5,001 research outputs found

    Streett Automata Model Checking of Higher-Order Recursion Schemes

    Get PDF
    We propose a practical algorithm for Streett automata model checking of higher-order recursion schemes (HORS), which checks whether the tree generated by a given HORS is accepted by a given Streett automaton. The Streett automata model checking of HORS is useful in the context of liveness verification of higher-order functional programs. The previous approach to Streett automata model checking converted Streett automata to parity automata and then invoked a parity tree automata model checker. We show through experiments that our direct approach outperforms the previous approach. Besides being able to directly deal with Streett automata, our algorithm is the first practical Streett or parity automata model checking algorithm that runs in time polynomial in the size of HORS, assuming that the other parameters are fixed. Previous practical fixed-parameter polynomial time algorithms for HORS could only deal with the class of trivial tree automata. We have confirmed through experiments that (a parity automata version of) our model checker outperforms previous parity automata model checkers for HORS

    Winning regions of higher-order pushdown games

    Get PDF
    International audienceIn this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested ``stack of stacks'' structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results. From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes

    LambdaY-Calculus With Priorities

    Get PDF
    International audienceThe lambdaY-calculus with priorities is a variant of the simply-typed lambda calculus designed for higher-order model-checking. The higher-order model-checking problem asks if a given parity tree automaton accepts the Böhm tree of a given term of the simply-typed lambda calculus with recursion. We show that this problem can be reduced to the same question but for terms of lambdaY-calculus with priorities and visibly parity automata; a subclass of parity automata. The latter question can be answered by evaluating terms in a simple powerset model with least and greatest fixpoints. We prove that the recognizing power of powerset models and visibly parity automata are the same. So, up to conversion to the lambdaY-calculus with priorities, powerset models with least and greatest fixpoints are indeed the right semantic framework for the model-checking problem. The reduction to lambdaY-calculus with priorities is also efficient algorithmically: it gives an algorithm of the same complexity as direct approaches to the higher-order model-checking problem. This indicates that the task of calculating the value of a term in a powerset model is a central algo-rithmic problem for higher-order model-checking

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Cost Automata, Safe Schemes, and Downward Closures

    Get PDF
    Higher-order recursion schemes are an expressive formalism used to define languages of possibly infinite ranked trees. They extend regular and context-free grammars, and are equivalent to simply typed ?Y-calculus and collapsible pushdown automata. In this work we prove, under a syntactical constraint called safety, decidability of the model-checking problem for recursion schemes against properties defined by alternating B-automata, an extension of alternating parity automata for infinite trees with a boundedness acceptance condition. We then exploit this result to show how to compute downward closures of languages of finite trees recognized by safe recursion schemes

    Higher-Order Model Checking Step by Step

    Get PDF
    We show a new simple algorithm that solves the model-checking problem for recursion schemes: check whether the tree generated by a given higher-order recursion scheme is accepted by a given alternating parity automaton. The algorithm amounts to a procedure that transforms a recursion scheme of order n to a recursion scheme of order n-1, preserving acceptance, and increasing the size only exponentially. After repeating the procedure n times, we obtain a recursion scheme of order 0, for which the problem boils down to solving a finite parity game. Since the size grows exponentially at each step, the overall complexity is n-EXPTIME, which is known to be optimal. More precisely, the transformation is linear in the size of the recursion scheme, assuming that the arity of employed nonterminals and the size of the automaton are bounded by a constant; this results in an FPT algorithm for the model-checking problem. Our transformation is a generalization of a previous transformation of the author (2020), working for reachability automata in place of parity automata. The step-by-step approach can be opposed to previous algorithms solving the considered problem "in one step", being compulsorily more complicated

    Collapsible Pushdown Parity Games

    Get PDF
    International audienceThis paper studies a large class of two-player perfect-information turn-based parity games on infinite graphs, namely those generated by collapsible pushdown automata. The main motivation for studying these games comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both models being equi-expressive for generating infinite trees. Our main result is to establish the decidability of such games and to provide an effective representation of the winning region as well as of a winning strategy. Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees generated by collapsible pushdown automata/recursion schemes

    Decision Problems for Deterministic Pushdown Automata on Infinite Words

    Full text link
    The article surveys some decidability results for DPDAs on infinite words (omega-DPDA). We summarize some recent results on the decidability of the regularity and the equivalence problem for the class of weak omega-DPDAs. Furthermore, we present some new results on the parity index problem for omega-DPDAs. For the specification of a parity condition, the states of the omega-DPDA are assigned priorities (natural numbers), and a run is accepting if the highest priority that appears infinitely often during a run is even. The basic simplification question asks whether one can determine the minimal number of priorities that are needed to accept the language of a given omega-DPDA. We provide some decidability results on variations of this question for some classes of omega-DPDAs.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Tight Upper Bounds for Streett and Parity Complementation

    Get PDF
    Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2Ω(nlgnk)2^{\Omega(n\lg nk)} and upper bound 2O(nklgnk)2^{O(nk\lg nk)}, where nn is the state size, kk is the number of Streett pairs, and kk can be as large as 2n2^{n}. Determining the complexity of Streett complementation has been an open question since the late '80s. In this paper show a complementation construction with upper bound 2O(nlgn+nklgk)2^{O(n \lg n+nk \lg k)} for k=O(n)k = O(n) and 2O(n2lgn)2^{O(n^{2} \lg n)} for k=ω(n)k = \omega(n), which matches well the lower bound obtained in \cite{CZ11a}. We also obtain a tight upper bound 2O(nlgn)2^{O(n \lg n)} for parity complementation.Comment: Corrected typos. 23 pages, 3 figures. To appear in the 20th Conference on Computer Science Logic (CSL 2011
    corecore