

epoch = 13 , l r a t e = 0.100 , e r r o r = 6

epoch = 14 , l r a t e = 0.100 , e r r o r = 6

epoch = 15 , l r a t e = 0.100 , e r r o r = 6

epoch = 16 , l r a t e = 0.100 , e r r o r = 2

epoch = 17 , l r a t e = 0.100 , e r r o r = 0

epoch = 18 , l r a t e = 0.100 , e r r o r = 0

epoch = 19 , l r a t e = 0.100 , e r r o r = 0

epoch = 20 , l r a t e = 0.100 , e r r o r = 0

epoch = 21 , l r a t e = 0.100 , e r r o r = 0

epoch = 22 , l r a t e = 0.100 , e r r o r = 0

epoch = 23 , l r a t e = 0.100 , e r r o r = 0

epoch = 24 , l r a t e = 0.100 , e r r o r = 0

epoch = 25 , l r a t e = 0.100 , e r r o r = 0

>>> network . readMany ( data . tes t_da ta )

Correc t tes ted pa t te rns : 100.0 %

>>> network . e r r o r s

[ 0 . 0 , 0 .0 , 0 .0 , 0 .0 , 0 .0 , 0 .0 , 0 .0 , 0 .0 , 0 . 0 ]

>>> he igh t = [ i [ 0 ] [ 0 ] for i in data . dataset ]

>>> weight = [ i [ 0 ] [ 1 ] * 100 for i in data . dataset ]

>>> p l t . p l o t ( he ight , weight , ’ . ’ )

>>> p l t . p l o t ( np . arange ( 1 .55 , 2 .2 , . 2 ) ,

network . eq_hyperplane ( np . arange (

1.55 , 2 .2 , . 2 ) ) * 100 , ’−k ’ )

>>> p l t . x l a b e l ( ’ he igh t ’ )

>>> p l t . y l a b e l ( ’ weight ’ )

>>> p l t . show ( )

Other straightforward and common test to check if the algorithm is working can be performed

using the linearly separable logic gates (AND and OR, and obviously, NAND and OR). The Boolean
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functions are summarized in Table A2.1.

Table A2.1 – AND, OR, NAND and NOR logical operations.

A B A AND B A OR B A NAND B A NOR B

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 1 0 0

The proposed algorithm successful classification of these logical operations is shown in Fig.

A2.1. This shows that the memristive perceptron is able to implement logical operations, computing

binary inputs to produce a single binary output.

a b

c d

Figure A2.1 – Memristive-perceptron classification of the (a) AND, (b) OR, (c) NAND and (d) NOR logical operations.
Blue dots and red crosses represent 0’s and 1’s, respectively.



1 #memristivePerceptron.py

2 ---

3

4 import numpy as np

5 import matplotlib.pyplot as plt

6 import pylab

7 from csv import reader

8

9

10 class Data:

11

12 def __init__(self, filename=None, npoints=20):

13 self.dataset = []

14 self.training_data = []

15 self.test_data = []

16 if filename:

17 self.keys = dict()

18 with open(filename, 'r') as file:

19 csv_reader = reader(file)

20 for row in csv_reader:

21 if not row: continue

22 self.dataset.append(row)

23 for i in range(len(self.dataset[0]) - 1):

24 for row in self.dataset:

25 row[i] = float(row[i].strip())

26 column = len(self.dataset[0]) - 1

27 class_values = [row[column] for row in self.dataset]

28 unique = set(class_values)

29 for i, value in enumerate(unique):

30 self.keys[value] = i

31 for row in self.dataset:

32 row[column] = self.keys[row[column]]

33 print 'Dictionary:', self.keys

34 for i in range(len(self.dataset)):

35 self.dataset[i] = [np.array(self.dataset[i][:-1]),

36 np.array([float(self.dataset[i][-1])])]

37 else:

38 BMI = 25

39 for i in range(npoints):

40 height = np.random.uniform(1.6, 2.0)

41 group = np.random.randint(2)

42 if group:

43 arg = BMI * height * height / 100 + .05

44 weight = np.random.uniform(arg, 1.2)

45 if not group:

46 arg = BMI * height * height / 100 - .05

47 weight = np.random.uniform(.4, arg)

48 self.dataset.append([np.array([height, weight]), np.array([float(group)])])

49

50 def folds(self, kfolds):

51 i = 0

52 indexes = []

53 while i < int((1. - 1./kfolds) * len(self.dataset)):

54 k = np.random.randint(len(self.dataset))
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55 if k not in indexes:

56 indexes.append(k)

57 self.training_data.append(self.dataset[k])

58 i += 1

59 compare_data = [self.training_data[i][j].tolist() for i in range(

60 len(self.training_data)) for j in range(len(self.training_data[i]))]

61 i = 0

62 while i < int((1./kfolds) * len(self.dataset)):

63 k = np.random.randint(len(self.dataset))

64 if self.dataset[k][0].tolist() not in compare_data:

65 self.test_data.append(self.dataset[k])

66 i += 1

67

68 class SetReset:

69

70 def __init__(self, fileName, norm=1E3):

71 input = open(fileName, 'r')

72 s = input.readlines()

73 self.xDistribution = []

74 self.yDistribution = []

75 for line in s:

76 pair = line.split(',')

77 self.xDistribution.append(norm * float(pair[0]))

78 self.yDistribution.append(norm * float(pair[1]))

79 input.close()

80

81 def deltaG(self, xValue):

82 return pylab.interp(xValue, self.xDistribution, self.yDistribution)

83

84

85 class Perceptron:

86

87 def __init__(self, NA=2, NB=1, bias=1, setFileName='set.csv', resetFileName='reset.csv'):

88 self.A_memristors = np.random.rand(NA + 1, NB)

89 self.B_memristors = np.random.rand(NA + 1, NB)

90 self.Ahist = []

91 self.Bhist = []

92 self.NA = NA

93 self.NB = NB

94 self.bias = bias

95 self.errors = []

96 self.errorshist = []

97 self.set = SetReset(setFileName)

98 self.reset = SetReset(resetFileName)

99 self.VA = [[0]] * (NA + 1)

100 self.VB = [[0]] * (NA + 1)

101 self.Ahist.append(np.copy(self.A_memristors))

102 self.Bhist.append(np.copy(self.B_memristors))

103

104 def train(self, iteration, l_rate, voltSet=-1.7, voltReset=2.6):

105 inputs = np.copy(iteration)

106 inputs[0] = np.lib.pad(inputs[0], (0, 1), 'constant', constant_values=(self.bias))

107 unit_step = lambda x: 0 if x <= 0 else 1

108 result = []
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109 error = np.zeros(self.NB)

110 for i in range(self.NB):

111 result.append(np.dot(inputs[0], (self.A_memristors.T[i] - self.B_memristors.T[i])))

112 error[i] = inputs[1][i] - unit_step(result[-1])

113 er = error[i]

114 self.errors.append(er)

115 for j in range(self.NA+1):

116 idealA = self.A_memristors[j][i] + l_rate * er * inputs[0][j] / 2.

117 idealB = self.B_memristors[j][i] - l_rate * er * inputs[0][j] / 2.

118 if er > 0: #increase A, decrease B

119 cc = 1

120 while self.A_memristors[j][i] < idealA and cc < 1E3:

121 dgA = abs(self.set.deltaG(self.A_memristors[j][i]))

122 self.A_memristors[j][i] += dgA

123 self.VA[j].append(voltSet)

124 cc += 1

125 cc = 1

126 while self.B_memristors[j][i] > idealB and cc < 1E3:

127 dgB = abs(self.reset.deltaG(self.B_memristors[j][i]))

128 self.B_memristors[j][i] -= dgB

129 self.VB[j].append(voltReset)

130 cc += 1

131 if er < 0: #decrease A, increase B

132 cc = 1

133 while self.A_memristors[j][i] > idealA and cc < 1E3:

134 dgA = abs(self.reset.deltaG(self.A_memristors[j][i]))

135 self.A_memristors[j][i] -= dgA

136 self.VA[j].append(voltReset)

137 cc += 1

138 cc = 1

139 while self.B_memristors[j][i] < idealB and cc < 1E3:

140 dgB = abs(self.set.deltaG(self.B_memristors[j][i]))

141 self.B_memristors[j][i] += dgB

142 self.VB[j].append(voltSet)

143 cc += 1

144 if self.A_memristors[j][i] > 1: self.A_memristors[j][i] = 1

145 if self.A_memristors[j][i] < 0: self.A_memristors[j][i] = 0

146 if self.B_memristors[j][i] > 1: self.B_memristors[j][i] = 1

147 if self.B_memristors[j][i] < 0: self.B_memristors[j][i] = 0

148 self.Ahist.append(np.copy(self.A_memristors))

149 self.Bhist.append(np.copy(self.B_memristors))

150

151 def trainMany(self, training_data, numberIterations, l_rate):

152 for i in range(numberIterations):

153 self.errors = []

154 for j in range(len(training_data)):

155 self.train(training_data[j], l_rate, voltSet=-1.7, voltReset=2.6)

156 self.errorshist.append(np.copy(self.errors))

157 print ('>epoch = %d, lrate = %.3f, error = %d' %

158 (i+1, l_rate, sum(map(abs, self.errorshist[i]))))

159

160 def read(self,pattern):

161 pattern = np.lib.pad(pattern, (0, 1),'constant', constant_values=(self.bias))

162 unit_step = lambda x: 0 if x <= 0 else 1
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163 result = []

164 for i in range(self.NB):

165 arg = self.A_memristors.T[i] - self.B_memristors.T[i]

166 result.append(unit_step(np.dot(pattern, arg)))

167 return np.array(result)

168

169 def readMany(self,patterns):

170 self.errors = []

171 for pattern in patterns:

172 self.errors.append(sum(map(abs, (self.read(pattern[0]) - pattern[1]))))

173 arg = (len(patterns) - sum(map(abs, self.errors))) / len(patterns)

174 print 'Correct tested patterns:', arg * 100, '%'

175

176 def eq_hyperplane(self, x):

177 m = -(self.A_memristors[0] - self.B_memristors[0]) / \

178 (self.A_memristors[1] - self.B_memristors[1])

179 b = -(self.A_memristors[2] - self.B_memristors[2]) / \

180 (self.A_memristors[1] - self.B_memristors[1])

181 return m * x + b

182

183 if __name__ == "__main__":

184

185 l_rate = 0.1

186 n_epoch = 50

187 kfolds = 5 #(1-1/k) of data used for training and 1/k for test

188

189 data = Data()

190 data.folds(kfolds) #separate data

191 print 'Training points:', len(data.training_data)

192 print 'Testing points:', len(data.test_data)

193

194 network = Perceptron()

195 network.trainMany(data.training_data, n_epoch, l_rate) #training dataset

196 network.readMany(data.test_data) #test dataset

197

198 #plot dG(G)

199 plt.figure('Experimental data')

200 plt.plot(network.set.xDistribution,

201 network.set.yDistribution, '.-g', label='Set')

202 plt.plot(network.reset.xDistribution,

203 network.reset.yDistribution, 'x-r', label='Reset')

204 plt.xlabel('G (S)')

205 plt.ylabel('$\Delta$G (S)')

206 plt.xlim([0, 1])

207 plt.ticklabel_format(axis='y', style='sci', scilimits=(0, 0))

208 plt.legend()

209

210 #plot data

211 if len(data.dataset[0][0]) == 2: #2 inputs - 2D representation

212 plt.figure('BMI')

213 plt.xlabel('height (m)')

214 plt.ylabel('weight (kg)')

215

216 height_normal_training=[i[0][0]
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217 for i in data.training_data if not i[1]]

218 height_over_training=[i[0][0] for i in data.training_data if i[1]]

219 weight_normal_training=[i[0][1]*100

220 for i in data.training_data if not i[1]]

221 weight_over_training=[i[0][1]*100

222 for i in data.training_data if i[1]]

223 height_normal_test=[i[0][0] for i in data.test_data if not i[1]]

224 height_over_test=[i[0][0] for i in data.test_data if i[1]]

225 weight_normal_test=[i[0][1]*100

226 for i in data.test_data if not i[1]]

227 weight_over_test=[i[0][1]*100 for i in data.test_data if i[1]]

228 plt.plot(height_normal_training,weight_normal_training,

229 'ob', label='normal weight (training)')

230 plt.plot(height_over_training,weight_over_training,

231 'sr', label='overweight (training)')

232 plt.plot(height_normal_test,weight_normal_test, 'ob',

233 fillstyle='none', label='normal weight (test)')

234 plt.plot(height_over_test,weight_over_test, 'sr',

235 fillstyle='none', label='overweight (test)')

236

237 plt.xlim(min([i[0][0] for i in data.training_data]) - 0.05,

238 max([i[0][0] for i in data.training_data]) + 0.05)

239 plt.ylim(min([i[0][1] * 100 for i in data.training_data]) -

240 10, max([i[0][1] * 100 for i in data.training_data]) + 10)

241 plt.legend(loc='upper left')

242

243 plt.plot(np.arange(1.55, 2.2, .2), network.eq_hyperplane(

244 np.arange(1.55, 2.2, .2)) * 100, '-k')

245

246 #plot error sum

247 plt.figure('Error')

248 plt.xlabel('epoch')

249 plt.ylabel('error sum')

250 plt.xlim([1, n_epoch + 1])

251 plt.plot(np.arange(1, n_epoch + 1),

252 [sum(map(abs, i)) for i in network.errorshist], '.-b')

253

254 #plot weights

255 if len(data.dataset[0][0]) == 2: #2 inputs

256 plt.figure('weights')

257 plt.xlabel('iteration')

258 for i in range(len(network.Ahist)):

259 for j in range(network.NA + 1):

260 plt.subplot(((network.NA + 1) * 2 + 1) * 100 + 10 + 2 * j + 1)

261 plt.plot(i,network.Ahist[i][j], '.r')

262 plt.ylabel('wA'+str(j + 1))

263 plt.ylim([0, 1])

264 plt.xticks([])

265 plt.yticks(np.arange(0, 1 + 0.25, 0.25))

266 if j == network.NA: plt.ylabel('wAb')

267 plt.subplot(((network.NA+1) * 2 + 1) * 100 + 10 + 2 * j + 2)

268 plt.plot(i,network.Bhist[i][j], '.b')

269 plt.ylabel('wB'+str(j + 1))

270 plt.ylim([0, 1])
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271 plt.xticks([])

272 plt.yticks(np.arange(0, 1 + 0.25, 0.25))

273 if j == network.NA: plt.ylabel('wBb')

274 plt.subplot((len(network.Ahist[0]) * 2 + 1) * 100 + 10 +

275 (len(network.Ahist[0]) * 2 + 1))

276 plt.ylabel('error')

277 plt.xlabel('iteration')

278 plt.ylim([-1, 1])

279 plt.yticks([-1, 0, 1])

280 plt.xlim([0, n_epoch * len(data.training_data)])

281 cc= 1

282 for i in range(n_epoch):

283 for j in range(len(data.training_data)):

284 plt.bar(cc - 1, network.errorshist[i][j])

285 cc += 1

286

287 #plot pulses

288 if len(data.dataset[0][0]) == 2: #2 inputs

289 plt.figure('pulses')

290 for i in range(network.NA + 1):

291 plt.subplot((network.NA + 1) * 2 * 100 + 10 + 2 * i + 1)

292 plt.plot(np.arange(len(network.VA[i])), network.VA[i], 'r')

293 plt.ylabel('VA'+str(i + 1))

294 plt.xticks([])

295 plt.yticks([min(network.VA[i]), 0, max(network.VA[i])])

296 if j == network.NA: plt.ylabel('VAb')

297 plt.subplot(len(network.Ahist[0]) * 2 * 100 + 10 + 2 * i + 2)

298 plt.plot(np.arange(len(network.VB[i])), network.VB[i], 'b')

299 plt.ylabel('VB'+str(i + 1))

300 if not i == network.NA: plt.xticks([])

301 plt.yticks([min(network.VA[i]), 0, max(network.VA[i])])

302 if j == network.NA: plt.ylabel('VBb')

303 if i == network.NA: plt.xlabel('pulse number')

304

305 plt.show()
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