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Abstract

With an increasing number of hand-held electronics, gadgets, and other smart devices,

data is present in a large number of platforms, thereby increasing the risk of security,

privacy, and safety breach than ever before. Due to the extreme lightweight nature of these

devices, commonly referred to as IoT or ‘Internet of Things’, providing any kind of security

is prohibitive due to high overhead associated with any traditional and mathematically

robust cryptographic techniques. Therefore, researchers have searched for alternative

intuitive solutions for such devices. Hardware security, unlike traditional cryptography, can

provide unique device-specific security solutions with little overhead, address vulnerability

in hardware and, therefore, are attractive in this domain.

As Moore’s law is almost at its end, different emerging devices are being explored

more by researchers as they present opportunities to build better application specific

devices along with their challenges compared to CMOS technology. In this work, we have

proposed emerging nanotechnology based hardware security as a security solution for resource

constrained IoT domain. Specifically, we have built two hardware security primitives i.e.

physical unclonable function (PUF) and true random number generator (TRNG) and used

these components as part of a security protocol proposed in this work as well. Both PUF

and TRNG are built from metal oxide memristors, an emerging nanoscale device and are

generally lightweight compared to their CMOS counterparts in terms of area, power, and

delay. Design challenges associated with designing these hardware security primitives and

with memristive devices are properly addressed. Finally, a complete security protocol is

proposed where all of these different pieces come together to provide a practical, robust, and

device-specific security for resource-limited IoT systems.
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Chapter 1

Introduction

1.1 Motivation

Traditional cryptography has been providing security solution for decades and are mathe-

matically robust but they introduce a large overhead to a system. For a large system, this

overhead may be negligible but with the emergence of smart devices and small embedded

systems i.e. Internet of Things (IoT), there is a growing need of providing security for these

extremely resource limited systems. As traditional cryptography or software based security is

impractical due to their heavy overhead, innovative solution using hardware based security

are becoming more and more important. Physical unclonable function (PUF) [53] is a

hardware security primitive that has been a highly researched topic in the past 20 years (since

2001). PUF can generate random, unique hardware-specific signatures that can be used in

many security applications and thus researchers have proposed hundreds of different PUFs.

On the other hand, with Moore’s law [50] neared to its end since early 2000s, several new

emerging technologies are being explored extensively. Among those, metal-oxide memristors

[63] are very promising because of their non-volatility, CMOS integration, low read/write

energy, high on-off ratio, usability in both logic and memory circuits. Thus the future is

going towards post-CMOS era where these novel nano-devices like memristors would be in

use in a lot of electronic designs and hardware based security solutions would be necessary

for these billions of smart small devices. Thus there is a growing need for development of

hardware security primitives like PUFs using emerging nano-devices like memristors. These
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novel devices and hardware specific security measures introduce different forms of challenges

and thus the research scope is huge in this domain.

1.2 Research Goal and Summary

The goal of this work is to develop a very lightweight hardware security architecture for

resource constrained IoT domain leveraging the solutions and opportunities provided by

emerging nanoscale devices.

The research is specifically focused greatly on the design and analysis of a hardware

security primitive called the PUF. The PUF itself is built from memristors. The memristor

itself is an emerging nano-device with a high manufacturing variability which is used as

the source of entropy for the memristive PUF circuits that we have used in this work.

The initial work is focused on improving a practical model of HfO2 memristor by including

environmental effects and aging on its characteristics. Then a detailed device and circuit level

parameter exploration based on security and overhead performance of memristive PUF is

performed. A machine learning based modeling attack is also implemented on this PUF and

further circuit level modification is done to mitigate this vulnerability. Different peripheral

circuits, especially memristor’s read-write-form circuity and a practical sense amplifier for

memristor PUF is also designed. Besides, another hardware security primitive called true

random number generator (TRNG) is also designed from memristor and is shown to be robust

against environmental changes compared to existing designs. Finally, a complete security

architecture is built from memristor based PUF, TRNG, and RRAM (resistive random access

memory). Memristor PUF along with our designed reliability enhancement technique is used

to provide secret and unique key to a resource-limited embedded or IoT system to provide

robust security for its back-up data at the absence or scarcity of power.

1.3 Original Contributions

The original contributions of my doctoral work until now are listed below:
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• Environmental modeling of HfO2 memristors, specifically inclusion of temperature

change, aging, and also stochasticity in its characteristics

• Security analysis of memristor crossbar PUF against varying device parameters, size

and temperature

• Scalability and overhead analysis of memristor crossbar PUF

• Design of abstract model for memristor and memristor crossbar PUF and application

of machine learning based modeling attack on PUFs

• Successful demonstration of modeling attack on memristor crossbar PUF and circuit

redesign to improve robustness against machine learning based attacks

• Design of a practical sense amplifier for memristor based PUFs and read-write-form

circuitry for memristors

• Comprehensive theoretical analysis of memristor based true random number generator

(TRNG) and designing an improved twin memristor based TRNG

• Design and analysis of a run-time reliability enhancement technique for memristor

crossbar PUF

• A complete security protocol and transistor level architecture design for resource-

constrained IoT or embedded processors

1.4 Dissertation Overview

This dissertation is divided into six chapters. Chapter 1 or this chapter provides some

context about the research and lists out original contributions of my doctoral work. Chapter

2 provides background on emerging nanoscale devices like memristors, and hardware security

primitive like PUF and TRNG. Chapter 3 introduces circuit design works for memristor

XbarPUF, different peripheral circuits (e.g. sense amplifier) for XbarPUF, the TRNG and

analyzed against manufacturing process variation and environmental changes. Chapter

4 provides a thorough design analysis of XbarPUF and also analyzes its robustness or

3



vulnerability against machine learning based algorithms along with mitigation techniques

against these attacks. Chapter 5 uses all the designed components and knowledge so far to

provide a robust and lightweight hardware security protocol and architecture to secure the

non-volatile memory of an embedded processor or IoT device. Finally, chapter 6 provides a

summary of the works done for this dissertation and future work extensions are discussed.
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Chapter 2

Background

2.1 Internet of Things (IoT)

The internet of things or IoT has been a buzzword for the past few years as the world has seen

a rapid growth in this domain. IoT generally refers to embedded devices, sensors etc. which

can gather data, send information via a channel or the internet to somewhere else to make a

decision based on its gathered data. Smart home appliances, smart medical devices, smart

automotive, sensor devices that can communicate, connected embedded processors. etc. all

can be considered as IoT. In most cases, IoT devices are interconnected in an environment

and share data with each other to ease making decisions. For example, in a smart home,

many different such devices like smart smart bulb, thermostats, refrigerator, microwave oven,

fans etc. can be controlled via a smartphone which ease the way of our life. This is illustrated

in Figure 2.1 [68, 58]. IoT is the fastest growing field in the world right now, with global

spending expected to cross 1.4 trillion by the end of this year (2020). In 2019, there were

more than 26 billions IoT devices worldwide and the number is expected to reach 75 billions

within the next 6 years, by 2025 [17].

With all the ease and comfort IoT brings to us, there are some serious potential risks

involved with it. IoT devices often store our data to help make decisions for ourselves but

that data might be sensitive if it leaks out. Since there are billions of IoT devices out there,

with our data being stored and processed on a number of such devices, with communication

via internet or other potentially less secure networks, IoT are posing a huge security, privacy,
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Figure 2.1: The Internet of things (IoT) [68]

and safety risks. Specifically smart medical implants and automotive devices can cause safety

concerns while private data storage media and smartphones can create privacy risks. Among

all these, security could be the main concern as because of its fast growing nature along with

its very low cost production, security was not thought of as an essential feature. At the early

stages of IoT, many argue that maybe these devices may not need security at all since the

information they carry are so little or insignificant like someone’s preferred room temperature

or state of a fan or bulb. However, with the rapid increase of IoT, these devices find their

way into many applications in our everyday life and process our data. Now that billions

of these devices are everywhere with little to no security in them despite containing a huge

amount of data, makes them the main target for an attacker. Therefore, governments and

industries alike are concerned about the security of these devices and this is one of main

research topics now.

One of big difficulties applying security mechanism is the resource constrained nature

of such devices. Most of these devices are tiny with a very small silicon footprint, and
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consuming a very little amount of power to run their operations. Some of these devices

are employed in places where it requires them to strengthen their life as much as possible

by draining as less energy as possible from their batteries. Pacemaker is one such example

where you don’t want it to run out of energy of often, requiring another tiresome and difficult

heart operation very soon to replace that device. Many sensor devices are employed in field

where they can be deployed for years and thus may depend on the harvested energy for most

of their life. Embedded processors in such devices often employ aggressive energy saving

techniques, going to a low power mode i.e. sleep or hibernation to save power. Employed

embedded processors might spend most of their life in such sleep or hibernation to extend

their battery life or to minimize the amount of power they harvest from different energy

sources like solar, WiFi, wind etc. Therefore, The processor usually shuts off power to most

of its components while using a little (or even zero) amount of energy to maintain its state.

Since IoT devices are often resource limited this way, this makes it very difficult to

employ any rigorous security since they might require a good amount of silicon area and

power that these devices can’t provide. Any traditional cryptographic solution are thus

often impractical for most devices in this domain. Lightweight cryptographic techniques

are being developed but even those can be very resource heavy for a low power embedded

processor or a small smart sensor. Moreover, employing the same security techniques with

billions of such devices out there might make all of them vulnerable at once on the event

of an attack, This are some of the main reasons why researchers are looking at alternative

techniques like hardware security which would provide the required practical level of security,

while complying with the limited resources of such devices.

2.2 Emerging Nanoscale Technology: Memristor

2.2.1 Emerging Devices

With the slow-down of Moore’s law as we are approaching the physical limit of CMOS,

researchers have developed a number of different post-CMOS devices. Among these, some

technologies like NAND or NOR flash are more mature and have already found real-world
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applications. However, there are a number of emerging devices especially nano-devices which

are being researched with the goal of replacing conventional CMOS. International Technology

Roadmap for Semiconductors (ITRS) has published and listed the most promising emerging

technologies in their report in 2013 [2] and in 2015 [3]. These devices offer various advantages

over traditional CMOS while but there is a need for a lot more research to overcome their

limitations and use them effectively in current infrastructure.

Memory based on ferroelectric properties of matters have been known for many years and

FeRAM (Ferroelectric RAM) is already being considered a mature technology. However, to

overcome the shortcomings of FeRAM like destructive read and low read stability, other

devices built from ferroelectric materials are being considered. Ferroelectric transistors or

FEFET [3, 14] is one such device which is very similar to conventional except the oxide layer

is replaced by a ferroelectric layer which helps to retain its state using residual polarization

even when the power is disconnected. The polarization of the ferroelectric can be controlled

by applying voltage at the metal gate contact. By applying voltage or electric field of

sufficient magnitude, the magnetization in the ferroelectric layer is altered. The current

or capacitance of the this ferroelectric FET shows a typical hysteresis loop if the applied

voltage at the gate terminal is swept through a range. Even if the electric field is removed, a

sufficient residual polarization remains in the ferroelectric and, therefore, this system can be

used as a non-volatile 1-bit memory. Doped HfOx is the most promising material that offers

ferroeletricity. FEFET offers high speed, low power, non-volatility, full CMOS compatibility

but has relatively high switching voltage and low endurance. Ferroelectric tunnel function or

FTJ is another emerging device built from ferroelectric layer sandwiched between two metal

layers which is ultra-thin and thus displays tunneling electroresistance (TER) even at room

temperature for some complex ferroelectric oxides [2].

Phase change memory (PCM) [19] is another emerging device which displays resistive

switching behavior. Its basic mechanism is Joule heating which transforms the internal state

of a matter between crystalline and amorphous states. The resistivity of a PCM is high when

the underlying material is in amorphous state and is low when it is in a crystalline state.

Chalcogenide materials display this phase change property at relatively low temperature of

around 6000C. Both of these phases are stable at room temperature, thereby enabling them
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to function as non-volatile memories. The physics of PCM is very well-understood compared

to many other emerging devices. It offers high speed, high on/off ratio, long endurance but

suffers from high switching current as well as limited scalability mainly due to the size of

the access device required.

Spin-transfer-toque RAM or STT-RAM is another promising emerging memory technol-

ogy based on traditional MRAM (magnetoresistive RAM). The memory cell of an MRAM

consists of a magnetic tunnel junctions (MTJ) along with a regular MOSFET as the access

transistor. A thin tunnel insulator, such as MgO (magnesium oxide) is sandwiched between

two ferromagnetic layers to create an MTJ. One of the two layers has a fixed magnetic

polarization, called as the ‘fixed layer’. The other layer is called the ‘free layer’ and its

magnetization can be easily rotated. When the polarization of these two magnetic layers

are in the same direction i.e. parallel, the resistance of the cell is low and is considered a

binary value of ‘1’. When the magnetic orientation is anti-parallel between these two layers,

the resistance is higher. Write is performed by passing a current through both of these

layers to change the magnetization of the free with respect to the fixed layer. The writing

current and energy of a traditional MRAM is very high, thereby limiting their scalability.

STT-RAM tries to improves upon this problem by using a low energy spin-torque action

for write. It induces a spin-aligned current to control the magnetization of the free layer,

reducing the current density compared to MRAM. MRAMs have very high switching speed,

data retention, and endurance. However, STT-RAM suffers from small on/off resistance

ratio and sensitive to fabrication process.

Redox (reduction-oxidation) based RAM or resistive RAM (RRAM), also known as

memristors are a class of metal oxides which can display resistance switching among different

states [19]. The basic structure of a ReAM is a thin oxide film between two metal electrodes.

RRAM can be created from a variety of materials and composition. Perovskite oxides or

binary oxides both can work as RRAM. CB-RAM or conductive-bridge RAMs are another

class of RRAM where reative electrode supplies mobile ions to migrate across the dielectric

to form a conducting path during on state. However, typically considered RRAM operate

differently, by creating oxygen vacancies and in the oxide layer. They can be bipolar or non-

polar (current in both or one direction for switching). There are even volatile memristors
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which when programmed spontaneously reset back to its high resistance state. RRAM have

fast switching speed, low energy, good endurance, retention time but suffers from reliability

and larger process variation. Also, the device physics of RRAM is also not well-understood

yet. Many RRAMs require an initial forming step where an initial high electric field is applied

to initiate this switching behavior. Researchers are also trying to reduce this required forming

voltage and create ‘forming-free’ RRAM which would reduce the circuit design complexity.

Besides these technologies, there are carbon based memory memory devices like carbon

nanotubes and graphene based FET, Mott memory, molecular memory and so on [2]. All of

these different technologies provide some advantages over existing techniques while showing

some challenges in some others, thus there is a need for further research in device engineering,

infrastructure building, and finding suitable applications.

2.2.2 Memristor

Introduction

Memristor or RRAM is one of the most promising nanoscale devices of the last decade

or so that is being explored extensively due to its several advantages over traditional

CMOS. Although the term could mean a number of different resistance switching devices

as mentioned earlier, we would only mean metal-oxide memristors, specifically those from

transition metal-oxides (TMO) throughout this book when we use this term. Memristors are

usually non-volatile where the resistance of an insulating oxide can be altered between high

and low resistances states via the application of an external field. The physics of metal-oxide

memristors are different compared to its close counterpart like CBRAM (conductive-bridge

RAM) or phase-change memory. In a memristor, the number of oxygen vacancies created

inside the insulating dielectric oxide is the source of conduction. Memristors display typical

hysteresis in their I-V curve as shown in Figure 2.2 below along with its common symbol

notation. Researchers have shown the use of memristors in many different applications

ranging from memory devices, logic circuits [61, 20], neuromorphic computing, hardware

security [57, 26] and so on.
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Figure 2.2: Memristor symbol (left) and its IV curve showing hysteresis (right)

History

The term ‘memristor’ is coined by Professor Dr. Leon Chua in his 1971 paper [15] when he

predicted the presence of a fourth fundamental circuit element alongside resistor, capacitor,

and inductor. He predicted this from the relationship among voltage, current, flux, and

charge among the fundamental devices and later also projected some other characteristics of

memristors or memristor-like devices [16].

The relationship between the flux linkage δφ and δq is expressed as the memristance (M),

the property of a new fundamental circuit element, memristor. It can be implied that at

a certain time, the memristance defines a linear relationship between voltage and current

just like a resistor. Thus, memristor can actually be represented as a variable resistor. This

relationships are shown in these equations below:

M =
∆φ

∆q
(2.1)

=
∆φ/∆t

∆q/∆t
=

∆v

∆i
(2.2)

=⇒ ∆v = (M)∆i

Although, metal-oxide based switching devices are well-known for many years, memristors

only have gained attention after a research team from Hewlett-Packard lab published a paper

where the tie the characteristics of a TiO2 MIM (metal-oxide-metal) device to that of an
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Chua memristor in 2008 [63]. After that, memristors have gained a massive attention and

a lot of research effort is ongoing for its device engineering, fabrication techniques, and a

broad range of applications.

Memristor Characteristics

As mentioned earlier, we are considering transition metal-oxides which are non-volatile, and

bi-polar. They show different resistive or memristive states i.e. memristors show hysteresis

in their I-V characteristics as shown in Figure 2.2. Binary memristors have two stable

resistive states, called the high resistance state (HRS) and the low resistance state (LRS).

HRS and LRS are also known as OFF and ON states, respectively as well. Each of these two

states can be reached by applying a voltage of appropriate magnitude and duration across

a memristor. The minimum magnitude and duration of voltage applied across a memristor

to reach LRS from HRS are called the set voltage or positive threshold voltage (Vthp), and

positive switching time (tswp), respectively. On the other hand, the minimum magnitude

and duration of voltage required to go to HRS from LRS are called the reset voltage or

negative threshold voltage (Vthn), and negative switching time (tswn), respectively. These

six parameters HRS, LRS, Vthp, Vthn, tswp, and tswn define the high level characteristics of

a binary memristor.

Metal-oxide memristors are usually CMOS (complimentary metal-oxide semiconductor)

compatible, can be fabricated on the back-end of the silicon together with CMOS on front.

The size of a memristor is also very small (a few nanometers) which makes them an attractive

choice for many applications.

The physics of memristors are not fully understood yet as memristive properties vary a

lot depending on the type of oxide as well as the conductive materials used. The thickness

and area of these materials, current limiting devices etc. control the memristive parameters.

Thus different memristors reported in literature vary a quite a bit from each other in their

resistive states, operating voltages and speed of operation. TiOx, HfOx, TaOx are among

of the most promising memristor devices because of their high on/off ratio, speed, retention

time, endurance, and CMOS compatibility. Moreover, their switching process is stochastic

and thus, memristors display cycle-to-cycle variation in their characteristics which makes it
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challenging for circuit designers. Techniques are being explored to confine the characteristics

of a memristor and make their switching operation much more consistent to reduce variability.

2.3 Hardware Security as IoT Security

Usually for any system, security choices can be divided into two broad categories, software

and hardware. Software security usually refers to some algorithmic implementation of

mathematically rigorous encryption or hash functions. They algorithms are usually very

robust and hard to break, providing practically the best security for a system. However,

these algorithms usually take many clock cycles for their implementation and thus also

consume a larger amount of power. Therefore, implementing them for a small system where

area, power and delay are very limited, can be impractical. As these systems have limited

power budget, small in size and sometimes real-time in nature (and thus small delay), any

security add-on must have very low overhead but these rigorous algorithms fail to fulfill that

criteria. That’s where hardware security comes.

2.3.1 Traditional Security: Cryptography

Cryptography is the technique of securing a data communication in the presence of an

adversary. Usually using some kind of a key, cryptography allows a message to be encoded

in such a way that only the intended receiver with the correct key would be able to decode

the message. Cryptoghaphy has been used in human history for a long time including

Caesar cipher, polyalphabetic cipher, Vigenére cipher etc. In the computer era, modern

day cryptography is much more secure and based on rigorous mathematical analysis where

a brute force attack would take an incredibly huge amount of time which is not possible

in practice. Cryptography can be classified into two broad categories: symmetric key and

public key cryptography. In a symmetric key cryptography, the same key is used for both

encryption and decryption, easing the hardware implementation while being very secure.

AES (advanced encryption standard), DES (data encryption standard), triple DES are

examples of symmetric key cryptography. Public key or asymmetric key cryptography, on

the other hand, relies on two keys: one public key and one private key. One key is known
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to all and anyone can use to encrypt his/her message. The private key is only known to the

intended receiver and only he/she can decrypt that message using this key. RSA (Rivest-

Shamir-Adleman) is the most well-know public key cryotographic alogorith. While this is

very secure, main disadvantage is the associated huge resource overhead. Thus while AES are

used everywhere for secure data communication, RSA is only used for secure key exchange

or digital signature.

Besides securing data communication, cryptography is also used to verify the authenticity

of received data by means of a hash. A hash function is any algorithm can convert a large

message to a fixed-length token of that message. Simple hash includes checksum, parity check

etc. which can find bit-errors and thus verify the authenticity of the data. Cryotographic

hash functions are one-way functions that fulfills some crytographic requirements like: pre-

image and second pre-image resistance, collision resistance, despite the hash being easy to

computer. The basic idea is that it should be very difficult to find two messages with the

same hash given either the hash or the message and almost half of the bits of the hash should

change if just one bit of the data is changed. Popular cryptographic hash algorithms include

MD5, SHA-1, SHA-2, SHA-3 etc. All these hash algorithms are computationally expensive.

Algorithms like AES, RSA etc. are based on discrete mathematics with brute force

attack resistance in billions of years of computing resources. However, when these algorithms

are implemented on an embedded platform, the hardware can leak information like power

consumption, delay in different stages of the algorithm runs. In fact, researchers have

shown that these side-channels like power, timing, sound, EM (electromagnetic emission)

can be used to perform so-called side-channel attack to break the security of cryptographic

algorithms. For example, using simple (SPA) and differential power analysis (DPA) of

side channel power, security of AES implemented on an embedded microcontroller can be

broken [30, 31]. Fault injection is another very effective technique to attack otherwise secure

cryptographic implementations [5]. Probing attacks [76] or EM attacks [1] can also be

performed to read the stored secret keys to break a cryptographic algorithm as well.

Thus, although traditional cryptography is theoretically secure, their security can be

compromised using the vulnerability of the underlying hardware implementations. Moreover,

because these algorithms are mathematically rigorous, their resource requirement i.e. power,
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area, and delay overhead are high. Therefore, researchers have worked on lightweight

implementations of these algorithms as well as different new lightweight algorithms like

SIMON, Piccolo, KATAN, PRESENT etc. [43] to tackle this issue. However, in the era

of IoT, there are now billions of devices being produced each year and most of those are

extremely resource limited, running on a battery or harvested energy alone. Therefore,

traditional cryptographic algorithms would be either impractical or too resource hungry for

these of types of devices.

2.3.2 Introduction to Hardware Security

We now know that even mathematically secure algorithms can be broken by exploiting the

vulnerability in their hardware implementations. Moreover, IP piracy, reverse engineering,

counterfeit etc. cause losses on the order of billions of dollars each year. Software based

security solutions are not enough to prevent an adversary from copying a design and

reproduce illegally. Therefore, researchers have been working on different hardware level

modifications which improves the security of an IC and restrict overproduction, recycling,

or counterfeit products on the market. Hardware security refers to any such technique

that uses the hardware and modifies it to provide security solutions. Usually these

techniques are specific to some particular security threat. For example, logic encryption and

IC camouflaging techniques significantly reduce an adversary’s ability to reverse-engineer

a design, thereby mitigating piracy and counterfeit. Thus, hardware security provides

innovative solutions to improve security of a device which may otherwise be vulnerable.

Two very common hardware security primitives are physical unclonable function and true

random number generator. They can generate hardware specific truly random keys that is

otherwise impossible to generate from software alone.

2.3.3 Physical Unclonable Function (PUF)

Physically unclonable function or PUF is a hardware security primitive that exploit

tiny variations among the chips with same functional implementation and use that

variation to generate hardware specific signatures. These intrinsic variations originate from
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uncontrollable manufacturing process variation and PUFs try to enlarge these variations

to generate keys unique to that hardware only. Thus PUFs are usually represented as a

challenge-response system where the challenge (C) is the input to the PUF that is used to

extract process variation from a hardware and response (R) is the output key generated from

that hardware using that PUF.

In this sense, PUF is analogous to a mathematical one-way function. One-way function

is any function which is very easy to evaluate in one direction, but very hard to compute in

reverse. For example, multiplication of two large prime numbers to get a composite number

is easy, however factoring that composite number to get its prime factors is not straight-

forward and usually time-consuming. Thus applying a challenge to a PUF to generate its

response is easy but determining the tiniest process variations that cause a particular PUF

to generate a particular response is not very difficult to determine. Just like a software based

security like encryption or hash algorithms use mathematical one-way function to implement

the algorithms and thus ensure security, PUF based hardware security are essentially a low

cost and natural way of implementing the same concept. Pappu et .al . first demonstrated a

physical one-way function using variation in scattering pattern in [53] which later known as

physical unclonable function or PUF. A PUF has to fulfill these requirements: (1) the PUF

response must be raondom, (2) the process variation must not uncontrollable, and (3) PUF

functionality or underlying process variation is unclonable.

Previous Relevant Works on PUF

Traditional cryptographic algorithms depend on some mathematical one-way function to

provide security. However, most commonly used one-way functions are either based on

unproven conjectures or have practical vulnerabilities in their implementations. To overcome

these issues of algorithmic one-way functions, Pappu et .al . first proposed a physical one-way

function (POWF) in 2001 [53] which relies on simultaneous multiple scattering from in-

homogeneous structure to implement the one-way function.

Later in 2002, Gassend et .al . proposed a silicon physical random function and coined the

term ‘PUF’ [21]. It was the first PUF implemented in silicon using electrical properties which

is path delay in this case. Since then, many researchers have worked on many variations
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and implementations of PUF. Arbiter PUF or APUF can be considered the first electrical

PUF and the most well-studied PUF [34, 35], proposed in early few years after the POWF

was established. APUF utilizes variation in propagation delay due to manufacturing process

variation of two identically laid out circuits to implement PUF functionality [66]. Figure 2.3

shows a high level block diagram of an arbiter PUF. Here, two-input/two-output switches

are chained together to create a circuit with two identical but separate path for a signal

to propagate through. Process variations dictate that a single input signal will propagate

through one path faster than the other. An arbiter or flip-flop is then used to compare that

delay differences and a response is generated.

For an n-challenge arbiter PUF, each path consists of n such identically laid out two

input/two output switches. Each switch has one selector input - one bit of the challenge.

If the challenge bit is 0, then the path is straight-through and if the challenge bit is 1, the

path is criss-crossed. Figure 2.4 (left two) shows the logical diagram of such a switch. This

switch can be implemented easily by a pair of multiplexers (MUXes) as shown in Figure 2.4

(right). The two multiplexers share the same selector signal which is one bit of the challenge

set. If it is 0, then input ‘a’ goes to output ‘y1’ and input ‘b’ to ‘y2’. If it is an 1, then ‘a’

goes to ‘y2’ and ‘b’ goes to ‘y1’, thus implementing this switch.

At the end of the signal propagation, an arbiter is used to determine which path is faster

compared to the other. A D latch or a D flip-flop can be used as the arbiter. The two arbiter

PUF paths are connected to the ‘D’ and ‘clock’ input. If the first path (‘D’) is faster, the

PUF response is 1, otherwise it is 0. Thus the arbiter converts the analog delay difference

into digital signatures.

Figure 2.3: Arbiter PUF
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Figure 2.4: Two input/two output switch (left two) and its simple implementation with
two MUXes (right)

Ring-oscillator PUF (RO-PUF) [65] is another very commonly used PUF, which can be

easily implemented in both ASIC (Application Specific Integrated Circuit) and FPGA (Field

Programmable Gate Array). A ring oscillator is a long chain of odd number of inverters

connected in a ring such that the output oscillates between high and low voltage level, as

shown in Figure 2.5. Thus a ring oscillator configuration can create a particular frequency

where the clock period is sum of all individual delays of the inverters in the chain. Due to

inherent process variation, the inverters would have slightly different delays and thus two

identically laid out ring oscillators would have slightly different frequencies. A counter and

comparator can be used to measure the difference between these two frequencies and convert

into digital signatures. An RO-PUF is shown in Figure 2.6.

Both the arbiter PUF and RO-PUF are delay based PUFs since they use electrical delay

as the property to implement PUF functionality. Any other electrical properties that are

subject to uncontrollable process variation can be used to build a PUF. In an SRAM (static

random access memory) PUF [22], random initial state of each SRAM cell during power-up

is used to generate PUF signatures. In each SRAM cell, there is a cross-coupled inverter

pair which are identical by design. During power-up when there are no externally exerted

signal to an SRAM cell, due to slight voltage difference arising from parametric variation of

these transistors would be amplified by cross-coupled inverter action and thus would show a

tendency towards logic ‘1’ (high) or ‘0’ (low). Thus all the SRAM cells in a memory would

give such random initial values during start-up which can be used as a signature of that chip.
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Figure 2.5: Ring oscillator: a chain of an odd number of inverters

Figure 2.6: A ring oscillator PUF

Since CMOS scaling has become very slow in recent years, researchers have been looking

for alternative technologies to provide application specific unique solutions. These emerging

devices display switching variations and can be exploited to implement different memory

based PUFs like memristor PUF [32], STT-MRAM (Spin transfer torque magnetic random

access memory) PUF [83], PCM (Phase change memory) based re-configurable PUF [84] etc.

Memristor based PUF

A simple PUF based on the stochastic switching time of a memristor is first proposed in Rose

et .al . in [60]. Memristors display stochastic switching behavior i.e. even if the same voltage,

greater than its threshold voltage is applied to a memristor, it may or may not switch. First

a mean switching time of a set of memristors are evaluated and then that a voltage is applied

equal to the duration of that mean switching time to have a 50% switching probability. This

is named as write-time based memristive PUF (WTMPUF) [59] which was later fabricated
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and demonstrated experimentally in [45]. Kavehei et .al . demonstrated a PUF which use

both memristors and ring oscillators, called the mrPUF [27].

Since WTMPUF uses absolute write-time of memristors as the source of entropy to

implement a PUF, it could be subject to errors due to environmental changes. Since

relative nature of measurement of APUF and RO-PUF make them robust against such

environmental variations, a memristor PUF circuit built from a crossbar array of memristors

where relative write-time of a pair of memristors are compared to generate a PUF response

[57]. This memristor crossbar PUF or the XbarPUF [57] use a read-monitored-write approach

developed in [42] to implement a PUF challenge and thus gradually nudge the memristors

from one memristive state to another before one memristor column reaches to the other state

faster than its adjacent column of memristors. Just like an arbiter PUF, this XbarPUF also

uses an arbiter to determine which crossbar column of memristors were faster in its pair and

as soon as read-monitored-write approach completes a complete write (transition from one

state to another), a response is generated. Thus this PUF generates a complete response

when all the crossbar column pairs are resolved. This XbarPUF shows a huge improvement

in area in terms of transistor count compared to CMOS PUF (APUF) and its uniqueness

and uniformity are very close to the ideal value of 50%. However, the biggest concern about

PUF, the reliability metric wasn’t reported in this work and data to generate these other

results do not directly comply with any particular memristor. Therefore, my first work was

to gather data from a HfO2 memristor to build more a more realistic model and evaluate

the XbarPUF performance using this real data.

PUF Performance Metrics

In order to gauge the degree of security provided by a PUF and to be able to fairly compare

it with other PUF implementations, standardized performance metrics have been devised.

Maiti et al. [39] and Hori et al. [23] have discussed several metrics to quantify a PUF’s

performance. The major six metrics are: uniqueness, reliability, bit-aliasing, uniformity,

steadiness, and diffuseness. As shown in Figure 2.7, these metrics are used to quantify a

PUF’s performance across multiple device dimensions: inter-chip space, intra-chip space, and
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Figure 2.7: Standard metrics used for the evaluation of a PUF

time. They have become standards in hardware security research everywhere to quantify a

PUF’s performance.

1) Uniqueness: It is a measure of a PUF’s ability to produce a unique ID in terms of its

challenge-response pairs which are a specific function of its implementation on a given chip.

To be able to efficiently distinguish every IC chip (from other equivalent ones) with a PUF

circuit, the uniqueness must be tending to 50. That means, for a given challenge set, almost

half the responses produced by two PUFs should be different from each other. Uniqueness

or also known as inter-chip hamming distance is defined as:

Uniqueness(%) = 100 ∗ 2

Nchips.(Nchips − 1)

Nchips−1∑
i=1

Nchips∑
j=i+1

ri ⊕ rj, (2.3)

for each response bit and each challenge set, where Nchips is the number of PUFs or chips to

be measured, respi and respj are responses from the i-th and j-th chip respectively.

2) Uniformity: Another PUF performance metric which measures a PUF’s ability to

produce distinct responses across a set of challenges is the uniformity. With the flipping

of even a single bit of the challenge, nearly half of the response bits are expected to flip.

Effectively, uniformity is a measure of the ratio of 0’s and 1’s across the whole of the response

set of the PUF. A PUF with poor uniformity would allow the attacker to reduce the possible

response space and get a better prediction. This metric is defined as:
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Uniformity(%) = 100 ∗ 1

Nchallenges

Nchallenges∑
c=1

respc, (2.4)

for each response bit and each chip, where Nchallenges is the number of challenges applied to

a single PUF and rc is the response for c-th challenge.

3) Reliability: Also represented as intra-chip hamming distance, this metric quantifies a

PUF’s consistency over time. If a PUF is unable to produce the same response every time for

a given challenge, then the PUF is considered unreliable and may require error-correction.

Reliability, as a metric is defined as:

Reliability(%) = 100− 100 ∗ 2

Ncycles.(Ncycles − 1)

Ncycles−1∑
t=1

Ncycles∑
it=t+1

respt ⊕ respit, (2.5)

per response bit and chip, where Ncycles is the number of times of applying a challenge and

measuring a response.

4) Bit-Aliasing: Different PUFs might produce similar responses for certain challenges.

This would decrease the unpredictability of the PUF. Bit aliasing measures the average

hamming distance for the k-th response bit of different PUFs. This metric is defined as:

BitAliasingk(%) = 100 ∗ 1

Nchips

Nchips∑
m=1

respk,m, (2.6)

for each bit k of a response.

5) Diffuseness: The same PUF should generate different uncorrelated responses if different

challenges are applied, especially for PUFs with large CRPs. Diffuseness measures this degree

of different among different responses generated from a single PUF for different challenges.

Diffuseness is evaluated by measuring the hamming distance among all different response

vectors generated by a single chip and is defined below:

Diffuseness(%) =
1

Nbits

4

N2
chips

Nbits∑
bit=0

Nchips−1∑
i=1

Nchips∑
j=i+1

respi,bit ⊕ respj,bit (2.7)
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6) Steadiness: When the same challenge is applied to a PUF, the response should be the

same ideally. However, this is not the case for a practical PUF. Similar to the reliability

metric, steadiness measures if there is any bias of a PUF response bit towards a particular

binary value (0 or 1) over a certain number of evaluations. For Nchal different Nbits-bit PUF

response evaluated over Ncycles times each, the overall steadiness is defined as [23]:

Steadiness(%) = 100 ∗ (1 +
1

NchalNbits

Nchal∑
i=1

Nbits∑
bit=1

log2max(pi,bit, 1− pi,bit)) (2.8)

where the term pi,j represents the percentage of bias of a particular bit towards 1 over of

a response vector evaluated many times using the same challenge. This is defined as:

pi,bit =
1

Nchal

Nchal∑
t=1

respi,t,bit (2.9)

Another important metric when PUF is being used for authentication purposes is the

probability of misidentification as defined in [64, 39]. Since we’ll be using our PUF mainly

as a key generator which requires more reliable PUF, this metric is omitted here and bit-error

rate is measured instead.

Modeling Attack Resistance

Robustness against machine learning based modeling attack PUF provides an unique way

of generating signature from the hardware itself utilizing manufacturing process variation.

Although complex, PUF, especially delay based PUFs can be expressed as a sum of individual

delays of many smaller circuit blocks along the path of the response generation unit of

the PUF. Thus researchers have argued that any PUF is potentially vulnerable to machine

learning based modeling attacks [62, 36, 78]. Specifically, an adversary can collect a subset of

all the challenge-response pairs of a PUF and can build a numerical model using a machine

learning algorithm to predict the binary outcome of the response bit(s). Rühmair et al.

showed in [62] that an arbiter PUF (APUF) [66] and its variants could be broken with

more than 99% accuracy using algorithms like logistic regression and evolution strategies.

While different variants of APUF could take more time to train, they are still breakable

with an increased number of CRPs. In this work, we have collected a small subset of all
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possible CRPs of an XbarPUF and developed algorithms to perform machine learning based

modeling attacks. Our implemented attack model is also found to be roughly 99% successful

in predicting an XbarPUF outcome, although the modified XbarPUF architecture shows

resistance against the same attack model with accuracy being around 50-60% only.

2.3.4 True Random Number Generator (TRNG)

Introduction to TRNG

TRNG is a very important hardware security primitive which is the only way a device can

get truly random numbers as the name suggests. In most cryptographic applications, there

is a need for secret key. Usually these keys are generated from the software using from some

complex algorithms. However, software generated keys can be at best pseudo-random in

nature and in some applications, there is needs for truly random numbers as well. TRNG

can produce a stream of completely random bits, using some naturally occurring random

phenomena. In our IoT security architecture, during each encryption operation, we need to

provide the XbarPUF with a truly random key. TRNG usually harness randomness from a

random and stochastic physical phenomena from the hardware or the circuit itself.

PRNG vs. TRNG

PRNG or pseudo random number generator produces a random sequence of numbers from

the software itself. It usually requires an initial seed which dictates the output. If the

seed is the same, PRNG produces the same sequence of numbers. Cryptographically secure

TRNGs are useful for many cryptographic applications where a pseudo random number is

good enough and also there is a need to regenerate the same sequence of random numbers.

A TRNG, on the other hand, are not suitable for such applications because it is not possible

to regenerate the same sequence of output. Thus PRNG and TRNG serve two different

purposes and their application space is, therefore, different as well.
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TRNG Sources

TRNG output must be free from the influence of environmental variation and process

variation. The source of randomness or entropy for a TRNG should be a truly random

phenomenon i.e. the probability or producing a ‘0’ or ‘1’ should be equal. Any temperature

or supply voltage variation shouldn’t affect the output. Process variation should also have a

minimal effect as to have a better yield from the design as well. Many naturally stochastic

phenomena like clock jitter, random telegraph noise (RTN), thermal noise, metastable state,

quantum state etc. can be harnessed to build a TRNG. Figure 2.8 shows some of these

sources that are available in an electrical circuit.

Memristor based TRNG

Memristor’s switching is intrinsically a stochastic process. Researchers have thus explored

different memristive devices too to build good TRNGs as found in literature [79, 26]. Due to

probabilistic switching behavior, memrsitors display variation in its memristive states from

from one clock cycle to another [52]. This variation is useful to build other hardware security

primitives [79, 40, 71] as well. In [79], random distribution of memristors’s high and low

resistive states based on the switching time is used to design the MTRNG (memristor-based

TRNG). Researchers have also utilized a differential readout scheme to harvest the random

telegraph noise or RTN in a memristor along with LFSR (linear feedback shift register) to

implement a TRNG in [28]. The differential nature of this circuit design improves resilience

against temperature and supply voltage variation. Switching variability in memristor’s

set process is extracted to generate true random numbers in [4]. In [26], authors have

designed an improved TRNG utilizing the random switching time of a diffusive memristor

as the source of entropy and is shown to be able to produce true random numbers without

any post-processing. This diffusive memristor is different than regular metal-oxide non-

volatile memristors, does not require forming and reverts to its high resistance state from

low resistance state spontaneously. However, this self-OFF switching (≈ 1ms) makes the

switching processing slow and thus these memristors are volatile.
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Figure 2.8: TRNG sources: clock jitter, noise, metastability
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Chapter 3

Design and Analysis of Fundamental

Hardware Security Components

3.1 Memristor Crossbar PUF

3.1.1 Introduction to HfO2 Memristor

The HfO2 memristor technology considered for this research was designed and fabricated

at the SUNY Polytechnic Institue, Center for Semiconductor Research (CSR) [8]. A

cross-section of this device is shown in Figure 3.1. Memristors were integrated with IBM

65nm 10Lpe CMOS process on a 300mm wafer platform with CMOS at the front-end and

memristive metal layers at the back-end. Memristors are places between metal-1 (M1) and

metal-2 (M2) layers. Here, standard copper M1 layer was replaced by tungsten (W) layer

because of its high boiling point to withstand high temperature during back-end CMOS

process and an additional via (W-V1) was used between the memristive oxide layer and

the M1 tungsten layer. M2 is still copper (Cu). A thin film of hafnium oxide (HfO2) layer

was deposited between these two metal layers using a precise atomic layer deposition (ALD)

technique by using front-end-of-the-line (FEOL) tools before altering the composition of M2

and V1 layers. This metal-oxide is the active switching layer for the memristive device. A Ti

(titanium) is just on top of the oxide layer, works as a oxygen-getter while an TiN (titanium
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Figure 3.1: Illustration (left) and TEM (transmission electron microscopy) image (right)
of a hafnium-oxide memristor embedded between the M1 and M2 layers. In addition, the
Illustration depicts a seamless integrated 1 memristor 1 transistor (1M1T) structure where
the transistor acts as the current limiting device [8, 69].

nitride) layer is used as the inert top electrode with via V2 and M2 layers (both Cu) work

as the top contact.

3.1.2 Environmental Modeling of a HfO2 Memristor

Existing Model with Variability Taken into Account

The memristor model used for all the simulation works in this research was adapted from the

model proposed by McDonald et. al. in [47]. Although this original model is more generic

and could represent a wide variety of memristors, in our work, we are specifically concerned

with bipolar memristor. Mostly binary metal oxide memristors are bipolar and although

there are many different types of memristors, in throughout this work, we only mean bipolar

binary or transition metal-oxide (TMO) when we use the word ‘memristor’.

As discussed in last chapter, the binary memristor has two stable resistive states: LRS

(low resistance state) and HRS (high resistance state). These two states can be reached by

applying voltage greater than the corresponding positive or negative threshold voltages with

duration greater than the corresponding positive or negative switching times. This model

increments or decrements the memristance gradually when the applied voltage is greater

than the threshold voltage. According to the model, when the voltage applied across a
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memristor is greater than the positive threshold, the memristor starts to transition to LRS

from HRS in each step using this equation:

M(ti+1) = M(ti)−
∆r∆t

∣∣V (ti+1)
∣∣

tswpVtp
, (3.1)

which is the set (HRS to LRS) operation. During the reset (LRS to HRS) operation, the

memristance is changed using this equation:

M(ti+1) = M(ti) +
∆r∆t

∣∣V (ti+1)
∣∣

tswnVtn
, (3.2)

where Mti is the memristance at time instant ti, V (t) is the applied voltage across the

memristor at time instant ti, ∆r is the absolute resistance difference between HRS and LRS,

∆t is the simulation step-size, Vtp (Vtn) is the minimum threshold voltages needed to switch

the memristor’s state, where tswp and tswn are the minimum time for a full set or reset,

respectively, when bias voltage is equal to the respective threshold voltage. Figure 3.2 shows

IV plot of a HfO2 memristor fabricated on the SUNY-Poly and a simulated IV plot using

this model. It is worth noting that the bend at the top right side of the actual data plot in

Figure 3.2 (left figure) is due to a current limiting transistor used during SET operation to

prevent the device from destroying itself which is not used in simulation plot (right).

As can be seen in Figure 3.2, the IV plot doesn’t follow a single path, but instead

show a lot of variation from one cycle to another cycle because of the inherent stochastic

switching mechanism of a memristor. Therefore, to have a realistic memristor model, this

stochasticity must be incorporated in that model. This is done by considering the memristor’s

parameters as Gaussian random variable with mean and standard deviation coming from

device statistics. We have used different sets of cycle-to-cycle variation (2%, 5%, 10% etc.)

to incorporate these randomness into our model.

As an emerging technology, memristors also display a large amount of process variation

from one device to another. The OFF resistance or HRS and the on resistance or the LRS

are the parameters that show large variation [55] and we have considered larger standard

deviation for them. Other parameters like threshold voltage, Vtp and Vtn, and switching

times, tswp and tswn show smaller variation compared to resistive states. The mean and
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Figure 3.2: IV measurements of a memristor (left) and simulated IV characteristics using
our memristor model (right) [69].

standard deviation considered for this work are listed in Table 3.1, taken from data generated

at SUNY-Poly and also from literature [8, 55]. These values are not exhaustive and they

depend heavily on a particular process for a particular memristor material and there are

hundred sets of different values reported in literature.

Inclusion of Temperature Dependence

To realize any device in a electrical circuit, its dependence on temperature and other

environmental variation must be taken into account to ensure reliable operations. For

a transition metal-oxide, the LRS acts much like metal and shows positive temperature

coefficient i.e. its resistance increases with increasing temperature [8]. The HRS, on

the other hand behaves much like a semiconductor and thus its value decreases with

increasing temperature [11]. Moreover, HRS decreases faster than LRS increases with

temperature. Since HRS decreases and LRS increases with increasing temperature, the

margin of separation between them decreases which may result in a reduced read/write

margin in circuit level. Threshold voltage either change slowly with temperature [75] or do

not show any noticeable change [11]. These changes are either linear or can be approximated

as linear changes with temperature in the range (00C - 1000C) of temperature that we

considered for this work. Equation 3.3 shows this relationship [69].
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Table 3.1: Mean and standard deviation for device level parameters of a HfO2 memristor
considered in this work [69]

Parameters HRS LRS Vtp Vtn tswp tswn

Mean 300KΩ 30KΩ 0.7V -1.0V 1µs 1µs
Standard deviation 20% 10% 5% 5% 5% 5%

Table 3.2: Temperature coefficients for different memristor parameters [69]

αLRS αHRS αV tp αV tn
0.004 -0.008 -0.001 0.0008

Xθ = Xref [1 + αX(Tθ − Tref )], (3.3)

where ‘X’ represents any of the four parameters: HRS, LRS, Vtp or Vtn, αX is the

temperature coefficient (per 0C) of that parameter and ‘T’ represents temperature. Room

temperature (300K) has been considered as the reference temperature. The values of

temperature coefficients that we calculated using data from literature are listed in Table

3.2. The negative value of temperature coefficient indicates that parameter decreases

with increasing temperature and higher absolute value of that parameter indicates stronger

temperature dependence. Since we have found any data connecting the switching times with

the temperature change directly and thus haven’t included any dependence of switching time

with temperature in our memristor switching model.

Inclusion of Aging

Another important device non-ideal characteristics is aging or limited endurance. Many

different types of aging is observed in literature [55, 7, 9]. In case of worst case aging for

memristors, both HRS and LRS display aging where distribution of HRS increases with

time and LRS distribution increases with time. Thus the effect result of aging is reduced

HRS/LRS or OFF/ON ratio. We approximated linear aging rate, with HRS being aged

faster than LRS. This is demonstrated in Figure 3.3. It should be noted that this aging rate

can also vary a lot across different processes and materials.
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Figure 3.3: Simulated effect of (worst case) aging on both HRS and LRS of a memristor
over time [69].

3.1.3 Working Principle of XbarPUF

The memristor crossbar PUF or the XbarPUF proposed in [57] uses a dense 2-D array of

memristors to implement a strong PUF with potentially arbitrary number of challenges and

responses. A circuit diagram of such an XbarPUF is shown in Figure 3.4 [72]. This is an

updated version of XbarPUF from [57] with XORing included. In an XbarPUF, challenges

are applied on the rows while responses are taken from the columns. For an N×M XbarPUF

i.e. an XbarPUF with N challenges and M responses, its memristor crossbar size would be

2N×2M. For each challenge bit, there are two crossbar rows while for each response bit,

there are two columns.

Before apply any challenges to the XbarPUF, a negative write voltage, Vreset, greater than

the memristor’s negative threshold voltage, Vtn is applied for a sufficient amount of time (at

least more than tswn) to reset all the memristors in the crossbar to HRS. Then depending on

each challenge bit, a true challenge voltage is applied on each row while an inverted challenge

voltage is applied on the corresponding adjacent row. If the challenge bit is high, then it

drives all the memristors of that row towards LRS from HRS while the memristors with the

inverted challenge remain at HRS. The opposite scenario happens if the challenge bit is low.
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Figure 3.4: Schematic of a N ×M XbarPUF circuit (with XORing) [72, 71].
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The challenge or set voltage, Vset is at least as large as the positive threshold voltage, Vtp of

the memristors in that crossbar. In a read-monitored-write approach, the challenge voltage

is applied for a very short amount of time (<<tswp) to nudge the memristors towards LRS.

Then a small read voltage, Vread, less than the memristor’s threshold voltages is applied to

check which memristor reaches to LRS first between a pair of memristors in the same row

and adjacent columns. As soon as one of these two memristors reach LRS, the load voltage

of that particular memristor column goes to high, creating a low to high transition at one

of the inputs of a D flip-flop attaching at the end of each pairs of crossbar columns. The

arbiter or D flip-flop thus decides the winner and generates a response of ‘1’ or ‘0’ depending

on which crossbar column in a particular pair was faster. When all the column pairs of

the XbarPUF are resolved to generate valid responses, a ‘Dne’ (done) signal is generated to

indicate the end of one PUF cycle. A load resistor of appropriate magnitude is connected at

the end of each crossbar column in the read path while the load voltages of a pair of crossbar

columns are connected to the arbiter in the read path as well. For an XORed XbarPUF,

like in Figure 3.4, outputs from two arbiters are XORed to generate one final response thus

effectively taking four crossbar columns to generate one bit response. As we will see in later

chapters, XORing adds a non-linearity in the XbarPUF circuit which improves its robustness

and also reliability as seen in [72].

We have evaluated and analyzed our XbarPUF by tweaking different circuit level and

device level parameters to find the optimal optimal parameters for this circuit and to also

discuss noise margin, scalability and security and overhead of the XbarPUF.

3.1.4 Clock Frequency and Other Parameter Selection

In this read-monitored-write approach [42] , we apply a ‘read’ voltage to evaluate the states

of the memristor and a ‘write’ (challenge) voltage to push the memristors towards LRS from

HRS. Thus the equivalent memristance of a column is decreased with each write pulse until

it generates a sufficiently high voltage at the load resistance to determine a ‘winner’ by the

arbiter. A write voltage with small pulse width i.e. of high frequency would help to change

the memristance slowly and reliably from HRS to LRS. If the clock frequency is not high

enough, then a single or a few write pulses might set both the memristors effectively at

34



the same time, making the response invalid. Therefore, we should choose a clock frequency

which wouldn’t create this situation while not being impractically high and that the circuit

becomes too slow. For a memristor with 1µs switching time, a write pulse width of 100ns or

lower or clock frequency of 10MHz should work and we choose this clock frequency for the

remainder of this chapter.

The threshold voltages of memristors strongly dominate the choice of supply voltage as

this voltage must be higher than the magnitude of both positive and negative threshold volt-

ages of a memristor. Higher supply voltage contribute to power consumption quadratically

and, therefore, it is chosen to be as low as possible. For example, for an HfO2 memrisor with

0.7V and -1V threshold voltages, the supply voltage chosen is 1.2V.

3.1.5 Choice of Load Resistance

By performing a noise margin analysis, we have evaluated the optimum load resistance for

our XbarPUF circuit. The load resistance should be chosen such that it maximizes the

difference between two memristive states of a pair of crossbar columns. After RESET, all

the memristors of the crossbar are in HRS while at the end of challenge phase, one half of

the memristors are in HRS while other half change to LRS. The difference in load voltage

during these two situation can be referred to as the noise margin (NM) for this circuit. Since

the load resistance is in series with the memristive column, to reliably differentiate between

logic ‘1’ and logic ‘0’, the load resistance has to be such that the voltage drop across the

load is maximum just after reset (all HRS) and minimum just after challenge (half LRS, half

HRS). For a crossbar with ‘N’ challenges (and thus 2N rows), the equivalent memristance in

these two time (R1 and R2, respectively) are shown in equation 3.4 below.

R1 =
HRS

2N
,R2 =

HRS

N
‖ LRS

N
. (3.4)

The load resistance is in series with either this R1 or R2 and the situation is illustrated

in Figure 3.5. The corresponding voltage drop with both cases is shown in equations 3.5 and

3.6, respectively.
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Figure 3.5: Two resistance in series, one is the equivalent memristance of a crossbar column
and another is the load resistance [69].

Veq,R1 =
Rld

R1 +Rld

∗ Vread (3.5)

Veq,R2 =
Rld

R2 +Rld

∗ Vread (3.6)

, where Rld is the series load resistance.

The difference between these two voltage levels, Veq,R1 and Veq,R2 is the noise margin,

∆VR as shown in equation 3.7. In order to maximize this difference and thus to get optimal

load resistance, we need to differentiate equation 3.7 with respect to load resistance, Rld and

set to zero. Then we find a closed-form expression (equation 3.8) for the best Rld for this

crossbar circuit.

∆VR = Veq,R2 − Veq,R1 (3.7)

Rld,best =
√
R1.R2 =

√
HRS

2N
∗ (
HRS

N
‖ LRS

N
) (3.8)

3.1.6 Shift Back to Fixed Challenge Scheme

As can be seen in [57, 72, 69], challenges are applied for a very short period of time, much

smaller than the actual switching time of a memristor, to nudge the memristance towards

HRS or LRS depending on the magnitude and direction of applied challenge voltage. Then

a small read voltage pulse is applied to read the memristance of both crossbar column

memristors. This whole process is repeated until one of the columns reach to either HRS or

LRS first and thus declared the winner. This is the so-called read-monitored-write approach

[42] and is shown in Figure 3.6. This is very useful when there is little knowledge of actual

memristor switching time and/or switching time has a very wide distributions.
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Figure 3.6: Read-monitored write approach to gradually check memristance of a pair of
memristors until one finishes switching.

There are, however, practical problems associated with this approach when we try to

implement. First, if the switching time of a memristor is very fast, then to perform read-

monitored-write, it’d need a lot faster clock. For example for an TaOx memristor, switching

time can be around 100-150ps and thus, to perform read-monitored-write, the clock has to

be as fast as 1-5ps which is impractical for a low cost system. Second, there is no prior

knowledge how many cycles it takes for an XbarPUF to perform read-monitored-write once

i.e. we can not determine the exact time when to sample the response. This asynchronous

nature would make it very difficult to implement the PUF as an IP (intellectual property)

within a bigger SoC (system-on-chip). Therefore, it is also impractical to use this approach

in any processor based system.

To overcome these issues, we have returned to be the fixed-challenge approach used by

Rose et .al in [60, 59]. Although, it requires prior knowledge of exact switching time of

memristors, it makes the input-to-output sample time fixed and predictable and thus useful

to incorporate in any system. The memristor switching time can be determined beforehand

from fab or we can change the clock period to try with different frequencies and select

whichever gives the most stable output. We choose the clock period to be around half the

switching time of the memristor. Although, theoretically the clock period should work for

any value from less than switching time to ultra-high frequencies, we choose this value which

would give the most separation between the states of two memristive columns. Choosing a

fixed low frequency could make both the column memristors reach to either LRS or HRS and

thus eventually having little difference between them. Choosing very high frequency could
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make the change in memristance very small and thus could be impractical to differentiate

in a circuit. For our HfOx memristor, where the switching time is on the range of 50-100ns,

we have chosen the clock period to be 25ns.

3.1.7 Reverse Read Scheme

To improve the reliability of any circuit component, any opportunity of minor modification

which doesn’t add any overhead, should be considered. As measured in the lab in SUNY

Poly Institute, HfO2 memristor has positive (HRS to LRS) and negative (LRS to HRS)

threshold of around 0.7V and -1.0V respectively. In our previous designs, we have been

using a READ voltage of around 0.5V in positive threshold direction to read the state of a

memristor. However, it is also found from experiment that memristors can actually switch

or lose its state over 0.2V voltage applied across it.

Thus even if a voltage less than the threshold is applied across a memristor, the memristor

can lose its state over time. To improve this situation by increasing the retention time of the

memristor is to apply a READ voltage in a direction where the separation between READ

voltage and memristor’s threshold voltage in that direction is higher. Since for our HfO2

memristor, negative threshold is larger in magnitude than positive threshold, it’s better to

apply read voltage in that direction. Thus we setup the memristors in the crossbar in such a

way that the direction of RESET and READ voltage are the same. This is called reverse read

scheme since read voltage is actually in reverse compared to the positive voltage direction.

3.1.8 Sense Amplifier

For read-monitored-write approach a series of inverters or a buffer is used to sample the

load voltages of each memristive crossbar columns. For that approach, whenever one of the

column reaches a load voltage of at least VDD/2, the buffer starts to operate and rises to

VDD first. Both column buffers are connected with an arbiter (i.e. a D latch). The arbiter

outputs a ‘1’ or a ‘0’ depending on whichever crossbar column rises to VDD first.

Our new PUF won’t work this way now that the read voltage is only 0.4V and, therefore,

the buffers would never get VDD/2 from load resistances and thus won’t be able to produce
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a rising edge to arbiter input. A READ voltage of 0.4V also means the absolute difference

between two column load resistances is also small and more precise measurement is needed.

For that purpose, we have replaced the system of buffer chain and an arbiter with a sense

amplifier. A voltage latched sense amplifier (VLSA) is used instead which takes the two

column load voltages as its two bit-line inputs. It then produces a full-swing output

depending on whichever column voltage is higher. Additional buffers may be added to these

outputs for separation. Our implemented sense amplifier is able to differentiate voltage

differences of around 1mV and thus increase stability.

Since the magnitude of reset voltage is usually greater than the magnitude of set voltage,

with a fixed read voltage, the error probability, due to unintended set or reset during read

is lower if we the direction of read voltage is in the same direction as reset.

3.2 Specialized Peripherals for Memristor based Cir-

cuits

3.2.1 Current Compliance

The SET operation of a memristor is destructive. As described earlier, during SET, the

memristance of a memristor starts to decrease towards LRS if the the magnitude and

duration of applied voltage are greater than memristor’s threshold voltage and switching

time, respectively. However, the problem is that if the applied voltage pulse is not removed,

the memristance continues to reduce even after reaching LRS and large current flows through

the device and thus it could destroy itself completely. To prevent this from happening, an

upper limit of current must be imposed in the SET path of the memristor. Usually an

NMOS transistor could be used with a reference gate voltage to implement current-limiting

condition. The RESET circuity, however, does not need such current limiting condition,

because memristance increases and thus current decreases during RESET and it stops at

HRS naturally. Thus there is an asymmetry between SET and RESET paths of a memristor.

We, therefore, separate out these two paths in our implemented PUF along with tunable
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Figure 3.7: An NMOS transistor with appropriate gate voltage to control the current
through a memristor during set.

current compliance in the SET direction. The SET current compliance circuitry is shown in

Figure 3.7.

3.2.2 Forming Circuitry

Many memristors require an forming step before they can be used as a multi-level resistor

i.e. as a memristor. This forming step requires applying a voltage of much higher magnitude

to perform the first SET of the memristor. Without forming, the memristor acts like a

resistor with resistance on the range of MΩ. For our HfOx memristor, forming voltage is

≈3.3V whereas SET and RESET voltages are ≈1V. The regular MOSFET of IBM 65nm

can only sustain voltages up to 1.4V. Therefore, a different and high voltage transistors

are needed for the forming circuitry. We have used DGXFET for this purpose. These

DGXFETs have high resistance and, therefore, can not be used in circuits where the VDD

is near 1V. Since forming is another special SET operation of the memristor, it also requires

current compliance control. Thus forming necessitates another separate path for a memristor

circuit. The current compliance transistor should be a DGXFET in this case to handle

high voltage (≈3.3V). The forming circuitry is shown in Figure 3.8. A current compliance

transistor is needed as well during the forming to limit the current and set the memristor

to a good high LRS value. This forming path is only used once and then never used again.

Therefore, multiple memristors can be formed together by sharing this forming circuitry
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Figure 3.8: Forming circuitry of a HfO2 memristor with 65nm CMOS technology

which would reduce the area overhead. Moreover, if the forming voltage can be reduced

further so that similar transistors can be used for both regular read-write and form, then

they all can share the same control circuitry and significantly reduce the design effort and

resource overhead. Researchers are working with forming-free memristors to totally eliminate

this design overhead.

3.2.3 Memristor Read-Write-Form Circuitry

Circuit Design

We have implemented a memristor read-write-form circuitry to ensure that the memristor

can be formed correctly and it can be written and read with confidence. The schematic and

layout for this read-write-form circuitry are shown in Figure 3.9 and 3.10, respectively. The

transistor widths are chosen to reduce voltage drop across them and to facilitate enough

current to flow through the memristor. Forming path requires higher voltage (3.3V in this

technology), uses high voltage DGX transistors and thus forming path is separate from

regular 1.2V transistors to prevent any damage to these transistors. A current compliance

transistor is used in both forming and set path to prevent overflow of current through this
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Figure 3.9: Schematic of the the read, write and forming circuitry for the HfO2 memristor
used in this work

memristor. In this circuit, the gate voltages of these compliance transistors are chosen in

such a way that a maximum of 100µA current can flow the memristor, which is the safe limit

of operation for these memristors. This read-write-form is an essential part of the memristor

PUF circuit.

On-Chip Testing

We have designed and done layout of this memristor read, write, and form circuitry as a

stand-alone test structure with 65nm CMOS technology. We have initially have performed

forming test which is vital for proper operation of a memristor based circuit.

Details about the test setup can be found in Appendix D. The chip lies inside a probe

station and circuit connections can be established by connecting probe pads to the test

structures in the chip. Using a PSOC microcontroller, we have applied different control

input voltages to this test structure while we have used a source meter to apply precise

forming voltage and current compliance control voltage to this circuit. We are able to

successfully form several memristors and the I-V plots are shown in Figure 3.11. Sudden

spikes in current reflect the situation when the forming occurs. Figure 3.12 presents this more

clearly as it shows the current measured through the memristor before and after forming is
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Figure 3.10: Layout of the designed read, write and forming circuitry for the HfO2

memristor (18.31µm × 22.60µm)

performed using the read control available in the circuit. Before forming, memristor acts

as an insulator which is confirmed by the very small current and very high resistance of

the left plot in Figure 3.12. After forming, the memristor sets to its LRS for the first time

and displays a much larger current as the plot on the right confirms. For this particular

memristor, the resistance measured before and after forming is found to be on the range of

12MΩ and 12KΩ, respectively.

I have also performed some additional small experiments to test the functionality and

characteristics of these memristors. Figure 3.13 shows a successful reset of a memristor

which verifies the ability to reset using our designed circuit. From the figure, the reset

voltage can be estimated as -0.5V. Figure 3.14 shows forming current vs. reference voltage

for the current compliance transistor during the forming step. By changing this forming

voltage, the forming current can be controlled to set the memristor at different resistance

levels. The linear relationship indicates the ability to control this forming step very precisely

by controlling this reference voltage.
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Figure 3.11: Successful forming of three different memristors with our designed memristor
read-write-form circuitry. The forming can be easily identified by the presence of a sudden
increase in current in the IV plots. The gate voltage to control the current compliance
transistor is also varied to demonstrate forming at different levels which is why there are
multiple forming-like spikes in these plots

Figure 3.12: The current before (left figure) and after forming (right figure) is performed.
The current is very low (∼pA) before forming but was high (∼50-70µA) after forming.
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Figure 3.13: This plot shows a successful reset of a memristor with our read-write-form
circuitry. The plot clearly shows how current increases linearly with increasing reset voltage
voltage i.e. there is no change in memristance or resistance. After when reset voltage (-
0.5V) is reached, memristors finally resets to a high resistance where there is a sudden and
noticeable drop in current.

Figure 3.14: Plot shows the stable current through the memristor when formed using
several different current compliance control voltage (Vref). These several different current
levels prove the ability to form these memristors at different LRS values with confidence.
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3.2.4 Sense Amplifier for Memristor Crossbar Circuits

Sense amplifier (SA) is one of the essential components of fast and dense memory

architectures. A sense amplifier can sense or detect small voltage difference between its

input voltages and produce a rail-to-rail output. The input voltage with higher value goes

up to VDD (supply voltage) and the other input voltage goes down to GND (ground). In case

of memory circuits, SA detects small difference between two bit-line voltages and produces a

full digital output during a read operation. As we have mentioned in previous sections

that we have shifted away from read-monitored-write approach and now the XbarPUF

response is determined by comparing the voltage difference at the load due to the memristor’s

HRS/LRS variation, not the switching speed. Arbiter is thus no longer useful at making this

decision and we need some kind of a voltage comparator instead. Although our XbarPUF

isn’t exactly a memory circuit, but it has a crossbar of memory elements i.e. memristors

and can help measure the load voltage difference between each pair of crossbar columns

during read operation. Due to unavoidable manufacturing process variation, memristors

display variations in their memristive states and other electrical properties. Therefore, two

memristor crossbar columns would have slightly different equivalent memristancs and thus

the voltage drop at the load resistor, attached at the end of each crossbar column, would

be slightly different as well. The SA would be able to measure these tiniest differences to

provide a digital response for the XbarPUF.

Initially we have looked in the literature for established SA circuit designs. First, we have

narrowed our design topology choices based on the strict design requirements for our designed

XbarPUF. Then we have analyzed representative circuits of those selected topology in terms

of performance, reliability of operation, and overhead. We have picked a topology which is

best compatible with our design requirements. Then we have worked on that topology to

suit to our design needs. We have also performed Monte Carlo analysis to choose optimal or

near optimal set of circuit parameters e.g. lengths and widths of different transistors, supply

voltage in terms of speed, energy, reliability, and yield. This also helps us to gain insight

about the quality of our design in a real hardware.
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Previous Sense Amplifier Design

We have considered several SA design topology and built and simulated their representative

circuits to make a fair comparison among them. We have analyzed each of these circuits

using our design parameters to understand their strengths and weaknesses with respect to

our XbarPUF application. The two primary broad classes of SA topology are current-mode

and voltage-mode [49] while hundreds of their variations exist in literature for different

applications. By doing some design and parameter tuning, we expect some of these designs

to meet our design requirements.

Current latched SA or CLSA have been widely used in many memory designs for their

reliability and speed of operation [29]. A CLSA circuit can detect voltage difference between

two pre-charged bit-lines of a memory. The input voltages are connected to the gate inputs of

a pair of differential NMOS transistors and depending on which of the input voltage is lower,

that branch discharges to GND while the other remains at VDD. CLAS requires the bit-lines

to be pre-charged (close to VDD) to ensure their transistors operate in saturation region.

Thus their speed of operation of a CLSA decreases significantly with decreasing supply

voltage and when the bit-lines are not pre-charged, thus making the transistors operate out

of saturation region.

Voltage latched SA or VLSA are another category of popular SA topology [49]. In most

typical memory applications (e.g. SRAM), CLSA circuits usually outperform or on par with

VLSA circuits. However, VLSA design is more resilient against threshold voltage or Vt

mismatch and transistor size or β mismatch compared to most other SA designs. Similar

to CLSA, the performance of a VLSA circuit decreases when the input bit-lines are not

pre-charged and close to GND.

Researchers have proposed offset cancellation techniques to improve the resolution of

SA circuits [33, 13]. However, some of these techniques involve adding capacitors which

leads to a significant increase in area and not suitable for very lightweight application. Plus

capacitors have mismatch problems themselves.

Researchers have also designed SA circuits suitable for other emerging devices like MTJ

or magnetic tunnel junction based memory [85, 82]. They have worked on making their SA
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circuit, named as pre-charge SA or PCSA [85] suitable for MTJ based circuits specifically.

Their design is fast despite being simple which is what we need for our application here too.

However, unlike MTJ, memristors have a hard limit on the allowable read voltage being

applied across them as higher voltage increase the chance of unintentional switching. PCSA

also does not provide full swing output unless additional buffer stages are employed. The

design also looks prone to be affected heavily by mismatch variation.

We have considered a few other popular and promising SA designs as well. However, as we

will see, due to the strict requirements imposed by memristor based circuits, only a handful

of SA designs could be considered promising for our application. We have built those circuits

alongside ours in Cadence Virtuoso with 65nm technology and compared against each other

to decide on the final design.

Design Requirements

Memristors’ read voltage should be low enough so that the applied voltage doesn’t cause

a switch. The suggested voltage for a reliable read of HfO2 memristors considered for our

work (fabricated at SUNY-Poly [8] is only 0.2V. With sufficient time, the memristor device

might switch to either LRS or HRS if the read voltage is greater than 0.2V depending on

its polarity. In our XbarPUF circuit, the read voltage is chosen to be 0.4V with careful

choice of load resistance so that the voltage drop across a memristor never exceeds 0.2V.

Another thing to consider is the variation of the load resistance themselves, especially since

they are on-chip and thus have high variation. For example, n-well resistors of the 65nm

technology that we have used can have 20% mismatch. Thus if their mismatch dominates

over the mismatch of the memristor crossbar itself, then it would result in a very unreliable

read of the memristive states. Thus we have to ensure a very low mismatch between two

load resistors in a pair of crossbar columns and should choose their value so that they can

translate the variation in memristive states into a noticeable load voltage difference between

each pairs of crossbar columns. These two load voltages would be the input bit-line voltages

to each SA. Lowering the supply voltage than read voltage further makes the circuit slower,

leaky and thus not useful. For our particular XbarPUF circuits [69], the load voltage inputs

to the SA would be on the range of 100-300mV. Memristor’s switching speed also determine
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the clock frequency of the XbarPUF as well as the SA while also setting the upper limit

on acceptable delay. In this particular work, clock frequency of 2µs is used. While trying

with different supply voltage levels, only available on-chip voltages are considered i.e. which

would be already available for an XbarPUF. The area and energy overhead of the SA should

be kept as low as possible since for each response bit of an XbarPUF we need an SA and

the overall design should be as lightweight as possible. All of these are hard requirements

and they limit and shape our choice for a SA design. Thus we need a SA that can work

reasonably fast with high resolution and low overhead despite having low or near-to-GND

input voltages.

There are several things to consider to improve an SA circuit. Any mismatch among

the transistors in an SA should be negligible compared to the expected difference between

the two differential input voltages. For example, the impact of Vt and β mismatch between

drive transistors should be minimized. These two mismatches affect CLSA designs more

than VLSA designs as found in literature [49]. Another thing to consider is that the sensing

speed would be slower if the bit-line voltages are applied directly to the gates of transistors

since near-to-GND gate voltages would drive those transistors out of saturation. On another

note, because each memristor has a very low capacitance while having large resistance, the

whole memristor crossbar can be considered a big resistive network with load resistors at

the end of each column. Therefore, the inputs to the SA can be considered to come from

a resistor division circuit with only wire capacitance. We have considered all of these while

choosing and designing our own SA circuit.

Our Sense Amplifier Design

As we just mentioned earlier in this section, the factors behind selecting and designing our

particular SA are a low overhead design with fast operating speed, with input bit-line voltages

near to GND, capable of differentiating input voltage pair with small differences. The

available choice of clock frequencies and supply voltages are also limited. As we discovered,

VLSA topology based designs work better with small (sub-threshold) VDD and when bit-

line voltages are close to GND, rather than VDD. Thus we choose our own SA design to be

based on VLSA. Researchers have also shown that the effect of Vt and β mismatch is also
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low in VLSA compared to CLSA [49, 81] while this effect can be reduced further easily by

increasing the transistor size. Lower mismatch is very important to have a higher resolution

sensing capability. Therefore, we have designed our SA based on VLSA while also modifying

it further to meet our design requirements. The schematic of our designed SA is shown in

Figure 3.15.

Four transistors, M5-M8, in Figure 3.15 are access transistors which allow the input

voltages to be latched into the internal nodes of the circuit. Since the inputs are applied at

the diffusion terminals of these four transistors, this SA circuit offers low input resistance.

These two inputs are voltage drops across load resistors of a pair of XbarPUF columns. The

equivalent memristance of each column and the load resistor act as a voltage divider and this

voltage is one input to the SA. Therefore, it is important to remember that the inputs do not

have very high drive strength. The four transistors, M1-M4, form a cross-coupled inverters

which decide the final state of the SA with their positive feedback action. Their high voltage

is connected to the sense enable signal ‘SE’, instead of VDD. A constant positive voltage,

VDD can affect and change the internal nodes ‘O’ and ‘Ob’ by leaking voltage through the

PMOS transistors, M1 and M2 when the input voltages are sampled through the access

transistors. Therefore, this is a very modification that a digital signal is used as the power

source for this circuit. When the SA is in sampling phase, the ‘SE’ signal is low, meaning the

power supply is disconnected to allow proper latching or sampling of inputs into the internal

nodes. No current path is formed through M1 and M2 and thus they do not interfere with

the sensing nor change the latched voltages at nodes ‘O’ and ‘Ob’. During sensing, ‘SE’

rises to VDD or logic ‘1’ and act as the power source for resolving these two nodes. This

SA is used at the end of each pair of XbarPUF columns to help determine which column

has higher voltage drop across its load resistor to generate a one-bit response as shown in

Figure 3.16. The equivalent input-output circuit for each SA in the XbarPUF is shown

in Figure 3.17 when the XbarPUF is in read or response generation phase. As mentioned

earlier, the voltage division formed by the load resistor and equivalent memristors in two

adjacent columns in the crossbar provide the two inputs to each SA. SA then compares these

voltages and generate a full-swing output of either logic ‘1’ or ‘0’ depending on which of the
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Figure 3.15: Schematic diagram of the our designed sense amplifier circuit suitable for
memristor based crossbar architectures [73]

two column load voltages is higher. Buffers can be added to isolate these internal output

nodes from other parts of the circuit.

If the magnitude of the supply voltage used is low, latching delay of inputs to internal

nodes of our SA becomes large and thus can dominate over the sensing delay. We have used

both NMOS and PMOS as transmission gates to work as the access transistors for this SA.

This increases the range of analog input voltage that can be reliably sampled or latched

into the SA nodes. However, since we know our input voltages would be close to GND, the

NMOS transistors are made stronger than PMOS ones.

In Figure 3.15, there are two additional (and optional) transistors, M10 and M11 which

we call discharge transistors. After a sensing operation, these two transistors can help to

discharge nodes ‘O’ and ‘Ob’ so what the result from one cycle doesn’t interfere the latching

operation of the next cycle, thereby potentially affecting the outcome on that cycle. However,

a PUF circuit is usually a part of a security block that we only need to use once or twice

during start-up of a chip. Also we can also discharge the internal nodes ‘O’ and ‘Ob’ by

latching zero-valued inputs to reset them (zero-ing the nodes). Therefore, for our XbarPUF
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Figure 3.16: Application of the our designed sense amplifier for the XbarPUF [73]

Figure 3.17: An equivalent input-output circuit for our sense amplifier circuit when used
in an XbarPUF [73]
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circuit, discharge transistors can be omitted to save power, area, and delay. We still keep

these transistors in our generic SA design as they would be useful for memristor crossbar

based memory applications.

As we have mentioned before, we are designing everything with 65nm CMOS technology

and the minimum transistor length, Lunit is 60nm. Transistors with more larger than

minimum size are used to ensure low percentage of mismatch in analog circuits which

can be found from the datasheet of this particular technology. Thus we choose the base

minimum width, Wunit for this SA to be 1.2µm. Each of the four access transistors, M5-M8

in Figure 3.15 are sized to be of 1.2µm width. With equal size, NMOS transistors would

be stronger than their PMOS counterpart, thereby facilitating the latching of near-to-GND

input voltages. They also have very small voltage drop across them. M1-M4 are the four

sensing transistors in this design. Two PMOS transistors, M1-M2 are sized to have 1.2µm

width each while the two NMOS sensing transistors are sized 2.4µm each. The NMOS

are thus four times stronger than their PMOS counterpart, similar to the cross-coupled

inverters in an SRAM cell. Two discharge transistors, M10 and M11 are sized of 2.4µm

width each to have a balance between quick discharge time vs. quick recharge of internal

nodes. The bottom NMOS, M9 is sized 3.6µm, larger than the sensing transistors, to create

a fast discharging path when the SA is in sensing or evaluation phase. The single inverter

in Figure 3.15 and other buffers which might be needed as the output stage of this SA

to comply with the load demand are also sized properly to ensure fast reliable operation,

reduce mismatch, and improve yield. It is important to note that all these transistor sizes

are the minimum size that we have worked with and later we have analyzed to find the best

transistor size for our design.

This SA circuit works in three states: latching phase, sensing phase, and discharge phase.

As we have discussed before, the discharge phase and the discharge transistors are optional

for our SA when used as part of the XbarPUF. During read or latching phase, the sense

enable signal, ‘SE’ is kept low and thus the access transistors are turned on. Thus the input

voltages, ‘B’ and ‘Bbar’, which are basically load voltages from a pair of crossbar columns,

are latched or sampled into internal nodes ‘O’ and ‘Ob’, respectively. These initial voltage act

as seed values during the next phase. After inputs are sampled properly, ‘SE’ is turned high
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in the sensing or evaluation phase, thereby shutting off the access transistors and turning on

transistor M9 to create a path to ground. Depending on which of the two nodes, ‘O’ or ‘Ob’

is higher, the other node discharges through M9 to ground while the node with the higher

voltage recharges to VDD through the PMOS transistors by the positive feedback action

of cross-coupled inverters formed by M1-M4. The signal ‘SE’ should be kept high during

this whole time as it also provides power for this recharge besides controlling most of the

transistors. In the next phase, these internal nodes are discharged through M10 and M11

to ground to be ready for another sensing operation. This phase is only needed when these

discharge transistors are used in the SA design. A small short pulse of around 50ns can be

applied to discharge both the nodes in short time. We also add buffers to both output ‘O’

and ‘Ob’ when we integrate this SA circuit into our XbarPUF to be able to drive larger load.

Buffers add negligible or even zero delay to our circuit due to relatively fast rising/falling

delay of inverters compared to the SA internal output nodes.

The layout of the SA should be symmetric to both inputs as well as for the cross-coupled

inverters to avoid creating any bias to any of the two inputs. Wire lengths, widths, and

other internal connections are routed in such a way that output nodes see equal amount of

load. We have learned that finger widths or the number of fingers do not affect the design

for VLSA based designs [81]. Thus our choice of the number of fingers is only determined

by the motivation of maintaining a low aspect ratio, low resistance path, low area and also

not to increase the pitch of the memristor crossbar circuit.

Results and Analyses of the Proposed Design

As we have argued already, capability of driving near-to-GND bitline voltages with high

speed, able to detect small voltage difference, and compatibility with memristor based

crossbar architectures are some of the factors behind choosing this SA design. We have

built and experimented with the comparable SA circuit topology ourselves. Table 3.3 lists

the results of comparison among all these different circuits. The supply voltage used for

this simulation is 0.4V and differential input voltages are 150mV and 155mV. For a fair

comparison, same unit length (60nm) and width (1.2µm) are used to each of these circuits.

Our designed SA is easily found to be the fastest among these designs. SA circuits based
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Table 3.3: Comparison of our designed SA with different circuits from different topology
[73]

Topology CLSA [29] VLSA [56] PCSA [85] Ours [73]
Precharge needed yes/no yes no no
Worst delay (µs) 2.75 3.51 0.62 0.27
Avg. power (nW) 0.48 0.77 0.42 0.63 / 0.19

on CLSA [29] and VLSA [56] are slow when the input voltages are close to GND and no

pre-charging available. The PCSA in [85] is found to consume small power with relatively

high speed. Our design, on the other hand, has comparatively higher power consumption

when discharge transistors are used. However, these are not used when we use this SA to

build PUF circuits, thereby making our design to also have the lowest power consumption.

The power consumption of Table 3.3 includes power consumption by an inverter and also

power consumption during all phases of the SA. Another thing to note is that because of

the high delay of some of these designs, the results of Table 3.3 are generated using a lower

frequency input with clock period of 12µs instead of the required maximum of 2µs to make

sure they all converge to a valid output within the time frame. Therefore, actual power

consumption would be higher than this if higher clock frequency is used.

Figure 3.18 displays the waveform for our implemented SA design at 0.4V VDD with

bit-line voltages of 150mV and 155mV (‘B’ and ‘Bbar’ in Figure 3.15). The sense enable

signal, ‘SE’ has a clock period of 2µs. The analog voltages of two input signals ‘B’ and

‘Bbar’ are flipped on each clock cycle to make the output flip on every cycle as well to see

if our design can resolve to opposite output voltages quickly. A pulse signal of 50ns duty

cycle with the same 2µs period is used to discharge the output nodes ‘O’ and ‘Ob’ at the

end of each sensing/decision phase. During this sensing phase, ‘O’ and ‘Ob’ resolves either

high (VDD) or low (GND), based on which of the input signals is higher than the other.

The output is valid before discharge signal is high and a sufficient delay after ‘SE’ goes high.

Outputs, ‘O’ and ‘Ob’ should be alternating on each cycle with because of the input pattern

which is evident from Figure 3.18.

We have run several Monte Carlo simulations to determine the yield of our designed

SA circuit and the results are displayed in Table 3.4, 3.5, and 3.6. For each Monte Carlo
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Figure 3.18: Waveform for transient simulation of proposed SA for input bit-line voltages
of 150mV and 155mV with VDD = 0.4V [73]

simulation, we have applied two sets of input patterns, one where output should be a ‘1’ and

one where output is a ‘0’. The clock period (of signal ‘SE’) is chosen to be 2µs with 50%

duty cycle, compatible with the XbarPUF. Thus 1µs is being allotted for for the SA to make

a decision plus an additional 50ns discharge phase. The input voltages are again chosen to

be 150mV and 155mV initially, flipped on each second cycle to get both a ‘1’ and ‘0’ output

on consecutive cycles. The supply voltage (VDD) and transistor widths (W) and lengths (L)

are also varied in different Monte Carlo simulations. To determine the best/near optimal W,

H and VDD for the SA, we have run Monte Carlo analysis for 500 chips for our designed SA

with different (W/L) ratios and different VDD. Here in these tables, W = Wunit = 1.2µm and

L = Lunit = 60nm (min. transistor length of this 65nm technology). As expected, increasing

the L as well as the (W/L) ratio increase transistor area and thus reduce mismatch, thereby

considerably improving the yield of the design. It can also be noticed from Table 3.4 that

with increasing VDD, the percent of yield decreases. It can be explained by the fact that

input voltages are close to GND rather than VDD and, therefore, with higher VDD, there

is a higher amount of leakage from it which corrupts internal nodes of SA just after SE goes

high to start the sensing phase, thereby reducing yield. However, with a VDD lower than the

threshold voltage (at 0.4V VDD where for this technology, threshold voltage, Vth is around

500-550mV), the delay is longer but the frequency is still the same and, therefore, it may not

resolve for all cases due to additional delay arising from mismatch making the input voltage
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Table 3.4: Percent yield of our designed SA for different transistor sizes and supply voltage
[73]

Transistor sizes (W
L

) (W
3L

) (3W
3L

) (2W
5L

) (5W
5L

)

VDD = 0.4V 67.35 72.45 78.55 83.25 87.20

VDD = 0.6V 64.20 77.20 89.70 90.70 98.50

VDD = 0.9V 61.10 73.10 84.70 87.00 95.50

VDD = 1.2V 60.50 72.70 84.30 87.20 95.40

Table 3.5: Sensing delay (nS) of our designed SA for different transistor sizes and supply
voltage [73]

Transistor sizes (3W
3L

) (2W
5L

) (5W
5L

)

VDD = 0.4V 712 625 627

VDD = 0.6V 19.63 16.7 16.7

VDD = 0.9V 1.02 1.524 1.523

difference almost indistinguishable. Thus, at 0.4V VDD, this design has the lowest yield

compared to higher, over the threshold VDD as in many cases the SA doesn’t resolve fast

enough to a full-swing output. Although for the leftmost column of transistors in Table 3.4

with unit length (60nm), yield is actually the highest for 0.4V VDD. The reason behind this

is that the SA operates very fast with the transistor length is smaller and thus the decreasing

effect of extra delay due to mismatch is less than the yield improvement achieved by a lower

VDD. Thus it can be concluded that to achieve an overall better yield (≥80-85%), larger

transistors (rightmost three columns of Table 3.4) should be considered.

Table 3.6: Energy(Joule) per cycle of our designed SA for different transistor sizes and
supply voltage [73]

Transistor sizes (3W
3L

) (2W
5L

) (5W
5L

)

VDD = 0.4V 20.66f 16.79f 41.79f

VDD = 0.6V 0.80p 0.50p 1.26p

VDD = 0.9V 11.08p 5.54p 13.65p
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Larger transistor sizes reduce variation due to mismatch and thus improve yield, but they

also contribute to larger area, delay and energy overhead. Therefore, there is a trade-off

between yield vs. delay and energy overhead of the circuit. To find system delay and energy

consumption, we have experimented with the transistor sizes listed in Table 3.4, except for

the (W/L) and (W/3L) as their yield are too low and thus are left out from further analysis.

1.2V VDD is also not considered anymore as it increases the power consumption considerably,

without improving the yield. Table 3.5 lists the sensing delay for the selected three transistor

sizes with comparatively better yield. Table 3.6 lists the total energy consumption per cycle

of the designed SA for the same transistor sizes. From these two tables, it can be found that

transistor size of (2W/5L) i.e. 240µm width and 300nm length is a good trade-off offering

much lower sensing delay as well as low conversion energy at 0.6V VDD, compared to other.

Area and leakage power should also be lower compared to the other two sizes as W and

(W/L) ratio are smaller. However, depending on the design requirements and application,

a trade-off among yield, delay, total area and energy overhead can be easily made from our

detailed analysis.

We have also measured the reliability of our design for different differential voltage

between the two input voltage and for different temperature. The reliability is calculated

as the percent of time our design produces a correct output out of 500 evaluations while

temperature is being varied. The detailed result is presented in Figure 3.19. The results are

obtained from SPICE simulation as well using Monte Carlo analysis by varying temperature

from 00C to 1000C for different transistor sizes and input voltage differences. As expected,

the reliability increases quickly as the difference between two input voltage increases. An

increase in transistor area also displays a linear increase in reliability of operation.

On-Chip Design and Testing

We have designed a unit size sense amplifier as a stand-alone test structure using a 65nm

CMOS technology. The schematic and layout of this designed sense amplifier are shown

below in Figure 3.15 and 3.20, respectively. The layout dimension is 8.039µm × 13.035 µm.

Metal layers are made larger than minimum to help reduce any drops in analog circuit path.

Every gaps between any layers are kept at minimum distance.
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Figure 3.19: Reliability across multiple evaluations of our sense amplifier for different
transistor size and differential voltage

After fabrication, I have also performed an initial functionality test of this sense amplifier.

Using PSOC (programming system on chip) microcontroller, different input voltages are

applied to get corresponding outputs, as shown in Figure 3.21. One input is at a fixed

DC voltage while the other input is varied between two DC voltage levels such that it is

higher than the first input in half of the times and lower in other times. This means the

output would toggle between high and low voltage alternately when ‘sense enable’ signal is

asserted. Even with the presence of noise, it is clearly visible that the output is correct i.e.

when ‘sense enable’ signal is high, the output shows a logic high when the first input (B0)

is higher than the second input (B1) and output is low when B1 is larger than B0. I have

tested several such sense amplifier test structures and all display correct functionality. The

data are collected from an oscilloscope after getting the output from our chip located inside

of a probe station. More details about this testing can be found in Appendix D.
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Figure 3.20: Layout of the designed sense amplifier (8.049µm×13.03µm)
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Figure 3.21: On-chip test results from our designed sense amplifier
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3.3 Design of Twin Memristor TRNG

3.3.1 Motivation

The main purpose of this part of our work is to analyze existing memristor based TRNGs

from their underlying theory and mathematical basis. We have analyzed a very recent and

popular memristor based TRNG circuit and formulated how a change in supply voltage

and temperature or process variation can affect the performance of a TRNG. To improve

resiliency against environmental effects and process variation, we have suggested a TRNG

design that leverages the variability in HRS (high resistance state) of a memristor. This core

idea is to utilize relative nature of measurements, i.e. the HRS of one memristor is compared

with the HRS of another to generate a single random bit. Since HRS usually has shown

higher variability compared to other parameters of a memristor [69], we have chosen HRS as

the source of randomness for our design. The differential nature of our TRNG design should

make it robust against process variation and environmental changes.

3.3.2 Our Design

Process variation, temperature and supply voltage variation can shift the switching time

distribution of a memristor. Therefore, any TRNG design based on an initial estimated

distribution of C2C (cycle to cycle) switching rate would be biased towards either ‘1’ or ‘0’

and thus could degrade the TRNG performance. In this particular work, we are instead

designing the TRNG based on relative distribution of two HRS of two memristors. In this

design, the main source of entropy is the C2C HRS variation of a pair of memristors. After

applying the same voltage for a fixed duration of time across a pair of memristors, their states

are compared to generate a random stream of bits. Figure 3.22 shows the circuit diagram

of the existing switching time based single memristor TRNG [26] and our designed twin

memristor TRNG based on relative HRS difference. Temperature, supply voltage change

and process variation all have smaller effect on this TRNG performance as we analyze below.

We consider two memristors in a chip which are physically close to each other. Because

they’re physically close, we can assume that their mean HRS are much closer to each other
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Figure 3.22: Conceptual circuit diagram of (left) existing switching time based single
memristor TRNG [26], and (right) our designed twin memristor TRNG based on HRS
difference [67].

than the usual chip-to-chip process variation. Suppose the mismatch variation between

the HRS of these two memristors is 1σ = 1%. Each memristor’s HRS has a C2C normal

(gaussian) distribution of mean µHRS and standard deviation σHRS = 10% of µHRS.

HRS1 = N(µHRS1, σHRS1)

HRS2 = N(µHRS2, σHRS2)
(3.9)

Since in our design, we compare these two HRS states, the result of comparison can be

expressed as another Normal random variable as:

Z = HRS1 −HRS2

= N((µHRS1 ∼ µHRS2),
√
σ2
HRS1 + σ2

HRS2)
(3.10)

If µHRS2 is greater than µHRS1 and thus µHRS2 = 1.01*µHRS1 (1% larger) and σHRS1 =

0.1*µHRS1, σHRS2 = 0.1*µHRS2 (10% standard deviation), then equation 3.10 becomes:

Z = N(.01 ∗ µHRS1,
√

(0.1 ∗ µHRS1)2 + (0.1 ∗ 1.01µHRS1)2)

≈ N(.01 ∗ µHRS1, 0.1 ∗
√

2 ∗ µHRS1)
(3.11)
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The distribution, Z doesn’t have a zero mean, thus the ratio of ones and zeros in the

output wouldn’t be the same if we build a TRNG using this distribution. However, the

mean should be close to zero as which can be easily found from a Z-table. The z-score of

this normal distribution which is equal to finding the probability of a randomly chosen value

to be less than 0 is:

z =
x− µ
σ

=
0− 0.01 ∗ µHRS1

0.1 ∗
√

2 ∗ µHRS1

= −0.0707

(3.12)

where, z represents a Normal random distribution of mean 0 and standard deviation 1,

transformed from the distribution, Z to calculate the probability using a z-table.

From z-table, the probability of getting a ‘0’ value i.e. the area on the left side of the

distribution from the center for a z score of above-calculated -0.0707 is:

P(x ∈ Z ≤ 0) = 0.4718 (3.13)

It should be noted that if the difference in means of two HRS values of two memristors are

less than 1σ, then the the probability number in equation 3.13 would be closer to the ideal of

0.5, i.e. the center of distribution would more close to 0. Our design thus inherently has some

degree of bias. But this provides this design with a better resilience against environmental

changes compared to existing designs as we analyze next.

3.3.3 Effect of Environmental and Process variation on Existing

Single Memristor TRNG

As mentioned earlier in this section, most of the existing single memristor TRNG designs are

based on the stochastic switching time (or the RTN). We already know memristors display

C2C variation in its switching characteristics. The switching time (towards either LRS or

HRS) of a single memristor can be approximated to also have a normal distribution over
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many cycles. This can be formulated as:

tswn = N(µtswn, σtswn) (3.14)

and,

P(t ≤ µtswn) = P(t > µtswn) = 0.5 (3.15)

To reiterate, equation 3.14 describes that the switching time of a memristor over different

cycles is a Normal random distribution with mean of µtswn and standard deviation of σtswn.

Therefore, 3.15 expresses the probability that the switching time at any random cycle, t ε

ttswn to be less than or equal to the mean switching time is 0.5 or 50%. Thus if we determine

the mean, (µtswn) of that switching time over many cycles and apply a voltage greater than

the threshold voltage of that memristor repeatedly for many cycles, then half of the time,

that memristor would switch and the other half of the time, it would retain its state. This is

the basis for most memristor based TRNG designs where memristors’s stochastic switching

time is the source of randomness.

This method requires an application of a voltage pulse of pulse width approximately equal

to the mean switching time of that memristor. Clock jitters, skews or other noise could

slightly change this pulse width which may change the switching probability drastically.

The switching time also depends heavily on the magnitude of applied voltage pulse. Thus,

any power supply noise (change in magnitude) would also strongly affect this switching

time. Since a memristor’s resistive states and threshold voltages are strong functions of

temperature, a change in temperature would also change the switching rate and thus the

switching probability overall. Thus any change in any of these factors would change the

switching probability and thus equation 3.15 would not hold for the new changed distribution.

Then the bit stream produced from that memristor based TRNG could be heavily biased

towards either ‘1’ or ‘0’. Next we are going to formulate how these environmental changes

cause a change in the switching time distribution.
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Supply Voltage Variation

We have used the improved McDonald model from [46, 69] as a memristor’s switching model.

Then we have used the switching equation to analyze the impact of voltage variation. The

switching from LRS to HRS (or reset) of a memristor is governed by this equation [72]:

M(ti+1) = M(ti) +
Rdiff∆tV (ti+1)

tswnVtn
, (3.16)

where, Vtn and tswn are negative threshold voltage and negative switching time (during reset)

of a memristor, respectively. Rdiff is the resistance difference between HRS and LRS. M(t)

presents the memristance and V (t) is the voltage applied across the memristor at a particular

time instant, t. Equation 3.16 can be rearranged as:

∆M =
Rdiff

tswnVtn
∗∆t, (3.17)

If we integrate equation 3.17 over the total switching time, we can establish a relationship

between applied voltage and switching time. We assume that the magnitude of applied

voltage remains fixed for one switching cycle. Now from equation 3.17, we can estimate the

actual switching time for any applied voltage:

∫ HRS

LRS

dM =
Rdiff

∣∣Vapplied∣∣
tswnVtn

∗
∫ tsw,actual

0

dt (3.18)

=⇒ tsw,actual = tswn ∗
Vtn∣∣Vapplied∣∣ (3.19)

The resulting relationship between voltage applied across a memristor and actual time

to switch is found to be proportional which is what we expect from a linear switching model

[47]. If the change in applied voltage is constrained (±10% ), then a linear equation should

provide reasonable accuracy in this window. If Vapplied is equal to the threshold voltage, Vtn,

then the actual switching time is equal to the minimum switching time. Otherwise, from

equation 3.19, we can find out that a ±10% change in Vapplied from Vtn would result in a (≈

-9%,+11%) change in actual switching time.
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Temperature Variation

Temperature directly affects states and threshold voltages of a memristor and thus in

turn affect the actual switching time. From [11, 18], we can find that the magnitude of

threshold voltage decreases as temperature increases within the range ≈ [0, 100]0C and we

can approximate this change using a linear equation as:

Vtn(θ) = Vtn0[1 + αV tn(θ − θ0)], (3.20)

where, Vtn0 is the threshold voltage at room temperature, θ0=250C. We have calculated the

temperature coefficient for negative threshold voltage from [18] as ≈-0.007/0C. Therefore,

for a temperature change of ∆θ, the new Vtn would be:

Vtn(θ) = [1− 0.007 ∗∆θ] ∗ Vtn0, (3.21)

The modified switching time is thus found to be:

tsw,actual = tswn ∗
[1− 0.007 ∗∆θ] ∗ Vtn0

Vapplied
(3.22)

Process Variation

Emerging devices like memristor usually have a large process variation as the technology,

fabrication technique etc. are not mature. All major parameters of a memristor show

a relatively larger variation from chip to chip. For switching time based existing TRNG

circuits, we are only interested in the variation of switching time. For our purpose, we have

considered a 5% standard deviation (σtswn) on negative switching time, tswn.

tswn = N(µtswn, σtswn), die− to− die (3.23)
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where σtswn = 0.05*µtswn. Thus for a 1σ variation of this switching time, the shifted

mean of the new distribution would be:

tsw,actual =


1.05 ∗ µtswn, 1σ above mean

0.95 ∗ µtswn, 1σ below mean

. (3.24)

3.3.4 Variation Modeling for Our Designed TRNG

Supply Voltage Variation

Changing the magnitude and duration of a voltage applied across a memristor would

change its switching rate. However, there is no one-to-one relationship between this voltage

magnitude (±10% variation) with final HRS. In our design, we make the switching time

large enough so that a memristor would always switch as we are only interested in the final

randomized HRS values, not the probabilistic switching itself. Therefore, due to supply

voltage variation, the time to generate a valid bit from our designed TRNG changes slightly,

but the value of that bit itself is considered to be unaffected here.

Temperature Variation

Temperature can change the HRS of both memristors in our TRNG. For a relatively narrow

temperature window of [0−100]0C, this change is approximated by a linear equation, similar

to threshold voltage change [69]. Suppose, we increase the temperature by an amount of ∆θ.

From equation 3.20, we can find expressions for the two modified HRS as:

HRS1′(θ) = HRS1[1 + αHRS ∗∆θ]

HRS2′(θ) = HRS2[1 + αHRS ∗∆θ]
(3.25)

where, HRS0 represent HRS at room temperature and αHRS is the temperature coefficient

(linear) of HRS and approximated as -0.008/0C. The chip-to-chip or more specifically die-

to-die standard deviation of HRS considered here is σHRS = 0.1*µHRS (10% of HRS).
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Now, we define the term C∆θ = 1 + αHRS ∗∆θ. Thus we can rewrite equations 3.9. We

assume that the standard deviation (and variance) of both HRS stays the same.

HRS′1 = N(µHRS1′ , σHRS1′)

= N(µHRS1 ∗ C∆θ, σHRS1)

HRS′2 = N(µHRS2′ , σHRS2′)

= N(µHRS2 ∗ C∆θ, σHRS2)

(3.26)

and

Z′ = HRS′1 −HRS′2

= N(C∆θ ∗ (µHRS1 ∼ µHRS2),
√
σ2
HRS1 + σ2

HRS2)
(3.27)

Thus equation 3.26 and 3.27 represents scaled versions of the normal distribution for

HRS of equation 3.9 and 3.10, respectively. Now we can derive the new distribution of our

designed TRNG by using equation 3.26 with equations 3.10 and 3.11. The z-score of this

scaled normal random distribution is:

z =
x− µ
σ

=
0− C∆θ ∗ 0.01 ∗ µHRS1

0.1 ∗
√

2 ∗ µHRS1

= −C∆θ ∗ 0.0707

(3.28)

For a 500C temperature increase, C∆θ = (1-.008*50) = 0.6 and thus the z-score would be

z = 0.0424. The probability of getting 0 is:

P(x ∈ Z ≤ 0) = 0.4831 (3.29)

This z-value is very close to the value derived in equation 3.13. Thus a change in

temperature does not cause a significant change on the ratio of 1’s to 0’s and the TRNG

performance does not degrade too much with changing temperature.
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Process Variation

We have already observed that a change in temperature creates a HRS distribution which is

a scaled version of the original distribution. Process variation would make the HRS values to

be different from their die-to-die mean HRS, causing a shifted distribution profile. However,

since we are using the difference in states between two memristors, the result would just be

a random distribution with scaled mean and standard deviation of the original distribution.

Z = HRS′′1 −HRS′′2

= N((µHRS1′′ ∼ µHRS2′′),
√
σ2
HRS1′′ + σ2

HRS2′′)

≈ N(.01 ∗ µHRS1′′ , 0.1 ∗
√

2 ∗ µHRS1′′)

(3.30)

Suppose, µHRS1′′ is 1σ larger than the mean µHRS1. Thus µHRS1′′ = 1.1*µHRS1 and the

z-score of this would again be:

z =
x− µ
σ

=
0− 0.01 ∗ µHRS1′′

0.1 ∗
√

2 ∗ µHRS1

=
0− 0.01 ∗ 1.1 ∗ µHRS1

0.1 ∗
√

2 ∗ µHRS1

= −0.0778

(3.31)

The probability of getting 0 for 1σ variation of HRS is thus:

P(x ∈ Z ≤ 0) = 0.469 (3.32)

Thus the relative probability of getting 1’s and 0’s change by a small amount with process

variation for our design. This is an excellent property since it means that it does not require

changing any design parameters even if memristors have large variations across different die

as the TRNG performance should remain close to its ideal operating condition.

3.3.5 Results and Analyses of Designed Twin-Memristor TRNG

First, we have analyzed both the existing single memristor TRNG and our new twin

memristor TRNG design in terms of the probability of producing 1’s and 0’s with respect to

69



varying operating conditions. We have used MATLAB platform to simulate both designs. We

calculate the percentage of 0’s with the sum of 0’s and 1’s in normal operating condition, when

temperature changes ±500C from room temperature, with ±10% variation in applied voltage

and 1σ process variation. This 1σ process variation corresponds to switching time variation

for single memristor TRNG and is assumed to be 5%. For our TRNG design, this variation

is of HRS and assumed to be 10% as HRS shows higher variation than switching time or

other memristor parameters. Table 3.7 lists the performance of both TRNGs for different

operating conditions. As expected, since both process variation and environmental variation

strongly affect switching time, single memristor TRNG shows a large bias towards either 1’s

or 0’s except for ideal condition. Our TRNG is based on relative measurement of HRS and

because of difference due to mismatch, inherently has a small bias i.e. the proportion of 0

is not 50% ideally, as can be seen from Table 3.7. However, due to the relative nature of

measurement, our TRNG design only shows negligible change in performance with changing

temperature or voltage. Thus our design is found to be robust against both environmental

changes and process variation. As expected, performance of our designed TRNG doesn’t

show any big deviation from ideal condition where single memristor TRNG performance

could be heavily affected.

To better understand the effect of process variation on both TRNG designs, we have run

Monte Carlo simulation with 10000 different chips and generated 5000 random bits from

each chip. Figure 3.23 shows the percent of 1’s for different chips for both single and twin

memristor TRNGs. A TRNG should ideally has a 50% probability of producing 1’s i.e.

the center of the distribution should be at 0.5. As expected from our detailed theoretical

analysis, switching time based single memristor TRNG design displays a wider distribution

with a standard deviation of 0.1805 when we consider this process variation. On the other

hand, our twin memristor TRNG only has a narrow and much tighter distribution over

process variation with a standard deviation of only 0.0322. This result shows our TRNG

design is robust against process variation and eases circuit design work by eliminating the

need to redesign for every different chip.

We have also run Monte Carlo simulation to show how the probability distribution of

TRNG output changes from ideal for a ±100C change in temperature and for a ±10% change
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Table 3.7: Percentage of 0’s to the sum of 0’s and 1‘s for different operating conditions [67]

Design with Ideal/No Temperature Voltage Process

varying conditions change +250C -250C +10% -10% +1 σ -1 σ

Single-memristor 50 4.01 95.99 18.16 86.67 69.15 30.85

Our Twin-memristor 47.18 47.76 46.62 47.18 47.18 46.90 47.46

in supply voltage. This result is shown in Figure 3.24. Single memristor TRNG shows a

large deviation from ideal distribution for both increasing and decreasing temperature and

supply voltage, as the center of distribution shifts to far left or right. However, our designed

TRNG almost show zero change.

3.3.6 Output Correction

Since our designed TRNG inherently has a small percentage of bias i.e. amount of 1’s and

0’s in the output are not equal even in ideal condition, some form of post-processing could

be very useful to improve the quality of TRNG output. Therefore, we suggest to use simple

Von-Neumann correction which can be easily implemented in circuit with minimum hardware

overhead. Von-Neumann correction discards when two consecutive TRNG output bits are

either both ‘1’ or both ‘0’. But if the sequence of consecutive bits is ‘10’ then the output

becomes a ‘1’, and if it is ‘01’ then the output becomes a ‘0’. It helps remove any small bias

and reduce correlation between consecutive stream of bits. XORing of two TRNGs is another

technique. If outputs from two TRNGs are not correlated, then XORing them could help

improve randomness in the output. Another technique is whitening, which XORs the output

of a TRNG with a cryptographically secure PRNG to improve the statistical properties of

output bit stream.
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Figure 3.23: Histogram of bit bias with process variation for (top) existing single memristor
design and (bottom) proposed twin memristor design [67]

Figure 3.24: Histogram plot showing the trend for shift in distribution with temperature
and voltage variation for both single memristor TRNG (left two figures) and our designed
twin memristor TRNG (right two figures). Top two figures represent variation due to
temperature for single and twin memristor TRNG, respectively while bottom two figures
are for voltage variation. Existing single memristor TRNG displays a large variation while
our design almost unchanged [67].
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Chapter 4

Design and Robustness Analysis of

XbarPUF

4.1 Design Analysis of XbarPUF

4.1.1 Noise Margin Analysis

The parameters that we have used in this work are listed in table 3.1. We have experimented

with four different crossbar sizes, 4×2, 8×2, 16×2 and, 32×2, all XORed XbarPUF. We have

not considered larger crossbar due to huge simulation time and memory requirement. For a

32×2 XORed XbarPUF, it takes more than a week just to generate a single security metric

using a 40-core server. That’s why it was impractical to use larger circuits than those used

in this work. We have used the same set circuit and device level parameters to get a fair

comparison across different crossbar sizes. The read and write voltages are chosen to be 0.6V

and 1.3V, respectively for this simulation.

Noise Margin vs. Load Resistance

We have already evaluated the best load resistance for maximum noise margin for the

XbarPUF in equation 3.8. However, we have also performed a sweep of the load resistance,

Rld for a 4×2 XORed XbarPUF using equations 3.7, 3.5 and 3.6 where the HRS and LRS

values can be found in table 3.1. This is shown in Figure 4.1. The noise margin is plotted
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Figure 4.1: Relationship between noise margin and the load resistance [69].

as a percentage of read voltage and thus one can achieve a maximum of around 40% noise

margin for a 4×2 XbarPUF with HRS = 300kΩ, LRS = 30kΩ. With 0.6V or 600mV read

voltage, this translates to a 240mV noise margin voltage.

Noise Margin vs. Crossbar Size

We have also plotted the relationship between noise margin and no. of crossbar rows in

Figure 4.2, again using parameters listed in table 3.1. As expected, the peaks of each of the

curves for different crossbar sizes in Figure 4.2 are the same (at around 40%) which means the

maximum achievable noise margin only depends on the memristor itself (HRS/LRS ratio)

and does not change with a change in crossbar size. However, it is important to note that

each curve in this figure gets narrower around the peak as the number of rows increases. This

is because with increasing number of rows, more memristors are in parallel with each other

which lowers the total effective memristance of a column and thus demands lower and more

finer resolution for load resistance. Thus if the crossbar is too large, then a small deviation

of load resistance from its optimum value due to process variation might reduce the noise

margin considerably. This is an important result since this imposes an upper limit on the

size of crossbar for a particular memristor device.
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Figure 4.2: Relationship between maximum achievable noise margin and the number of
rows (N) [69].

Noise Margin vs. Memristor Device Properties

We have analyzed to see if an improvement in device characteristics result in an improvement

in the maximum noise margin achievable for the same crossbar size. Fig 4.3 shows the result

for this where the read cross mark in the plot shows the current situation with the memristor

parameter set that we have used (OFF/ON ratio of 10). In all the data points in this figure,

LRS was kept at 30kΩ while HRS was increased. It is clear that using a memristor device

with higher OFF/ON (or HRS/LRS) ratio would give increasingly better noise margin.

Thus if we want to use large crossbars with reasonably good noise margin, we should look

for memristors with high OFF/ON ratio.

4.1.2 Security Analysis of the XbarPUF

There are four primary security metrics that are often used to evaluate a strong PUF. These

metrics are uniqueness, uniformity, bit-aliasing, and reliability. To evaluate the uniqueness

and bit-aliasing, we have run 100 Monte Carlo simulations using Cadence Spectre for a

set of several different PUF challenges. To evaluate uniformity, 100 unique challenges were

applied over several different chips. To evaluate reliability, different challenges were applied
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Figure 4.3: Relationship between the maximum achievable noise margin and HRS/LRS
ratio [69].

for 10 different chips for 100 clock cycles each. Each challenge vector is randomly chosen

and unique.

Security Metrics vs. Crossbar Size

First we have evaluated all the four security metrics for different crossbar sizes and

represented in Figure 4.4. The uniqueness almost remains at its ideal value of 50%, uniformity

and bit-aliasing are near 50% for all crossbar sizes. Reliability is near its ideal value of 100%

for larger crossbars while being over 90% for smaller crossbars. This may seem counter-

intuitive at first because with an increasing number of rows, the equivalent memristance

drops further and thus should decrease noise margin. However, for a 32×2 XORed XbarPUF,

the load resistance is found to be 2kΩ using equation 3.8. This is not too low so that wire

resistance and other peripheral resistance would influence and worsen noise margin. However,

it can be inferred that with an increasing number of rows the effect of cycle-to-cycle variation

for each individual memristor to the overall equivalent memristance of the crossbar is reduced.

Therefore, during different cycles, the probability of getting different responses for the same

challenge is reduced and thus reliability is improved. However, at some point this would

not be the case for very large size crossbar sizes since the equivalent memristance would be
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Figure 4.4: Security performance of XORed XbarPUF for different crossbar size [69].

comparable with any changes caused by environmental variation or noise. Having high HRS

and LRS values would help reduce this effect and improve scalability, which is shown later

in this section.

Security Metrics vs. Memristor Device Properties

Uniqueness and bit-aliasing with respect to different HRS/LRS (OFF/ON) ratios are shown

in Figure 4.5. The LRS was kept at 30KΩ while HRS was varied to obtain all the data

in these two plots. From Figure 4.5, we can see an improvement in both uniqueness and

bit-aliasing (moves toward 50%) with increasing HRS/LRS ratio, which is expected since an

increase in HRS/LRS ratio provides a better noise margin. It is also evident that even at

a smaller HRS/LRS ratio (leftmost point on the plots in Figure 4.5) and with 10% cycle-

to-cycle variation, good values for both uniqueness (≈47%) and bit-aliasing (≈48%) can be

observed. This is expected from any PUF consisting of nano-materials such as memristors.

Since memristors display much higher process variation compared to CMOS devices, it is

statistically intuitive that memristor based PUFs would also exhibit near ideal uniqueness,

uniformity and bit-aliasing in hardware implementation.
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Figure 4.5: Dependence of uniqueness (left) and bit-aliasing (right) with HRS/LRS ratio
and the absolute values of HRS and LRS. The base LRS was 30KΩ for both of these plots
[69].
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Security Metrics vs. Process Variation of Load Resistance

We have also performed a small corner analysis by including CMOS variation. Since the

variation of peripheral circuitry would only affect slightly the read/write voltage and thus

does not change the overall performance of the circuit we have used higher than minimum

read/write voltages to obfuscate any such changes with 2% variation for load resistance.

The security metrics either do not change or show only minuscule change and, therefore, the

results is not explicitly provided here.

Uniformity is also relatively constant across different load resistances as it is a property of

challenge. The other two metrics, uniqueness and bit-aliasing also remain effectively constant

for up to 32×2 XbarPUF, which is shown in Table 4.1.

4.1.3 Detailed Reliability Analysis

Reliability is the most frowned upon security metrics of a PUF and in this work, we have

evaluated reliability of our proposed XbarPUF against varying memristor device parameters

i.e. HRS and LRS, against varying temperature and aging. Because of the high cycle-to-

cycle variation present in memristors and other emerging nano-devices, they tend to show

slightly different behavior across different cycles. Thus, the stability or reliability of the

circuit is hampered with increasing cycle-to-cycle variation. Temperature also changes the

memristor parameters and thus can potentially affect reliability. The reliability results for our

XORed XbarPUF with and without temperature variation along with two sets of variation

are presented in Table 4.2. As expected, reliability is improved, from 80% to 90% for a 4×2

XbarPUF, if the variation decreases from 10% to 2%. We have not found any change in

reliability with changing temperature. However, it is expected to have some adverse effect of

changing temperature in any circuit. But since in XbarPUF, instead of measuring absolute

voltage/current, the relative differences between adjacent columns voltages of the XbarPUF

are measured and, therefore, any environmental change should affect both the physically

nearby columns almost equally, thereby preserving the original relative differences.

Reliability is also presented for different LRS (and HRS) values in Figure 4.6. There is

little dependence on reliability with LRS values. However, if the LRS is too low, then the

79



Table 4.1: Impact of 2% variation of load resistance on the security properties of a 32×2
XORed XbarPUF [69]

Metric Min. Rld Nominal Rld Max. Rld

Uniqueness (%) 50.17 50.40 50.12
Bit-aliasing (%) 51.00 51.50 50.25
Uniformity (%) 53.00 56.50 47.50

Table 4.2: Performance of the XORed XbarPUF with variable temperature (10oC- 100oC)
and with different cycle-to-cycle variation for the memristor parameters [69]

XORed XbarPUF Reliability (%) Reliability (%)
(10% variation) (2% variation)

Fixed/room temperature 80 90
Variable temperature 80 90

equivalent memristance of the crossbar would be very low, thus decreasing noise margin and

reliability. Therefore, on the left side of Figure 4.6, we see that reliability tends to decrease

with decreasing LRS.

We have also measured reliability over 100 cycles for the XbarPUF consisting of fresh

memristors and memristors aged over many set-reset cycles. With aging, the HRS/LRS ratio

drops as shown in Figure 3.3. Therefore, the reliability of the XbarPUF also decreases as

illustrated in Figure 4.7, as is expected. To tackle this situation, memristors with much higher

HRS/LRS ratio should be used so that even after a few million cycles, a good separation

between HRS and LRS values exists to differentiate. Besides, there are also memristors

where HRS and LRS do not change much with time and thus their relative difference is still

intact after many cycles.

In addition, there are no floating rows as the read voltage is applied across all rows

simultaneously and each column is measured using a load resistance, unlike in a crossbar

memory where a single memory element needs to be read. Therefore, there is no negative

impact of sneak-path current [12] in our crossbar circuit implementation as there are no

unselected cells. For these reasons, we expect the reliability of the fabricated XORed

XbarPUF also to be very close to its desired value if the variation is improved.
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Figure 4.6: Reliability of the XbarPUF with respect to increasing LRS [69].

Figure 4.7: Reliability of the XbarPUF with age [69].
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4.1.4 Performance Overhead Analysis

Change in power consumption for the circuit with respect to LRS and HRS values are

shown in Figure 4.8. We have simulated and evaluated power for six different HRS/LRS

ratios, each with five different sets of HRS and LRS values. The leftmost and topmost

point in Figure 4.8 represents the power consumption with the current HRS and LRS values

considered achievable for HfOx memristors. Therefore, it is evident that there is room for

further reductions in power consumption by improving device characteristics, something we

expect to occur as the technology matures. Both an increase in HRS/LRS ratio and any

increase in LRS (and HRS to keep the ratio same) result in a reduction in power. However,

larger reductions are found at HRS/LRS ratios less than 100, beyond which the power curve

tends to flatten out. With increasing LRS, the advantage in power reduction with increasing

HRS/LRS ratios also reduces.

Memristors are very small compared to CMOS transistors and can be placed at each

cross-points of a crossbar array. Therefore, the crossbar representation requires minimal

area from the perspective of CMOS. Since the XORed circuit generates one response bit

from four columns instead of two as was the case in XbarPUF without XORing, its area

is double in size compared to an XbarPUF with no XORing. Only a few transistors are

added to the whole circuit if column shuffling is used. Figure 4.9 shows the area comparison

between XbarPUF and CMOS-based arbiter PUF (APUF) in terms of transistor count. The

area of the memristive XbarPUF increases linearly with an increase in rows and/or columns

while in the case of the APUF, the increase in area is exponential.

The delay of this circuit is the minimum clock cycle time that can be used to sample the

response bits faithfully. This minimum clock cycle time is constrained by the longest time

needed for a memristor to switch to either the high or low resistance state. In our model the

switching time is 1µs. There is also a time needed to apply a challenge to the crossbar PUF

and then get a valid response. From the simulation, we find this delay to be 25.2ns which

includes the sampling time using another clock. Thus, the delay of our XbarPUF circuit

would be a function of the switching times of memristors and the time required to apply a

challenge and get a valid response. It is worth noting that other memristor material stacks
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Figure 4.8: Dependence of average power on HRS/LRS ratio and the absolute values of
HRS and LRS [69].

(such as [80]) have exhibited faster switching times so the delay of the XbarPUF is expected

to improve as technologies mature.

4.1.5 Overhead analysis for Other Memristors

Since we have created an abstract high level model of the XbarPUF, we have also performed

overhead analysis which otherwise would take a really long time to simulate and generate

these different versions of XbarPUF for different memristor materials from a transistor

level simulation. To measure power consumption, we have also modeled current and power

consumption in our high-level XbarPUF model. First, we have computed the approximate

power consumption of our proposed design and evaluate its applicability as a lightweight

hardware security primitive. Since memristors are basically resistive devices, static current

flows through the circuit. All the memristors and series transistor in these current paths

consume static power. Moreover, the peripheral CMOS digital gates consume dynamic

power. To verify our high-level power model of XbarPUF, first we have calculated power

consumption of different sized XbarPUF from both transistor level simulation (from Cadence
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Figure 4.9: Area comparison of XbarPUF with Arbiter PUF [69].

Spectre) and from our high-level abstract model (from MATLAB). The results are shown in

Table 4.3. Values obtained from MATLAB model are slightly lower than power consumption

from transistor-level simulation as we have neglected dynamic power consumption for some

control logic. However, as we can see from this table, the estimated power consumption

values are consistently close to values from transistor simulation and follow the same trend.

Thus we have used our approximate high level power model for the rest of our experiment

to get a sufficient amount of data in a relatively short period of time.

So far in this work, HfOx memristor has been used for all simulations. Now, we have also

evaluated the XbarPUF performance for two other memristor materials too. Parameters

Table 4.3: Power estimation of a HfOx memristor based XbarPUF from MATLAB and
cadence [71]

Crossbar size Average Power (mW) Average Power (mW)
(chall×resp) (MATLAB) (Cadence Spectre)

4×2 0.25 0.26
8×2 0.51 0.61
16×2 0.98 1.01
32×2 2.07 2.22
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used for three memristors, HfOx, TaOx, and TiOx (hafnium, tantalum, and titanium oxide)

are listed in Table 4.4. Next, we have estimated the static power consumption of a 32×2

XbarPUF in its three different phases of operation for these three different memristors. The

results are shown in Table 4.5. The RESET phase consumes the most amount of power as

all the memristors are reset to HRS during this time. Although, the overall memristance

might be lower during READ and CHALLENGE phases, since higher reset voltage is applied

during RESET phase, the power consumption is also the highest. Our designed PUF stays

most of its time in READ and RESET phase and thus these two phases dominate the

overall average power consumption. As the crossbar size increases, the static power of the

memristors dominates the overall power consumption.

Static power is directly dependent on the memristance and applied voltage magnitude.

Because of its much higher HRS and LRS values, XbarPUF based on TiOx memristor as

listed in Table 4.4 consumes the least amount of power among these three memristors.

Moreover, from Table 4.4, we can also see that TaOx and TiOx memristors have smaller

threshold voltages which facilitates the use of lower read-write voltages. Thus the read-write

voltages of HfOx memristor are 0.6V and 1.3V, respectively while they are 0.3V and 1.0V,

respectively both both TaOx and TiOx memristors. Because of its very small LRS and HRS

values, TaOx memristors consume much larger amount of power compared to the other two.

When LRS/HRS values are small, with increasing crossbar size, the equivalent memristance

or resistance of a crossbar column would become comparable to the on resistance of the

peripheral CMOS transistors and thus CMOS would also contribute to a larger amount

of static power consumption. Finally, since the values in Table 4.5 are heavily influenced

by the choice of read-write voltage and memristor’s parameters especially memristance and

threshold voltages, these numbers are not the only representative of these types of memristors

materials. Rather, each should be analyzed separately depending on the application.

We have also shown how the power consumption changes with a change in crossbar size.

Figure 4.10 shows the relationship between static power consumption with increasing number

of response bits (and hence number of crossbar rows) for all three memristors. XbarPUF

with TaOx shows a faster increase in static power compared to the other two memristors,

HfOx and TiOx due to its small LRS and HRS values. It also limits the scalability of the
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Table 4.4: Switching Parameters for Metal-Oxide Memristors [71]

Parameters HfOx [72] TaOx [80] TiOx [48] Variation
HRS 300KΩ 10k 2M ±20%
LRS 30KΩ 2k 500k ±10%
Vtp 0.7V 0.5V 0.5V ±10%
Vtn -1.0V 0.5V 0.5V ±10%
tswp 10ns 105ps 10ns ±5%
tswn 1µs 120ps 10ns ±5%

Table 4.5: Power Consumption during different phases of a 32×2 XbarPUF [71]

XbarPUF HfOx TiOx TaOx

Phase (mW) (mW) (mW)
RESET 3.20 0.27 51.40

CHALLENGE 2.10 0.007 42.20
READ 0.60 0.014 1.10

crossbar for any memristor with smaller memristance values. Added mitigation technique

would increase power consumption for the same number of challenge-response bits. Column

shuffling block would increase the power consumption slightly where the XORing technique

would double it because the effective number of response bits decrease by a factor of 2

with XORing. However, still XbarPUF displays a relatively much low power consumption

compared to most lightweight hardware security primitives.

In previous chapter, we have presented area vs crossbar size results for an XbarPUF

based on HfOx memristor and it is shown again. All memristors considered here are very

small and can fit in each cross-points of two metal layers, thus effectively requiring zero

area. Therefore, changing memristors wouldn’t ideally change the required area although

the peripheral size is affected by the memristor’s parameters. Thus, the only area overhead

is the peripherals, where the area increases with increasing number of crossbar size. The

XbarPUF with added mitigation technique requires larger area but still the overall area

should be much smaller compared to a CMOS PUF like arbiter PUF or RO-PUF.
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Figure 4.10: Relationship between average static power consumption and size of the
XbarPUF [71]

4.1.6 On-Chip Design

To evaluate how the HfO2 memristor based crossbar PUF behaves, we have designed small

test structures to measure its performance. We have implemented a 1-bit memristor crossbar

PUF in 65nm CMOS technology along with HfO2 memristor. The schematic and layout for

this circuit are shown in Figure 4.11 and 4.12, respectively. The schematic is not very clear

from this image, but four memristors, their read-write-form circuitry, row and column logic

of the PUF, and a sense amplifier at the bottom are clearly detectable. The layout dimension

is 19.59µm × 33.63µm (excluding the metal layer extension for routing).

4.2 Robustness Analysis Against ML (Machine Learn-

ing) based Attacks

As stated, a PUF response results from a complex function dependent on internal process

variations inherent to specific chip implementations. Therefore, it is very difficult and time

consuming to predict a PUF response based only on the challenges provided. However, if
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Figure 4.11: Schematic of the designed 1-bit memristor crossbar PUF

Figure 4.12: Layout of the designed 1-bit memristor crossbar PUF (19.59µm×33.63µm)
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the internal functionality of a PUF is not complex enough, then using a machine learning

approach such as any classification algorithm, it is possible to model a PUF and predict

the response with high accuracy. In [62], a modeling attack on an arbiter PUF was shown

to achieve 99% accuracy with sufficient CRPs. A modified APUF with XORing, although

requiring a higher number of CRPs, was also shown to be modeled very accurately. High

modeling accuracy was achieved for an APUF due in part to the fact that an APUF can be

expressed with a linear additive delay model and a linear classifier can be used for modeling

purposes. Since a PUF response is binary, individual PUF responses can be modeled

with a binary classifier. XbarPUF is very similar in behavior to the APUF, because like

APUF, XbarPUF also consists of a number of delay elements, implemented by leveraging

the memristors’ switching rates. Thus, it is also expected that XbarPUF would be vulnerable

against these machine learning based modeling attacks. We have used most commonly used

machine learning algorithms already implemented and optimized for data analysis problems

by researchers and computer scientists.

We have created an equivalent behavioral model of a memristor and XbarPUF in

MATLAB. It is much faster to simulate a high level behavioral model than simulating a

large circuit at the transistor-level. Therefore, it’s easy to construct large crossbar arrays

and generate responses. However, it is essential that our MATLAB model imitates the

actual transistor-level (Cadence Spectre) model accurately. Therefore, we have verified

our MATLAB model by simulating several different circuits in Cadence to compare their

performance and verifying that they behave similarly. In our previous work [72], the

memristor crossbar size was only 4×2. It is impractical to use such a small circuit for

any kind of machine learning based modeling attacks as the total number of possible inputs

is only 24 = 16. Therefore, we have used XbarPUFs with larger numbers of CRPs so that

only a small subset of all possible combinations of CRPs are used in our experiments.

4.2.1 Development of High Level Behavioral Model of Memristor

In prior work demonstrating the XbarPUF [72], we have used a Verilog-A model for a

hafnium-oxide memristor adapted from a model presented first in [47]. For this work, we

have also created an equivalent high level model of a memristor to use in MATLAB based
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Figure 4.13: Simulated IV characteristics of a metal-oxide (HfOx) memristor for 200
set/reset cycles for a 100kHz clock. [71]

simulations. At each simulation time step, memristance at the next step is calculated from

the memristor’s current state based on the time duration and magnitude of an applied

voltage bias. Details of this switching operation can be found in [72]. As mentioned before,

there are six primary parameters in our memristor model, specifically: HRS, LRS, Vtp, Vtn,

tswp, and tswn. As necessary, parameter values are recalculated on each iteration using their

mean and cycle-to-cycle variations for any particular memristor. Figure 4.13 shows the IV

characteristics of a memristor for 200 set and reset cycles. All parameter values are allowed

to vary from one cycle to another, even for a single memristor. The various hysteresis loops

in Figure 4.13 demonstrate cycle-to-cycle variations for a single modeled device.

4.2.2 Development of High Level Behavioral Model of XbarPUF

The memristor crossbar PUF circuit consists of two main components, a memristor crossbar

array and peripheral read-write circuit. A crossbar is simply a 2-D array with memristors at

each crosspoint. A matrix of size row×col is created where each component is represented

with a memristor ‘class’ in MATLAB. Using respective means and standard deviations for all

the memristor parameters, and assuming a Gaussian distribution function, each memristor
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is assigned to different random initial values for its parameters. This is the step where

die-to-die variations of memristors are mimicked in the simulation.

As mentioned, three phases of operations are performed on the memristor crossbar. A

vector with its length equal to the number of rows in the crossbar is created to represent

the voltage applied to each row. During RESET, all these voltages are equal to -Vwr. Each

memristor is reset to HRS and, therefore, the effective memristance across an entire column

is at its maximum value. The load resistance is chosen such that it has minimum drop during

this reset period and maximum drop during the challenge. During the CHALLENGE phase,

either a positive Vwr or zero voltage is applied to each row depending on the state of the

corresponding challenge bit. If the challenge bit is high, then memristors in that row start

to set toward LRS and the voltage drop across the load starts to increase. Otherwise, any

corresponding memristor is kept at HRS since the applied voltage is 0V. In the READ phase,

all the memristors in a column are in parallel with the applied voltage Vrd. This effective

column memristance is in series with the column’s corresponding load and a simple voltage

divider determines the load voltage. The load voltage from two side-by-side columns are

compared to generate a response with ‘0’ for one column and ‘1’ for the other. Which

column first hits the ‘1’ state determines the column that “wins” the race, thus generating

the corresponding response bit. For an XORed XbarPUF, two response bits (generated from

2 column pairs) are logically XORed to determine one final bit.

4.2.3 Introduction to Machine Learning Attack Models

We have used python’s scikit-learn package [54] to implement several different machine

learning models. Specifically, we have performed classification or modeling of PUF responses

using logistic regression, support vector machine (SVM) with different kernel functions

(linear, polynomial, RBF (radial basis function), and sigmoidal), k nearest neighbour (kNN),

Naive Bayes (Gaussian, and Bernoulli), stochastic gradient descent, random forest, ensemble

methods (bagged tree, and AdaBoost), and neural network (perceptron). All of these are

very standard machine learning techniques and details about their theory, mathematics, and

algorithms can be found in [54] and, thus, skipped here for brevity. Only the results from

best few models are provided in this work.
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4.2.4 Experimental Setup

We need a large enough crossbar with a sufficient number of challenge response pairs (CRPs)

to build an attack model. For this particular work, we are only interested in the final

CRPs, not the actual internal structure of the XbarPUF itself. We have experimented on an

XbarPUF of size 32×2 in terms of CRPs for this work which contains 64×4 memristors. The

idea is that an adversary would gain access into the system and can collect a small subset of

all available CRPs. For the most part of the experiment, we have kept the number of CRPs

to 5000 which is small compared to the total number of possible combinations of input (232).

The read, write voltage and clock frequency are constrained by the particular memristor

technology. In this work, we choose the read and write voltage to be 0.6V and 1.3V,

respectively because the HfO2 memristor that we have considered has threshold voltages of

0.7V and -1V in positive and negative switching direction, respectively. The clock frequency

should be kept higher than the memristor’s switching time so that a memristor require

multiple clock cycles to switch from one state to another. This would ensure that little

differences in switching speed between two memristors due to process variation could be

detected with more confidence. For this work, the memristor’s switching time is considered

to be 1µs and we have used a clock with clock period of 100ns (10 times faster).

Before the beginning of each CRP dataset collection, the memristors are instantiated

randomly. First using the statistical mean and variance for each memristor parameter, a

full crossbar of memristors are generated from a normal random distribution. Then a set of

random challenges are applied and 2-bit responses are collected for all different versions of

XbarPUF, without any mitigation technique and with different mitigation techniques applied

as presented next. CRPs are saved in a database file with each row represents one data-point

or CRP containing all challenge and response bits.

4.2.5 Modeling Attack on an XbarPUF

Table 4.6 shows the success of modeling attack against an XbarPUF without mitigation. As

suspected, it is very much vulnerable against such attacks with a modeling accuracy of over
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Table 4.6: Results from modeling attacks on basic XbarPUF (no mitigation) for different
machine learning algorithms

M.L. models SVM (RBF) L. R. Gauss. N. B. AdaB. Ensem.
Train Test Train Test Train Test Train Test

Accuracy (%) 80.09 79.10 99.96 99.33 91.29 90.45 98.55 97.99

99%. Thus, next we are going to design some mitigation techniques to increase resiliency

against these attacks and reduce the accuracy.

4.2.6 Mitigation of ML Attacks

We have proposed techniques to mitigate these attacks by introducing some form of non-

linearity in the circuit. The first and well-known technique to XOR the responses with each

other to produce different responses. However, this is not sufficient against stronger attack

model with larger number of training data. That’s why we proposed another mitigation

technique called ‘column shuffling’ which shuffles the connection between top part of a

crossbar to its bottom part based on some selector challenge input. In this particular work, we

have proposed a four column shuffling or swapping block with three selector bits controlling

the shuffling logic. An example implementation of such shuffling logic block is provided in

Table 4.7.

There are some restrictions on the way this shuffling block to be implemented. Boolean

logic minimization without keeping an eye on these requirements would change the XbarPUF

behavior unexpectedly. Because these shuffling blocks are used directly in path of response

generation, they can not introduce any uneven delay on these paths. Because that would

introduce bias and could deteriorate the security properties. TO ensure, memristors, not

these blocks are the only source of entropy for the XbarPUF, we have designed the logic

in such a way that the logic path delay introduced by these blocks are equal on all four

crossbar columns. Thus we have only used a subset of all possible combinations of 24 = 16

for 4-columns. Moreover, current flows in both directions in the crossbar and thus these

logic should be symmetric over both directions of current flow. Keeping all these in mind,

we have implemented the shuffling operation as shown in Table 4.7. Figure 4.14 shows one
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Table 4.7: Column swapping logic implemented in this demonstration [71]

S1 S0 y3 y2 y1 y0
0 0 x3 x2 x1 x0
0 1 x3 x2 x0 x1
1 0 x2 x3 x1 x0
1 1 x2 x3 x0 x1

S2 z3 z2 z1 z0
0 y3 y2 y1 y0
1 y1 y0 y3 y2

Figure 4.14: An implementation of column swapping circuit [71].

possible implementation. Three selector bits are needed as control input for this block and

can be considered as extra challenge bits for the PUF. For an M×N XbarPUF in terms of

no. of rows and columns, it would require M/4 number of column shuffling blocks. All of

these blocks can have different selector inputs or they can all share the same selector bits

as well. For simplicity and to reduce pin count, we have only considered the case when all

these 4-column groups share the same selector bits for their column shuffling block as shown

in Figure 4.15. Adding this column shuffling or mixing block with additional challenge bits

would increase the complexity of any learning algorithms considerably and in next sections,

we’ll analyze the impact of this modification.

4.2.7 Results and Discussions

Table 4.8 presents the modeling attack results for all different XbarPUF versions i.e.

XbarPUF with no mitigation, XOR mitigation, column shuffling, and XOR+column shuffling

mitigation. This table lists the four best modeling attack results from several different

machine learning/classification algorithms found in scikit-learn [54]. As mentioned earlier,

basic XbarPUF with no mitigation technique is very vulnerable and can be modeled with

more than 99% accuracy with logistic regression. As we add non-linearity in the design,
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Figure 4.15: XbarPUF with the inclusion of column swapping logic [71].
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Table 4.8: Results from modeling attacks after mitigation techniques applied for different
machine learning algorithms

Mitigation SVM (RBF) L. R. Gauss. N. B. AdaB. Ensem.
Technique Train Test Train Test Train Test Train Test

None 80.09 79.10 99.96 99.33 91.29 90.45 98.55 97.99
XOR 66.29 63.82 78.30 77.01 76.87 75.68 76.84 75.70
Swap 77.97 71.81 66.93 64.38 66.63 64.64 66.71 64.37

XOR+Swap 52.50 49.64 54.62 49.19 54.59 49.20 54.56 49.18

this accuracy should drop. Thus both XORing and column shuffling technique reduce the

modeling accuracy, with column shuffling presenting a higher resiliency against modeling

compared to XOR. However, as we can see from the last row of this table, when we

incorporate both of these mitigation techniques together in the XbarPUF design, the

modeling accuracy drops to almost the probability of a random coin flip (50%).

So far we have evaluated the robustness of the regular XbarPUF and its 3 variants with

different mitigation techniques against four different modeling attack for 5000 data-points.

Now, we have performed experiments to observe how much the modeling accuracy changes

with increasing number of data-points. Figure 4.16 and 4.17 show the modeling accuracy

vs no. of data-points for LR and Gaussian NV (Naive Bayes) model, respectively for all

four versions of the XbarPUF. We picked these two algorithms as representatives of linear

and non-linear classification algorithms. Both of these models achieve very good accuracy

with a small number of data-points (and features), its accuracy doesn’t change or change

slowly with increasing number of data-points. In [62], modeling accuracy of LR model vs.

dataset size was analyzed against arbiter PUF and was shown to vary very slowly which

further justifies our findings here. Since GNV uses a non-linear kernel with large number of

features, its accuracy is expected to increase with increasing no. of data-points. It is evident

from the first three lines of Figure 4.17. However, from Figure 4.17, for the combined

mitigation technique of XOR+column shuffling, the accuracy of bot LR and GNV model do

not improve at all with increasing no. of data-points and stay near random probability of

near 50%. This proves that the XbarPUF with our designed mitigation technique is robust

against both of these modeling algorithms.
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Figure 4.16: Modeling accuracy of LR vs. the size of dataset [71].
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Figure 4.17: Modeling accuracy of Gaussian Native Bayes vs. the size of dataset [71].
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Chapter 5

Lightweight Security for

IoT/Embedded System

5.1 Motivation

In the era of connectivity and smart technology, there is a plethora of small devices that

connect to the Internet and other networking sources with very limited security features.

Many of these devices may contain time-sensitive data. Most of these devices run on battery

with very limited power available to them and some are even batteryless, dependent on

harvested energy alone [38]. Therefore, to save as much power as possible and also due to

their intermittent nature of data sensing operation, they often go to sleep or ultra low power

mode before backing up their sensitive states and other information for data forwarding

[37]. Now, these backup data are usually saved in NVM and are vulnerable to probing and

malicious read. In this work, we are mainly focused on providing a security for the backup

data in these resource constraint devices. Now, since the data in an IoT device are mostly

temporary, the information is no longer useful after a certain period of time. Therefore, their

security requirements are relaxed in terms of complexity of code-breaking algorithms but has

to be very lightweight in terms of area occupied, power consumed and delay introduced. In

this work, we have focused our attention on developing an ultra lightweight security for the

backup data of these devices.
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5.2 Security vulnerability of IoT processor

We have considered two types of resource-limited embedded processor, typically common in

an IoT system, as shown in Figure 5.1. First, a regular battery-operated or very low power

processor may employ very aggressive power power saving technique and often go into ultra

low power mode, before backing up necessary data in an unprotected NVM. Second, for

energy-harvesting devices, since they lose all information when there is a power failure, they

back-up their necessary information for computation in an unprotected NVM as well. Our

idea to secure this unprotected NVM so that an adversary can not gain any information by

reading this data or any illegal modification is detected by the processor. Therefore, a secure

restore and back-up protocol has been developed.

First, a random vector is generated from a TRNG and used as a challenge to an on-chip

PUF. The PUF can generate a unique random response which is used as a cryptographic

to encrypt the data before back-up into an NVM. The challenge is also saved in the NVM

and read again during wake-up to generated the same PUF response or cryptographic key

again. This key is used to decrypt and restore the data. This is illustrated in Fig, 5.2.

Since the same PUF can generate different keys in different devices, our design also provides

device-specific security.

5.3 Our Security Solution

Since we are concerned about providing security for a non-volatile memory which may contain

time-sensitive data, we need to provide some form of encryption which would provide good

security as well as be lightweight in nature. For that purpose, a lightweight PUF based

encryption is designed. We have considered the memristive crossbar PUF or the XbarPUF

for this purpose which would provide the cryptographic key. At the beginning of each backup

operation, a random challenge is applied to the XbarPUF. Then it generates a random

response depending on the challenge which is used as the encryption key. To reduce heavy

overhead of complex encryption engine, we are only proposing to use an XOR block which

would XOR the data to backed up with the PUF key. Then this XORed or encrypted data is
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Figure 5.1: An embedded processor (either regular or energy harvesting) backs-up data for
data-forwarding but the data left on NVM is unprotected.

Figure 5.2: A unique random challenge is applied to a PUF to generate a cryptographic
key for secure back-up and restoration of data in an embedded processor.
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saved in an RRAM or memristor based memory. On each back-up, a new PUF key would be

generated by applying a new challenge and thus essentially implementing an one time pad

(OTP) system. Since OTP is theoretically the most secure, our system is also very secure.

During a wake-up, the same challenge is applied to the XbarPUF again to generate the same

key which is then XORed with the encrypted data to regenerate the original data.

Since reliability is issue for all PUFs and an IoT employed in the field might subject

to larger temperature change, rail voltage and other noise, the reliability is even a bigger

concern where the PUF response is used as the key. Thus the PUF must be improved

to have a close to ideal reliability and also some kind of error correction needs to be

implemented. Since traditional error correction code (ECC) introduces a large overhead,

employing those would defeat the purpose of using PUF for its low overhead compared to

traditional cryptography. Since XbarPUF is robust against environmental changes due to its

relative nature of computation, it is very useful in this type of IoT system. However, because

of memristor’s cycle-to-cycle variation, there would be some unreliable bits in the response

depending on the challenge applied. To overcome this, we have used a simple majority

check to discard these erroneous bits for a particular challenge. Our idea is to use two small

SRAM blocks for this purpose as seen in [cite]. First, a random challenge is applied to the

XbarPUF and the response is saved in an SRAM. Then the same challenge is applied again

(and maybe in a different environmental condition) and the response is saved in another

SRAM with same location for a particular bit position. Then the contents from these two

SRAMs are compared by a simple XOR/XNOR function. If two bits from the two SRAMs

are the same, then it is a valid response bit and used as one bit of the encryption key. If the

bits are different, then it is discarded. This system is thus not exactly an error correction

method, rather a simple error minimization system.

During wake-up, when power is available for a resource-constraint system, the same

challenge as before is applied to the XbarPUF twice to generate a fresh response key again.

Then encrypted data from the RRAM is read bit by bit while contents of the SRAMs are

read and checked for valid key bit and XORed with the encrypted data for decryption and

then saved back to appropriate registers again to resume normal processor operation.
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This whole PUF key generation, data encryption and decryption can be incorporated

in a interrupt routine with a processor. Specifically, we can tie these operations with the

highest level interrupt of a processor, like the low power/voltage warning. Thus for a energy

harvesting system, when the power is unavailable or for a battery powered device, when the

system wants to go to sleep mode, the low power warning interrupt might be enabled to

perform all these operations before power failure or sleep. During wake-up, the decryption

process is done first before resuming regular processor operation again. The different key

components of this system are discussed in the following sections.

5.4 Our Security Protocol

The purpose of this design is to provide security for the unprotected persistent or non-

volatile memory of any low power embedded systems or edge devices. During a sleep or

low power mode or during a power failure for energy harvesting processors, this memory is

vulnerable and our designed security architecture is active during this time. This security

mechanism depends heavily on the XbarPUF based cryptographic key generator and a

reliability enhancement block. Our idea is to generate a reliable and unique cryptographic key

each time a backup operation is needed, thereby our system, effectively, is an implementation

of one-time pad. We have some basic assumptions or criteria for our design. First, the key

should be random. Since the response of a PUF is random by definition, the key extracted

from it is expected to be random as well. Second, even with the same PUF circuit, different

devices would produce unique keys compared to each other. This is the beauty of a PUF

based system is that they are unclonable and unique by nature and an adversary won’t be

able to break the security of another chip even if he gains access to all the keys from one

chip. This is very helpful for IoT domain since there are billions of devices out there and

with traditional cryptography, breaking one device would compromise the security of these

devices. Third, during each back-up, a new key is needed. A strong PUF with sufficiently

large CRPs can provide unique keys throughout the lifetime of a device. Besides, since we

only want to use one key once per encryption and generate a new key during another time,

the reliability requirement of the PUF can be relaxed in this application. PUF response only
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needs to be stable during one cycle of encryption and one cycle of decryption. Moreover, if

a response remains stable during one encryption-decryption and changes over long time due

to aging or other factors, it would actually increase the possible number of unique responses

even for the same challenge over time, thereby increasing available number of keys over the

lifetime of such devices. To fulfill the requirement of OTP, the key should be as large as the

data itself. This is usually difficult to meet for larger systems, however, could be practical

for small IoT systems needing to only back-up states and other information. If a single PUF

response is not large enough to generate a big enough key for the data, then we can generate

multiple much responses to create a key as large as the data itself.

We are also assuming that data is only valid and important for a short period of time

for the type of system that we are targeting. When the processor wakes up from a sleep

mode or when an energy harvesting processor resumes working on its stored data after a

power failure, previous data like program states, temporary data, and other information

are no longer useful. Thus we only need to provide security for the time being when data

is left unprotected on the NVM during a sleep or power failure. Therefore, any rigorous

cryptographic solution which can theoretically be unbreakable for hundreds or thousands of

years is not essential in this case. Thus our goal to provide security for a practical time limit

for such devices. Hardware security is the preferred choice because of its lightweight nature

which is a must in this domain.

We have shown in this work how we meet all of these aforementioned requirements for an

IoT system. Since the RESET phase of an XbarPUF consumes relatively much large amount

of power compared to other states in the security architecture, multiple smaller XbarPUFs

are used and activated one by one in a time-multiplexing fashion and their responses are

augmented together to create a large enough response. Since some bits of this response

vector might be unreliable and prone to flipping, a reliability enhancement block is used to

get only the clean bits which forms the final cryptographic key. As mentioned before, the

challenge to the XbarPUF circuit is generated from a TRNG before each back-up operation.

For reliability enhancement purposes, same challenge is applied to the PUF multiple

times to detect which bits are prone to flipping and can cause bit-errors. For an XbarPUF,

the main source of producing bit-flips is the case when memristors’ cycle-to-cycle variation
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overtakes the variation caused by their chip-to-chip or device-to-device variation. During

device testing, severely unreliable bits cane be detected and eliminated totally while other

bit-flips can be detected run-time. Probability of bit-flips also depend on a particular

challenge and thus it is useful to find bit-flips run-time rather than making a large table

of them beforehand to act as a helper data. Different bits of the challenge vector cause

the PUF responses to depend on different memristors in the crossbar and thus, locations of

bit-flips are highly depend on particular bit values of challenge vectors. The key generation

process including TRNG, XbarPUF, and reliability enhancement operation are described in

algorithm 1 [70].

After generating a secure and reliable cryptographic key, the data is then being encrypted

and save in a persistent memory or NVM. In the simplest case, XORing is performed as the

encryption operation while the key is changed every time to maintain perfect secrecy. A

secure tag or hash is also generated from data integrity verification purposes using sneak-

path based tag generation method [40]. This is also a hardware security module which helps

to validate the integrity of data during restore. The tag is saved in the NVM as well. The

sequence of operations when there is low power warning or when a power failure occurs are

described in algorithm 2 [70].

The duration of power failure or energy-saving mode can be long and depend on particular

device and its power/energy source. We have used memristors as NVM in our design and

they can have long retention time without any power source [80], data can be retained for

a sufficiently long duration of time for a particular IoT. When the power comes back onto

the processor based system, the system first checks if there is enough power to resume the

operation or not. If enough power is available, a new tag is first generated from the back-

up data and compared with the stored tag. If they do not match, the data is said to be

corrupted by either illegal modification, data-error, or key-error and the processor simply

flushes all the data and restarts operation. If the tags match, then key generation protocol

is activated again to generate the same key as before and decrypt the data into the processor

memory. The sequence of operation for secure restore when there is available power in the

system is described in algorithm 3 [70].
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Result: Cryptographic key: KEY; status: VALID KEY ;
Initialization:
T ← no. of samples for reliability enhancement ;
m ← no. of parallel small PUF blocks ;
n ← no. of response bits from each small PUF block ;
resp ← m×n ; // total response

Function Key Generator():
Enable(PUFs) ;
C = TRNG() ; // random challenge

for i← 0 to T do
for j ← 0 to m do

Ri,j = apply challenge to PUF(C) ;
save in SRAM(Ri,j) ;

end

end
for k ← 0 to resp do

if bit error then
discard bit(R[k]) ;

else
KEY.append(R[k]) ;

end
if length(KEY)==nKey then

VALID KEY ← TRUE ;
break ;

end

end
if length(KEY)<nKey then

VALID KEY ← FALSE ;
end
return KEY

End Function ;
Algorithm 1: Designed secure and error-free key generation method from PUF [70]
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Data: States and other data to be backed-up, DAT
Result: Encrypted data, enc dat, and tag in NVM
Secure backup:
if Low-power-warning is asseted then

Enable(HS block) ;
KEY = Key Generator(C) ;
enc dat = Encrypt(KEY, DAT) ; // XOR(KEY ,DAT)
write in NVM(enc dat) ;
tag = gen tag(enc dat) ;
save(C, tag) ;
Disable(HW block) ;

else
Continue regular operation ;

end
Algorithm 2: Designed secure data back-up operation

Data: Encrypted data: enc dat, and tag
Result: Restored data, DAT back in registers
Restore data:
while Pavailable < Pthreshold do

wait ;
end
Enable(HS block) ;
enc dat = read from NVM(stored data) ;
C = read from NVM(stored challenge) ;
old tag = read from NVM(tag) ;
new tag = gen tag(enc dat) ;
if new tag = old tag & VALID KEY = TRUE then

KEY = Key Generator(C) ;
dec dat = Decrypt(KEY, enc dat) ; // XOR(KEY ,enc dat)

write back in registers(dec dat) ;

else
flush data() ;
restart processor() ;

end
Disable(HS block) ;

Algorithm 3: Designed secure data recovery operation [70]
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Figure 5.3 connects all of these three key generation, secure backup, and restore

algorithms and shows the overall working mechanism of our designed security protocol. Key

generation algorithm is a part of both secure and restore operations and produces a run-time

unique random key from the XbarPUF. The secure back-up is activated when there is a low

power warning and can be designed to be activated by an interrupt of the IoT processor. The

secure restore is activated when the available power is greater than the minimum required

power. This whole control flow graph is illustrated in Figure 5.3.

5.5 System Implementation

To get a very accurate idea about the actual real-world implementation, we have designed

our whole security protocol at transistor level with 65nm technology on Cadence Virtuoso

platform. We have used RRAM as the NVM and simple D flip-flop based registers as the

processor memory which needs to be backed-up. We have calculated all our security metrics,

overhead analysis from this low level implementation. In this particular prototype, our

system generates uses a 32×32 XbarPUF to generate a reliable 16-bit cryptographic key.

Figure 5.4 displays the system block diagram of this system and its different components are

described next in this section.

5.5.1 One Time Pad Implementation

The one time pad (OTP) or also often called the Vernam cipher is the perfect cryptographic

algorithm providing maximum security [24]. In this cryptosystem, the plaintext is paired

with a random secret key and that key is changed every time a new encryption is needed,

thus theoretically ensuring the best security. However, this one time pad or OTP is not used

much in practice due to difficulty in its requirements. The key must be (1) truly random,

(2) as long as the plaintext, (3) cannot be used more than once. The distribution and

secure storage of the key are also big issues. However, here the requirements are fulfilled or

relaxed. First, in embedded system or IoT domain, the plaintext or the data to be backed

up is small and, therefore, the key can actually be made as large as the data. Second, in

theory, PUFs can produce true random number as responses if it receives pseudo-random
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Figure 5.3: Control flow graph for our secure back-up and restore protocol [70]
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Figure 5.4: System block diagram showing different components of our designed security
protocol [70]
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number as challenges and thus no need to provide truly random number separately. Third,

the key need not to be stored since PUF can generate the key anytime if the same challenge

is applied. By ensuring different challenge input, the requirement of producing different key

can be fulfilled.

5.5.2 True Random Number Generator (TRNG)

To generate a unique key during each back-up operation, we need to provide the PUF

with a unique challenge. We can use a TRNG to produce that random challenge from the

hardware itself. This would also help avoid repetition of generating the same challenge and

same key in an unpredictable fashion, thereby fulfilling the requirement of an OTP system.

TRNG output should be independent of any external influence like temperature, supply

voltage noise and should be robust against process variation. Specifically, IoT device can go

through extreme environmental changes and thus robustness against such changes is even

more important in this domain. Researchers have successfully built TRNG from memristive

devices [26]. In this work, we are using our custom-designed designed TRNG [67] which

is expected to be very robust against environmental and process variations unlike existing

designs. During each back-up, TRNG would produce a random challenge vector which is

applied to generate the response from a PUF during both back-up and restore. Therefore,

TRNG output is saved in the NVM during back-up to be used during data restore.

5.5.3 Redesigned XbarPUF for IoT

The memristor crossbar PUF or the XbarPUF is the heart of operation of this system. In a

regular XbarPUF [69], challenges are applied for a very short period of time, much smaller

than the actual switching time of a memristor, to nudge the memristance towards HRS or

LRS depending on the magnitude and direction of applied challenge voltage. Then a small

read voltage pulse is applied to read the memristance of both crossbar column memristors.

This whole process is repeated until one of the columns reach to either HRS or LRS first and

thus declared the winner. This is the so-called read-monitored-write approach [42] where

knowledge of precise switching time is not important. The problem with this approach is
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that the time to get a valid response is not predictable and thus not suitable to use within

a processor based system.

To overcome these issues, we do not use the gradual read-monitored-write approach and

use a single fixed pulse to nudge the memristors midway between HRS and LRS. Although,

it requires prior knowledge of exact switching time of memristors, it makes the input-to-

output sample time fixed and predictable and thus useful to incorporate in any processor

based system. The memristor switching time can be determined beforehand from fab or we

can change the clock period to try with different frequencies and select whichever gives the

most stable output. We choose the clock period to be around half the switching time of the

memristor. Choosing a fixed low frequency could make both the column memristors reach

to either LRS or HRS and thus eventually having little difference between them. Choosing

very high frequency could make the change in memristance very small and thus could be

impractical to differentiate in a circuit. For the switching time on the range of 50-100ns,

we have chosen the pulse width of the clock to be 25ns. This technique doesn’t require the

use of arbiters or flip-flops and sense amplifiers are used instead to generate responses. The

design of the sense amplifier is presented in this next subsection.

5.5.4 RRAM for Non-Volatile Storage

Memristor based memory or RRAM is used as the NVM of our designed system. As we’ll

later in this chapter, we have implemented a prototype system with 16-bit data and thus we

require minimum a 16-bit storage to store the encrypted data. To account for bit-errors, we

have designed the XbarPUF to have a 32-bit response. However, to keep a generic design,

and also that NVM would also store challenge, tag, and other necessary information, the

NVM is sized 5×12. The LRS of the memristor is considered as logic ‘1’ while the HRS is

considered as logic ‘0’. Each cell of the RRAM is a 1T1R logic element where there are one

large access transistor in series with a memristor. The HRS/LRS ratio and the dimension of

the overall RRAM determine the size of the transistor to minimize area and power overhead

while maximizing noise margin between two logic levels. More details i.e. address decoder,

column decoder, counter etc. designs are skipped for brevity.
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5.5.5 Time Multiplexing of PUF to Lower Power Consumption

The first phase of XbarPUF requires a complete reset of all the memristors of the XbarPUF.

Since this involves states change of around half of all the memristors, this requires a lot of

static power. For any small system, this would mean a much higher peak power demand

during this time which might not be feasible. Therefore, we have decided to use time

multiplexing to reduce the peak power demand and distribute energy over several cycles.

But we can not distribute this indefinitely since that might increase the overall energy

requirement considerably because some logic blocks would need to activated all the time and

this also adds additional delay. To trade-off between peak power demand and delay, we have

to choose an optimal PUF size with required no. of multiplexing unit. For our prototype

design, we have decided to divide our 32×32 XbarPUF to four 32×8 XbarPUF which adds

3× additional delay but also reduces the peak power by a factor of almost 4. For system with

different circuit configuration, size and different application requirements, further research

is needed to find a optimum power-delay point.

5.5.6 SRAM as Part of Reliability Enhancement Block

As mentioned earlier, any PUF is prone to errors which limit their usage as a key generator.

Thus there needs to be some form of error correction so that the key can be considered

stable over one cycle of encryption and decryption. The current idea is to use a pair of

SRAMs to hold two sets of the same response and then compare to find any errors. These

two SRAMs are custom designed and to hold two sets of temporary 32-bit response of the

XbarPUF, two 4×8 SRAMs (32 bits each) are used. The SRAMs can be written with 8 bits

at a time. Each SRAM cell is a standard 6-T cell, with PMOS and NMOS transistors sized

accordingly to ensure fast write as well as reliable read operation. Each pair of bit-lines

(regular and complimentary line) contains one custom designed fast and high resolution

9-T sense amplifiers to detect bit-line voltage differences, 3-PMOS bit-line precharge and

equalization circuit, and 2-inverter 2-NMOS input logic circuit. Address decoders, MUXes,

and counters are also designed to be integrated with each SRAM as well for proper addressing

and data input-output.
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5.5.7 Sneak-Path based Integrity Checking

If an adversary tries to alter any data stored in the back-up non-volatile memory, then

to detect that unauthorized change, a sneak-path based tag generation is also employed.

The details of the sneak path of a memristor crossbar and how to generate tag from it is

discussed in [41]. After each backup operation, a tag is made and saved in a secure non-

volatile memory. During a wake-up, a new tag is generated from the encrypted data and

compared with the stored tag. If the two tags are different from each other, then an error/

alteration of data is found and instead of using the back-up state information, the processor

flushes all the data and restarts the whole process. This system would also detect if there

is any mismatch due to the PUF’s reliability issues since if the two response keys generated

during back-up and wake-up are different, then processor would simply discard that data

and restart everything. In this way, although the forward progression of processor is halted,

any kind of these errors would not make their way into the processor data to result in an

faulty calculation.

5.5.8 Control Circuit Design

We have also designed control circuits for our security protocol so that it can be ”plugged-in”

to any processor based system. This whole security protocol would be activated once where

is a low power warning (e.g. for batteryless systems) or once the system decides to go in a

low power mode i.e. sleep or hibernation. In both cases, data may be left on a unsecured

memory and our goal is to secure this data while the processor is in a low power state and

load data back into registers and other memory locations when it wakes up. We design and

implement all required state machines at transistor level for the prototype system that we

are building here. To accommodate various power/energy, area, and speed requirements of

different devices, we can do simple overhead analysis to find the best sets of parameters for

a particular application.

When a low power warning is issued, a random challenge is generated from a TRNG. A

low power and robust TRNG design using memristive technology is discussed in a previous

chapter. This challenge can also be generated beforehand to reduce the time and energy it
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would take during this low power mode. This challenge is then applied to an XbarPUF block

which would generate the responses required to create the secret key. The XbarPUF requires

a RESET phase where all memristors are reset from their LRS to HRS. Thus during this

phase, static current flows through the whole crossbar, consuming a large amount of power.

This even though the overall system may have a low average power, this phase would demand

a large peak power demand, making it impractical for many systems. That’s why we are

diving the whole crossbar into multiple smaller crossbars to reduce this peak power demand

during RESET phase. The number of smaller crossbar PUFs and their individual sizes can be

determined based on a particular memristive technology along with circuit level parameters

and design requirements. For this work, we envision memristors to have very high LRS and

HRS values along with low threshold voltages to reduce the amount of energy required to

switch their states. For this reason, we have decided to use the TiOx memristor shown in

[48] as the example memristor to build this system. The parameters for this memristor is

given in 4.4 and again shown in here in Table 5.1.

To reduce this peak power demand, we have divided our 32×32 XbarPUF into four 32×8

XbarPUF, thus effectively reducing the static power by a factor of 4. However, this increases

the delay in producing responses from each of these four separate PUFs with some added

area because of their peripheral circuitry. Each PUF is activated one by one, as they each

generates one portion of the final response vector. These partial responses are written into a

temporary memory as soon as they are available. For this particular design, we have designed

an SRAM to act as the temporary storage. During each cycle, one XbarPUF is active while

the other remains disabled, and one row of the SRAM is written by this XbarPUF. Here,

our designed SRAM is sized 4×8 so that each row can hold 8-bit response that each smaller

(32×8) XbarPUF produces. This makes their control circuit neat and easier to decode. The

SRAM is custom designed too, with the same 65nm technology like the rest of this security

architecture. Now, we have implemented an all-agree voting or majority voting (discussed

in a later section) as reliability enhancement technique here where a response bit is taken

as a valid key bit only if that bit doesn’t change among a certain number of measurements.

More measurements increase the accuracy of the reliability enhancement technique but it

also adds delay and energy overhead. As for this system, we are implementing the simplest
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Table 5.1: Switching Parameters (mean value) for TiOx Memristors [48]

HRS LRS Vtp Vtn tswp tswn
2M Ω 500kΩ 0.5V 0.5V 10ns 10ns

2-vote all-agree voting scheme. To implement this, PUF responses are generated twice and

saved in two different SRAMs. After comparing the contents of these two SRAMs and

removing erroneous bits, each key bit is XORed with data bit and saved in an RRAM bit

by bit. This phase is long in terms of delay but the average power required is very small

compared to PUF response generation steps. We can reduce the time required by storing

multiple bits at once (e.g. byte access or word access). It could also increase the required

number of response bits for a particular size of key, however.

We have used standard Johnson counters and ring counters to implement state machines

in our circuit design. In the first state after security blocks are enabled, a complete response

vector is generated from all four 32×8 XbarPUFs. Thus, there are four sub-states under this

first state too. A single 32×8 PUF is activated during sub-state. This involves resetting all

the memristors, applying a random challenge to the PUF, and reading the response. Clock

pulses with the same period but smaller duty cycles with different phases are used to control

these operations. Moreover, during each sub-state, response from each PUF is saved in one

row the first SRAM. Thus at the end of first state, this SRAM-1 contains 32 response bits

from four XbarPUFs. The second state is very similar to the first state, when responses

are generated from these four PUFs and saved in an SRAM. Little difference is that now

the responses are saved in a different SRAM. In the third state, contents from these two

SRAMs i.e. saved responses are compared against each other by XORing and only valid or

unchanged response bits are considered as a part of the final key. Each key bit is XORed

i.e. encrypted with one bit from the data and written in an RRAM. Thus depending on the

number of key/data bits, this state can be long. In our designed state diagram, this state

is actually much longer than the first two states to account for the errors in in the response

vector. Each erroneous bit means one clock cycle lost as it is discarded. For this system, we

need a minimum of 16 cycles to read 16 correct response bits or keys. To account for the

maximum number of errors, we make this state 32 bits long as the whole response is 32 bit
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itself. State 1 and state 2 are 4 cycles each, where each clock cycle is used to generate one set

of response from each individual PUF. The clock period, pulse width, supply voltages etc.

are chosen to minimize the power consumption while ensuring a good window of operation

for the particular types of memristors that we have chosen. Specifically, we have chosen a

VDD of 0.85V with a clock period of 1µs for this simulated design. The analog MUXes,

buffers, and other components are sized accordingly to minimize power consumption and

voltage drop across them.

At the last step before the power is turned off during a power failure or low power mode,

a tag is generated from the stored memory content. This tag along with the PUF challenge

is saved in a secure small memory. When power comes back on or when the processor starts

to get out of low power mode its wake-up protocol takes place. First, a new tag is generated

from the stored (and encrypted) data. Then the old stored tag is read and compared with

the new tag. If they do not match, then the data is considered to be corrupted or altered

illegally and the processor restarts its operation, flushing all the data. This way any illegal

modification of data or any key or data error won’t propagate their way into the processor.

If both tags match, then key generation and reliability enhancement processes take place.

Just like before, the PUFs are activated one by one to generate and store a 32-bit response

into the SRAMs. Then erroneous key bits are discarded to get a clean 16-bit key. Finally,

encrypted data from the RRAM is read bit by bit and XORed with the corresponding key

bit for decryption and then saved back into registers again. Except for the tag generation

and matching part, all the other operations are done at the same sequence during wake-up

as in during back-up.

It is very important that no states are active at the same time i.e. there are no glitches at

all, especially for time-critical time-multiplexing of PUFs to generate responses. To ensure

that no two consecutive states have glitches, two phase non-overlapping clock generators

are used. They are used at the outputs of state decoders between two successive states to

prevent any metastability. Moreover, due to the presence of different clocks (e.g, SRAM

clock, RRAM clock, PUF RESET and READ signals), synchronizers are needed to ensure

reliable capture between two different clock domain. As the clock frequency is known and
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all these clocks share the same frequency with just different phases, a simple two-phase

synchronizer based on two flip-flops are used.

5.6 Initial Design without Reliability Correction

Initially we have developed a small prototype without the error correction or tag generation

method, only to demonstrate PUF based key generation and encryption-decryption technique

[74]. Figure 5.5 shows the conceptual block diagram of this small system. The secret key

generation block of this figure is essentially a PUF. Before each power down or sleep phase,

a random challenge is applied to the PUF to generate a unique random response. Then the

data to be backed up can be encrypted with any very lightweight cryptographic technique and

saved in a non-volatile memory (NVM). This way the data would be safe against malicious

read. For this demonstration, we have used a simple bitwise XOR to encrypt the data. To

restore the data, the same challenge is applied to the PUF again to generate the key. In

this case, simply XORing the encrypted data with the PUF key would give back the original

data. The idea is to provide robust security like an one time pad where they key is random

and changed on each encryption-decryption operation. The added benefit of using a PUF

is that the key is inherently random with pseudo-random challenge input, need not to be

stored physically and can be generated on demand.

5.6.1 Overview

For this demonstration, we have implemented a 4×4 modified XbarPUF which takes 4

challenge bits as input and produces a 4-bit response as the cryptographic key. This is

shown in Figure 5.6 In the first phase of operation, this PUF takes one cycle to generate

the 4-bit key and that key is saved in a register. In second phase, key is XORed with the

data register and this encrypted data is written in an RRAM one bit at a time. Thus this

phase takes 4 clock cycles for a 4-bit key. During decryption, the PUF is provided with

the same challenge to produce the same key and encrypted data is read from the RRAM

bit by bit. Decryption is done by XORing the encrypted data with the register again and

the decrypted data is saved back in the original data register. Here, the encryption and
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Figure 5.5: High-level conceptual block diagram of the initial security system [74]

Figure 5.6: Block diagram of the initially designed prototype system [74]

decryption operation are symmetric and share the same XOR block to reduce area. The

idea of this security design is to try to implement as close as possible to a hardware one time

pad [24]. If the PUF is provided with pseudo-random challenges as input, the responses

would be random. Each time a power-down occurs and backup operation is needed, the

PUF is provided with a new challenge and thus the resulted response or the key would be

new too. Therefore, just like an one time pad, the cryptographic key would be changed each

time it is used. Moreover, since the length of data to be backed up is not large in these IoT

devices, the key can actually be made as large as the data and thus any repetition based

attack would not reveal the key.

5.6.2 Results for Initial Prototype

First, we have evaluated our PUF by running Monte Carlo statistical analysis. The results

for important PUF metrics are listed in Table 5.2. Although, it is only a demonstration,
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Table 5.2: Performance of modified XbarPUF used in this design [74]

Security metrics Uniqueness(%) Bit-aliasing(%) Reliability(%)
Average 50.090 50.833 99.904

using Monte Carlo simulation, we have analyzed 500 chip instances, and each for 500 cycles.

As we can see, our XbarPUF shows excellent uniqueness and bit-aliasing which indicates the

random nature of the response bits. Reliability is also very good, although not 100% as a

typical cryptographic algorithm demands. However, in this system, the PUF only needs to

be reliable in a single set of encryption and decryption cycles and causes no problem if the

PUF produces different response in a completely different time and can actually increase the

entropy of the PUF this way.

Table 5.3 shows the overhead of this initial design. The encryption and decryption

phases involve a lot of memristor read-write operations and consume larger amount of power

compared to write-only and read-only stages for the ReRAM. Also, we have used HfO2

memristors for this design which have relative lower HRS and LRS values. Later we have

switched to TiO2 memristors with much higher HRS and LRS values to reduce the power

consumption significantly. Each of the key generation phase has just a single cycle delay.

Where for an N-bit key and thus N-bit memory, it takes N cycles each to write and read all

the bits.

The total GE (gate equivalent) count compared to a unit-sized NAND of our whole

system is approximately 547. Majority of this number comes from the large pass-gates used

for read-write control circuits of RRAM. Fortunately, these control blocks can be shared

among many row-columns and thus GE count won’t increase much with increasing RRAM

sizes. There are also a total of 64 memristors in the XbarPUF (4×4) and 4 memristors in

the ReRAM(2×2). Memristors in crossbar architecture takes very little area compared to

even a single transistor and thus they contribute to a large reduction in overall area.
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Table 5.3: Overhead in different phases of the system [74]

Overhead Enc. key Memory Memory Dec. key
generation write read generation

Power (µW) 24.61 0.79 0.44 24.96
Delay (clock cycles) 1 4 4 1

5.7 Reliability Enhancement Technique

After designing and demonstrating the low overhead with security properties of our design, we

have worked on improving the reliability of the PUF for practical key generation applications.

Since a PUF’s response depends on tiniest manufacturing process variation which can be

affected by noise or other environmental effects, and we have already seen that our XbarPUF

doesn’t have ideal 100% reliability. As traditional error-correcting methods can huge area,

delay, and power overhead, we have considered two fast, low overhead and run-time reliability

enhancement techniques in our work. First one depends on isolating and eliminating bit-

flips from the PUF response to determine the final key and we call it all-agree or veto-voting

technique. The second approach is well-known majority voting technique. Both of these are

described below.

5.7.1 All-Agree Voting/Veto Technique

All-agree voting or veto technique depends on finding and eliminating bits which flips between

multiple responses of a PUF even for the same applied challenge. To implement this, the

same challenge is applied for an ‘N’ number of times to produce ‘N’ sets of responses. Ideally,

without any bit-error, all of these should be the same. However, in practice, there would

be some unstable bits which would flip among these evaluations. In this all-agree voting

technique, we only consider bits that do not flip even once in ‘N’ evaluations to be a part of

the final cryptographic key. This technique, therefore, requires the no. of bits in response

to be longer than the key to accommodate for bit-flips. This number of additional bits and

the optimal number of evaluations (‘N’) are determined experimentally.

In this all-agree voting technique, a bit would be only be considered as part of the key if

that bit remains stable during both encryption and decryption, resulting in a different key.
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Suppose, the probability of a particular bit being stable at a particular logic value (either

at ‘1’ or ‘0’) is p. Thus the probability of that bit being the opposite value (not stable) is

1-p. Thus for an ‘N’ of evaluations, the probability of a bit being stable is pN while the

probability of bit flips at least once is (1-pN). Now this bit-flip would propagate to cause an

error without being detected by this voting technique is given by equation 5.1. PE denoted

probability of error.

PE1 = pN ∗ (1− pN) (5.1)

There is another less-likely way of an error being propagated into the system with

detection. This is when a bit remains stable in its less-stable state during encryption but

flips during decryption. The probability of that happening is given by equation 5.2.

PE2 = (1− p)N ∗ (1− (1− p)N) (5.2)

Now in both cases (equation 5.1, 5.2), we consider that a particular bit remains stable

during encryption but flips during decryption. These same two equations hold for a case

where a bit can flip during encryption but remains unchanged during decryption. Thus the

probability of an bit-flip being propagated, and resulting in a part of the cryptographic key

is given by the following equation 5.3:

PE1,2 = 2 ∗ [(pN ∗ (1− pN)) + ((1− p)N ∗ (1− (1− p)N))] (5.3)

However, we need slight modification as this equation counts two special cases twice.

This situation happens when the PUF produces all ‘1’s during encryption, but all ‘0’s during

decryption for a particular bit and vice-versa. The probability of such a case is:

PE(allzeros+ allones) = 2 ∗ [(pN ∗ (1− p)N))] (5.4)

Both equations 5.1 and 5.2 take this situation into account and thus this is being

considered twice while finding out the overall error propagation probability of the all-agree

voting technique as given by equation 5.3. Thus by subtracting this case from equation 5.3,

121



we get the final expression for a bit-flip being undetected and propagated into the final key

with all-agree voting system and is shown shown here.

PE(all-agree voting) = 2 ∗ [(pN ∗ (1− pN)) + ((1− p)N∗

(1− (1− p)N))− (pN ∗ (1− p)N))]
(5.5)

For a few different suitable numbers of evaluations, ‘N’ and for different probability

values of ‘p’ (denoted the probability of a particular bit being stable at a fixed binary

logic i.e. represents bit-flipping probability), we have used equation 5.5 to show a bit-error

probability plot in Figure 5.7.

In any PUF, there could be some bit positions in the response where there is a high

bit-flipping probability while most of the other bits in that response remain stable at a

particular logic value for the same challenge. In our XbarPUF, as we have shown later from

exhaustive simulations that on average there are less than only 2 bit-flips out of the 32-bit

PUF response over a long period of time with the same challenge being applied. Thus if it is

possible to eliminate these few bits having high bit-flip probabilities, then the system would

have overall a smaller probability of generating different keys between a pair of encryption

and decryption cycles.

From Figure 5.7, it is evident that with larger number of samples or evaluations (N), all-

agree voting scheme is more efficient at eliminating highly flipping bits. Its implementation

is also simpler with just XORing to find detect bit-flips and two separate storage to contain

both actual response and bit-flip information.

5.7.2 Majority Voting

Majority voting scheme is a very well-known and established error correction technique. To

implement this technique for PUF error correction, the same challenge would be applied to a

PUF for a fixed number of times and a bit would be considered either a ‘1’ if it produces ‘1’

more than ‘0’ among those evaluations or ‘0’ where it produces more ‘0’. Thus unlike all-agree

voting technique, no response bits are not discarded here, rather majority voting is used to
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Figure 5.7: ‘All-agree’ reliability enhancement technique for different number of evaluations
for different bit-flip probability. It is more efficient at detecting highly unstable bits with
increasing number of evaluations [70]

determine their more stable or prominent binary value. The probability of determining the

correct binary value of a response bit using this technique with ‘N’ number of evaluations

are given by the following equation:

P (majority voting) =
N∑

r=N
2

+1

(
N

r

)
pr(1− p)N−r

=⇒ P.E. = 1−
N
2∑

r=0

(
N

r

)
(1− p)rpN−r

(5.6)

Derivation of this equation is provided in Appendix E. Figure 5.8 shows a plot using this

equation for different number of samples (‘N’) and for different bit-flip probability ( ‘p’).

With larger number of ‘N’, the curve gets narrower around the center i.e. it can detect bit-

flips more effectively. This technique, however, is not effective for bits which already have
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Figure 5.8: Effectiveness of majority voting for reliability enhancement technique for
different number of evaluations and with different bit-flip probability [70]

very high flipping probability, p = 0.4-0.6 as it is evident from the figure since the peak of

the curve remains the same for any number of evaluations.

One of the other things for consideration of majority voting technique is the overhead.

The overhead could be high for larger number of evaluations, ‘N’. For example, for an N-

sample majority voting, we would need counters that can count up to N for each response

bit, and memory capacity of log2N bits to store the results for each bit of the PUF response.

5.7.3 Chosen Reliability Enhancement Technique

If we look carefully at both Figure 5.7 and 5.8, we see that all-agree voting is more effective

at detecting (and eliminating) high bit-flips while majority voting is better at detecting

bits with smaller bit-flipping probability. Delay and area overhead increase with increasing

number of evaluations for majority voting where all-agree voting can be implemented simply

with using XORs and one extra bit per response bit for any number of evaluations. To reap

the benefit of both of these techniques, one idea is to use all-agree voting with large value of

‘N’ during chip functionality testing to eliminate bits with high flipping probability (0.4-0.6)

and only use majority voting with small ‘N’ during run-time to reduce bit-error. If all-agree
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voting can eliminate highly unreliable bits before regular operation, then majority can be

used with only a few samples during run-time, thereby also ensuring lightweight operation.

The choice of reliability enhancement technique heavily relies on the bit-flipping profile

of all the response bits of a PUF. Other factors include the overhead associated with the

implementation i.e. allowable power, area, delay constraints and security requirements of

a system. Depending on all of these, we can choose to implement a particular reliability

enhancement technique and not the other. One key thing to remember is that we are not

implying to eliminate all bit-errors altogether, but to reduce its probability to such extent

that the cost or associated overhead when there is a key error (i.e. when the processor

restarts) would be insignificant compared to the total savings in overhead associated with a

particular reliability enhancement technique.

5.8 Working Principle

We have designed the whole system at transistor level in Cadence Virtuoso with 65nm CMOS

technology and memristive technology. Figure 5.9 shows the waveform for different signals

of this design. The X axis shows time in microseconds (µs). As mentioned before, each clock

cycle is 2 µs long. Asserting signal ‘EN’ starts the sequence of back-up operation maintaining

our security protocol. When the control signal ‘state1’ of Figure 5.9 is high, XbarPUF

block and SRAM-1 are enabled. Signals ‘en0’ to ‘en3’ indicates activation of four different

smaller XbarPUFs one by one. Thus in this state, each of the four XbarPUFs are reset,

challenge is being applied, and read with the help of signals ‘CLK’, ‘Reset’, ‘Challenge’, ‘WE’

(write enable). During ‘state2’, almost exactly the same thing happens as these XbarPUFs

are activated once more to generate responses. However, unlike ‘state1’, the responses are

now saved in the second SRAM. Signals ‘en0’ to ‘en3’ also enable different rows of these

two SRAMs to help writing PUF responses there. The next state is large and we call it

‘state3to10’. During this state, contents from the two SRAMs are read and compared to

find valid key bits, data is encrypted and then written into the RRAM. Signals ‘dout-a’ and

‘dout-b’ denote the output from SRAM1 and SRAM2, respectively. Without any error, they

should display exactly the same values. However, for the purpose of demonstration, we have
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intentionally produced 8 bit errors as shown in Figure 5.9. The signal ‘MATCH’ also show

when there is a mismatch among these two SRAM output i.e. among key bits. By counting

the occurrence of such events during this state (‘state3to10’) from Figure 5.9, we can also

verify that the total number of bit error is indeed 8. Now as mentioned before, this demo

design would use a 16-bit key. Thus we only need to extract first 16 ‘good’ bits from the 32

bit PUF response. Since there are 8 erroneous bits, added intentionally, the system would

read from SRAMs 16+8 = 24 times to get 16 ‘good’ bits. Signals ’count0’ though ‘count4’

represent the number of bits read from SRAM. From these signals, if we notice in Figure

5.9, we can see the count is ‘11000’ or 24 at the end of this state which validates our claim.

The signal ‘stop-count’ also shows when the counter is being paused i.e. when there is a

bit-error. The signal ‘key15’ shows the key bit used for encryption in different clock cycle.

The bottom three signals of Figure 5.9 are used for controlling the RRAM write. The signal

‘valid-writ’ is high only when there is no bit-error and if it is high, either ‘reset-on-0’ or

‘set-on-1’ signal is activated to write either a ‘0’ or a ‘1’ in the RRAM, respectively. Back-up

data is represented using a 16-bit register which is XORed with the key and then written

in the RRAM. Tag generation is done as soon as the system finishes writing 16 bits to the

RRAM. During decryption, the XbarPUF blocks and SRAMs are activated again to generate

the same valid key as before and RRAM is read bit by bit this time to XOR with the key

and then write back in data and state registers.

5.9 Possible Attack Scenarios

5.9.1 Malicious read

The main motivation behind this designed security protocol is to prevent an attacker from

reading out the contents from the backup NVM, thereby gaining sensitive information about

the overall system. Our PUF-key based one time pad (OTP) encryption scheme encrypts

the data before doing backup to prevent direct readout of sensitive information. As we have

explained before, we are effectively implementing an OTP here. OTP is theoretically the

most secure encryption system if we can fulfill its three main requirements: (1) random key,
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Figure 5.9: Waveform for a complete secure backup and restore cycle showing how different
states control different operations of the system. Counter keeps track of the number of valid
or legal key bits and stops each time a bit error occurs

(2) unique key during each operation, and (3) key being as large as the data. Our generated

key is random as it comes from a strong PUF and in the expected embedded or IoT system

where the amount of backup needed is small, the key can actually be made as large as the

data. Moreover, since the backup operation could be infrequent and the overall state-space

of a strong PUF could be very large, a PUF key is unlikely to be repeated predictably in

a practical time-frame of an IoT device and thus replay attack should be improbable. Key

sharing is another weakness of an OTP, however, this is not a concern here as the key is

only used in-place within a same device. Therefore, we are fulfilling all the requirements of

an OTP and ensuring maximum security with a unique random key.

5.9.2 Malicious Write

An adversary might try to illegally modify the contents of the backup NVM arbitrarily,

thereby creating an erroneous calculation in the processor. An error in original data or key

itself can also result in an erroneous backup, especially during power failure or sleep and time
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sensitive back-up operation. A memory integrity checking based on the sneak-path currents

of an RRAM crossbar should be able to detect any kind of data alteration. During wake-up,

this system calculates a tag from the backup memory and verify against its saved tag. If

they do not match, the processor simply rejects all backup data and restarts its operation.

This would result in an increase in overhead as the processor can’t use previous states and

backup data, but this makes the overall system robust against any errors or harmful injection

of information.

5.9.3 Readout or Alteration of the PUF Challenge or Secure Tag

Since we need to produce the same response during encryption, the random challenge to

generate the PUF response during back-up is also saved in the NVM, to be used during

restore operation. The tag generated for integrity verification purpose is also save in a

secure NVM. Here, we assume that attacker would have more difficulty to access these small

bits of secure memory. If the PUF is robust against machine learning based modeling attack

for XbarPUF [71], just getting access to the challenge shouldn’t compromise the security.

Moreover, continuous access to the PUF is not permitted in this system as the PUF is

only used at some certain stages. Finally, illegally modifying the saved PUF challenge

would almost definitely change the PUF response as well as the encryption key, which would

inevitably result in an erroneously restored data. Pre-computing a tag or hash with the

encrypted data during backup and restore would help to prevent such scenarios and detect

such illegal modifications.

The tag is calculated from the sneak-path currents of the memristor crossbar [40], i.e. this

is similar to an analog in-memory computation. Because of the analog nature of memristor’s

switching itself and its die-to-die and cycle-to-cycle variations, it should be very difficult,

if not impossible, to repeat exact resistive states of a crossbar of memristors to regenerate

the same sneak-path current and the same tag. Thus once the encrypted data and tag are

written into NVM, any attempt of further modification should corrupt the data and the

tag and thus processor would be able to detect it by doing an integrity verification during

restore.
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5.9.4 Modeling Attacks

Machine learning based modeling attack is one of the primary concerns of a strong PUF,

especially PUFs which can be modeling using linear additive linear delay model as shown

in [62]. The idea is to gather a subset of CRPs of a strong PUF and build a model using

machine learning (classification) algorithms to predict responses for unknown challenges.

This effectively reduces the randomness of PUF responses. We have shown in Chapter 4

that XbarPUFs are also vulnerable to modeling attacks while mitigation techniques are also

developed. However, it is not possible to apply continuous challenges to the PUF in this

system, unlike authentication applications. In our system, the only way to build a database

for modeling attack is to observe many cycles of backup and restore and perform illegal read

of PUF challenges and responses, thereby increasing the timeframe of the attack considerably.

In an extreme case, what an adversary can do is to gain control of a device, causing

continuous back-up and restore with known data value so that it can gather information

about the responses by doing malicious read of the encrypted back-up data and challenge.

To prevent this from happening altogether, our XbarPUF should be able to resist modeling

attacks. A simple and lightweight modification which was introduced in [71] is to add

response bit XORing in combination with column shuffling/swapping technique which can

drastically reduce the accuracy of modeling the XbarPUF, thereby increasing the robustness

against such attacks. These techniques are analyzed in details in [71]. Moreover, in any

sensitive IoT device could also have a tamper detection mechanism to keep an eye on the

expected number of back-ups in a given time-frame and make sure that number doesn’t

exceed a certain value. This would considerably increase the time it takes an attacker to

build a database.

5.10 Results: PUF Security Analysis

As we already mentioned, we have implemented a 32×32 XbarPUF as the key generator for

our designed security architecture. Since PUF is the key component and basically the heart

of operation of this security architecture, we have evaluated XbarPUF first in terms of these

security metrics listed below.
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• Uniqueness

• Uniformity

• Bit-Aliasing

• Diffuseness

• Reliability

• Steadiness

All of these metrics are defined and explained elaborately in [39, 23]. The formal

definition, the characterizing equations are also presented in Chapter 2. Uniqueness measures

the degree of variation among responses produced by different chips for the same challenge.

Bit-aliasing determines how random the distribution of 1’s and 0’s for each bit position of

a response of a PUF for different chips. Thus these two metrics define the randomness

of PUF response across different devices. We have performed Monte Carlo simulation

for 500 different chips, each with 25 different challenges to evaluate uniqueness and bit-

aliasing. Figure 5.10 shows the uniqueness results for 25 different challenges. As evident

from this figures, our designed XbarPUF displays almost ideal (50%) uniqueness for all these

different challenges which strengthens the claim of this PUF based security architecture as

an unclonable hardware security module. Bit-aliasing results for each of the 32 bits of the

response vector of the XbarPUF for different challenges are shown in details in Figure 5.11.

For each of the 32 bits, the bit-aliasing value is within the range of [0.45 0.55] and the average

bit-aliasing value is 0.5 for all these bits, very close to the ideal.

Uniformity and diffuseness metrics measure a PUF’s performance across the challenge

space. For a single chip, if different challenges are applied, the responses should be different

from each other so that ideally these metrics becomes equal to 0.5. Steadiness is another

metric that evaluates the stability of a PUF’s response over multiple challenges. It represents

bias of individual response bits of a PUF on average. Specifically, it measures the degree

of bias of a response bit towards either a ‘1’ or ‘0’ over many cycles as defined in [39]. We

have run Monte Carlo simulations for 500 different random challenges, and for 25 different

chips to evaluate uniformity and bit-aliasing. Steadiness is evaluated for 25 different chips

for 500 cycles each. Uniformity, diffuseness, and steadiness results are shown together in

Figure 5.12. Although for different chips these numbers deviate from this ideal value, they

do not show very large deviation from their average values and display an average uniformity

and diffuseness of near 0.5 as can be seen from this figure. All of these metric prove the

applicability of this XbarPUF as a strong PUF, capable of generating unique and random
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Figure 5.10: This figure shows average uniqueness results for 500 different chips [70]. Even
for different challenges, this value is very close to ideal value of 0.5.
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Figure 5.11: Summary of results for bit-aliasing for all 32 bits from 500 different chips.
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keys for different challenges and different chips. Also from the figure 5.12, it can be seen

that steadiness value is very close to the ideal value of 1.

Reliability is one of the major concerns around PUF to justify their applicability in

practical designs. As PUF depends on tiniest process variation to produce device-specific

signature, any small change in environment or the presence of noise can make a PUF’s

response prone to change undesirably. Reliability, somewhat similar to stability (distinction

is explained in [39]) is used to describe how reliable or stable a PUF’s response is when the

same challenge is applied again and again [39]. Because, reliability could be the most crucial

metric to evaluate a PUF’s practicability, we have performed a detailed reliability analysis

using Monte Carlo simulations for 500 different clock cycles each, for 25 different challenges,

and each for 25 different chips. This result is shown in Figure 5.13. This 3-D plot shows

that for all different challenges and for all chips, the XbarPUF shows a minimum of 92% and

on average 98% reliability. However, it is to be noted that this result is obtained from the

regular XbarPUF directly, before applying any error correction technique. Using our chosen

reliability enhancement technique, the idea is to eliminate unreliable bits from the response

and only take the error-free bits to form a cryptographic key.

132



Figure 5.13: Detailed reliability results generated from 500 different cycles for 25 different
chips and 25 different challenges [70]
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After analyzing the security of the XbarPUF based key generation, we are now interested

in evaluating the security of our sneak-path based tag generation method. This sneak-path

based tag generation method is specific to memristive memory or RRAM and corresponding

details can be found in [40]. Three metrics for the evaluation of any tag generation or hashing

method are: uniformity (different than PUF’s uniformity), diffusion, and avalanche effect.

Uniformity dictates that the probability of a tag bit being either a ‘0’ or ‘1’ should be equal

to each other. To fulfill the diffusion property, if a single bit of the data is changed, each bit

of the tag should have an equal probability (0.5) of being flipped. Avalanche effect is another

property that defines that the tag would be very different even for two very similar data,

maybe differing by just a single bit. This means even if just 1-bit of data is changed, around

half of the tag bits should be changed. Table 5.4 presents the results for this sneak-path tag

generation method used in this work. This result is a little different from the one presented

in [40] as this is regenerated for the memristor type and crossbar used for this work.

5.11 Overall Security Evaluation

5.11.1 Malicious Read

The goal of this attack is to read stored back-up data and gain sensitive information. Since

we encrypt the data before backup, this would increase the complexity of learning anything

from the data. As mentioned before, we use OTP based encryption. Since in an OTP based

encryption, the key is random, has the same size as data, for a 16-bit data, any of the whole

possible space of 216 combinations are equally likely to be a key. Thus OTP is considered

to not vulnerable against brute force attacks because the attacker doesn’t gain any new

information from the data encrypted using OTP. This is explained in [77]. For example,

with an N-bit key, the possible number of key combinations, Nkey, before and after brute

force attacks are:

Nkey(before) = 2N

Nkey(after) = 2N
(5.7)
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Table 5.4: Security properties of the tag generation method

Tag size Uniformity Avalanche Diffusion

6 0.9869 0.4953 0.4971
8 0.9637 0.4951 0.5062

Thus for any two different input data or plaintext, d1 and d2 in data space D, the

probability of any ciphertext, c being equal to either d1 or d2 the same as shown in this

equation 5.8.

P [(d1εD] = c) = P [(d2εD) = c] (5.8)

Since brute force across the key or data space doesn’t add any new information to an

attacker which wasn’t already available to him, OTP is said to be able to maintain perfect

secrecy.

5.11.2 Malicious Write

Verifying the integrity of the backup data before restore is another security feature of this

work. An attacker might launch a spoofing attack by connecting the NVM from a different

power source in the network in order to perform malicious write. However, our sneak-path

current based integrity checking method described earlier should be able to detect such

offline modifications to this memory by generating a secure tag. The goal of the attacker

thus should be to modify the memory in a way that it would produce the same tag. The

success rate of this attack depends on the uniformity property of the tag and the number

of trials the attacker can perform during this power failure duration. Since we have already

shown that the tag generation method exhibits a good uniformity, we have have analyzed

the probability of successful spoofing attack in terms of number of trials. This is shown

in Figure 5.14. With increasing number of trials, the probability of finding a tag match

increases. For a given number of trials, the tag match probability depends on the tag size.

A hypothetical scenario that an attacker may leverage is that the backup data stored in
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Figure 5.14: Probability of success in a spoofing attack with number of trials. The more
trials an attacker can perform, the higher the chance that the data matches the tag. No. of
effective trial is 1 in this protocol since the tag is updated on each cycle [70].

the NVM was unchanged for a few cycles of backup and restore. In that case, an attacker

can perform multiple numbers of spoofing trials on the data in order to be successful where

the data matches the tag. However, our tag generation protocol randomly reconfigure its

reserved bits [40] as a timestamp before every backup stage and generate a new tag even if

the data remains the same. Therefore, in our security protocol the effective number of trials

to perform a spoofing attack is 1. The success probability for a 8-bit tag with a single trial

is nearly 1/28 = 1/256. This is sufficient due to the consideration that the tag is updated

on each backup and restore cycle regardless of the data and the attacker cannot perform

multiple trials on guessing a data-tag pair. For the the same reason, this protocol can also

prevent replay attack where an attacker remembers a previous data and tag and replace the

present (data, tag) pair with that. Since each data has a large number of variants for the

tag depending on the timestamp, a tag from a data at one time would be very different than

the tag from the same data at a different time.

5.11.3 Modeling Attacks

In this work, we are assuming that the attacker can read anything from NVM which means he

can gain access to the stored PUF challenge as well. Researchers have already shown strong
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PUFs can be modeled using only a subset of the total CRPs [62, 25]. We have also shown

before (in Chapter 4) how a 32×2 XbarPUF (with HfO2 memristors) can also be modeled

and predicted with high accuracy and also developed mitigation techniques to reduce that

accuracy significantly [71]. Here, we recreate the work with the TiO2 memristor models and

circuit parameters used to design this whole security architecture. We have used python’s

machine learning toolbox, the scikit-learn [54] and presented the results using four different

classification models in Table 5.5. We have collected 5000 CRPs from an abstract model of

the XbarPUF, developed beforehand in [71] and then used 2/3rd of the data for training

and the rest for testing. It is clear from Table 5.5 that the accuracy is almost like a random

guess of a coin flip (50%) for all of these models, namely support vector machine (SVM)

with Gaussian or radial basis function (RBF) kernel, logistic regression (LR), naive Bayes

with Gaussian kernel, and AdaBoost ensemble.

5.11.4 Readout/Alteration of Secure Information

The random challenge to generate PUF response and the tag generated from the backup

data are also saved in NVM. Here we pessimistically assume that an attacker can also gain

access to these sensitive information from the NVM. Now without a good prediction model,

knowing the PUF challenge wouldn’t compromise the PUF response. We already know that

the prediction accuracy using modern modelings models against our XbarPUF is almost

like a random guess and thus wouldn’t reveal any information to the attacker. Moreover,

changing the challenge itself would change the PUF response significantly which can be

inferred from the very good uniformity and bit-aliasing values of this PUF. Also, because of

the good collision property of the tag using our tag generation protocol, it is very difficult

to find the data that produces the same tag even if an attacker can read the stored tag from

the NVM. Finally, because of good avalanche property of the tag, even if a single tag bit

is changed, almost half of the data bits would change, thus making it resilient against such

adversarial modifications.
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Table 5.5: Results from modeling attacks using different machine learning algorithms
against TiO2 memristor based XbarPUF [70]

SVM (RBF) L. R. Gauss. N. B. AdaB. Ensem.
Train Test Train Test Train Test Train Test

Accuracy (%) 51.27 49.48 56.17 50.16 56.31 50.25 56.16 50.24

5.12 Overall Performance Analysis

Generating a reliable key from the partially-reliable XbarPUF response is one of the most

critical components of this design. We are accepting the fact that there would be some

unreliable PUF response bits and we size the XbarPUF to get at least the required number of

reliable bits (16-bit here) for the key from the PUF response (32-bit). These extra bits present

an overhead to our design. To determine and predict the minimum required number of extra

bits, we have run Monte Carlo simulation. For our XbarPUF, we know that memristors’

cycle-to-cycle (C2C) variation is the root cause of producing unstable bits or bit-flips. The

bit-flipping probability would be higher in cases where a pair of memristor’s C2C variation

dominate over their process variation. Moreover, since our target application here is deploy-

able embedded system or IoT, we also need to consider drastic environmental changes. To

emulate this situation, we have considered the case when temperature changes rapidly from

room temperature to 500C above room temperature between successive clock cycles. A

change in supply voltage changes the switching speed of memristors but since we are using a

large enough switching time to ensure complete state transition, this voltage change shouldn’t

an effect on the final memristive states and thus the PUF response. Therefore, we have only

considered C2C variation and temperature change for this analysis.

The average numbers of response bits it takes to produce 16 ‘clean’ key bits are shown in

Figure 5.15 for three different C2C variation parameter of memristors. As we have already

discussed, C2C variation is the main culprit behind producing unreliable responses from our

XbarPUF, we have used three different sets, 2%, 5%, and 10%. From Figure 5.15, we can

see that with increasing number of C2C variation, the minimum number of required bits

increases. However, because of the resiliency of our XbarPUF design against environmental

changes, the amount of extra bits needed is small (≈0.8) even for a 10% C2C variation, with
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Figure 5.15: Figure shows the average number of bits to produce 16 ‘good’ bits from 50
different chips. The results are generated for three different cycle-to-cycle variations and a
500C temperature change [70].

500C temperature change. The goal of our design is to produce 16 error-free bits in two

consecutive cycles of encryption and decryption in one back-up and restore session.

After getting an idea about the minimum number of extra response bits, we are now

interested in learning about bit-flipping probabilities of all the response bits. We have

applied multiple different challenges in the same chip, each for 500 cycles using Monte Carlo

analysis. The percentage of time that the response bits flipped are shown in Figure 5.16

for 10 different challenges and for a particular chip. As we can clearly see, there are only

one or two bits per challenge which have a significantly large bit-flip probability which can

be identified and discarded during functionality testing of the chip. The purpose of our

all-agree voting based reliability enhancement technique is to mitigate the impact of bit-

flips that remain undetected during device testing and later cause a bit-flip during run-time,

resulting in a key error. From this figure, we can also see that our key generation method

is capable of producing 30 ‘clean’ key bits on average from a 32-bit response. To account

for higher bit-errors/bit-flips in some chips, the ratio of number of required key bits with

139



0 4 8 12 16 20 24 28 32

Response bit

0

0.1

0.2

0.3

0.4

0.5

P
r
o

b
a

b
il

it
y

 o
f
 b

it
-
f
li

p

Figure 5.16: Probability of bit-flip for a same chip for 10 unique challenges. Plots showing
the bit-flip probabilities for all 32 bits from a PUF response, evaluated for 500 cycles.
Different challenges cause different bits to flip i.e. there is no single set of globally unreliable
bit [70].

number of response bits may be decreased which would help increase the yield of the design,

at the expense of extra overhead.

The area, power, and delay overhead for in different phases and different blocks of our

security architecture are shown in Table 5.6, 5.7, and 5.8, respectively. From table 5.6, one

can think the required area overhead of our designed system is large. However, if we take

a closer look, we can see that except for XbarPUF, most other circuit blocks like SRAM,

decoder, RRAM, counters etc. are actually common parts of any regular processor and

memory and thus can be reused for our security implementation. We have designed all these

blocks in CMOS 65nm technology where the minimum length and width of a transistor are

chosen as 60nm and 120nm respectively. All digital circuits are sized to have minimum area

while buffers are added to match their drive strengths with corresponding required loads.

Analog circuits like sense amplifiers, pass-gates, analog MUXes etc. are sized accordingly,

usually larger than digital circuits, to minimize the impact of mismatch and noise. Table 5.7

presents the power consumption in different phases of the security system in terms of overall

current. As we have mentioned before, XbarPUFs have large static power consumption in

the state where all the memristors are reset to HRS from LRS. Therefore, during state 1
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Table 5.6: Total area in terms of transistor count for different components of our security
architecture [70]

Design block Component Count Comment

XbarPUF Memristor 64×16 10nm × 10nm
×4 Sense amplifier ×8 9-T cell (base width 1.2 µm) [73]

Row controller ×64 8 pass-gates
Column controller ×8 10-T 2-R

Enc.-Dec. XOR × 16
Tag gen. MUX2to1 (regular) 3×12 120nm NMOS and PMOS

MUX2to1 (wide) 3×12 12µm NMOS and PMOS
Sense Amplifier ×12 9-T cell (base width 1.2 µm) [73]

Resistor ×12 load resistor =
√
HRS ∗ LRS

memTRNG Memristor, NMOS ×2 (10nm × 10nm)
Differential op-amp ×1 5-T cell (base width 1.2µm)

RRAM 1T1R 5×12 1 memristor, 1-NMOS (4.8µm)
Sense amplifier ×12 9-T cell (base width 1.2 µm) [73]

Pass gate ×12 large (12µm) NMOS & NMOS
Decoders ×1 4to16 & 2to4 decoders

SRAM SRAM cell ×32 6-T cell (120nm,240nm)
×2 Pre-charge ×8 3-PMOS (1.2µm)

Sense Amplifier (SA) ×8 Current Latched SA (9-T) [29]
Column buffer ×8 4-T (1.2µm), 2-NOT

Address decoder ×8 2to4 & 3to8 decoder
Basic gates ×8 (AND, OR, NOT); min. width

Others Counters, Buffers, flops,
Non-overlapping clock generator,
state decoders, basic gates etc.

Table 5.7: Power consumption of the security architecture in different stages (State 1 and
2 involve a reset of the whole memristor crossbar, 64×64 at once and thus have large static
current) [70].

State Average current (µA) Comment

State 1 143.9 PUF response generation
+ SRAM-1 write

State 2 151.8 PUF response generation
(again) + SRAM-2 write

State3to10 0.143 Both SRAM read
+ RRAM write

State11 3.28 Tag generation
Total 24.80 Overall average current
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Table 5.8: Delay overhead of the system in different stages of operation

State Clock cycles Comment

PUF RESET 0.5 8×
PUF challenge 0.25 8× short spike

PUF read 0.25 8×
SRAM write 4 overlapped with PUF read
RRAM write 16+x for 16 clean bit + ‘x’ bit error
RRAM read 16 for 16 bit

and 2, the power consumption of the overall system is high but it is fairly low during other

times. Thus, the average current of the whole system is roughly 24.80µA overall with a 0.85V

supply voltage (VDD). We can further reduce this current by utilizing a dual or multi-voltage

scheme, with very small VDD for digital circuits and separate sufficiently larger VDD for

analog and memristive components.

The required delay of our security protocol is shown in Table 5.8 in terms of clock cycles.

We already mentioned there are four XbarPUFs in our prototype design and each one is

activated twice during both encryption and decryption. Thus it takes m×4×2 clock cycles

to generate responses from these XbarPUFs where m is the number of clock cycles required

to generate a response from one XbarPUF which has a design delay of 1 clock cycle ( reset,

challenge, and read are done in one clock cycle). Each row of SRAM (8 bits) is written in

one cycle and thus our 4×8 SRAM requires 4 clock cycles for a complete write. Since this is

overlapped with the XbarPUF response generation, this doesn’t incur any additional delay.

The slowest operation of our design is when the encrypted data is written one bit at a time

into the RRAM. For a ‘n’-bit key, it would require n clock cycles (‘n’ is 16 for this prototype

system). In practice, this operation would require more than n clock cycles as ‘x’ number of

unreliable or noisy bits would add ‘x’ extra clock cycles. However, this delay can be reduced

further by allowing to write multiple bits together into the RRAM. Tag generation unit takes

3 clock cycles. During decryption, RRAM is read one bit at a time, resulting in a total of

exact ‘n’ clock cycles (again n=16 here). The time required during decryption thus would

be almost the same (minus ‘x’ clock cycles to account for bit errors) as the encryption as

both operations are very similar.
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We have also compared the resource overhead of our designed security protocol against

several traditional and lightweight security mechanisms suitable in embedded system domain.

Table 5.9 lists the resource overhead for several such encryption algorithms, AES [51],

nanoAES [44], SIMON [6] and, PRESENT [10]. To calculate the area overhead, we have

omitted typical circuit blocks that would already be present in a processor (e.g. counters,

SRAMs, registers etc.). However, the delay and power consumption from these blocks are

taken into consideration. Although our designed system can generate 30 clean bits (out of 32)

on average, one can easily generate a larger key by applying more challenges and appending

the responses together. This would inevitably increase the delay and energy requirement

while the overall area and average power consumption would be the same. Alternatively,

each individual PUF block can be made larger to generate a larger key with no little to no

additional delay at the expense of larger area and power overhead.

It is important to note that the overhead for existing cryptographic techniques reported

in Table 5.9 are without the overhead associated with generating and storing the key. Thus

their actual implementation in a real hardware can be expected to have even larger resource

overhead than in Table 5.9. However, this key generation is one of the main contributing

factor to overhead in our designed security architecture. This comes at the special advantage

of random unique keys for each system while the key doesn’t need be stored physically.

Overall, our designed security protocol with implemented architecture provides a very secure

and lightweight way of performing data backup and restore in the NVM of a resource-

constrained IoT system.

Table 5.9: Performance comparison with state-of-the-art lightweight hardware security
techniques [70]

Overhead Encryption-Decryption

AES [51] nanoAES [44] SIMON [6] PRESENT [10] Ours [70]

Avg. Power (µW) 18.5 170 - - 21.08
Delay (clk. cyc./bit) 1.75 2.62 6.67 0.5 0.27
Area (NAND G.E.) 2400 2090 763 1570 856
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Chapter 6

Conclusion and Future Plan

6.1 Future Works

I have designed and improved hardware security primitives like PUF and TRNG built from

emerging memristive technology. Then a novel security vulnerability for IoT devices is shown

and a complete security protocol as well as security architecture built from these pieces

of hardware security is proposed. Different devices with different security requirements,

resource limitation, and application space would require different ways of implementing

security. Our security protocol is designed in such a way which is, however, can be easily

modified to fit into different such systems. Finally, characteristics and security properties of

hardware security modules could depend heavily on a particular circuit design and fabrication

technology and only after actual physical implementation, we’ll be able to test, verify, and

explore the full benefits and shortcomings of our design. It would also be interesting to

see how this designed security architecture actually performs when added to any existing

embedded process in an IoT device. That way, we can also get a real sense of the security

benefit as well as performance overhead of our system. Depending on the availability of

power source, resource limitation, and required level of security, a lot of research can be

done on how to better fit our design into various systems.
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6.2 Summary

I have identified a security vulnerability of resource constrained IoT device in this work

and designed a very lightweight security protocol using hardware enabled security primitives

with emerging memristive technology. Starting from device modeling improvement to circuit

design and analyses, I have built a complete security architecture for this domain as well

to get a realistic idea about real-world implementation difficulties. The several different

components of my work are listed below:

• A memristor model is improved to add environmental impact on the device. Specifically

temperature dependence on HRS, LRS and threshold voltages are introduced in the

device model as well as LRS and HRS aging. Aging is also added. Data for these

relationships are collected from literature for HfO2 memristors.

• A crossbar memristor PUF is redesigned to improve its performance and to comply

with the updated memristor model. A detailed analysis of this PUF is then presented

where the security and performance of the design against process variation and

varying operating condition are analyzed. Scalability of the circuit, choice of different

circuit parameters are explored and improvement of the design with different device

parameters are also analyzed to give device engineers a possible future direction.

• Abstract high-level abstract models for the memristor and memristor crossbar PUF are

developed. Then machine learning algorithms are used to perform modeling attacks

on this PUF. Circuit design of the PUF is also proposed to improve robustness against

these machine learning attacks.

• A practical sense amplifier suitable for memristive crossbar circuits is proposed. The

circuit topology is first compared with other topology to show its effectiveness in these

applications. Then a detailed Monte Carlo yield analysis along with power, delay and

area estimation are used to choose the best transistor size for this analog component.

• A comprehensive theoretical analysis of memristor based true random number

generator (TRNG) is provided and how randomness is affected by the presence of
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process variation and temperature, voltage variation and aging is also discussed using

statistical mathematics. Finally an improved twin memristor based TRNG is proposed

which works better in varying environmental condition and even where large process

variation is present.

• A run-time reliability enhancement algorithm for PUFs is shown as well. Circuit

implementation for such technique is also shown. Moreover, detailed analyses are

provided on to choose the best of parameters to get a balance between resource usage

and reliablity of operation.

• A complete security protocol based on hardware security for resource-limited IoT

systems is provided. The architecture is also designed at transistor level to get an

accurate overhead estimation and practical implementation difficulties. Our designed

security protocol provides a practical level of security which is lightweight as IoT

domain requires. Detailed security and overhead analyses are performed and compared

with existing lightweight security techniques to show its advantages as well.
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A Calculation of Optimal Load Resistance for XbarPUF

We already know these relations from Chapter 3.

R1 =
HRS

2N
,R2 =

HRS

N
‖ LRS

N
. (1)

Veq,R1 =
Rld

R1 +Rld

∗ Vread, Veq,R2 =
Rld

R2 +Rld

∗ Vread (2)

∆VR = Veq,R2 − Veq,R1 = (
Rld

R2 +Rld

− Rld

R1 +Rld

) ∗ Vread

= (
R2

R2 +Rld

− R1

R1 +Rld

) ∗ Vread
(3)

By differentiating ∆VR from equation 3 with respect to Rld and setting the expression

to zero, we get the equation for optimal load resistance.

d

dRL

(∆VR) = 0

=⇒ d

dRL

(
R2

R2 +Rld

− R1

R1 +Rld

) ∗ Vread = 0 [from equation (3))]

=⇒ −R2

(R2 +Rld)2
+

R1

(R1 +Rld)2
= 0 [after differentiation]

=⇒ R1

(R1 +Rld)2
=

R2

(R2 +Rld)2

=⇒ (R2 +Rld)
2 =

R2

R1

(R1 +Rld)
2

=⇒ R2 +Rld = ±
√
R2

R1

(R1 +Rld)

=⇒ Rld(1−
√
R2

R1

) =
√
R1R2 −R2

=⇒ Rld(

√
R1 −

√
R2√

R1

) =
√
R2(
√
R1 −

√
R2)

=⇒ Rld =
√
R1R2

(4)

By substituting R1 and R2 from equation 1, we get

159



Rld,best =
√
R1.R2 =

√
HRS

2N
∗ (
HRS

N
‖ LRS

N
) (5)

B Memristor (HfO2) Model Used in This Work

B.1 Verilog-A Model for HfO2 Memristor:

// bipolar model for HfOx memristors

// Adapted from MATLAB

// written by: Nathan McDonald, AFRL/RITB, Rome, NY

//

// Adaptation to Verilog-A:

// Garrett S. Rose, AFRL/RITA, Rome, NY

// 30-May-2014

//

// contribution: 2014_06_03 1704est Nathan McDonald, AFRL/RITB

// contribution: 2014_08_04 1515est Jillian Hallak, Univ. of Rochester

// mod.: 2014_08_05 0930est Garrett S. Rose, Univ. of Tennessee

// mod.: 2014_09_03 1540est Garrett S. Rose, Univ. of Tennessee

// mod.: 2015_09_03 1110est Harika Manem, CNSE, SUNY Polytechnic Institute

// -- Adaptation to Hafnium Oxide ReRAM from CNSE

////HfO2 Memristor model. This model includes HRS Aging

////

‘include "constants.vams"

‘include "disciplines.vams"

module memr_hfox(p, n);

inout p; //positive pin

inout n; //negative pin
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electrical p, n;

parameter real HRS = 1.5e5; // high resistance state

parameter real LRS = 1e4; // low resistance state

parameter real Vtp = 0.75; // positive threshold voltage

parameter real Vtn = -1.0; // negative threshold voltage

parameter real tsw_p = 1e-8; // time to switch under +V bias

parameter real tsw_n = 1e-6; // time to switch under -V bias

parameter real Rinit = 1e4;//1e6;

parameter real HRS_rate = 2e6;

parameter real HRS_nom_spr = 0.001;

parameter real THRS_sp_rel = 0.1;//0.01;

parameter real TLRS_sp_rel = 0.1;//0.01;

parameter real Ttsw_n_sp_rel = 0.05;//0.01;

parameter real Ttsw_p_sp_rel = 0.05;//0.01;

parameter real TVtn_sp_rel = 0.1;//0.01;

parameter real TVtp_sp_rel = 0.1;//0.01;

parameter real LRS_Aging_Rate = 0.25e6; //Aging rate of LRS....should be a parameter for the memristor model...this rate would be much lower

parameter real LRS_nom_spr = 0.001; //this also should be a parameter

// local variables

real delR; // resistance spread (HRS - LRS)

real delt; // simulation time step

real HRS_rnd; // ith HRS
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real LRS_rnd; // ith LRS

real Rm; // memristance

real Rm_tmp; // temp memristance variable

//real switch_val; // denote state of memristor switching

real time_last; // previous simularion time reading

real tsw_p_rnd;

real tsw_n_rnd;

real Vtn_rnd; // negative th voltage for ith switch

real Vtp_rnd; // positive th voltage for ith switch

real Vwr; // input voltage

real HRS_nom; // nominal high res, trends down w/ time

real LRS_nom;

real tsw_p_nom;

real tsw_n_nom;

real Vtn_nom;

real Vtp_nom;

real HRS_spread;

real LRS_spread;

real tsw_p_spread;

real tsw_n_spread;

real Vtp_spread;

real Vtn_spread;

real HRS_min_after_Aging; // impose a lower bound on the HRS due to the Aging rate

real HRS_after_Aging; // value of HRS after Aging phenomena

real LRS_max_after_Aging;
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real LRS_after_Aging; //value of LRS after Aging phenomena

//temperature parameters

real temp_room;

real HRS_temp_change_rate;

real LRS_temp_change_rate;

real HRS_spread_temp_change_rate;

real Vt_temp_change_rate;

//

real HRS_spread_rate_temp;

real temp_curr;

real deltemp;

integer rnd; // temp storage for random number seeds

analog begin

@ ( initial_step or initial_step("dc") ) begin

delt = 0;

time_last = 0;

//switch_val = 0;

rnd = $random; // generate random number for seed

HRS_nom = HRS;

LRS_nom = LRS;

HRS_rnd = HRS_nom;

LRS_rnd = LRS;

tsw_p_rnd = tsw_p;
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tsw_n_rnd = tsw_n;

Rm = Rinit;

delR = HRS_rnd - LRS_rnd;

HRS_spread = abs(HRS * THRS_sp_rel);

LRS_spread = abs(LRS * TLRS_sp_rel);

tsw_p_spread = abs(tsw_p * Ttsw_p_sp_rel);

tsw_n_spread = abs(tsw_n * Ttsw_n_sp_rel);

Vtp_spread = abs(Vtp * TVtp_sp_rel);

Vtn_spread = abs(Vtn * TVtn_sp_rel);

HRS_min_after_Aging = 4*LRS; //arbitary choice for minimum HRS

LRS_max_after_Aging = 3*LRS; //arbitary choice for maximum LRS

//LRS_Aging_Rate = 0.25e6; //Aging rate of LRS...should be slower then HRS aging

//LRS_nom_spr = 0.001;

//initialize the parameters

temp_room = 300.15;

HRS_temp_change_rate = -0.1; //negative temperature coefficient of HRS, slower than LRS

LRS_temp_change_rate = 0.3;

HRS_spread_temp_change_rate = 0.02; //HRS variance increases with increasing temperature

Vt_temp_change_rate = -0.01; //threshold voltage decreases with increasing temperature

temp_curr = $temperature;
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Vtp_nom = Vtp;

Vtn_nom = Vtn;

Vtp_rnd = Vtp_nom;

Vtn_rnd = Vtn_nom;

HRS_spread_rate_temp = THRS_sp_rel;

//$display("\n\nbefore s\ntemperature=%3.2r vtp= %r vtn= %r hrs spr= %r hrs_sp_rate = %.5f temp %r",$temperature,Vtp_rnd,Vtn_rnd,HRS_spread,HRS_spread_rate_temp,temp_room);

////////////////// nominal threshold voltage changes for different temperature...Later in this code, generate Vtp_rnd, Vtn_rnd using these two variables; not Vtn, Vtp

Vtp_nom = Vtp_nom + Vtp_nom * Vt_temp_change_rate * ($temperature-temp_room);

Vtn_nom = Vtn_nom + Vtn_nom * Vt_temp_change_rate * ($temperature-temp_room);

Vtp_rnd = Vtp_nom;

Vtn_rnd = Vtn_nom;

//////change in nominal value of HRS and LRS

HRS_nom = HRS + HRS * HRS_temp_change_rate * ($temperature-temp_room);

LRS_nom = LRS + LRS * LRS_temp_change_rate * ($temperature-temp_room);

//////change in nominal value of HRS spread rate

HRS_spread_rate_temp = HRS_spread_rate_temp + HRS_spread_rate_temp * HRS_spread_temp_change_rate * ($temperature-temp_room);

HRS_spread = abs(HRS * HRS_spread_rate_temp);

//$display("\nafter s\ntemperature=%3.2r vtp= %r vtn= %r hrs spr= %r hrs_sp_rate = %.5f temp %r",$temperature,Vtp_rnd,Vtn_rnd,HRS_spread,HRS_spread_rate_temp,temp_room);

end

delt = $abstime - time_last;

time_last = $abstime;
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Vwr = V(p,n);

///// for temperature changes that occurs within a simulation

deltemp = $temperature-temp_curr;

temp_curr = $temperature;

Vtp_rnd = Vtp_rnd + Vtp_rnd * Vt_temp_change_rate * deltemp;

Vtn_rnd = Vtn_rnd + Vtn_rnd * Vt_temp_change_rate * deltemp;

HRS_spread_rate_temp = HRS_spread_rate_temp + HRS_spread_rate_temp * HRS_spread_temp_change_rate * deltemp;

HRS_spread = abs(HRS * HRS_spread_rate_temp);

HRS_nom = HRS_nom + HRS_nom * HRS_temp_change_rate * deltemp;

LRS_nom = LRS_nom + LRS_nom * LRS_temp_change_rate * deltemp;

//$display("\nnow V=%r \ntemperature=%3.2r vtp= %r vtn= %r hrs spr= %r hrs_sp_rate = %.5f temp %r",Vwr,$temperature,Vtp_rnd,Vtn_rnd,HRS_spread,HRS_spread_rate_temp,temp_room);

//

Rm = Rm;

delR = HRS_nom - LRS_nom;

if (Vwr >= Vtp_rnd && Rm != LRS_rnd) begin

// this is unbounded! Rm can go negative if delR is small enough!

//switch_val = -1;

Rm_tmp = Rm - ((delR * delt * abs(Vwr)) / abs(tsw_p_rnd * Vtp_rnd));

if (Rm_tmp <= LRS_rnd) begin

rnd = $random; // generate random seed

////////impose a upper bound of LRS aging factor
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LRS_after_Aging = LRS_nom + LRS_Aging_Rate*time_last;

//$display("age = %r\n",LRS_after_Aging);

if(LRS_after_Aging>LRS_max_after_Aging)

LRS_after_Aging = LRS_max_after_Aging;

// update trending upward (Aging) nominal low resistance value

LRS_nom = $rdist_normal(rnd,LRS_after_Aging,LRS_after_Aging*LRS_nom_spr);

LRS_spread = abs(LRS_nom * TLRS_sp_rel);

if (LRS_nom >= LRS_max_after_Aging)

LRS_nom = LRS_max_after_Aging;

// regenerates LRS, Vtn and tsw_n ONLY when switching complete...

LRS_rnd = $rdist_normal(rnd,LRS_nom,LRS_spread);

Vtn_rnd = $rdist_normal(rnd,Vtn,Vtn_spread);

tsw_n_rnd = $rdist_normal(rnd,tsw_n,tsw_n_spread);

// update parameters, set switch_val to stop switching

delR = HRS_rnd - LRS_rnd;

Rm_tmp = LRS_rnd;

end

end

else if (Vwr <= Vtn_rnd && Rm != HRS_rnd) begin

Rm_tmp = Rm + ((delR * delt * abs(Vwr)) / abs(tsw_n_rnd * Vtn_rnd));

if (Rm_tmp >= HRS_rnd) begin

rnd = $random; // generate random seed

//impose a lower bound of HRS aging factor

HRS_after_Aging = HRS_nom - HRS_rate*time_last;
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if(HRS_after_Aging<HRS_min_after_Aging)

HRS_after_Aging = HRS_min_after_Aging;

// update trending downward (Aging) nominal high resistance value

HRS_nom = $rdist_normal(rnd,HRS_after_Aging,HRS_after_Aging*HRS_nom_spr);

HRS_spread = abs(HRS_nom * HRS_spread_rate_temp);

if (HRS_nom <= HRS_min_after_Aging)

HRS_nom = HRS_min_after_Aging;

// regenerate HRS, Vtp and tsw_p ONLY when switching complete...

HRS_rnd = $rdist_normal(rnd,HRS_nom,HRS_spread);

Vtp_rnd = $rdist_normal(rnd,Vtp,Vtp_spread);

tsw_p_rnd = $rdist_normal(rnd,tsw_p,tsw_p_spread);

// update parameters, set switch_val to stop switching

delR = HRS_rnd - LRS_rnd;

Rm_tmp = HRS_rnd;

end

end

else begin

Rm_tmp = Rm;

end

Rm = Rm_tmp;

//$display("\nRm = %r\nasdfsadf\ntemperature=%3.2r vtp= %r vtn= %r hrs spr= %r hrs_sp_rate = %.5f temp %r HRS,LRS %r %r deltemp = %r\n\n",Rm,$temperature,Vtp_rnd,Vtn_rnd,HRS_spread,HRS_spread_rate_temp,temp_room,HRS_rnd,LRS_rnd,deltemp);

I(p,n) <+ Vwr / Rm;

end // end analog
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endmodule // memr_hfox

B.2 MATLAB Model of a Memristor for Quick Behavioral Simu-

lation:

function [I,Mout] = memristor(Vmag, delt,Minit)

%% no aging, temperature dependence

%% Major parameter list, mean (default)

u_Vthp = 0.7;

u_Vthn = -1.0;

u_HRS = 300e3;

u_LRS = 30e3;

u_tswp = 1e-8;

u_tswn = 1e-6;

Vthp = u_Vthp;

Vthn = u_Vthn;

HRS = u_HRS;

LRS = u_LRS;

tswp = u_tswp;

tswn = u_tswn;

%% cycle-to-cycle distribution parameter list(default value) in percentage

Vtp_sp_rel_time = 0.005;

Vtn_sp_rel_time = 0.005;

HRS_sp_rel_time = 0.2;

LRS_sp_rel_time = 0.02;

tswp_sp_rel_time = 0.01;

tswn_sp_rel_time = 0.01;
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%% creating parameters using the mean and distribution with a normal

%%%distribution function

Vthp = normrnd(u_Vthp,abs(u_Vthp*Vtp_sp_rel_time));

Vthn = normrnd(u_Vthn,abs(u_Vthn*Vtn_sp_rel_time));

HRS = normrnd(u_HRS,abs(u_HRS*HRS_sp_rel_time));

LRS = normrnd(u_LRS,abs(u_LRS*LRS_sp_rel_time));

tswp = normrnd(u_tswp,abs(u_tswp*tswp_sp_rel_time));

tswn = normrnd(u_tswn,abs(u_tswn*tswn_sp_rel_time));

%%

delR = HRS-LRS;

Mout = Minit;

% if Vmag <Vthp && Vmag>Vthn % won’t switch

% Mout = Minit;

% else

%% Switching logic of memristor

if Vmag >= Vthp && Mout > LRS

Mout = Minit - abs(Vmag)*delR*delt/abs(tswp*Vthp); % didn’t consider magtitude of voltage yet

if Mout < LRS

Mout = LRS;

end

elseif Vmag <= Vthn && Mout < HRS

Mout = Minit + abs(Vmag)*delR*delt/abs(tswn*Vthn);

if Mout > HRS

Mout = HRS;

end
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end

%%

%Mout;

I = Vmag/Mout;

%I = Mout;

end

C Behavioral XbarPUF Model Used for Response

Generation and Power Calculation

%% Mesbah Uddin, UT June,2016

%% To measure uniqueness, you have to measure the same response for same challenge across different PUFs. So change the

% variable ’MC’ and keep Ncycle = 1 and ’C’ constant to calculate uniqueness.

% MC=1, Ncycle variable and ’C’ fixed for reliability.

% MC=1, Ncycle fixed and ’C’ variable for uniformity

% MC variable and others fixed for bit-aliasing

clc;clear all;close all;

directory = ’C:\Users\muddin6\Documents\machine-learning-ex2\ex2\testResult_new’;

extension = ’.csv’;

avgunif = 0;

%% Global memristor parameters

%% cycle-to-cycle distribution

var_in_time = [.02 .02 .02 .02 .02 .02]; %in percentage

%var_in_time = [HRS_sp_rel_time LRS_sp_rel_time Vtp_sp_rel_time Vtn_sp_rel_time tswp_sp_rel_time tswn_sp_rel_time];
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%% mean of major parameters

mean_param = [300e3 30e3 0.7 -1.0 1e-6 1e-6];

% mean_param = [u_HRS u_LRS u_Vtp u_Vtn u_tswp u_tswn];

%% Statistical variations for mean of major parameters

stat_memr_param = [.2 .1 .1 .1 .05 .05]; % in percentage, same order as cycle-to-cycle variation

%%

RROW = 32; CCOL = 0; %extra 3 bits for column swapping

ROW = 32; COL = 4;

row = ROW*2;

col = COL*2;

dim = row*col;

Rmem = zeros(1,dim);

%% monte carlo run

%C = randi([0 1],RROW,1); %same challenge for all PUFs

MC = 3;

totResp = zeros(MC,COL);

for run = 1:MC

custom_mean_param = mean_param;

%k=1;j=1;

%% generating the crossbar matrix by using instances of randomly created memristors

rng(’shuffle’);

for k=1:dim

if rem(k,4) ==0

rng(’shuffle’); % to seed different numbers

end
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custom_mean_param = create_statistical_distribution(mean_param,stat_memr_param);

Rmem(k) = custom_mean_param(1); %set to HRS initially

mem(k) = Memristor(custom_mean_param,Rmem(k),var_in_time);

end

mem = reshape(mem,[row col]);

Rmem = reshape(Rmem,[row col]);

%[I, Mout] = memristance(mem(1,1),Vmag,step)

backup_mem = mem;

%% Start applying challenge

C = randi([0 1],ROW,1);

NCycle = 2;

totResp2 = zeros(NCycle,COL);

bigcsv = zeros(NCycle,RROW+CCOL); %extra 1 column for saving the response bits

bigcsv_cm = zeros(NCycle,RROW+CCOL); % cm = column mix

bigcsv_xor = zeros(NCycle,RROW+CCOL/2);

for iter = 1:NCycle %increase this number to calculate uniformity, reliability

mem = backup_mem;

%C = []

%C = input(’’);

C = randi([0 1],RROW,1);

%disp(C’)

% save challenges to a big matrix to write in a csv file later

bigcsv(iter,1:end-CCOL) = C’;

bigcsv_cm(iter,1:end-CCOL) = C’;
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%% %%%%%%%%%%% Beginning of experiment

%% Major circuit parameter

Vwr = 1.3;

Vrd = 0.60;

%% voltage applied across the row and load resistance

v = zeros(row,1);

Rload = zeros(1,col);

Rload(Rload==0) = calcRload(mean_param(1),mean_param(2),ROW);

Vresp = zeros(1,col);

Resp = zeros(1,COL);

Resp2 = zeros(1,COL);

%%

tper = 1e-6;

points_per_cycle = 50;

step = tper/points_per_cycle ; %50 points per cycle

%% RESET

TReset = 2e-6;

no_reset_cycle = 1;

t_res = step:step:TReset*no_reset_cycle;

v(v==0) = -Vwr;

reset_time = length(t_res);

for k=1:reset_time

for rr = 1:row

for cc = 1:col

[I, Rmem(rr,cc)] = mem(rr,cc).memristance(v(rr),step,Rmem(rr,cc));
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mem(rr,cc).Mout = Rmem(rr,cc);

%Rmem(rr,cc)

end

end

end

%% CHALLENGE

TChallenge = 0.6e-6;

no_chal_cycle = 1;

t_ch = step:step:TChallenge*no_chal_cycle;

%%choose a random challenge

%C = zeros(row,1);

%C = randi([0 1],row/2,1); used as input

Cb = C;%zeros(row/2,1); %minus 3 cause of control challenges

%size(Cb)

C(C==1) = Vwr;

Cb(C==0) = -Vwr;

%disp(’here’)

v = zeros(row,1);

%size(Cb)

v(1:2:row) = C(1:end);

v(2:2:row) = Cb(1:end);

C;

Cb;

v;

%C = [0;0;0;0]

%%apply challenge
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chal_time = length(t_ch);

%fprintf(’\n---\n\n\n’);

for k=1:chal_time

for rr = 1:row

for cc = 1:col

[I, Rmem(rr,cc)] = mem(rr,cc).memristance(v(rr),step,mem(rr,cc).Mout);

mem(rr,cc).Mout = Rmem(rr,cc);

%Rmem(rr,cc)

end

end

end

%% READ

vr = zeros(1,col);

vr(vr==0) = Vrd;

v = vr;

TRead = 1e-7;

t_rd = step:step:TRead;

format short

Rmem;

Req = 1./sum(1./(Rmem));

%fprintf(’Req = %3.3f \n’,Req);

%Req = 1./sum(1./([Rmem;Rload]));

% fprintf(’Req = %3.3f\n’,Req);

Vresp = Vrd*Rload./(Rload+Req);

for k=1:COL

Resp(k) = Vresp(2*k-1)>Vresp(2*k);

end

%fprintf(’%d’,Resp);
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%fprintf(’\n’);

%% perform swap

Req2 = columnSwap(logical(C(end-3:end)),Req); %last 3 bits of challenge for swap control

Vresp = Vrd*Rload./(Rload+Req2);

for k=1:COL

Resp2(k) = Vresp(2*k-1)>Vresp(2*k);

end

totResp(iter,:) = Resp;

for i=0:CCOL-1

bigcsv(iter,end-i) = Resp(i+1); %Resp;

end

totResp2(iter,:) = Resp2;

%fprintf(’%d’,xor(Resp(1),Resp(2)));

for i=0:CCOL-1

bigcsv_cm(iter,end-i) = Resp2(i+1); %Resp;

end

fprintf(’%d iteration finished...\n’,MC*(run-1) + iter);

end

totResp(run,:) = Resp;

%fprintf(’\n-------------%3.2f%% complete-------------\n’,run*100/MC);

csvfile = strcat(directory,MC+’0’,extension);

csvwrite(csvfile,bigcsv);
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csvfile2 = strcat(directory,MC+’0’,’swap’,extension);

csvwrite(csvfile2,bigcsv_cm);

%avgunif = avgunif + uniformity(totResp2)

end
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D How to Perform Tests on the Chip

We have fabricated a complete chip with 65nm CMOS technology containing HfO2

memristors. There are several stand-alone ‘test structures’ on this chip that can be probed

and tested separately. For example, we have single memristor circuit, forming and set-reset

circuit, sense amplifier circuit, 1-bit PUF circuit, and so on. Figure 1 shows a snapshot of

the layout of our designed chip where some of the test structures are clearly visible. There

are several things that we need to setup correctly to properly test and verify functionality

of any of these circuits. Taking the sense amplifier circuit as an example, the different steps

of testing are described in this section.

D.1 Setting up the Probepad Connection

Each of the individual stand-alone test structures contain 24 pads, arranged as two face-

to-face rows of 12 pads each. The dimension of each of these pads are 60µm × µm while

having a 40µm gap between consecutive pads. These are landing pads, pure chunks of metal,

meaning a 12×2 probepad can be connected directly to these pads to apply different input

patterns and also get the output from the underlying test circuits. After inserting a test chip

into the probe station and after setting up all 24 probes, they are moved slowly to be just on

top of the desired test structure and then pushed down until the probes slightly touch the

landing pads on the chip to form electrical connections. Figure 2 shows one such connection.

D.2 PSOC Microcontroller and Source Meter to Generate Inputs

We have used a PSOC (programmable system on chip) microcontroller board and a source

meter to apply different input patterns and connected them with the probepad connecting

wires. The PSOC microcontroller that we have used for our experiment has quite a few

input/output (IO) pins, more than the maximum 24 that a probepad might need. Moreover,

the PSOC board provides multiple direct connections to 1.2V, 3.3V, and many connections to

GND, thereby easing the need to produce these signals separately from the microcontroller.

The digital I/O pins of the microcontroller use 3.3V as the VDD so any digital pulse can be

produced using these pins. The number of available analog pins, however, is limited as at
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Figure 1: Partial snapshot of the layout of the chip where it contains a 12×2 probepad for
the sense amplifier circuit.
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Figure 2: 12×2 probepad connection to a test circuit inside of a probe station, the image
is taken from a microscopic view.
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most four analog signals can be generated at the same time. The voltage range for analog

signals can be between 0 to 4V. Moreover, since 65nm technology only allows maximum

1.2V VDD, these digital signals can not be produced using the regular digital I/O pins of

the PSOC as those I/O can only use 3.3V as VDD. Thus we need to use the on-chip DAC

(digital-to-analog converter) to generate these pulses with 1.2V VDD similar to any analog

signals.

Most of our circuits are designed to have much smaller number of pin counts than the

maximum of 24 for each test structure. For example, an SA test circuit only need 7 pins,

VDD, GND, sense enable or ‘SE’, two inputs B and Bbar, two outputs O and Ob. GND

and VDD pins can be directly connected to the on-board GND and 1.2V, respectively. The

output pins can be connected directly to display instruments like the oscilloscope. The

analog voltages B, Bar and digital SE (wih 1.2V) signal can be generated using the DAC

and analog I/O of the PSOC.

The source meter that we have used has two separate channels, capable of providing

arbitrary input voltage while it can also measure the current drawn from this two voltage

source. Thus if we need to provide accurate analog fixed DC voltage input, we can use

this source meter. Since this also measures the current supplied by the voltage as well, this

is very useful to detect state change in memristors by observing the current. That’s why

the source meter was specifically useful at setting up different input voltages to test the

memristor read-write-form circuit.

D.3 Setting up the Connection with Probepads

Only the minimum required number of pins out of 24 from probepad are connected to the

PSOC board. A snapshot of this is shown in Figure 3.

D.4 Performing Simple Functionality Test

The detailed results from testing of the SA circuit are provided in Chapter 3 and we skip that

here. Because of the very limited frequency range of DAC of the PSOC, we have performed

very slow signals. For example, the SA is tested at only 10Hz frequency. The DC voltage
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Figure 3: Connection between the inputs generated by the PSOC microcontroller and wires
coming from the probepad

level generated by PSOC has a noise of around 50-100mV and thus the voltage difference

between two bit-line inputs are kept around 200-400mV. This doesn’t provide a full testing

capability but ensures the electrical connection and the circuit itself work properly.

D.5 Oscilloscope to View and Collect the Output

The SA circuit has two inverting outputs. They have basically the same node as the inputs,

but they are asserted when the ‘SE’ signal goes to high. They are shorted with the two

inputs in other times. The outputs are connected directly to two channels of an oscilloscope

and a snapshot is shown in Figure 4. Both the outputs are found to be correct all the times

in this test setup. These waveforms are also saved and exported as CSV files in a computer

to perform data analysis later on.
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Figure 4: Output shown on a oscilloscope during testing of a sense amplifier circuit from a
fabricated chip.
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E Probability of Error with Majority Voting Tech-

nique

In majority voting technique, suppose a response bit is evaluated ‘N’ number of times. Also

let’s consider the probability of producing a stable output of a particular response bit is p.

Thus the probability of being unstable is (1-p). Now the probability of a particular response

bit to produce its valid logic state r times during N evaluation is:

Prob = pr(1− p)N−r (6)

The number of ways to produce the stable response of a particular bit ‘r’ times during

N evaluations can be expressed as
(
N
r

)
. Thus the probability of producing a valid response

by producing its valid binary state exactly ‘r’ times among N evaluations is:

Prob =

(
N

r

)
pr(1− p)N−r (7)

Now depending on the value of this ‘r’, the response cane be either valid or erroneous.

This bit would be considered logic ‘0’ if it produces ‘0’ more than half (r>N/2) of the time.

Thus ‘0’ would be the valid state for this particular response bit. However, an error would

occur if this bit fails to produce ‘0’, its valid state N/2 or more number of times. Thus there

would be error when it produce its valid state 0 times, or 1 times, or more upto less than

N/2 number of times. Therefore, the probability of errors (P.E.) can be found by adding all

the situations where ‘r’ is not greater than N/2 and is expressed here:

PE =

(
N

0

)
p0(1− p)N−0 +

(
N

1

)
p1(1− p)N−1 +

(
N

2

)
p2(1− p)N−2 + ...

......+

(
N

N/2

)
pN/2(1− p)N−N/2

=

N
2∑

r=0

(
N

r

)
pr(1− p)N−r

(8)
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The probability of producing a correct output with majority voting on the other hand

can be expressed similarly as:

P (Maj.vote) =

(
N

N
2

+ 1

)
p

N
2

+1(1− p)N−(N
2

+1) +

(
N

N
2

+ 2

)
p

N
2

+2(1− p)N−(N
2

+2) + ...

......+

(
N

N

)
pN(1− p)N−N

=
N∑

r=N
2

+1

(
N

r

)
pr(1− p)N−r

(9)
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