10 research outputs found

    RRAM Based Random Bit Generation for Hardware Security Applications

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Resistive random access memories (RRAMs) have arisen as a competitive candidate for non-volatile memories due to their scalability, simple structure, fast switching speed and compatibility with conventional back-end processes. The stochastic switching mechanism and intrinsic variability of RRAMs still poses challenges that must be overcome prior to their massive memory commercialization. However, these very same features open a wide range of potential applications for these devices in hardware security. In this context, this work proposes the generation of a random bit by means of simultaneous write operation of two parallel cells so that only one of them unpredictably switches its state. Electrical simulations confirm the strong stochastic behavior and stability of the proposed primitive. Exploiting this fact, a Physical Unclonable Function (PUF) like primitive is implemented based on modified 1 transistor - 1 resistor (1T1R) array structure.Peer ReviewedPostprint (published version

    Optical Systems Identification through Rayleigh Backscattering

    Get PDF
    : We introduce a technique to generate and read the digital signature of the networks, channels, and optical devices that possess the fiber-optic pigtails to enhance physical layer security (PLS). Attributing a signature to the networks or devices eases the identification and authentication of networks and systems thus reducing their vulnerability to physical and digital attacks. The signatures are generated using an optical physical unclonable function (OPUF). Considering that OPUFs are established as the most potent anti-counterfeiting tool, the created signatures are robust against malicious attacks such as tampering and cyber attacks. We investigate Rayleigh backscattering signal (RBS) as a strong OPUF to generate reliable signatures. Contrary to other OPUFs that must be fabricated, the RBS-based OPUF is an inherent feature of fibers and can be easily obtained using optical frequency domain reflectometry (OFDR). We evaluate the security of the generated signatures in terms of their robustness against prediction and cloning. We demonstrate the robustness of signatures against digital and physical attacks confirming the unpredictability and unclonability features of the generated signatures. We explore signature cyber security by considering the random structure of the produced signatures. To demonstrate signature reproducibility through repeated measurements, we simulate the signature of a system by adding a random Gaussian white noise to the signal. This model is proposed to address services including security, authentication, identification, and monitoring

    Emerging physical unclonable functions with nanotechnology

    Get PDF
    Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs

    Highly Reliable Memory-based Physical Unclonable Function Using Spin-Transfer Torque MRAM

    No full text
    10.1109/ISCAS.2014.6865598IEEE International Symposium on Circuits and Systems (ISCAS)2169-217

    Highly reliable memory-based physical unclonable function using spin-transfer torque MRAM

    No full text
    In recent years, Physical Unclonable Function (PUF) based on the inimitable and unpredictable disorder of physical devices has emerged to address security issues related to cryptographic key generation. In this paper, a novel memory-based PUF based on Spin-Transfer Torque (STT) Magnetic RAM, named as STT-PUF, is proposed as a key generation primitive for embedded computing systems. By comparing the resistances of STT-MRAM memory cells which are initialized to the same state, response bits can be generated by exploiting the inherent random mismatches between them. To enhance the robustness of response bits regeneration, an Automatic Write-Back (AWB) technique is proposed without compromising the resilience of STT-PUF against possible attacks. Simulations show that the proposed STT-PUF is able to produce raw response bits with uniqueness of 50.1% and entropy of 0.985 bit per cell. The worst-case Bit-Error Rate (BER) under varying operating conditions is 6.6 × 10-6.Accepted versio

    Model Building and Security Analysis of PUF-Based Authentication

    Get PDF
    In the context of hardware systems, authentication refers to the process of confirming the identity and authenticity of chip, board and system components such as RFID tags, smart cards and remote sensors. The ability of physical unclonable functions (PUF) to provide bitstrings unique to each component can be leveraged as an authentication mechanism to detect tamper, impersonation and substitution of such components. However, authentication requires a strong PUF, i.e., one capable of producing a large, unique set of bits per device, and, unlike secret key generation for encryption, has additional challenges that relate to machine learning attacks, protocol attacks and constraints on device resources. We describe the requirements for PUF-based authentication, and present a PUF primitive and protocol designed for authentication in resource constrained devices. Our experimental results are derived from a 28 nm Xilinx FPGA. In the authentication scenario, strong PUFs are required since the adversary could collect a subset of challenges and response pairsto build a model and predict the responses for unseen challenges. Therefore, strong PUFs need to provide exponentially large challenge space and be resilient to model building attacks. We investigate the security properties of a Hardware-embedded Delay PUF called HELP which leverages within-die variations in path delays within a hardware-implemented macro (functional unit) as the entropy source. Several features of the HELP processing engine significantly improve its resistance to model-building attacks. We also investigate a novel technique that significantly improves the statistically quality of the generated bitstring for HELP. Stability across environmental variations such as temperature and voltage, is critically important for Physically Unclonable Functions (PUFs). Nearly all existing PUF systems to date need a mechanism to deal with “bit flips” when exact regeneration of the bitstring is required, e.g., for cryptographic applications. Error correction (ECC) and error avoidance schemes have been proposed but both of these require helper data to be stored for the regeneration process. Unfortunately, helper data adds time and area overhead to the PUF system and provides opportunities for adversaries to reverse engineer the secret bitstring. We propose a non-volatile memory-based (NVM) PUF that is able to avoid bit flips without requiring any type of helper data. We describe the technique in the context of emerging nano-devices, in particular, resistive random access memory (Memristor) cells, but the methodology is applicable to any type of NVM including Flash

    A PUF based Lightweight Hardware Security Architecture for IoT

    Get PDF
    With an increasing number of hand-held electronics, gadgets, and other smart devices, data is present in a large number of platforms, thereby increasing the risk of security, privacy, and safety breach than ever before. Due to the extreme lightweight nature of these devices, commonly referred to as IoT or `Internet of Things\u27, providing any kind of security is prohibitive due to high overhead associated with any traditional and mathematically robust cryptographic techniques. Therefore, researchers have searched for alternative intuitive solutions for such devices. Hardware security, unlike traditional cryptography, can provide unique device-specific security solutions with little overhead, address vulnerability in hardware and, therefore, are attractive in this domain. As Moore\u27s law is almost at its end, different emerging devices are being explored more by researchers as they present opportunities to build better application-specific devices along with their challenges compared to CMOS technology. In this work, we have proposed emerging nanotechnology-based hardware security as a security solution for resource constrained IoT domain. Specifically, we have built two hardware security primitives i.e. physical unclonable function (PUF) and true random number generator (TRNG) and used these components as part of a security protocol proposed in this work as well. Both PUF and TRNG are built from metal-oxide memristors, an emerging nanoscale device and are generally lightweight compared to their CMOS counterparts in terms of area, power, and delay. Design challenges associated with designing these hardware security primitives and with memristive devices are properly addressed. Finally, a complete security protocol is proposed where all of these different pieces come together to provide a practical, robust, and device-specific security for resource-limited IoT systems

    Statistical evaluation of PUF implementation techniques as applied to quantum confinement semiconductors

    Get PDF
    Physically unclonable functions, or PUFs, present a means to securely identify objects, both implicit and attached, alongside several uses in conventional secure communication techniques. Many types of PUF based on varying sources of fingerprint entropy have been suggested, and the higher-level theoretical properties and implications of this primitive have been extensively discussed. However, each different prospective implementation of PUF typically approaches the practical considerations for the conversion from a unique entropy source to ultimate PUF implementation anew. These studies typically treat the intermediate processing schema, such as response binning, solely as a means to an end rather than a subject of explicit discussion and evaluation. As such, there exist few studies into developing a general framework for the optimisation and simulation of the important elements that lie between the measurement of the particular entropy source and the evaluation of the final device as a whole. This thesis seeks to outline and validate a generalised schema for the conversion of entropy source to final results, presenting the fundamental design elements and figures of merit for the process at every stage where applicable. Further to this, each stage of the process is expressed analytically, allowing the direct derivation of the ultimate figures of merit based on the measurement outcomes of the initial source of entropy. To validate, this process is applied towards the resonant tunnelling diode (RTD) as the prospective entropic unit cell. This type of semiconductor device has several properties that make it an interesting candidate upon which to base a PUF, and this work additionally seeks to outline these benefits and enumerate the general comparative figures of merit for a PUF derived therefrom

    Nano-intrinsic security primitives for internet of everything

    Get PDF
    With the advent of Internet-enabled electronic devices and mobile computer systems, maintaining data security is one of the most important challenges in modern civilization. The innovation of physically unclonable functions (PUFs) shows great potential for enabling low-cost low-power authentication, anti-counterfeiting and beyond on the semiconductor chips. This is because secrets in a PUF are hidden in the randomness of the physical properties of desirably identical devices, making it extremely difficult, if not impossible, to extract them. Hence, the basic idea of PUF is to take advantage of inevitable non-idealities in the physical domain to create a system that can provide an innovative way to secure device identities, sensitive information, and their communications. While the physical variation exists everywhere, various materials, systems, and technologies have been considered as the source of unpredictable physical device variation in large scales for generating security primitives. The purpose of this project is to develop emerging solid-state memory-based security primitives and examine their robustness as well as feasibility. Firstly, the author gives an extensive overview of PUFs. The rationality, classification, and application of PUF are discussed. To objectively compare the quality of PUFs, the author formulates important PUF properties and evaluation metrics. By reviewing previously proposed constructions ranging from conventional standard complementary metal-oxide-semiconductor (CMOS) components to emerging non-volatile memories, the quality of different PUFs classes are discussed and summarized. Through a comparative analysis, emerging non-volatile redox-based resistor memories (ReRAMs) have shown the potential as promising candidates for the next generation of low-cost, low-power, compact in size, and secure PUF. Next, the author presents novel approaches to build a PUF by utilizing concatenated two layers of ReRAM crossbar arrays. Upon concatenate two layers, the nonlinear structure is introduced, and this results in the improved uniformity and the avalanche characteristic of the proposed PUF. A group of cell readout method is employed, and it supports a massive pool of challenge-response pairs of the nonlinear ReRAM-based PUF. The non-linear PUF construction is experimentally assessed using the evaluation metrics, and the quality of randomness is verified using predictive analysis. Last but not least, random telegraph noise (RTN) is studied as a source of entropy for a true random number generation (TRNG). RTN is usually considered a disadvantageous feature in the conventional CMOS designs. However, in combination with appropriate readout scheme, RTN in ReRAM can be used as a novel technique to generate quality random numbers. The proposed differential readout-based design can maintain the quality of output by reducing the effect of the undesired noise from the whole system, while the controlling difficulty of the conventional readout method can be significantly reduced. This is advantageous as the differential readout circuit can embrace the resistance variation features of ReRAMs without extensive pre-calibration. The study in this thesis has the potential to enable the development of cost-efficient and lightweight security primitives that can be integrated into modern computer mobile systems and devices for providing a high level of security

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within
    corecore