
HAL Id: hal-02100196
https://hal.archives-ouvertes.fr/hal-02100196

Submitted on 15 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LambdaY-Calculus With Priorities
Igor Walukiewicz

To cite this version:
Igor Walukiewicz. LambdaY-Calculus With Priorities. LICS, 2019, Vancouver, Canada. pp.1-13.
�hal-02100196�

https://hal.archives-ouvertes.fr/hal-02100196
https://hal.archives-ouvertes.fr

LambdaY-Calculus With Priorities1

Igor Walukiewicz
CNRS, Bordeaux University

April 15, 2019

Abstract

The lambdaY-calculus with priorities is a variant of the simply-
typed lambda calculus designed for higher-order model-checking. The
higher-order model-checking problem asks if a given parity tree au-
tomaton accepts the Böhm tree of a given term of the simply-typed
lambda calculus with recursion. We show that this problem can be
reduced to the same question but for terms of lambdaY-calculus with
priorities and visibly parity automata; a subclass of parity automata.
The latter question can be answered by evaluating terms in a simple
powerset model with least and greatest fixpoints. We prove that the
recognizing power of powerset models and visibly parity automata are
the same. So, up to conversion to the lambdaY-calculus with priorities,
powerset models with least and greatest fixpoints are indeed the right
semantic framework for the model-checking problem. The reduction
to lambdaY-calculus with priorities is also efficient algorithmically: it
gives an algorithm of the same complexity as direct approaches to the
higher-order model-checking problem. This indicates that the task of
calculating the value of a term in a powerset model is a central algo-
rithmic problem for higher-order model-checking.

1 Introduction

Higher-order model-checking has become a successful foundation for verifica-
tion of higher-order programs. While at first it was restricted to call-by-name
purely functional programs, in recent years its scope has been substantially
enlarged [1–5].

Technically, the model-checking problem can be stated as follows: given
a term of a simply typed λ-calculus with fixpoints, and a parity tree au-
tomaton, decide if the Böhm tree of the term is accepted by the automaton.
The Böhm tree of the term is a generalization of the notion of the result of
a computation to potentially non-terminating computations. Decidability
of the higher-order model-checking problem was proved by Ong [6]. Since

1This paper is a long version of the LICS’19 article.

1

then it has been has been reproved using several different methods [7–12].
Among them, a model-based approach is the most relevant for this paper.

The idea of the model-based approach is to construct a finite model rec-
ognizing a given property [13]. A model recognizes a property if the value
of a term in the model determines if the Böhm tree of the term satisfies
the property. This is analogous to a fundamental concept of recognizabil-
ity by semigroups in formal language theory. The model-based approach
allows to deduce in an elegant way many results about higher-order model
checking [14, 15]. Unfortunately, the model constructions we know of are
quite complicated. More seriously, it is not clear what is a suitable class
of models that plays the same role as semigroups in the case of languages
of finite words. It is even not known what kinds of fixpoints are need to
construct models recognizing properties given by parity automata.

In this paper we show that the simplest possible class of models, namely
that of models based on a finite powerset lattice and monotone functions
with least and greatest fixpoints, corresponds exactly to, a certain refinement
of, the higher-order model-checking problem. The refinement consist of a
finer typing system that we call λY -calculus with priorities, and a restriction
of parity automata to what we call visibly parity automata.

Our result extends the one for automata with trivial acceptance condi-
tions1. Aehlig [16] has shown that properties defined by such automata can
be recognized by powerset models with recursion interpreted as the great-
est fixpoint. Such models are also called Scott models in the literature,
although most often they are considered over arbitrary directed complete
partial-orders, and not necessarily finite distributive lattices. Actually, rec-
ognizing power of automata with trivial acceptance conditions, and finitary
powerset models with greatest fixpoint interpretation is the same [15]. Thus
to go beyond automata with trivial acceptance conditions we need to enlarge
the class of interpretations.

Since complete lattices have both least and greatest fixpoints, it is tempt-
ing to use both in the semantics. As we have only one recursion operator
in the calculus, it is not clear which fixpoint to use where. Observe that
using just least fixpoints would give dual models, and would not give more
recognizing power than using just greatest fixpoints.

In this paper we propose the λY -calculus with priorities, a calculus where
every recursion operator, and every constant is indexed with a priority. Re-
cursion operators with even priorities are interpreted as the greatest fix
points, and those with odd priorities as the least fix points. The main point
is to relate this semantics to acceptance by automata. Having constants
indexed by priorities leads to a notion of visibly parity automata where the
priorities are not associated to states but to letters read by the automaton.

1All automata in this paper are ⊥-blind; called Ω-blind in [15]. We discuss this restric-
tion in the main text and in the conclusions.

2

Our main result, Theorem 16, states that there is a perfect match between
models and automata: recognizing power of powerset models under such
interpretation is equivalent to that of visibly parity automata.

Extending the comonadic translation of Melliès [17], we show that for ev-
ery assignment of priorities to constants: every term of the λY -calculus can
be translated to a term of the λY -calculus with priorities such that the two
terms have the same Böhm trees. This allows to reduce the higher-order
model-checking problem to the model-checking problem for λY -calculus
with priorities and visibly parity automata. In consequence, the higher-
order model-checking problem can be solved by evaluation in simple power-
set models. Moreover, this reduction can be done in polynomial time,
and the resulting algorithm has the same complexity as other known ap-
proaches [9,18] . This confirms the central position of the algorithmic prob-
lem of evaluating terms with least and greatest fix points in the powerset
model.

To sum up, the main technical contributions of the paper are the follow-
ing:

• Definition of the λY -calculus with priorities.

• Characterization of its semantics in powerset models in terms of ac-
ceptance by visibly parity automata.

• Extension of the co-monadic translation of Melliès to terms with fix-
points.

In this paper we propose a framework for higher-order model-checking
with a very simple semantic interpretation. We hope that this is a step
towards Eilenberg-like variety theory for λY -calculus. The model-based
approach puts a focus on computing fixpoints in finite lattices. The model-
checking of the propositional mu-calculus is the most known instance of this
problem, but the higher-order version is no less intriguing.

Related work: This work relies on some important insights to higher-
order model-checking. An idea of tracking priorities in a type system was
introduced in a seminal paper of Kobayashi and Ong [8]. The comonadic
nature of priorities and the translation on terms proposed by Melliès [17]
is another cornerstone of this work. The paper of Kobayashi, Lozes and
Bruse [19] was the starting inspiration for this work; it implies that Melliès’
translation leads to a reduction of higher-order model-checking to evaluation
in powerset models. The present paper belongs to the line of research on
models for higher-order model-checking. Apart from the work of Aehlig
mentioned above, we can mention approaches of Tsukada and Ong [10], as
well as Grellois and Melliès [11, 20]. In both works the fixpoint operator
is defined via a parity game and is somehow external to a model. Even
closer are the works of Salvati and Walukiewicz culminating in a model

3

construction for all ω-regular properties [12]. All these works use models
enriched with priorities, inspired by intersection types of Kobayashi and
Ong. In the present paper, priorities are in the syntax, and not in the model.
This changes many things, but there are also many techniques that can
be reused. Bruse [21] considers Krivine machine interpretation for higher-
order fixpoint logic, so he needs to deal with both higher-order and both
types of fixpoints. The acceptance condition for his machines reduces to
the parity condition for terms typable in our system. A recent paper of
Melliès [22] introduces a notion of higher-order parity automata. Their
behavior is somehow similar to our semantic games (game PSG on page 43).
The objectives of op. cit. are quite different from ours, and so are techniques
except of Melliès’ translation. In a broader context, this paper is a part
of continuing effort to understand better the higher-order model-checking
problem [23–25].

Structure of the paper: In the next section we recall basic notions behind
the higher-order model-checking problem. We describe the correspondence
between automata with trivial acceptance conditions, and powerset models
with greatest fixpoint interpretation. Section 3 introduces λY -calculus with
priorities, and visibly parity automata. It explains how to reduce the model-
checking problem to that for visibly parity automata. Section 4 presents
main results of the paper. It also states the main technical theorem whose
proof is outlined in Section 5. Section 6 shows how to translate λY -terms
to λY -terms with priorities. Section 7 discusses applicability of the results
to algorithmics of higher-order model-checking.

2 The λY -calculus and parity automata

In this section we recall definitions of the λY -calculus, and of parity au-
tomata. We also recall the characterization of the recognizing power of
parity automata with trivial acceptance conditions in terms of simple mod-
els of the λY -calculus where fixpoint operators are interpreted as greatest
fixpoints.

2.1 λY -calculus

The λY -calculus is simply-typed lambda calculus with a fixpoint operator.
The set of simple types is constructed from a unique base type o using a
binary operation →. As usual we shall write A1 → · · · → Ak → B for
(A1 → (. . . (Ak → B) . . .)). We use Types for the set of all simple types.

An alphabet is a set Σ of typed constants. Every constant b ∈ Σ has an
arity ar(b) that is a strictly positive natural number. A constant b of arity
ar(b) has a type

b : o→ · · · → o→ o,

4

where there are ar(b) arrows. We only allow this shape of types for constants.
This is a standard restriction in the context of higher-order model-checking,
except maybe for allowing constants of the base type o. We disallow con-
stants of type o for notational convenience.

Terms of the λY -calculus are built from variables and constants in Σ
with the help of abstraction, application, and fixpoint operations. We use
x, y, . . . and F with subscripts for variables. We assume that variables are
typed but we will seldom write their type explicitly. Construction of terms
is subject to the standard type discipline. If M is a term of type B and x a
variable of type A, then λx.M is a term of type A → B. If M is a term of
type A→ B and N is a term of type A then M ·N is a term of type B. We
will often write MN instead of M · N . Finally, if M is a term of type A,
and F is a variable of type A then Y F.M is a term of type A. So we adopt
a syntax where Y is a binder, and not a fixpoint combinator.

The usual operational semantics of the calculus is given by β and δ-
reductions (we omit the standard definition of a substitution): (λx.M) ·
N →β M [N/x], and Y F.M →δ M [(Y F.M)/F]. We write →∗βδ for reflexive
and transitive closure of the union of the two relations.

2.2 Böhm trees of terms

Böhm tress are a kind of normal forms for λY -terms. They may be infinite,
since the calculus does not have a strong normalization property.

Let us fix an alphabet Σ as above. Let ⊥ be a special symbol not in
Σ. We write Σ⊥ for (Σ ∪ {⊥}). A, potentially infinite, Σ⊥-tree is a partial

function t : (N>0)∗
·→ Σ⊥. For a node v ∈ (N>0)∗ and a direction i ∈ N>0

we call vi the i-th successor of v. This successor may not exist if t(vi) is not
defined. We require that for every node v ∈ (N>0)∗, if the constant b = t(v)
has an arity k = ar(b) then v has k successors v1, . . . , vk, and has no other
successors. If t(v) = ⊥ then v should have no successors.

Definition 1 (Böhm tree) A Böhm tree of a closed term M of type o,
denoted BT (M), is a Σ⊥-tree defined recursively:

• if M →∗βδ bN1 . . . Nar(b) for some constant b ∈ Σ then BT (M) has the
root labeled b with subtrees of the root being BT (N1), . . . , BT (Nar(b));

• otherwise BT (M) = ⊥.

Thanks to subject reduction and confluence of→∗βδ, every term has a unique
Böhm tree [26]. Because of our assumption on the shape of type of constants
in Σ, all terms Ni in the first clause of the definition must be closed and of
type o. For the same reason, all leaves in BT (M) must be labeled with ⊥.
In what follows it is possible to add constants of type o without problems.
Constants of higher-order types, like (o→ o)→ o, would introduce variables

5

and bindings in Böhm trees. In consequence, it would not be clear how to
run a tree automaton on such Böhm trees.

2.3 Alternating parity automata

We use alternating (max)parity automata to express properties of Böhm
trees. The definition is standard except for the case when an automaton
reaches a leaf labeled ⊥: it accepts no matter what state it is in. We will
discuss this phenomenon below.

A parity automaton is a tuple

A = 〈Q,Σ, {δb}b∈Σ,Ω : Q→ {0, . . . , p}〉 ,

where Q is a finite set of states, Σ is an alphabet,

δb : Q→ {(S1, . . . , Sar(b)) : Si ∈ P(Q), i = 1, . . . , ar(b)}

is a transition function, and Ω is an assignment of priorities to states. Pri-
orities are integers between 0 and p. As before, we assume that every b ∈ Σ
has its arity ar(b). For readability, we will write δ(q, b) for δb(q).

Parity automata run on Σ⊥-trees. An acceptance game for A from q ∈ Q
on a Σ⊥-tree t : (N>0)∗

·→ Σ⊥ involves two players called Adam and Eve.
Eve starts in (q, ε) namely in the state q and in the root node of t. She
looks at the letter b = t(ε) in the root. If b = ⊥ then Eve wins, otherwise
Eve needs to choose some (S1, . . . , Sar(b)) ∈ δ(q, b). Next, Adam chooses
i1 and qi1 ∈ Si1 . The game proceeds to position (qi1 , i1), and a new turn
starts. If a player cannot make a move, she looses; for example Eve looses
if δ(q, b) = ∅, and Adam looses if Eve can choose (∅, . . . , ∅). The winner of
an infinite play is decided by looking at the sequence of states qi1 , qi1i2 , . . .
encountered during the play. Eve wins if the maximal priority of a state
seen infinitely often is even.

Automaton A accepts a tree t from q if Eve has a winning strategy in
the game described above from (q, ε) on t. Over infinite trees without ⊥ the
power of our parity automata is the same as that of monadic second-order
logic. Our automata are ⊥-blind , meaning that they accept when they reach
a leaf labeled ⊥. (In [15] this property is called Ω-blind, but here we use ⊥ to
denote divergence). For example, the language “there is a leaf labeled ⊥” is
not recognized by our automata. This strange behavior is quite common in
the literature on higher-order model checking [1]. As we will see in the next
subsection, it is a consequence of the way divergence is handled in models
of the simply typed lambda-calculus.

We finish this subsection with a upper closure operation on automata.

Definition 2 (up(A)) For a transition function δb, its upper closure up(δb)
is defined by: (S1, . . . , Sk) ∈ up(δb)(q) if there is (S′1, . . . , S

′
k) ∈ δb(q) with

6

S′i ⊆ Si, for i = 1, . . . , k. Automaton up(A) is A with transition functions
changed from {δb}b∈Σ to {up(δb)}b∈Σ.

From the definition of acceptance it should be clear that a tree is accepted
from a state q by up(A) iff it is accepted from q by A. Indeed, it is better for
Eve to choose transitions with as small sets as possible. Choosing a bigger
set, just gives more possibilities to Adam.

2.4 GFP-semantics and automata with trivial acceptance con-
ditions

In this last part of the introductory section we recall a close relation be-
tween automata with trivial acceptance conditions, and simple models of
λY -calculus where fixpoint operators are interpreted as greatest fixpoints
(GFP for short).

Definition 3 (Finitary powerset model) A finitary powerset model of
a signature Σ is a tuple D = 〈{DA}A∈Types , {[[b]]D}b∈Σ〉, where Do is the
lattice P(Q) for some set Q, and for every type A → B, lattice DA→B is
the set of monotone functions from DA to DB ordered coordinate-wise. An
interpretation [[b]]D of a constant b ∈ Σ of a type B is an element of DB.

We need a lattice structure in the model to interpret fixpoint operators.
Later, when we will consider complexity of some decision problems, it will
be important that the lattice is distributive. As every finite distributive
lattice is isomorphic to a lattice of sets, we prefer for simplicity to start with
a powerset lattice immediately.

The GFP-semantics of terms in such a model is standard, but for the fact
that all fixpoints are interpreted as the greatest fixpoints. Since every DA

is a finite lattice, every monotone function in DA→A has the least and the
greatest fixpoint, denoted LFP, and GFP respectively. For now we will use
only the greatest fixpoints. We will use both types of fixpoints to interpret
λY -calculus with priorities.

We spell out the definition of the semantics of a λY -term M in a valua-
tion ϑ and a model D, in symbols [[M,ϑ]]DGFP. We keep the subscript GFP to
remind that we use only greatest fixpoints. On the other hand, we will often
omit the superscript D for readability. As usual, a valuation is a function
assigning to every variable of type A a value from DA. The definition of
[[M,ϑ]]DGFP is by induction on the size of M .

• [[x, ϑ]]GFP = ϑ(x),

• [[b, ϑ]]GFP = [[b]]D,

• [[λx.M, ϑ]]GFP = λλh.[[M,ϑ[h/x]]]GFP,

• [[MN,ϑ]]GFP = [[M,ϑ]]GFP([[N,ϑ]]GFP),

7

• [[Y F.N, ϑ]]GFP = GFPλλh.[[N,ϑ[h/F]]]GFP.

It is well-known that the interpretation of a term is always a monotone
function, and that this interpretation is sound with respect to β and δ re-
ductions [26].

Models can be constructed from automata as follows.

Definition 4 (Model DA) For an automaton A = 〈Q,Σ, {δb}b∈Σ,Ω〉 the
model DA has P(Q) as the interpretation of the base type; a constant b is
interpreted as

[[b]]GFP(S1, . . . , Sar(b)) = {q : (S1, . . . , Sar(b)) ∈ up(δb(q))} .

Automata can be constructed from models.

Definition 5 (Automaton A0
D) For a finitary powerset model D over the

base set P(Q) we define a parity automaton A0
D = 〈Q,Σ, {δb}b∈Σ,Ω : Q →

{0}〉 where

δb(q) = {(S1, . . . , Sar(b)) : q ∈ [[b]]GFP(S1, . . . , Sar(b))}

There is no way to read an assignment of priorities Ω from the model. So
in the above definition we just take the trivial one. This choice is justified
by Proposition 7 below.

The class of automata we obtain by this construction is important enough
to give it a name. We say that an automaton has a trivial acceptance con-
dition if all the states have priority 0, i.e., Ω(q) = 0 for all states q. We will
write A0 when we want to stress that A has a trivial acceptance condition.

The next fact follows directly from the definitions.

Fact 6 Fix an alphabet Σ. For every parity automaton with trivial ac-
ceptance condition A0 over Σ, and every finitary powerset model D over
Σ:

A0
DA0 is up(A0), and DA0

D is D.

This fact is one of the reasons why we have restricted to powerset models.
The constructions can be quite easily extended to arbitrary finite lattice
models, but the equivalence from the above fact becomes less direct.

A model D can recognize a set of closed terms of type o: the set of terms
recognized by a set F ⊆ Do is

{M : [[M]]DGFP ∈ F, M closed term of type o} .

An automaton A also can recognize a set of closed terms of type o: we
can choose a state q and consider those terms whose Böhm trees are accepted
by A from q.

8

The main point of the correspondance from Fact 6 is that an automaton
and its corresponding model recognize the same sets of terms. (Recall that
A and up(A) recognize the same sets of terms.) The proposition below is a
reformulation of results form [15,16].

Proposition 7 Fix an alphabet Σ. Let A0 be an automaton with a trivial
acceptance condition over the alphabet Σ, and let DA0

be the corresponding
powerset model. For every closed λY -term M of type o over the signature
Σ:

[[M]]D
A0

GFP = {q : A0 accepts BT (M) from q} .

Due to Fact 6, the same equality holds when we start with a model D
and consider the automaton A0

D:

[[M]]DGFP = {q : A0
D accepts BT (M) from q} .

This shows that the recognizing power of finitary powerset models with
GFP-interpretation is the same as that of automata with a trivial acceptance
condition.

3 The λY -calculus with priorities

Proposition 7 puts a limit on what can be recognized with finitary powerset
models using only greatest fixpoints. But we have also least fixpoints avail-
able in powerset models, so one may ask what is the recognizing power of
finitary powerset models when we use both types of fixpoints. To give an
answer to this question, we propose a syntax allowing to indicate when Y
should be interpreted as the least and when as the greatest fixpoint. The
challenge is to do it in a way that still preserves a relation to acceptance by
automata.

The λY -calculus with priorities results by adding priorities to the syntax.
Priorities appear as superscripts over applications and over fixpoint binders.
The simple type discipline of the λY -calculus is also refined to priority types.

Priority types are simple types annotated with priorities:

θ = o | τ → θ where τ = (r, θ) r ∈ N

There is only one base type o. Only types to the left of an arrow have a
priority annotation, while the base type is not annotated. To every priority
type θ naturally corresponds a simple type Aθ obtained by hereditary erasing
priority annotations.

Priority types are Kobayashi and Ong types [8] without conjunction. As
we will see later, we avoid the conjunction thanks to an extended Melliès
translation from Section 6 and two kinds of typing assertions, (=, τ) and
(≤, τ), in typing environments. While Kobayashi and Ong type system

9

works with applicative terms, our typing system admits λ-abstraction and
fixpoint operators.

Terms are built from variables and constants, using abstraction, priority
application, and priority fixpoint operator. In particular, N ·r K is a term
when N and K are terms, and r is a priority. Similarly, Y rF.N is a term
when r is a priority, F is a variable, and N is a term. The rest of the
constructs are standard: a variable, x or F , is a term; a constant b is a
term; and an abstraction λx.N is a term, if N is a term. We use two kinds
of symbols for variables, x, y, . . . for those bound by λ, and F for those
bound by Y . There are no priorities on λ-abstractions.

As for λY -calculus, constants are typed. We write Σpr for a set of
constants with priorities: constant b ∈ Σpr has not only its arity, ar(b),
but also its priority pr(b). The type of a constant b of arity k = ar(b) and
priority r = pr(b) is

b : (r, o)→ · · · → (r, o)→ o,

where there are k arrows. The fact that all arguments have the same priority
is not important, it is done only for notational convenience.

Γ ` b : θ θ is the type of b

Γ, x = (0, θ) ` x : θ Γ, x ≤ (r, θ) ` x : θ

Γ, x = (r, θ1) `M : θ2

Γ ` λx.M : (r, θ1)→ θ2

Γ `M : (r, θ1)→ θ2 Γ�r` N : θ1

Γ `M ·r N : θ2

Γ, F = (r, θ) ` N : θ

Γ,∆ ` Y rF.N : θ

all assumptions in Γ
have priorities ≥ r

Figure 1: Typing rules of λ-calculus with priorities.

Terms are subject to a typing discipline presented in Figure 1. It is a
refinement of simple types, in a sense that every typable term is typable
in simple types obtained by erasing the priority annotation. We still write
judgments as Γ ` M : θ, hoping that types and terms indicate when we
mean typing with priority types, and when typing with simple types. Envi-
ronments appearing to the left of typing judgments are functions from vari-
ables to assumptions of the form (=, τ) or (≤, τ), where τ is a pair (r, θ) with
r a priority and θ a priority type. We will write environments as lists, for

10

example: x = (2, o), y ≤ (1, (3, o) → o). Observe that x = (2, o), x ≤ (3, o)
is not an environment, as x has two priority types.

The operation Γ�r used in the application rule is defined by: for all x
and θ,

• change x = (r, θ) in Γ to x ≤ (r, θ); and

• remove x = (i, θ) and x ≤ (i, θ), for all i < r.

Example: Consider a constant b of arity 2 and priority 3. Let Γ be the
environment x ≤ (6, o), y = (3, o). We have a typing

Γ ` b : (3, o)→ (3, o)→ o Γ�3` x : o

Γ ` b ·3 x : (3, o)→ o Γ�3` y : o

Γ ` (b ·3 x) ·3 y : o

where Γ�3 is x ≤ (6, o), y ≤ (3, o). Observe that we do not get a typing for
Γ′ of the form x ≤ (6, o), y = (2, o). This is because Γ′�3 does not have an
assumption on y. Similarly, if we took Γ′′ with y = (5, o) instead then Γ′′�3
would have y = (5, o) and derivation Γ′′�3` y : o would be impossible.

Observation: If every constant has priority 0, namely its type is of the
form (0, o)→ · · · → (0, o)→ o then all typing rules can use only applications
and fixpoints of priority 0: N ·0K and Y 0F.N . In this case the typing rules
become just the typing rules of the λY -calculus as all typing environments
will use only priority 0. The picture is more complicated if every constant
has priority 1. Indeed, to type the term λx.x we need priority 0, as its types
have the form (0, θ)→ θ.

3.1 Subject reduction and Böhm trees

We first show that the typing system behaves well with respect β- and δ-
reductions. We show this in a sequence of lemmas. The first simple technical
fact says that x = (r, θx) is a stronger assumption than x ≤ (r, θx), except
for r = 0, when the two are equivalent.

Lemma 8 If Γ, x = (r, θx) `M : θ then Γ, x ≤ (r, θx) `M : θ. Moreover if
Γ, x ≤ (0, θx) `M : θ then Γ, x = (0, θx) `M : θ.

Proof
By induction on the length of the derivation. The only point to note is that
(Γ, x = (r, θx))�r changes to (Γ, x ≤ (r, θx))�r in the application rule. For the
second statement we observe that we have a special axiom Γ, x = (0, θ) `
x : θ. Since we do not have such an axiom for r > 0, the second statement
holds only for r = 0. �

Subject reduction property is a consequence of the following stronger
lemma that will be useful later.

11

Lemma 9 Suppose Γ�r` N : θ1.

• If Γ, x = (r, θ1) `M : θ2 then Γ `M [N/x] : θ2.

• If Γ�r,∆, x ≤ (r, θ1) `M : θ2 then Γ�r,∆ `M [N/x] : θ2.

Proof
The proof is by induction on the size of M . Before we start, observe that if
x is not free in M then the two statements hold trivially.

The case of a variable x. If Γ, x = (r, θ1) ` x : θ1 then necessarily r = 0.
So Γ ` N : θ1 by the previous lemma, and we are done since x[N/x] is N .
The second statement is direct as the hypothesis say Γ�r,∆, x ≤ (r, θ1) ` x :
θ1 and Γ�r` N : θ1

The case of abstraction. If Γ, x = (r, θ1) ` λz.K : τ → θ2 then Γ, x =
(r, θ1), z = τ ` K : θ2 (we can assume that x 6= z). By induction hypothesis
from the first statement Γ, z = τ ` K[N/x] : θ2. So we can use abstraction
rule to get Γ ` λz.K[N/x] : τ → θ2.

For the second statement suppose Γ�r,∆, x ≤ (r, θ1) ` λz.K : τ → θ2.
We have Γ�r,∆, x ≤ (r, θ1), z = τ ` K : θ2. The induction hypothesis gives
us Γ�r,∆, z = τ ` K[N/x] : θ2, and the abstraction rule Γ�r,∆,` λz.K :
τ → θ2

The case of application. If Γ, x = (r, θ1) ` K ·s L : θ2 then by the
application rule:

Γ, x = (r, θ1) `K : (s, θ3)→ θ2 and (Γ, x = (r, θ1))�s` L : θ3

The induction hypothesis applied to the first judgment gives us Γ,` K[N/x] :
(s, θ3)→ θ2. Let us now look at the second judgment, and reason by cases to
show that Γ�s` L[N/x] : θ3 which would give us desired Γ ` (K ·s L)[N/x] :
θ2. If s > r then x is not free in L and we are done. If s < r then
Γ�s, x = (r, θ1) ` L : θ3 so we are done by induction hypothesis. Finally, if
s = r then Γ�r, x ≤ (r, θ1) ` L : θ3, and once again the induction hypothesis
applies.

To prove the second statement for the application case suppose Γ �r
,∆, x ≤ (r, θ1) ` K ·s L : θ2. The application rule gives us:

Γ�r,∆, x ≤ (r, θ1) `K : (s, θ3)→ θ2 and (Γ�r,∆, x ≤ (r, θ1))�s` L : θ3

To the first judgment we can apply the induction hypothesis directly, and
obtain Γ�r,∆ ` K[N/x] : (s, θ3) → θ2. We need (Γ�r,∆)�s` L[N/x] : θ3 to
finish this case, and we will obtain it from the second judgment above. We
do a case analysis.

• If s > r then x does not occur in L, and we get the desired judgment
immediately.

12

• If s < r then (Γ�r)�s,∆�s, x ≤ (r, θ1) ` L : θ3. Since (Γ�r)�s is Γ�r, we
can use induction hypothesis to obtain Γ�r,∆�s` L[N/x] : θ3, which is
the same as (Γ�r,∆)�s` L[N/x] : θ3.

• If s = r then Γ�r,∆�r, x ≤ (r, θ1) ` L : θ3, and the induction hypothe-
sis gives us Γ�r,∆�r` L[N/x] : θ3 as desired.

The case of fixpoint. If Γ, x = (r, θ1) ` Y sF.K : θ2 then

Γ, x = (r, θ1), F = (s, θ2) ` K : θ2

Directly from the first statement of the induction hypothesis we obtain
Γ, F = (s, θ2) ` K[N/x] : θ2. This proves the first statement, namely
Γ,` Y sF.K[N/x] : θ2. Similarly, the second statement follows directly from
the induction hypothesis. �

Now we are ready to give the proof of the subject reduction property.

Lemma 10 (Subject reduction for priority typing) If Γ ` (λx.M) ·r
N : θ then Γ `M [N/x] : θ. If Γ ` Y rF.M : θ then Γ `M [Y rF.M/F] : θ.

Proof
For the first statement, it is enough to observe that the assumption gives
some θ′ and two judgments:

Γ, x = (r, θ′) `M : θ and Γ�r` N : θ′

The conclusion follows from Lemma 9.
Consider the second statement. By the typing rule for Y rF.M , context

Γ can be split into Γ′ and ∆, such that all typing assumptions in Γ′ use
ranks ≥ r, and moreover Γ′, F = (r, θ) ` M : θ. This also implies that
(Γ′)�r` Y rF.M by Lemma 8. So Lemma 9 then gives Γ′ `M [Y rF.M/x] : θ.
This permits to conclude. �

We define the Böhm tree of a priority term M , BT (M), in the same
way as we have done for λY -terms (Definition 1). To a priority term M
corresponds a λY -term M obtained by removing priorities in applications
and fixpoint operators. It is easy to verify that M is simply typable and
that BT (M) = BT (M).

3.2 Semantics

The first gain from introducing priorities in the syntax is that we can now
refine the semantics of terms. We evaluate priority λ-terms in finitary lattice
models as in Definition 3. The difference with GFP-interpretation is that now
we use both the least and the greatest-fixpoints. Recall that to every pri-
ority type θ corresponds a simple type Aθ obtained by hereditary removing

13

priorities in θ. The meaning of a term of type θ is an element of DAθ . The
definition of the semantics is verbatim the same as for GFP-interpretation,
but for the meaning of fixpoints:

[[Y rF.N, ϑ]] = LFPλλh.[[N,ϑ[h/F]]] if r is odd, and

GFP instead of LFP if r is even.

Observe that priorities do not influence the meaning of the application.

3.3 Terms with priorities are priority-homogenous

The main point about terms with priorities is that for every variable, all
its occurrences have “the same application priority”. This is the crucial
property that is behind all the results presented in this paper.

Figure 2 gives an example of how to think about application priorities.
Consider a tree representation of a term with λx and Y sF having one suc-
cessor, and the application ·r symbol having two successors. The right edge
of ·r has priority r. The edge from Y s has priority s. The left edge of the
application, and all other edges have label 0. In this representation, the
application priority between two positions is the maximum priority on the
edges of the path between the positions. A formal definition is given below.

M ⌘

·r

�z Y sF

r s

1

M ⌘

·r

�z Y sF

r s

1

M ⌘

·r

�z Y sF

r s

1

M ⌘

·r

�z Y sF

r s

1

M ⌘

·r

�z Y sF

r s

1

M ⌘

·r

�z Y sF

r s

x

1

M ⌘

·r

�z Y sF

r s

x

1

M ⌘

·r

�z Y sF

r s

x

1

M ⌘

·r

�z Y sF

r s

x

apr (x, M) = {0, r � s}

1

Figure 2: Application rank of variable x in term M ≡ (λz.x) ·r (Y sF.x).

Definition 11 We define the set of application priorities of variable in a
term, apr(x,M), by induction on the structure of M . Below, r ⊕ s stands
for the priority max(r, s), and r ⊕ S stands for the set {r ⊕ s : s ∈ S}.

• apr(x,M) = ∅ if x is not free in M ;

• apr(x, x) = {0};

• apr(x, λz.N) = apr(x,N) if x 6= z;

• apr(x, Y rF.N) = r ⊕ apr(x,N) if x 6= F ;

• apr(x,N ·r K) = apr(x,N) ∪ (r ⊕ apr(x,K))

Definition 12 A term M is priority-homogeneous if

• for every subterm of the form λx.N , the set apr(x,N) is a singleton
or the empty set.

14

• for every subterm Y rF.N , we have apr(F,N) = {r} or apr(F,N) = ∅.

In the next lemma we show that all priority typable terms are priority-
homogeneous. The opposite direction is not true because of the fixpoint
rule.

Lemma 13 If Γ `M : θ then M is priority-homogeneous and the following
properties hold:

• if x = (r, θx) is in Γ then apr(x,M) = {r} or apr(x,M) = ∅ (in the
latter case, x does not appear in M).

• if x ≤ (r, θx) is in Γ then max(apr(x,M)) ≤ r, or apr(x,M) = ∅.

Proof
The proof is by induction on the size of the typing derivation.

For the base case, Γ, x = (0, θ) ` x : θ, or Γ, x ≤ (r, θ) ` x : θ, the lemma
clearly holds.

For the λ-abstraction, the last rule of the derivation must be

Γ, xr = (r, θ1) ` N : θ2

Γ ` λxr.N : (r, θ1)→ θ2

By induction hypothesis N is R-homogeneous, and apr(x,N) = {r} or ∅.
This shows that λx.N is R-homogeneous. The statement about Γ follows
form the induction hypothesis.

For the fixpoint, the last rule is

Γ, F = (r, θ) ` N : θ

Γ,∆ ` Y rF.N : θ

The argument is the same as in the case of λ-abstraction since all assertions
in Γ have ranks ≥ r, and no variable from ∆ is free in N .

For the application, the last rule is of the form

Γ `M : (r, θ1)→ θ2 Γ�r` N : θ1

Γ `M ·r N : θ2

By induction hypothesis, the terms M and N are R-homogeneous, and apr’s
of free variables are given by Γ and Γ �r respectively. We need to verify
the condition on free variables for M ·r N . If x = (i, θx) is in Γ then by
induction hypothesis apr(x,M) = {i} or apr(x,M) = ∅. If i < r then x
does not appear in Γ�r, so x is not free in N , and we are done. If i > r
then x = (i, θx) appears in Γ�r so apr(x,N) is {i} or ∅. In consequence,
apr(x,M ·r N) is {i} or ∅. If i = r then x ≤ (r, θx) appears in Γ�r, so
maximum of apr(x,N) is ≤ r and apr(x,M ·rN) is {r} or ∅. The reasoning
for x ≤ (i, θx) is similar. �

15

Since every priority typable term is priority homogeneous, we can also
put a priority next to λx the same way as we do with the fixpoint Y rF .
We could also remove r superscript from Y . Yet we prefer the present,
slightly asymmetric, syntax since we will need priorities for Y to define the
semantics, but priorities on λ will not be useful.

Example: Not all priority-homogeneous terms are priority typable. The
term Y rF.x ·r F is priority-homogeneous. This term would be priority-
typable if there were no restriction on Γ in the fixpoint rule, but it is not
typable with this restriction. The unfolding of this fixpoint term is x ·r
(Y rF.x ·r F). It is not priority-homogeneous. In this term the application
priority of the first occurrence of x is 0 while the second occurrence has
application priority r.

Visibly parity automata, and their recognizing power

In Σpr every constant b ∈ Σ has its priority pr(b). It makes sense to con-
sider parity automata whose priority function depends on letters and not on
states.

A visibly parity automaton is

A = 〈Q,Σpr , {δb}b∈Σpr , pr : Σpr → {0, . . . , p}〉

where pr is the priority function coming with Σpr . The notion of accepting
a tree from a state is the same as before for parity automata, but pr is used
instead of Ω. This means that the priority depends on a letter read and not
on the current state.

Of course, visibly parity automata are weaker than parity automata. For
example, they cannot express a property “there is a path on which b appears
infinitely often”. Visibly parity automata look rather trivial from the point
of view of automata theory. Yet, they are sufficient for model-checking of
transition systems, via the translation we explain below. They also offer a
potential advantage because elimination of alternation and Boolean opera-
tions are much easier for visibly parity automata than for parity automata.

We argue that in the context of recognizing Böhm trees of terms, visibly
parity automata are sufficiently expressive. Indeed, once a maximal priority
p is fixed, there is an operation on trees and automata such that expp(t) is
accepted by expp(A) iff t is accepted by A (cf. Figure 3). Moreover, this
operation is easy to implement on terms.

For a fixed rank p, we define the expansion operation expp on alphabets,
trees, terms, and automata. The symbols in expp(Σ) will be indexed by
priorities, and we will add a new symbol “or” of arity p+ 1:

expp(Σ) = {br : b ∈ Σ, r = 0, . . . , p} ∪ {or} .

The priority of or is 0, and that of br is r: so pr(or) = 0, and pr(br) = r.

16

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

or

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

2

a t1 t2

a0 ap t01 t02

. . .

or

7!

2

Y rF
·s
b

1

Y rF
·s
b b0 bp

1

Y rF
·s
b b0 bp

1

Figure 3: The tree expansion operation, expp(t).

The expansion operation on trees, shown in Figure 3, replaces every node
labeled b by a subtree, copying the subtrees of the node:

expp(b(t1, . . . , tar(b))) = or(b0(t′1, . . . , t
′
ar(b)), . . . , b

p(t′1, . . . , t
′
ar(b)))

where t′i = expp(ti), for i = 1, . . . , ar(b).
There is the corresponding operation on terms. The term expp(M) is

obtained from M by replacing every constant b by

λx1, . . . , xar(b). or(b
0x1 . . . xar(b)) . . . (b

px1 . . . xar(b)) .

We have that for every λY -term BT (expp(M)) = expp(BT (M)).
The expansion operation on automata modifies the transition function,

and the priorities. Given A = 〈Q,Σ, {δb}b∈Σ,Ω : Q→ {0, . . . , p}〉 we define

expp(A) = 〈Q, expp(Σ), {δ′b}b∈expp(Σ), pr : expp(Σ)→ {0, . . . , p}〉

where the priority function pr is the one of expp(Σ). The transition function
is:

δ′(q, br) = δ(q, b) if Ω(q) = r

δ′(q, br) = ∅ if Ω(q) 6= r

δ′(q, or) = {(∅, . . . , {q}, . . . , ∅)} {q} is on Ω(q)’th position

Proposition 14 Fix a maximal priority p. For every parity automaton A
over an alphabet Σ using only priorities up to p, the visibly parity automaton
expp(A) over the priority alphabet expp(Σ) is such that for every closed λY -
term M of type o we have:

BT (M) is accepted by A from q iff

BT (expp(M)) is accepted by expp(A) from q.

The above fact says that modulo expp translation, visibly parity au-
tomata are equivalent to parity automata.

17

4 Recognizability by automata and models

Our main result, Theorem 16, is that visibly parity automata correspond to
finitary powerset models in exactly the same way that automata with trivial
acceptance conditions correspond to models with GFP-semantics.

Recall the correspondence between automata and models from Defini-
tions 4 and 5. We can extend it to visibly parity automata. Let us fix an
alphabet Σpr of constants with priorities. From a visibly parity automaton
A we construct a model DA as before since the model does not depend on
the acceptance condition. From a model D we construct an automaton AD
also as before, but now we take the parity condition given by Σpr . (Recall
up(A), as in Definition 2, accepts the same trees as A.)

Fact 15 Let Σpr be an alphabet with priorities, and Σ the same alphabet
with priorities erased. For every visibly parity automaton A over Σpr , and
every finitary powerset model D over Σ:

ADA is up(A), and DAD is D.

The main result of the paper states that for λY -calculus with priorities
the recognizing powers of finitary powerset models, and visibly parity au-
tomata are the same. Because of the above fact, an analogous formulation
but starting from the model is also true.

Theorem 16 Let Σpr be an alphabet with priorities. Let A be visibly parity
automaton over Σpr , and let DA the corresponding powerset model. For
every closed parity typable term M of type o:

[[M]]D
A

= {q : A accepts BT (M) from q} .
Remark: Recall that our parity automata are ⊥-blind (cf. page 6).

This seems like a strange restriction, but in the light of Theorem 16 this is
a property of the semantics of terms. One may wonder what makes it that
⊥ is always accepted, and not always rejected. This can be traced to the
axiom Γ, x = (0, θ) ` x : θ of priority types. This axiom makes 0 the neutral
priority. If we started priorities from 1, and adopted the same axiom but
with 1, then ⊥ would be always rejected.

To prove the theorem we need to make a link between the semantics of the
λ-calculus with priorities and the acceptance of Böhm trees by visibly parity
automata. For this we need to understand how a Böhm tree is constructed.
We adapt the method from [9] based on Krivine machines. Below we define
the a game K(M,DA, q) so that we have the following proposition.

Proposition 17 Fix a priority alphabet Σpr . Consider a visibly parity
automaton A over Σpr , and the associated model DA. For every closed
priority typable term M of type o over Σpr , and every state q of A, we have:

A accepts BT (M) from q iff Eve wins in K(M,DA, q) .

18

With this proposition at hand, to prove Theorem 16 it remains to make
a link between winning in K(M,D, q) and the semantics of M in D. This is
the main technical result of this paper.

Theorem 18 Consider an alphabet with priorities Σpr and the alphabet Σ
obtained by erasing priorities from Σpr . Take a finitary powerset model D
over Σ and the base set P(Q). For every q ∈ Q and every closed priority
typed term M of type o over Σpr :

q ∈ [[M]]D iff Eve wins in K(M,D, q) .

Theorem 16 follows from the above theorem and Proposition 17, when
taking the model DA.

In the remaining of this section we will describe the game K(M,D, q).
It will be clear from the description that Proposition 17 holds. The proof of
Theorem 18 is presented in the next section.

Game K(M,D, q)
The intuition behind K(M,DA, q) is presented in Figure 4. A configuration
of a game is of a form q ≤ (N, ρ, S) where q is a state of A, and (N, ρ, S) is a
configuration of the Krivine machine. In the game, first a head normal-form
of a term is computed (if it exists) using the rules of the Krivine machine;
this is symbolized by a dashed line in the figure. At that moment a player,
called Eve, chooses a transition of the automaton on b, and another player,
called Adam, chooses on state and direction in exactly the same way as in
the definition of acceptance of a tree by an automaton. This leads to a new
configuration, say q′ ≤ (K2, ρ2, ε) in Figure 4, and the process repeats.

(;, {q0, q00}) (C1, C2)

(;, {q0, q00}) 2 �(b, q)

node v: q (N ·r K, ⇢, S)

q (N, ⇢, (v,K, ⇢)S)

q (b, ⇢, C1C2)

C2 = (v2, K2, ⇢2)

q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

pr (b)

v2v2

. . .

pr (b)

(;, {q000}) (C1, C2)

(;, {q000}) 2 �(b, q)

q000 (K2, ⇢2, ")

v2

Figure 4: Game K(M,D, q0). Eve chooses in rounded boxes, and Adam in
rectangular boxes.

19

We present the game in detail. For the rest of this section we fix a
priority typable closed term M of type o, a finitary powerset model D over
the base set P(Q), and an element q0 ∈ Q.

First, we will need some terminology and notation related to Krivine
machines. A Krivine machine works with environments and closures. The
definition of these two concepts is mutually recursive. Environments, de-
noted ρ, are functions from variables to closures. Closures, denoted C, are
triples (v,N, ρ), where N is a term, ρ is an environment, and v is a node
of K(M,D, q0) we will construct. Having v in the closure is not standard;
we use it to track where the closure was created. As we will see in the rules
below, a node v labeled by q ≤ (N ·r K, ρ, S) will have a unique successor
labeled q ≤ (N, ρ, (v,K, ρ) · S) where the closure (v,K, ρ) is created. We
write pr(v) to denote r, namely the priority associated to the application in
v. A closure can be also created when v is labeled by q ≤ (Y rF.N, ρ, S) and
we write pr(v) to denote r in the superscript of Y . We will use pr(v) to state
the main invariant of the tree K(M,D, q0) with respect to priorities. We
say that v is the node of the closure C = (v,K, ρ) and pr(v) is its priority.
It will be handy to write v(C) for v, and pr(C) for pr(v).

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

• q (�x.N, ⇢, C · S) �! q (N, ⇢[C/x], S)

• q (b, ⇢, C1 . . . Car (b))
pr (b)�! (d1, . . . , dar (b)) (C1, . . . , Car (b)),

for (d1, . . . , dar (b)) such that q 2 [[b]]D(d1, . . . , dar (b)).

• (d1, . . . , dar (b)) (C1, . . . , Car (b))
vi�! qi (Ki, ⇢i, ")

for qi 2 di, Ci = (vi, Ki, ⇢i), and i 2 {1, . . . ,ar (b)}.

• q (N ·r K, ⇢, S) �! q (N, ⇢, (v, K, ⇢)S)
v is the node of q (N ·r K, ⇢, S).

• q (Y rF.N, ⇢, S) �! q (N, ⇢[(v, Y rF.N, ⇢)/F], S);
v is the node of q (Y rF.N, ⇢, S).

• q (x, ⇢, S)
v�! q (Kv, ⇢v, S) where ⇢(x) = (v, Kv, ⇢v).

4

Figure 5: Rules of constructing K(M,D, q0).

Definition 19 The game K(M,D, q0) is played on the tree whose root is
labeled by q0 ≤ (M, ∅, ε); where ∅ is the empty environment, and ε is the
empty stack. The tree is constructed according to the rules presented in
Figure 5: if l is a label of a node v and l

r−→ l ′ then v has a successor v′

20

labeled l ′ and r is the label on the edge from v to v′. A label can be a priority
or a node; there may be also no label. There are two players, Eve and
Adam, who repeatedly choose successors in order to construct an infinite
path. Eve chooses a successor in nodes with configurations of the form
(b, . . .), Adam chooses a successor in nodes with configurations of the form
(d1, . . . , dk) ≤ (C1, . . . , Ck). All other nodes have at most one successor. If
one of the players cannot make a move she looses. Otherwise the result of
a play is an infinite path; Eve wins the play iff the maximal priority seen
infinitely often on the path is even.

Let us go back to Figure 4 to see on an example how the game is con-
structed. In node v, the application rule is used, then the dashed line rep-
resents the use of other rules till the head term becomes a constant. At
that point the constant rule is used, and it is Eve who chooses a transition,
and Adam who chooses a direction and a state. In the example he can only
choose the second direction, as there were no states in the first direction.
A transition where constant rule is used, is labeled by the priority of the
constant. A transition when a closure is used is labeled by a node (the name
of the closure).

5 Proof of Theorem 18

We present the proof of Theorem 18. The proof has three main steps. First,
we prove that a certain invariant holds inK(M,D, d0). This is where priority
types are essential. Next, we show a rather straightforward characterization
of the semantics of λY -terms with priorities in terms of a game SG(M,D).
Finally, we show that the two games are equivalent. This also follows by
simple examination of the rules, thanks to the notion of residual form [9].

5.1 Priority invariant in K(M,D, d0)

The whole mechanism of priority types is set up in order to state and guar-
antee an invariant on the maximal priority between the positions where the
closure was created and where the closure was used. To formulate this prop-
erty we needed to introduce additional parameters v in closures, and on the
labels of transitions.

For a node v and its descendant v′ in K(M,D, d), we denote by pr(v, v′)
the maximal priority appearing on the path from v to v′. Recall that pr(v)
stands for the priority of the closure created at v; this is defined by the
priority of the application symbol or fixpoint symbol of the term in v.

21

Lemma 20 (Priority invariant) Game K(M,D, d0) satisfies the follow-
ing priority invariant:

if the unique incoming transition to v′ is labeled by v then
pr(v, v′) = pr(v).

The priority invariant is illustrated in Figure 6. In node v a closure
is created because of an application. Then the closure is moved to the
environment, because of an abstraction. Later, in v′, the closure v is used:
a computation makes a look up for a value of a variable x that is bound to
the closure created in v. Note that at this moment the environment, the
state, and the stack could have changed. The invariant says that the priority
of the closure determines the maximal priority seen from the creation to a
usage of the closure. Observe that a closure can be used several times.

q ((�x.N) ·r K, ⇢, S) q (�x.N, ⇢, (v, K, ⇢)S) q (N, ⇢[(v, K, ⇢)/x], S)

10

q ((�x.N) ·r K, ⇢, S) q (�x.N, ⇢, (v, K, ⇢)S) q (N, ⇢[(v, K, ⇢)/x], S)

10

q ((�x.N) ·r K, ⇢, S) q (�x.N, ⇢, (v, K, ⇢)S) q (N, ⇢[(v, K, ⇢)/x], S)

10

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

5

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

...

5

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

...

5

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

...

5

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

...

5

max
priority
is r = pr (v)

6

node v:

q (N ·r K, ⇢, S) q (N, ⇢, (v, K, ⇢)S) q (b, ⇢, C1C2)

(;, {q0, q00}) 2 �(b, q)

C2 = (v2, K2, ⇢2)

(;, {q0, q00}) (C1, C2) q0 (K2, ⇢2, ") q00 (K2, ⇢2, ")

q000 (x, ⇢000, S000) ⇢000(x) = (v, K, ⇢)

node v0:

q000 (K, ⇢, S000)

v2 v pr (b)

...

5

Figure 6: Priority invariant in game K(M,D, q0).

The rest of the section is devoted to the proof of Lemma 20.
A configuration represents a term obtained by recursively performing

substitutions given by the environment, and applying it to terms repre-
sented by the closures on the stack. We show that the term associated to a
configuration in K(M) is priority typable.

Definition 21 A term associated to a configuration (N, ρ,C1 . . . Cl) is:

〈N, ρ,C1 . . . Cl〉 =(. . . (〈N, ρ〉 ·pr(C1) 〈C1〉) . . .) ·pr(Cl 〈Cl〉
where 〈N, ρ〉 =N [〈ρ(x1)〉/x1, . . .]

Lemma 22 For every node v of K(M,D, q0), the term associated to the
configuration labeling v is a closed priority typable term of type o.

22

Proof
By induction on the distance of the configuration from the root. The con-
figuration at the root is (M, ∅, ε), so the associated term is just M , and it
has all the required properties. For the remaining of the proof we look at
the rule applied in the node of K(M).

In the case of λ abstraction we have

(λx.N, ρ, CS) −→ (N, ρ[x→ C], S) .

The term associated to the configuration on the left is (〈λx.N, ρ〉 ·r 〈C〉) · · ·
where r = pr(C). The term associated to the configuration on the right is
then of the form 〈N, ρ〉[〈C〉/x] · · · . It is typable by Lemma 10.

The case of a constant b : (r1, o) → · · · → (rk, o) → o. Since term
〈b, ρ, C1 . . . Ck〉 is priority typable, we can conclude that there is a typing
` 〈Ci〉 : o. There is no typing environment since all 〈Ci〉 are closed.

The rule for Y is (Y rF.N, ρ, S) −→ (N, ρ[(v, Y rF.N, ρ)/F], S). The
conclusion follows from Lemma 10

Finally, for the cases of application and variable, the terms associated to
configurations on both sides of the arrow are identical. �

We are almost ready to prove the priority invariant for an usage that
comes after the rule for a constant. We just need an observation that follows
by straightforward induction.

Lemma 23 Let v be a node of K(M,D, q0) and let (N, ρ, S) be its label.
For every closure C on the stack S, we have that pr(v(C), v) = 0.

Invariant for the case of the constant rule is proved by the following
lemma.

Lemma 24 Suppose the label of v′ is qi ≤ (Ki, ρi, ε) and that it has been

created by the rule (S1, . . . , Sar(b)) ≤ (C1, . . . , Car(b))
vi−→ qi ≤ (Ki, ρi, ε). In

this case v′ satisfies the priority invariant.

Proof
By the shape of the rules we know that the sequence of transitions leading
to v′ is:

q ≤ (b, ρ, C1 . . . Car(b))
pr(b)−→

(S1, . . . , Sar(b)) ≤ (C1, . . . , Car(b))
vi−→

qi ≤ (Ki, ρi, ε)

Let us call the three nodes in the sequence v′′′, v′′, and v′ respectively.
By Lemma 23 we have pr(v(Ci), v

′′′) = 0. Hence pr(v, v′) = pr(b). By
typability of 〈b, ρ, C1 . . . Car(b)〉 we have that pr(Ci) = pr(b). But pr(Ci) =
pr(vi), so the lemma is proved. �

23

In the rest of the section we prove the priority invariant for the second
case, i.e., when the incoming

v−→ transition is due to the variable rule. We
need an auxiliary invariant on K(M), and for this we introduce a definition.

Definition 25 We say that a closure (N, ρ) is apr-consistent if for every
variable x free in N we have:

max(apr(x,N)) ≤ pr(ρ(x)), and ρ(x) is apr-consistent.

An extended closure (v,N, ρ) is apr-consistent if (N, ρ) is.

Lemma 26 For every configuration (N, ρ, S) labeling a node in K(M):
(N, ρ) is apr-consistent as well as every closure C appearing in S.

Proof
Once again the proof is by induction on the distance of a node from the root
of K(M).

Consider the abstraction rule (λx.N, ρ, C · S) −→ (N, ρ[C/x], S). From
typability of 〈λx.N, ρ, CS〉 it follows that either apr(x,N) = {pr(C)}, or it
is the empty set. In the later case we are done as x does not appear free
in N . In the former case, we need only to check the condition for x. This
follows from apr(x,N) = {pr(C)}, and the fact that ρ was apr-consistent.

The case of a constant

q ≤ (b, ρ, C1 . . . Car(b))
pr(b)−→

(S1, . . . , Sar(b)) ≤ (C1, . . . , Car(b))
vi−→

qi ≤ (Ki, ρi, ε)

follows directly from the definition.
The case of the fixpoint rule (Y rF.N, ρ, S) −→ (N, ρ[(v, Y rF.N, ρ)/F], S).

For F , we have by typability that either apr(F,N) = {r} or it is the empty
set. In both cases the apr-consistency condition is satisfied. For every other
variable free in N , we observe that max apr in N cannot be bigger than
its max apr in Y rF.N . Finally, newly created closure (v, Y rF.N, ρ) is apr-
consistent since (Y rF.N, ρ) was by induction hypothesis.

The case of application (N ·r K, ρ, S) −→ (N, ρ, (v,K, ρ)S). Closure
(N, ρ) is apr-consistent since (N ·r K, ρ) is. For the same reason closure
(K, ρ) is apr-consistent since max apr of a free variable in K, cannot be
bigger than its max apr in N ·r K.

Finally, we consider the case of a variable (x, ρ, S) −→ (Kx, ρx, S) for
ρ(x) = (vx,Kx, ρX). By induction hypothesis we have that (K, ρx) is con-
sistent, so we are done. �

Instead of proving the priority invariant we will consider stronger state-
ment that we will prove by induction. For this we need a definition.

24

Definition 27 Let r be a priority and let v be a node of K(M,D, q0). We
say that:

• A closure (N, ρ) is r-stable in v if for every variable x free in N : (i)
ρ(x) is 0-stable, and (ii) every priority s ∈ apr(x,N) we have

pr(ρ(x)) = r ⊕ s⊕ pr(v(ρ(x)), v) .

• An extended closure (vN , N, ρ) is 0-stable in v if (N, ρ) is rk(vN)-stable
in v.

• node v is 0-stable if for its label (N, ρ, S): (i) (N, ρ) is 0-stable, and
(ii) every C in S is 0-stable.

We will prove that all nodes of K(M) are 0-stable. But before doing
this let us show how 0-stability implies the priority invariant in case of the
variable rule.

Lemma 28 Suppose v is labeled by (x, ρ, S) and ρ(x) = (vx,Kx, ρx). If v
is 0-stable then pr(vx, v) = pr(vx).

Proof
Observe that apr(x, x) = 0. So 0-stability applied to x gives pr(ρ(x)) =
pr(vx, v) since apr(x, x) = 0. �

The definition of stability is recursive and puts conditions all closures
appearing hereditary in a closure. By this we mean that in a closure (N, ρ)
hereditary appear all closures (Kx, ρx) for ρ(x) = (vx,Kx, ρx) as well as all
closures appearing hereditary in (Kx, ρx). The condition of r-stability is
local to each closure, and does not depend on the place where the closure
appears in a configuration. The following useful observation shows some
structural property of 0-stable configurations.

Lemma 29 If (vN , N, ρ) is 0-stable in some node of K(M,D, q0) then for
every variable x free in N the priority of ρ(x) is at least pr(vN). In con-
sequence, the rank of every closure appearing hereditary in ρ is at least
pr(vN).

Proof
By definition (N, ρ) is pr(vN)-stable so for every x, pr(ρ(x)) ≥ pr(vN) by
the stability property. Then for ρ(x) = (vx,Kx, ρx), we have that (Kx, ρx)
is rk(vx)-stable and rk(vx) = rk(ρ(x)) ≥ rk(vN). �

Now we are ready to prove that every node of K(M,D, q0) is 0-stable.

Lemma 30 Every node of K(M,D, q0) is 0-stable.

25

Proof
We proceed by induction on the distance of a node v from the root. Clearly
the root is stable. We consider rules of constructing K(M,D, q0) one by one.

Consider the abstraction rule (λx.N, ρ, C · S) −→ (N, ρ[C/x], S). We
need to show that (N, ρ[C/x]) is 0-stable in v. By typability, Lemma 22, we
have that apr(x,N) is a singleton or it is empty. In the later case we are
done. In the former case, say apr(x,N) = {r}. Once again by typability,
pr(C) = r. We need to show pr(C) = 0 ⊕ r ⊕ pr(v(ρ(x)), v) But we have
pr(v(ρ(x)), v) = 0 by Lemma 23.

The case of a constant

q ≤ (b, ρ, C1 . . . Car(b))
pr(b)−→

(S1, . . . , Sar(b)) ≤ (C1, . . . , Car(b))
vi−→

qi ≤ (Ki, ρi, ε)

We need to show that (Ki, ρi) is 0-stable. But this is immediate since every
Ci is 0-stable.

The case of fixpoint rule (Y rF.N, ρ, S) −→ (N, ρ[(v, Y rF.N, ρ)/F], S)
applied in a node v. By typability, Lemma 22, either apr(F,N) = {r} or
it is the empty set. In the second case we are done. In the first, we need
to show that (N, ρ[(v, Y rF.N, ρ)/F]) is 0-stable in v′, the successor of v.
For variable F the stability property holds because apr(F,N) = {r}, and
pr(v, v′) = 0. We need to show that (v, Y rF.N, ρ) is 0-stable in v′, that is
that (Y rF.N, ρ) is r stable in v′. We know that it is 0 stable in v, hence
in v′. Moreover, by the definition of apr , for every x free in Y rF.N and
every s ∈ apr(x, Y rF.N) we have s ≥ r. So the stability property holds for
x. Then thanks to Lemma 29, the stability property holds for all closures
hereditary appearing in ρ(x). For the other closures the stability property
holds by induction hypothesis.

The case of application rule (N ·r K, ρ, S) −→ (N, ρ, (v,K, ρ)S) used in
node v, giving the unique successor v′. Clearly (N, ρ) is 0-stable in v′ since
pr(v, v′) = 0, and (N ·rK, ρ) is 0-stable in v. We show that (K, ρ) is r-stable
in v′, and use the fact that (K, ρ) is 0-stable in v. For this it is enough to
observe that pr(ρ(x)) ≥ r for every x free in K. Indeed if s ∈ apr(x,N ·rK)
then s ≥ r, and the stability equation gives us pr(ρ(x)) ≥ s.

Finally, we consider the case of a variable (x, ρ, S) −→ (Kx, ρx, S) for
ρ(x) = (vx,Kx, ρx). As before, we assume that the rule is applied at node
v and the unique successor of v is v′. We know by induction hypothesis
that (Kx, ρx) is rk(vx)-stable in v, hence in v′. We need to show that it
is 0 stable in v′. Take an y free in Kx. The pr(vx)-stability in v says
that pr(ρx(y)) = pr(vx) ⊕ s ⊕ pr(v(ρx(y)), v). For 0-stability in v′ we
need to show that pr(ρx(y)) = s ⊕ pr(v(ρx(y)), v′). For this we show that
pr(vx) ≤ pr(v(ρx(y)), v′). Node v(ρx(y)) is an ancestor of vx, because the

26

closure ρx(y) was there when the closure (vx,Kx, ρx) was created. This gives
pr(v(ρx(y)), v′) ≥ pr(vx, v) since pr is the maximum rank on the path. But
pr(vx, v) = pr(vx) by stability property using the fact that (x, ρ) is 0-stable
and apr(x, x) = {0}.

�
Together Lemmas 24, 28 and 30 imply Lemma 20 saying that the priority

invariant holds in K(M,D, d0).

5.2 A game characterization of the semantics

Recall that we are working with finitary powerset models as in Definition 3.
Instead of taking just any lattice as a base set, we have insisted that the
base set is the powerset lattice P(Q) for some set Q. We will use this in
the game characterization of the semantics presented in this section. The
characterization is a quite direct translation of the semantic clauses into
a game. It could have worked for any lattice model, but the distributiv-
ity property gives a smoother presentation and will allow later for better
complexity arguments.

We will use a notion of a step function that is not completely stan-
dard. A step function of type A1 → · · · → Ak → o is given by ~g =
(g1, . . . , gk) ∈ DA1 × · · · × DAk and q ∈ Q; it is a function ~g ⇀ q such
that (~g ⇀ d)(h1, . . . , hk) = {q} if hi ≥ gi for all i = 1, . . . , k, and (~g ⇀
d)(h1, . . . , hk) = ∅ otherwise. A standard notion of a step function would
allow any d ∈ Do = P(Q) and not just q ∈ Q. In our notion we allow only
atoms of Do as values. It should be clear that every step function in the
standard sense is a supremum of our step functions.

Positions of the game will be of the form q ≤ (N,ϑ,~g) where: q ∈ Q
is a state, N is a term, ϑ is a valuation of free variables in N , and ~g is a
sequence of elements of the model of appropriate types: if the type of N
is A1 → . . . Ak → o, then ~g is a sequence of k-elements of type A1, . . . , Ak
respectively. This way [[N,ϑ]] applied to ~g is an element of Do. The intuitive
meaning of a node q ≤ (N,ϑ,~g) is that q ∈ [[N,ϑ]]~g.

We define a game SG(M,D) for a closed term M of type o, and model
D over the base set P(Q). The rules of the game are presented in Figure 7.
Eve chooses f in fixpoint and application nodes. Next, Adam chooses a
successor in nodes of the form q ≤ (f ; . . .). An infinite play is won by Eve
iff the smallest priority seen infinitely often on the edges of the path is even.
Actually, a short inspection of the game shows that the size of the term in
the first component never increases. This means that SG(M,D) is actually
a weak parity game, so it would be enough to use two priorities 0 and 1.

Lemma 31 Consider the game SG(M,D). A position q ≤ (N,ϑ,~g) is win-
ning for Eve iff [[N,ϑ]] ≥ ~g⇀q.

27

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g); otherwise Adam wins in this
node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g); otherwise Adam wins in this
node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �! q (N,#[f/F],~g) and
r�! q0

(Y rF.N,#,~h) for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h) for all f and ~h of an appropriate
type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f ·~g) and �! q0 (K,#,~h)
for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �!
q (N,#, f · ~g) and �! q0 (K,#,~h) for all f , ~h of an appropriate type,
and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �! q (N,#, f · ~g) and �! q0
(K,#,~h) for all f , ~h of an appropriate type, and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �!
q (N,#, f · ~g) and �! q0 (K,#,~h) for all f , ~h of an appropriate type,
and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �!
q (N,#, f · ~g) and �! q0 (K,#,~h) for all f , ~h of an appropriate type,
and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

• q (�x.N,#, f · ~g) �! q (N,#[f/x],~g)

• q (b,#,~g) is winning for Eve if q 2 [[b]](~g);

otherwise Adam wins in this node.

• q (Y rF.N,#,~g) �! q (f ;Y rF.N,#,~g) �!
q (N,#[f/F],~g) and

r�! q0 (Y rF.N,#,~h)

for all f and ~h of an appropriate type, and q0 2 f(~h).

• q (N ·r K,#,~g) �! q (f ;N ·r K,#,~g) �!
q (N,#, f · ~g) and �! q0 (K,#,~h) for all f , ~h of an appropriate type,
and q0 2 f(~h).

• q (x,#,~g) is winning for Eve i↵ q 2 #(x)(~g).

3

Figure 7: Rules of the game SG(M,D).

Proof
The main insight is that in SG(M) almost every transition decreases the size
of the term in the first component of a position; not counting intermediate
(f ; . . .) nodes. The only exception is when going to the right in the fixpoint
rule; in this case the size of the term does not change. So on every infinite
path in SG(M) the term in the first component eventually stays the same.
In consequence, every infinite path must have a suffix of the form q ≤
(Y rF.N, ϑ,~g) −→ q ≤ (f1;Y rF.N, ϑ,~g)

r−→ q1 ≤ (Y rF.N, ϑ,~h1) −→ . . . for
some fi, ~hi, and qi ∈ fi(~hi).

With this observation we prove the theorem by induction on the size of
N . For each case we consider both directions of the implication. The cases
for fixpoint will require bit more work.

The case of a variable x. The statement of the theorem reduces to: a
position q ≤ (x, ϑ,~g) is winning for Eve iff {q} ≤ ϑ(x)(~g). That is exactly
the rule of the game.

The case of a constant is direct from the definition.
The case of abstraction λx.N . If a position q ≤ (λx.N, ϑ, f ·~g) is winning

then q ≤ (N,ϑ[f/x], ~g) must be also winning. By induction hypothesis this
means [[N,ϑ[f/x]]] ≥ ~g⇀ q. So [[λx.N, ϑ]] ≥ f ⇀~g⇀q. Since f ⇀~g⇀d is
(f · ~g)⇀q we get the desired [[λx.N, ϑ]] ≥ (f · ~g)⇀q. The reasoning in the
opposite direction is analogous.

The case of application NK. If a position q ≤ (NK,ϑ,~g) is winning then
there is f such that the position q ≤ (f ;NK,ϑ,~g) is winning. This means
that the positions q ≤ (N,ϑ, f · ~g) as well as q′ ≤ (K,ϑ,~h) are winning for

28

all ~h, and q′ ∈ f(~h). By induction assumption [[N,ϑ]] ≥ f ⇀ ~g ⇀ q and
[[K,ϑ]] ≥ ~h⇀ f(~h) for all ~h. The later simply means that [[K,ϑ]] ≥ f . So
[[N,ϑ]][[K,ϑ]] ≥ ~g⇀q which gives the desired [[NK,ϑ]] ≥ ~g⇀q.

If [[NK,ϑ]] ≥ ~g ⇀ q then [[N,ϑ]][[K,ϑ]] ≥ ~g ⇀ q, giving us [[N,ϑ]] ≥
[[K,ϑ]]⇀~g⇀q. By induction hypothesis this shows that d ≤ (N,ϑ, [[K,ϑ]]·~g)
is winning. Thus in order to show that q ≤ (NK,ϑ,~g) is winning we can take
f = [[K,ϑ]]. It remains only to verify that q′ ≤ (K,ϑ,~h) is winning for every
~h, and every q′ ∈ f(~h). But recalling what is f we have [[K,ϑ]](~h) = f(~h)
hence [[K,ϑ]] ≥ ~h ⇀ f(~h), and by the induction hypothesis we get that
q′ ≤ (K,ϑ,~h) is winning.

The case of Y rF.N when r is even. Suppose q ≤ (Y rF.N, ϑ,~g) is winning
for Eve. Examining the rules of the game we get an infinite tree with paths of
the following form q

w·~h ≤ (Y rF.N, ϑ,~h) −→ q
w·~h ≤ (f

w·~h;Y rF.N, ϑ,~h)
r−→

q
w·~h·~hi ≤ (Y rF.N, ϑ,~hi), for q

w·~h·~hi ∈ f
w·~h(~hi). Here subscripts w are se-

quences of ~h. The function f
w·~h is given by the strategy. Branching is at

q
w·~h ≤ (f

w·~h;Y rF.N, ϑ,~h) node that has a successor for every possible ~hi

and q
w·~h·~hi ∈ fw·~h(~hi). The root of the tree is q ≤ (Y rF.N, ϑ,~g) so in order

to have a homogeneous notation we can set ~hε to be ~g, and fε to be the step
function ~g⇀q. We take f̂ to be the supremum of all fw. Observe that since
we are in finite lattices, for every ~h there is w such that f̂(~h) = fw(~h).

The rules of the game tell us that for every w, ~h and q
w·~h ∈ fw(~h)

the position q
w·~h ≤ (N,ϑ[fw/F],~h) is winning. So by induction hypothesis

[[N,ϑ[fw/F]]] ≥ ~h ⇀ fw(~h). Taking w such that fw(~h) = f̂(~h), and using
monotonicity we obtain [[N,ϑ[f̂/F]]] ≥ ~h⇀ f̂(~h). Since ~h is arbitrary, this
shows [[N,ϑ[f̂/F]]] ≥ f̂ . Thus [[Y rF.N, ϑ]] ≥ f̂ because f̂ is a fixpoint and
the semantics is the greatest fixpoint.

We are done since [[Y rF.N, ϑ]](~g) ≥ f̂(~g) ≥ fε(~g) = q; where the last
equation is by the definition of fε.

For the other direction suppose that [[Y rF.N, ϑ]] ≥ ~g⇀q and r is even.
Consider f̂ = [[Y rF.N, ϑ]]. In order to show that q ≤ (Y rF.N, ϑ,~g) is winning
we make Eve choose q ≤ (f̂ ;Y rF.N, ϑ,~g). Then Adam can either choose q ≤
(N,ϑ[f̂/F], ~g), or q′ ≤ (Y rF.N, ϑ,~h) for some ~h, and q′ ∈ f̂(~h). Position q ≤
(N,ϑ[f̂/F], ~g) is winning by the induction hypothesis since [[N,ϑ[f̂/F]] ≥
~g ⇀ q. It remains to show that for every ~h and q′ ∈ f̂(~h), position q′ ≤
(Y rF.N, ϑ,~h) is winning. For this, since r is even, it is enough to show
how Eve can play to stay in these positions or to go to positions that are
already known to be winning. From a position q′ ≤ (Y rF.N, ϑ,~h) Eve
should chose f̂ so the game proceeds to q′ ≤ (f̂ ;Y rF.N, ϑ,~h). Then Adam
can bring the game either to q′ ≤ (N,ϑ[f̂/F],~h) or choose some ~h1 and go
to q′′ ≤ (Y rF.N, ϑ,~h1) for some q′′ ∈ f̂(~h1). Positions of the second type are
of the form we have assumed to be winning. The position of the first type
is winning by the induction hypothesis since [[N,ϑ[f̂/F]]] = f̂ ≥ ~h → f̂(~h).

29

This finishes the proof for this case.
The case of Y rF.N when r is odd. Suppose q ≤ (Y rF.N, ϑ,~g) is win-

ning. As before examining the rules of the game we get a tree of the follow-
ing form q

w·~h ≤ (Y rF.N, ϑ,~h) −→ q
w·~h ≤ (f

w·~h;Y rF.N, ϑ,~h)
r−→ q

w·~h·~hi ≤
(Y rF.N, ϑ,~hi), for q

w·~h·~hi ∈ fw·~h(~hi). The essential difference is that for r-

odd this tree is finite. As before subscripts w are sequences of ~h. The func-
tion f

w·~h is given by the strategy. Branching is at q
w·~h ≤ (f

w·~h;Y rF.N, ϑ,~h)

node that has a successor for every possible ~hi and q
w·~h·~hi ∈ fw·~h(~hi). The

root of the tree is q ≤ (Y rF.N, ϑ,~g) so in order to have a homogeneous
notation we can set ~hε to be ~g, and fε to be the step function ~g⇀d. The
leaves are q

w·~h ≤ (⊥;Y rF.N, ϑ,~h).

We prove [[Y rF.N, ϑ]] ≥ ~h ⇀ fw(~h) for every node of this tree. The
proof is by induction on the height of the node. If it is a leaf q

w·~h ≤
(⊥;Y rF.N, ϑ,~h) then q

w·~h ≤ (N,ϑ[⊥/F],~h) is winning. So by induction hy-

pothesis [[N,ϑ[⊥/F]]] ≥ ~h⇀q
w·~h. Hence also [[Y rF.N, ϑ]] ≥ ~h⇀q

w·~h. For the
induction step consider f

w·~h. By induction hypothesis on the size of terms

we have [[N,ϑ[f
w·~h/F]]] ≥ ~h⇀ f

w·~h(~h). By induction on the tree we have

[[Y rF.N, ϑ,~h]] ≥ ~hi⇀f
w·~h(~hi) for all ~hi. This means that [[Y rF.N, ϑ,~h]] ≥

f
w·~h. Putting this together we obtain [[Y rF.N, ϑ]] ≥ ~h⇀fw(~h).

For the other direction we need to prove that if [[Y rF.N, ϑ]] ≥ ~g⇀q then
q ≤ (Y rF.N, ϑ,~g) is winning. Let f = [[Y rF.N, ϑ]]. Since [[Y rF.N, ϑ]] =
LFPZ.[[N,ϑ[Z/F]]], it is the supremum of approximations f i, where f0 = ⊥
and f i+1 = [[N,ϑ[f i/F]]]. For every ~g, and q such that q ∈ f(~g) there is the
smallest i such that q ∈ f i(~g). We reason by induction on this i and show
that q ≤ (Y rF.N, ϑ,~g) is winning. If i = 0 the statement is immediate.
For the induction step we consider ~g with q ∈ f i+1(~g). From the position
q ≤ (Y rF.N, ϑ,~g) we let Eve to chose f i and move to q ≤ (f i;Y rF.N, ϑ,~g).
Then Adam can either chose q ≤ (N,ϑ[f i/F], ~g) or q′ ≤ (Y rF.N, ϑ,~h) for
some ~h, and q′ ∈ f i(h). The positions of the second kind are winning by
our induction hypothesis. Concerning q ≤ (N,ϑ[f i/F], ~g), we show that
[[N,ϑ[f i/F]]] ≥ ~g ⇀ q and use the induction hypothesis. Indeed, using the
definition of f i we have [[N,ϑ[f i/F]]] = f i+1, and since f i+1(~g) ≥ q we are
done. �

5.3 Equivalence of K(M,D, q0) and SG(M,D).
We prove that the same player wins in the K(M,D, q0) as in SG(M,D).

Suppose Eve has a winning strategy σ in K(M,D, q0). A strategy for
Eve in SG(M,D) should tell her what values f to play in application and
fixpoint rules. We show how to read them from σ.

We define a residual for every closure (v,Kv, ρv) created in K(M,D, q0).
It will be an element of DA where A is the type of Kv. We denote it by

30

Rσ(v). This notation makes use of the fact that v uniquely determines all
other elements of the closure. The definition of Rσ(v) is on the order of the
(simple) type of the closure, namely the order of the type of Kv.

For Kv of type o, we look at all the nodes reachable from v while Eve
plays the strategy σ. We select all those who have an incoming transition
labeled v. Their labels are necessarily of the form q′ ≤ (Kv, ρv, ε), for some
q′. We define Rσ(v) to be the set of all such states q′. Observe that since
Kv is of type o, the stack in the configuration (Kv, ρv, ε) must be empty.

For Kv of type A1 → · · · → Ak → o, we also collect collect all the
nodes reachable from v when Eve plays σ. We select once again those
nodes v′ who have incoming edges labeled v. This time the label of v′

must have the form q′ ≤ (Kv, ρv, Sv′), for some q′ and Sv′ . By typability,
Sv′ is a sequence of closures C1, . . . , Ck of types A1, . . . , Ak, respectively.
By induction Rσ(v(C1)), . . . , Rσ(v(Ck)) are defined. We consider the step
function (Rσ(v(C1)), . . . , Rσ(v(Ck))⇀q′. We define Rσ(v) as the supremum
of all such step functions.

Lemma 32 If Eve wins in K(M,D, q0) then Eve wins in SG(M,D) from
q0 ≤ (M, ∅, ε). Moreover she can win by playing with residuals. Analogously
for Adam.

This lemma completes the proof of Theorem 18. Indeed, if Eve wins
in K(M,D, q0) then she wins from q0 ≤ (M, ∅, ε) in SG(M,D) and so q ∈
[[M, ∅]]D by Lemma 31. Analogously for Adam.

The rest of this section is devoted to the poof of the above lemma. The
proof is split into two arguments, one for Eve and one for Adam.

Lemma 33 If Eve wins in K(M,D, q0) then Eve wins in SG(M,D) from
q0 ≤ (M, ∅, ε). Moreover she can play with residuals.

Proof
We describe how Eve should play in SG(M,D) in order to win. While play-
ing in SG(M,D), Eve will also play in K(M,D, q0) and use the strategy
there. From a position q ≤ (N, ρ, S) in K(M,D, q0) she can read a valu-
ation Rσ(ρ) and a sequence of values Rσ(S). The valuation is defined by
Rσ(ρ)(x) = Rσ(vx) were ρ(x) = (vx,Kx, ρx). Similarly, the i-th element of
Rσ(S) is Rσ(vi), where the i-th element of S is (vi,Ki, ρi).

In order to win in SG(M,D), Eve will also play in K(M,D, q0) and
preserve certain invariant. When a play reaches a node v2 of SG(M,D), in
the other game the corresponding play will reach a node v1 and the following
invariant will hold:

v1 : q ≤ (N, ρ, S) v2 : q ≤ (N,Rσ(ρ), Rσ(S))

31

We now show that indeed Eve can play so that the invariant is preserved,
and win every play. For this we examine the rules of the game SG(M,D)
one by one. The cases are pictured in Figure 8

• For λ-abstraction there is a unique successor. We have the situation
as depicted in Figure 8. Clearly v′1 and v′2 satisfy the invariant.

• For a constant b we have once again refer to Figure 8. Node v1 has
the unique successor v′1 given by the strategy σ. In turn, node v′1 has
a successor vi,qi1 for all i = 1, . . . , ar(b), and all qi ∈ di. Say, Ci =

(vi,Ki, ρi). The transition from v′1 to vi,qi1 implies that qi ∈ Rσ(vi).
Hence di ≤ Rσ(vi) = Rσ(Ci). Since q ∈ [[b]](d1, . . . , dar(b)) then also
q ∈ [[b]](Rσ(C1), . . . , Rσ(Car(b))) by monotonicity. So, Eve wins in v2.

• For fixpoint the situation the situation is presented in Figure 8. The
strategy for Eve is to chose Rσ(v1). Then Adam can choose vN or
v
q′,~h for some ~h and q′ such that q′ ∈ Rσ(v1)(~h). In the first case the

vertex corresponding to vN is v′1. In the second case we know by the
definition of Rσ(v1) that there is a descendant vq′,S′ of v′1 such that
~h = Rσ(S′). The maximal priority on the path from v1 to vq,S′ is r
by Lemma 20. We choose vq′,S′ as the vertex associated to v

q′,~h; the
invariant is clearly satisfied.

• For application the situation is very similar to that of a fixpoint. As
in the case of the fixpoint, the strategy for Eve is to chose Rσ(v1).
Then Adam can choose vN or v

q′,~h for some ~h and q′ such that q′ ∈
Rσ(v1)(~h). In the first case the vertex corresponding to vN is v′1. In
the second case we know by the definition of Rσ(v1) that there is a
descendant vq′,S′ of v′1 such that Rσ(S′) = ~h. The maximal priority
on the path from v1 to vq′,S′ is r by Lemma 20. We choose vq′,S′ as
the vertex associated to v

q′,~h; the invariant is clearly satisfied.

• For a variable the situation is:

v1 :q ≤ (x, ρ, S) v2 :q ≤ (x,Rσ(ρ), Rσ(S))

↓vK
v′1 :q ≤ (K, ρK , S) win for Eve

where ρ(x) = (vK ,K, ρK). By the definition of Rσ(vK) we have q ∈
Rσ(vK)(Rσ(S)). But then Rσ(ρ)(x) = Rσ(vK) by the invariant, so
indeed the position is winning for Eve.

We have shown how to play in G(M) while preserving the invariant, and
win if a play terminates. For an infinite play in SG(M,D), by the priority

32

The case of λ-abstraction:

v1 :q ≤ (λx.N, ρ, (vK ,K, ρK) · S) v2 :q ≤ (λx.N,Rσ(ρ), Rσ(vK) · S))

↓ ↓
v′1 :q ≤ (N, ρ[(vK ,K, ρK)/x], S) v′2 :q ≤ (N,Rσ(ρ)[Rσ(vK)/x], Rσ(S))

The case of a constant:

v1 :q ≤ (b, ρ, S) v2 :(br, R(ρ), Rσ(S))

↓pr(b)

v′1 :(d1, . . . , dar(b)) ≤ (C1, . . . , Car(b)) win for Eve

↓vi
vi,qi1 :qi ≤ (Ki, ρi, ε)

The case of a fixpoint:

v1 :q ≤ (Y rF.N, ρ, S) v2 :q ≤ (Y rF.N,Rσ(ρ), Rσ(S))

↓ ↓
v′1 :q ≤ (N, ρ[(v1, Y

rF.N, ρ)/F], S) vY :q ≤ (Rσ(v1);Y rF.N,Rσ(ρ), Rσ(S))

↓
vN :q ≤ (N,Rσ(ρ)[Rσ(v1)/F], Rσ(S))

↓r
vF,S′ :q′ ≤ (F, ρ′, S′) ρ′(F) = (v1, Y

rF.N, ρ)

↓ ↓r
v′q′,S′ :q′ ≤ (Y rF.N, ρ, S′) v

q′,~h :q′ ≤ (Y rF.N,Rσ(ρ),~h)

The case of an application:

v1 :q ≤ (N ·r K, ρ, S) v2 :q ≤ (NK,Rσ(ρ), Rσ(S))

↓ ↓
v′1 :q ≤ (N, ρ, (v1,K, ρ)S) v′2 :q ≤ (Rσ(v1);N ·r K,Rσ(ρ), Rσ(S))

↓
vN :q ≤ (N,Rσ(ρ), Rσ(v1)Rσ(S))

↓
vx,S′ :q ≤ (x, ρ′, S′) ρ′(x) = (v1,K, ρ)

↓v1 ↓r
vq′,S′ :q′ ≤ (K, ρ, S′) v

q′,~h :q′ ≤ (K,Rσ(ρ),~h)

Figure 8: Constructing strategy for Eve in SG(M,D).

33

invariant, Lemma 20, the maximal priority appearing infinitely often on this
play is the same as the maximal priority appearing infinitely often on the
corresponding play in K(M,D, q0). Hence, Eve wins also every infinite play.
�

Lemma 34 If Adam wins in K(M,D, q0) then Adam wins in SG(M,D)
from q0 ≤ (M, ∅, ε).

Proof
Suppose Adam has a winning strategy σ in K(M,D, q0). As in the case for
Eve we define the residuals Rσ(v). The definition is the same as before, but
using σ instead of σ.

Similarly to the previous lemma, Adam will use σ in K(M,D, q0) to play
in SG(M,D). As before a position q ≤ (N, ρ, S) in K(M,D, q0) determines
a valuation Rσ(ρ) and a sequence of elements of the model Rσ(S).

In order to describe the invariant Adam will preserve, we need to define
a complementarity predicate, Comp(R1, R2) between residuals of the same
type:

• For R1, R2 ∈ Do, we let Comp(R1, R2) if R1 ∩R2 = ∅.

• For R1, R2 ∈ DA1→···→Ak→o we let Comp(R1, R2) if for all sequences
(R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ DA1 × · · · × DAk satisfying predi-
cates Comp(R1,i, R2,i), for i = 1, . . . , k, we have R1(R1,1, . . . , R1,k) ∩
R2(R2,1, . . . , R2,k) = ∅.

Adam will preserve the following invariant

v1 : (N, ρ, S) v2 : (N,ϑ,~g)

Comp(Rσ(ρ), ϑ) and Comp(Rσ(S), ~g)

where, as before, Rσ(ρ)(x) = Rσ(ρ(x)) and Rσ(v,Kv, ρv) = Rσ(v); and
similarly for S.

We examine possible moves of the game one by one. The possible situ-
ations are depicted in Figure 9. We discuss them below.

• For λ player have no choice and the result clearly satisfies the invariant.

• For a constant b there is a branching for every (d1, . . . , dar(b)) such
that q ∈ [[b]](d1, . . . , dar(b)). We need to show that q 6∈ [[b]](~g). Suppose
to the contrary. Then we can take ~g for (d1, . . . , dar(b)). This gives us
qi ∈ di ∩ Rσ(vi). But di = gi and Comp(gi, R

σ(vi)) by the invariant.
Since gi is of type 0, gi ∩Rσ(vi) = ∅. A contradiction.

• In case of application, to decide on his move Adam verifies if predi-
cate Comp(Rσ(v1), f) holds. If it does then Adam chooses vN with

34

The case of λ-abstraction:

v1 :q ≤ (λx.N, ρ, (vK ,K, ρK) · S) v2 :q ≤ (N,ϑ, d · ~g))

↓ ↓
v′1 :q ≤ (N, ρ[(vK ,K, ρK)/x], S) v′2 :q ≤ (N,ϑ[d/x], ~g)

The case of a constant:

v1 :q ≤ (b, ρ, S) v2 :q ≤ (br, ϑ,~g))

↓pr(b)

v′1 :(d1, . . . , dar(b)) ≤ (C1, . . . , Car(b)) win for Adam

↓vi
vi,qi1 :qi ≤ (Ki, ρi, ε)

The case of an application:

v1 :q ≤ (N ·r K, ρ, S) v2 :q ≤ (N ·r K,ϑ,~g)

↓ ↓
v′1 :q ≤ (N, ρ, (v1,K, ρ)S) v′2 :q ≤ (f ;N ·r K,ϑ,~g)

↓
vN :q ≤ (N,ϑ, f · ~g)

↓
vx,S1 :q′ ≤ (x, ρx, S

′) ρ′(x) = (v1,K, ρ)

↓v1 ↓r
vq′,S1 :q′ ≤ (K, ρ, S′) v

q′,~h2
:q′ ≤ (K,ϑ,~h2)

The case of a fixpoint:

v1 :q ≤ (Y rF.N, ρ, S) v2 :q ≤ (Y rF.N, ϑ,~g)

↓ ↓
v′1 :q ≤ (N, ρ[(v1, Y

rF.N, ρ)/F], S) vY :q ≤ (f : Y rF.N, ϑ,~g)

↓ ↓
vN :q ≤ (N,ϑ[f/F], ~g)

↓r
vF,S′ :q′ ≤ (F, ρ′, S′) ρ′(F) = (v1, Y

rF.N, ρ)

↓ ↓r
vq′,S1 :q′ ≤ (Y rF.N, ρ, S1) v

q′,~h2
:q′ ≤ (K,ϑ,~h2)

Figure 9: Constructing strategy for Adam in SG(M,D).

35

v′1 as the associated vertex, and the invariant is satisfied. If predi-

cate Comp(Rσ(v1), f) does not hold then there are ~h1,~h2 such that
Comp(~h1,~h2) and q′ ∈ Rσ(v1)(~h1) = f(~h2), for some q′. So there is
node v

q′,~h2
by the definition of SG(M,D). By definition of Rσ(v1),

there is a descendant vq′,S1 of v′1 labeled (K, ρ, S1) with Rσ(S1) = ~h1.
Thus we can take vq′,S1 as the vertex associated to v

q′,~h2
. The maximal

priority on the path from v1 to vq′,S1 is r by Lemma 20.

• For fixpoint, to decide on his move Adam verifies if Comp(Rσ(v1), f)
holds. If it does then Adam chooses vN with v′1 as the associated ver-
tex, and the invariant is satisfied. If Comp(Rσ(v1), f) does not hold
then there are ~h1,~h2 such that Comp(~h1,~h2) and q′ ∈ Rσ(v1)(~h1) ∩
f(~h2) for some q′. So there is node v

q′,~h2
by the definition of SG(M,D).

By definition of Rσ(v1), there is a descendant vq′,S1 of v′1 labeled

(Y rF.N, ρ, S1) with Rσ(S1) = ~h1. Thus we can take vq′,S1 as the
vertex associated to v

q′,~h2
.

• Variable

v1 :q ≤ (x, ρ, S) v2 :q ≤ (x, ϑ,~g)

v′1 :q ≤ (K, ρK , S) win for Adam

where ρ(x) = (vK ,K, ρK). By the definition of Rσ(vk) we have q ∈
Rσ(vk)(R

σ(S)). The invariant tells us that Comp(Rσ(ρ)(x), ϑ) and
Comp(Rσ(S), ~g) hold. By the definition of Comp predicate, since q ∈
Rσ(ρ(x))(Rσ(S)) then q 6∈ ϑ(x)(~g). So the position is winning for
Adam.

We have shown how Adam should play in SG(M,D) to preserve the invari-
ant. This guarantees that whenever the play is finite, Adam wins. For an
infinite play in SG(M,D), by the priority invariant, Lemma 20, the maximal
priority appearing infinitely often on this play is the same as the maximal
priority appearing infinitely often on the corresponding play in K(M,D, q0).
Hence, Adam wins also every infinite play. �

6 Expressiveness of the λY -calculus with priorities

In this section we show that λY -calculus with priorities is sufficiently ex-
pressive: for every assignment of priorities to constants and for every λY -
term there is an equivalent λY -term with priorities. By equivalent we mean
that the two terms generate the same Böhm trees. The construction of the

36

λY -term with priorities is effective. The presented construction gives an ex-
ponentially bigger term, but by sharing common subterms one can obtain a
translation with only a quadratic blowup. Anyway the blow-up in the term
size is not the main factor in our complexity considerations.

The translation presented below was proposed by Melliès [11,17]. Here, it
is extended to a fixpoint operator. The other translations in the higher-order
model checking literature, [15, 27, 28] or even before [29], are bit different.
They make a “product” of a term and a finite automaton/model; roughly
they work on a normal form without first calculating one. For example, they
can be used for so called global model checking problem, or to produce an
image under a tree transducer [27]. Melliès construction handles priorities
priorities between a binding and a use of a variable.

Fix an alphabet with priorities, Σpr . This means that every constant b
in Σpr has its arity ar(b) and its priority pr(b). The two determine a priority
type θb of b; (cf. page 10). By forgetting priorities we get a normal alphabet
Σ, where every constant has a simple type Ab obtained by erasing priorities
from θb. Let p be the largest priority of a constant in Σpr . Consider an
operation transforming simple types into types with priorities:

o+ = o (A→ B)+ = (p,A+)→ · · · → (0, A+)→ B+

We describe a matching operation on terms. It uses variables with super-
scripts that correspond to priorities. So for every variable x in the original
term, we have x0, . . . , xp in the translated term.

The translation presented in Figure 10 uses some notation. For a term
N with variables with superscripts, and a rank i we define N�r to be a term
obtained from N by replacing every free variable xi in N by xi⊕r; recall
that ⊕ denotes maximum operation. We will also need a variant of this
operation, N�r,F , where �r is applied to all variables but F . For example
in (ax0F 0)�r,F is axrF 0. Observe that N�0 is just N but sometimes we will
still use �0 for consistency.

The translation for a variable just selects variable with priority 0. The
translation for a constant is a λ-term that multiplies the arity of the constant
by p+ 1, and then selects only components corresponding to the priority of
the constant. The translation for the abstraction replicates the abstraction
(p+1)-times; intuitively xi corresponds to appearances of x with application
priority i (cf. Definition 11). The translation of application duplicates the
argument (p + 1)-times, and uses an application of a different priority for
each of the arguments. The translation for the fixpoint is by far the most
complicated. It uses an auxiliary translation ((Y F.N))i.

Remark: It would be tempting to translate Y F.N to

Y kF k.(. . . (Y 1F 1.(Y 0F 0.pa(N))�1)�2) · · ·)�k
Unfortunately, the result may be not priority typable. This translation
would be typable using the fixpoint rule without the side condition. As we

37

pa(x) = x0

pa(b) = �x
p
1 . . . x0

1 . . .�x
p
ar (b)

. . . x0
ar (b).

(. . . (b ·r xr
1) · · ·) ·r xr

ar (b) where r = pr (b)

pa(�x.N) = �xp . . .�x0.pa(N)

pa(MN) = (· · · (pa(M) ·p pa(N)�p) ·p�1 pa(N)�p�1) · · · ·0 pa(N)�0

pa(Y F.N) = ((Y F.N))0 where

((Y F.N))p = Y pFp . . . Y 0F 0.pa(N)�p,F

((Y F.N))p�1 = Y p�1Fp�1 . . . Y 0F 0. pa(N)�(p�1),F [((Y F.N))p/Fp]
...

((Y F.N))0 = Y 0F 0.pa(N)�0,F [((Y F.N))1/F 1 . . . ((Y F.N))p/Fp]

1

Figure 10: Translation to priority typable terms.

have seen in the example on page 16, without the side condition the rule
does not ensure that terms are priority homogeneous which is crucial for our
constructions.

The correctness of the translation is stated in the next theorem. In the
proof it is very handy to use the equivalence between models and automata
with trivial acceptance conditions, Proposition 7.

Theorem 35 For every closed term M of type o of λY -calculus, term pa(M)
is priority typable, and BT (pa(M)) = BT (M).

The rest of the section is devoted to the proof of this theorem. The next
lemma takes care of the first part of the theorem.

Lemma 36 If Γ `M : A in simple types then Γ+ ` pa(M) : A+ in priority
types.

Proof
We will do a proof by induction on the derivation in simple types, but we
will need a more general statement. For this we need to generalize �r and
�r operations

Let lift : Vars → {−1, 0, . . . , d} be a function assigning a rank to every
variable. We define Γ �lift to be an priority typing environment obtained
from Γ by

• changing all assertions x = (r, θ) where r = lift(x) to x ≤ (r, θ); and

• removing assertions x = (i, θ) or x ≤ (i, θ) with i < lift(x).

In a similar way, we define M�lift to be a term obtained from M by replacing
every free variable xi by xi⊕lift(x).

38

Observe that when lift(x) = r for every variable x then Γ�lift is Γ�r and
M�lift is M�r. When lift assigns −1 to all variables then Γ�lift is just Γ, and
M�lift is just M . Even when lift assigns either −1 or 0 to every variable, we
have M�lift= M , but not M�r= M .

We will often use commutation property of the two operations

Γ�lift�r= Γ�r�lift and M�lift�r= M�r�lift
The operations commute since the two are just a bit complicated way of
applying max operation.

The statement we will prove is:

For every function lift , if Γ ` M : A is typable in simple types
then (Γ+)�lift` pa(M)�lift : A+ is priority typable.

The proof is by induction on the size of the typing judgment Γ `M : A.
The first base case is an axiom Γ, x : A ` M : A. Let r = lift(x). We

have two cases. First suppose that r ≥ 0. We have that xr ≤ (r,A+) is in
(Γ+)�lift ; and pa(x0)�lift is xr. So we can use an axiom from priority types.
If r = −1 then we have x0 = (0, A+) in (Γ+)�lift and pa(x0)�lift is x0. So
once again we can use an axiom from priority types.

Another base case is a constant Γ ` b : o→ · · · → o→ o. The translation
pa(b) does not have free variables, so pa(b)�lift is just pa(b). It can be checked
that ` pa(b) : (o→ · · · → o→ o)+ in priority types.

If the typing derivation ends with Γ ` λx.M : A → B, then it must be
preceded by Γ, x : A ` M : B. Consider a function liftx that is iden-
tical to lift except that lift(x) = −1. By induction hypothesis we get
((Γ, x : A)+)�liftx` pa(M)�liftx : A+. By definition (Γ+)�liftx is Γ�lift , x0 =
(0, A+), . . . , xp = (p,A+). Since pa(λx.M)�lift is λxp . . . λx0.pa(M)�liftx , we
get the desired conclusion by applying abstraction rule d times.

If the typing derivation ends with Γ `MN : B then it must be preceded
by Γ `M : A→ B and Γ ` N : A. By induction assumption

(Γ+)�lift` pa(M)�lift : (p,A+)→ · · · → (0, A+)→ B.

Moreover, for every r we have

(Γ+)�lift�r` pa(N)�lift�r: A+. (1)

Taking the later judgment for r = p, and using the application rule we
obtain

(Γ+)�lift` pa(M)�lift ·ppa(N)�lift�p: (p − 1, A+) → · · · → (0, A+) → B.

That is (Γ+)�lift` (pa(M) ·k pa(N)�p)�lift : (p− 1, A+)→ · · · → (0, A+)→ B
thanks to commutation of � operation We can continue like this, taking
judgment (1) for r = p− 1, . . . , 0 and using application rule, till we get

(Γ+)�lift` (· · · (pa(M) ·p pa(N)�p) ·p−1 pa(N)�p−1) · · · ·0 pa(N)�0)�lift : B

39

which is the desired (Γ+)�lift` pa(MN)�lift : B.
If the typing derivation ends with the fixpoint Γ ` Y F.M : A then it is

preceded by Γ, F : A `M : A. We use the induction assumption, supposing
at the same time that lift(F) = −1. For arbitrary r = 0, . . . , p this gives us
judgments:

(Γ+) �lift �r, F p = (p,A+), . . . , F 0 = (0, A+) ` pa(M) �lift �r,F : A+

Using the fixpoint rule (r + 1)-times we get

(Γ+)�lift�r, F p = (p,A+), . . . , F r+1 = (r + 1, A+) `
Y rF r . . . Y 0F 0.pa(M)�lift�r,F : A+ (2)

Observe that the side condition of the fixpoint rule (cf. Fig 1) prevents us
from applying it further since in (Γ+)�lift�r there may be assertions of rank
r.

For r = p the equation (2) is

(Γ+)�lift�p` Y pF p . . . Y 0F 0.pa(M)�lift�p,F : A+

that is (Γ+)�lift�p` ((Y F.M))p�lift : A+, since�lift and�p,F commute.
Next, we take equation (2) for r = p− 1 we get

(Γ+) �lift �p−1, F
p = (p,A+) ` Y p−1F p−1 . . . Y 0F 0.pa(M) �lift �r,F : A+

Using Lemma 9 we get

(Γ+)�lift�p−1,`
Y p−1F p−1 . . . Y 0F 0.pa(M)�lift�p−1,F [((Y F.M))p�lift /F p] : A+

Which is (Γ+)�lift�p−1,` ((Y F.M))p−1�lift
Continuing this way we get (Γ+)�lift ,` ((Y F.M))0�lift that is the desired

conclusion. �
To complete the proof of Theorem 35 it remains to show that M and

pa(M) generate the same trees: BT (pa(M)) = BT (M).
We claim that if two Σ-trees cannot be distinguished by an automaton

with a trivial acceptance conditions then they are the same. This holds even
for ⊥-blind automata. In consequence, by Proposition 7, two terms have the
same Böhm trees iff they have the same value in all finitary lattice models
under GFP-interpretation.

Let N be pa(N) with priority information removed (superscripts on
application and fixpoint operators, but not over variables). By definition
BT (pa(N)) is BT (N). Observe that when N uses a variable x, then N uses
variables x0, . . . , xp. Given a valuation ϑ for N we can define a valuation ϑ
for N by ϑ(xi) = ϑ(x), for i = 0, . . . , p. By induction on the size of N , we

show that for every finitary lattice model D: [[N,ϑ]]DGFP = [[N,ϑ]]
D
GFP. For a

closed term M this gives the desired conclusion.

40

7 Higher-order model-checking through powerset
models

We examine how we can use the link between automata and models to do
higher-order model-checking. Given λY -term M and parity automaton A,
we want to decide if BT (M) is accepted by A from q.

We show that there is no overhead in reducing the higher-order model-
checking to evaluation in models. At the same time, the examples we give
here show that evaluation in models should not be done naively, by just
taking the semantic clauses.

7.1 Model-checking λY -calculus

Let us first look at the case when we have a prioritized alphabet Σpr , a
priority typed term M of type o, and a visibly parity automaton A, both
over Σpr . In this case we can construct a model DA as in Definition 4.
Theorem 16 tells us that [[M]]D

A
is the set of states q from which A accepts

BT (M). So the model-checking problem reduces to calculating the value of
a term in the finitary powerset model constructed from the automaton.

The model-checking problem for λY -calculus, can be reduced to that for
λY -calculus with priorities thanks to Proposition 14. Suppose we are given
an alphabet Σ of typed constants, a λY -term M , and a parity automaton A;
both over the alphabet Σ. For pr the priority function of A, we consider the
maximal priority p, and construct a priority alphabet expp(Σ) (cf. page 16).
Both expp(M) and expp(A) are over the alphabet expp(Σ), and expp(A)
is a visibly parity automaton. By Proposition 14, BT (M) is accepted by
A from q, iff BT (expp(M)) is accepted by expp(A) from q. Finally, we
can use Theorem 35 to obtain pa(expp(M)), a priority typable term with
the same Böhm tree as expp(M). So the model checking problem reduces
to checking if the Böhm tree of pa(expp(M)) is accepted by expp(A). By
Theorem 16, this in turn can be done by evaluating pa(expp(M))) in the
model constructed from expp(A).

We claim that the complexity of this approach is not worse than that
of other approaches to the model checking problem. To carry out the com-
plexity analysis we need to name some parameters of the problem. We have
a fixed alphabet of constants with priorities, Σpr . We use p for the maxi-
mal priority in Σpr . We use |M | for the size of the term, and |Q| for the
number of states in A. Let n > 0 be the maximal order of the type of a
subterm of M ; Let nfix ≤ n be the maximal order of a fixpoint subterm
of M . We start counting the order from 0, namely: order(o) = 0, and
order(A → B) = max(order(A) + 1, order(B)). Finally, we use K for the
maximal arity of a subterm of M ; where the arity of a term is the sum of
the number of its free variables and the number of its arguments. Observe
that together n and K give a bound on the shape of types of subterms of

41

M : they need to have order ≤ n and be hereditary of arity ≤ K. By this
we mean that they must have a form A1 → · · · → Ak → o with k ≤ K and
all Ai types of order ≤ (n− 1) and hereditary of arity K.

Before calculating the complexity, let us remark that the translation
from the λY -calculus to the λY -calculus with priorities does not induce an
important complexity blowup. The size of expp(A) is the same as that of

A. The size of pa(expp(M)) is O(|M | · p|M |), and its arity is p ·K. Actually,
by encoding common subterms one can get a translation of size quadratic
in p · |M |, but anyway the size of the term is not a dominant factor in the
complexity.

Thus the complexity of the algorithm comes from checking q ∈ [[M]]D
A

.
For this check we could just use the semantic clauses. We can get better
complexity by looking at the game characterization of the semantics from

Lemma 31. To decide q ∈ [[M]]D
A

we need to find out if Eve has a winning
strategy from the position q ≤ (M, ∅, ε) in the game SG(M,DA). The latter
is a weak parity game, so in order to establish the complexity of deciding
the winner we need to know its size.

We calculate the size of SG(M,DA). Positions of the game are of the
form q ≤ (N,ϑ,~g) or q ≤ (f ;N,ϑ,~g); where f is an element of DA, ϑ is a
valuation in DA, and ~g is a sequence of elements of DA. To give a bound
on the size of SG(M,DA) we need to estimate the types of f , as well as
the types of elements in ϑ, and ~g. By examining the rules of the game
SG(M,DA) we can see that the type of f has order ≤ max(n − 1, nfix),
and hereditary arity ≤ K. Similarly for elements in ~g. The type of the
element ϑ(x) is determined by the type of x. Its order is trivially bounded
by n, but when M is closed then it is bounded by max(n − 1, nfix), and it
has hereditary arity ≤ K. Thus the orders of f , ϑ, and ~g are bounded by
nmax = max(n − 1, nfix) ≤ n. Observe that the number of step functions
in DAA for a type A of order n and hereditary arity ≤ K is bounded by
Towern(O(K|Q|)). The number of elements in DAA , is one exponent bigger;
so it is bounded by Towern+1(O(K|Q|)).

These calculations give a bound of |M |Towernmax+1(O(K|Q|)) on the
number of positions in the game SG(M,DA). Since the game is a weak
parity game, it can be solved in linear time wrt. the number of transitions.
So the size of the game gives also the complexity of the algorithm. This is in
some respect better than the known algorithms since p does not appear in the
Tower term. The reason is that we have considered the problem for priority
λY -calculus. For λY -calculus we need to take into account the increase of
arity due to pa(expp(M)) translation. This gives the complexity O(|M | ·
p|M |)Towernmax+1(O(Kp|Q|)) as do other methods for the λY -calculus [9].

42

7.2 Model-checking higher-order recursive schemes

To look at the complexity of model-checking schemes, we need to look at a
translation from schemes to the λY -calculus [30]. Terms obtained by trans-
lating schemes are in a β-normal form (but, of course, not in βδ-normal
form). Moreover, all fixpoint subterms are semi-closed : the only free vari-
ables are those that are later closed with a fixpoint operator. The notion
of arity we have used above becomes a standard one for schemes, since
the right-hand sides of equations do not have free variables. If we use the
translation from [30] followed by the method described above we do not get
the algorithm of same complexity as [8]. The problem is that in op. cit.
the algorithm has the complexity of Towern while our calculation gives the
complexity of Towernmax+1. The complexity is bigger when nfix = n.

This discrepancy in the complexity is actually not that surprising. The
target of our reduction is a weak parity game while the target of the re-
duction in [8] is a parity game. The problem comes from the fact that
in the semantic game, in the case of the fixpoint rule, Eve is required to
play with what she thinks approximates the semantics of the fixpoint. One
exponent can be saved by limiting her choice: we may allow her to play
only with approximations of the fixpoint from the Knaster-Tarski theorem.
Their number is bounded by the height of the lattice, so in our case it is one
exponent smaller than the size of the lattice. Yet, even better is to handle
fixpoints through a parity condition.

We describe a game PSG(M,D) that is a variant of SG(M,D) where
fixpoints are handled through unfolding and a parity condition. We assume
that every fixpoint subterm of M is semi-closed. Recall that terms obtained
from translations of schemes have this property. Without loss of generality
we may assume that every fixpoint variable in M is bound once. So a
variable F bound in M uniquely identifies the fixpoint subterm Y rF.N in
M . We refer to this subterm as term(F,M).

The rules of the game PSG(M,D) are the same as SG(M,D) (cf. Fig-
ure 7) but for those handling the fixpoint. They become:

• q ≤ (Y rF.N, ϑ,~g) −→ q ≤ (N,ϑ,~g)

• q ≤ (F, ϑ,~g)
r−→ q ≤ (N,ϑ,~g) when term(F,M) = Y rF.N

The winning condition in PSG(M,D) is the parity condition given on the
parities written on the edges. We get an analog of Lemma 32.

Lemma 37 If Eve wins in K(M,D, q0) then Eve wins in PSG(M,D) from
q0 ≤ (M, ∅, ε). Moreover she can win by playing with residuals. Analogously
for Adam.

The size of the game PSG(M,DA) is of order of magnitude Towern,
since contrary to SG(M,DA) the sizes of domains for fixpoints do not enter

43

into computation. Thus using PSG(M,DA) we obtain the same worst case
complexity as algorithms working directly for schemes.

In the rest of this subsection we give a proof of Lemma 37. The proof
is almost the same as for the equivalence with SG(M,D) but for handling
fixpoints. The rules of the game K(M,D, q0) are given in Figure 5. For
convenience we list in full the rules for the game PSG(M,D) in Figure 11.

We need some definitions concerning syntactic dependencies between
Y -variables. For two Y -variables F,G of M , we write F <M G for the
transitive closure of the relation “F occurs free in term(G,M)”. We say
that F is hereditary free in a subterm N of M if there is G free in N such
that F <M G.

Lemma 38 The relation F < G is a partial-order. We have F < G iff F is
hereditary free in Y G.NG.

Proof
For the first statement it is sufficient to prove that F < G is antisymmet-
ric. This follows from the observation that F < G implies that the size of
term(F,M) is strictly bigger than that of term(G,M).

For the right-to-left implication of the second statement we take some
H free in Y G.NG, such that F < H. Since we have H < G we get F < G
by transitivity.

For the left-to-right implication we take H such that F < H < G, and
H is the <-smallest possible; or let F = H if there is no such H. This means
that H appears free in Y G.NG. So F is hereditary free in Y G.NG. �

• q ≤ (λx.N, ϑ, f · ~g) −→ q ≤ (N,ϑ[f/x], ~g) .

• q ≤ (N ·r K,ϑ,~g) −→ q ≤ (f ;N ·r K,ϑ,~g) −→ q ≤ (N,ϑ, f · ~g) and
−→ q′ ≤ (K,ϑ,~h) for all f , ~h of an appropriate type, and q′ ∈ f(~h).

• q ≤ (b, ϑ,~g) is winning for Eve if q ∈ [[b]](~g); otherwise Adam wins in
this node.

• q ≤ (x, ϑ,~g) is winning for Eve iff q ∈ ϑ(x)(~g); here x is a λ-variable.

• q ≤ (Y rF.N, ϑ,~g) −→ q ≤ (N,ϑ,~g) .

• q ≤ (F, ϑ,~g)
r−→ q ≤ (N,ϑ,~g) when term(F) = Y rF.N .

Figure 11: Rules of the game PSG(M,D).

We prove that the same player wins in the K(M,D, q0) as in PSG(M,D).
As for the equivalence with SG(M,D), we use the notion of residual pre-
sented on page 30.

44

We describe how Eve should play in PSG(M,D) in order to win. While
playing in PSG(M,D), Eve will also play in K(M,D, q0) and use the strat-
egy there. We use residuals as defined on page 30. From a position q ≤
(N, ρ, S) in K(M,D, q0) Eve can read a valuation Rσ(ρ) and a sequence
of values Rσ(S). The valuation is defined by Rσ(ρ)(x) = Rσ(vx) were
ρ(x) = (vx,Kx, ρx), and x is a λ-variable. This time Y -variables do not
have values since they are never evaluated in PSG, they are just unfolded.
Similarly, the i-th element of Rσ(S) is Rσ(vi), where the i-th element of S
is (vi,Ki, ρi).

In order to win in PSG(M,D), Eve will also play in K(M,D, q0) and
preserve a certain invariant. When a play reaches a node v2 of PSG(M,D),
in the other game the corresponding play will reach a node v1 leading to a
situation:

v1 : q ≤ (N, ρ, S) v2 : q ≤ (N,ϑ,~g)

with the following properties:

I1 ϑ(x) = Rσ(ρ)(x) for every λ-variable x free in N , and ~g = Rσ(S).

I2 If F is Y -variable hereditary free in N and ρ(F) = (vF , Y F.NF , ρF) then
for every node v′ on the path from vF to v, F is hereditary free in the
term component of the label of v′.

To be precise, the term component of a label of a node is K, when a node
label is q ≤ (K, ρ, S).

We now show that indeed Eve can play so that the invariant is preserved,
and win every play. For this we examine the rules of the game PSG(M,D).
The cases are presented in Figure 12. We discuss them one by one.

• For λ-abstraction there is a unique successor in each game. Clearly v′1
and v′2 satisfy the invariant.

• For a constant b we have the following situation: Node v1 has the
unique successor v′1 given by the strategy σ. In turn, node v′1 has a
successor vi,qi1 for every i = 1, . . . , ar(b), and every qi ∈ di. Say, Ci =

(vi,Ki, ρi). The transition from v′1 to vi,qi1 implies that qi ∈ Rσ(vi).
Hence di ≤ Rσ(vi) = Rσ(Ci). Since q ∈ [[b]](d1, . . . , dar(b)) then also
q ∈ [[b]](Rσ(C1), . . . , Rσ(Car(b))) by monotonicity. So, Eve wins in v2,
as (Rσ(C1), . . . , Rσ(Car(b))) = ~g by the invariant.

• For application, the strategy for Eve is to chose Rσ(v1). Then Adam
can choose vN or v

q′,~h for some ~h and q′ such that q′ ∈ Rσ(v1)(~h). In

the first case the vertex corresponding to vN is v′1. In the second case
we know by the definition of Rσ(v1) that there is a descendant vq′,S′

45

The case of λ-abstraction:

v1 :q ≤ (λx.N, ρ, (vK ,K, ρK) · S) v2 :q ≤ (λx.N, ϑ, d · ~g))

↓ ↓
v′1 :q ≤ (N, ρ[(vK ,K, ρK)/x], S) v′2 :q ≤ (N,ϑ[d/x], ~g)

The case of a constant:

v1 :q ≤ (b, ρ, S) v2 :(br, ϑ,~g)

↓pr(b) win for Eve

v′1 :(d1, . . . , dar(b)) ≤ (C1, . . . , Car(b))

↓vi
vi,qi1 :qi ≤ (Ki, ρi, ε)

The case of an application:

v1 :q ≤ (N ·r K, ρ, S) v2 :q ≤ (N ·r K,ϑ,~g)

↓ ↓
v′1 :q ≤ (N, ρ, (v1,K, ρ)S) v′2 :q ≤ (Rσ(v1);N ·r K,ϑ,~g)

↓
vN :q ≤ (N,ϑ,Rσ(v1)~g)

↓
vx,S′ :q′ ≤ (x, ρ′, S′) ρ′(x) = (v1,K, ρ)

↓v1 ↓r
vq′,S′ :q′ ≤ (K, ρ, S′) v

q′,~h :q′ ≤ (K,ϑ,~h)

The case of a fixpoint:

v1 :q ≤ (Y rF.N, ρ, S) v2 :q ≤ (Y rF.N, ϑ,~g)

↓ ↓
v′1 :q ≤ (N, ρ[(v1, Y

rF.N, ρ)/F], S) v′2 :q ≤ (N,ϑ,~g)

Figure 12: Constructing strategy for Eve in PSG(M,D).

46

of v′1 such that Rσ(S′) = ~h. The maximal rank on the path from v1

to vq′,S′ is r by Lemma 20. We choose vq′,S′ as the vertex associated
to v

q′,~h; the invariant is clearly satisfied.

• For λ-variable, the situation is:

v1 :q ≤ (x, ρ, S) v2 :q ≤ (x, ϑ,~g)

↓vK
v′1 :q ≤ (K, ρK , S) win for Eve

where ρ(x) = (vK ,K, ρK). By the definition of Rσ(vK) we have q ∈
Rσ(vK)(Rσ(S)). But Rσ(vK) = Rσ(ρ)(x) = ϑ(x) and Rσ(S) = ~g) by
the invariant, so indeed the position is winning for Eve.

• For fixpoint there is no choice in any of the two games. Clearly v2

and v′2 satisfy the invariant (I1) as it does not talk about Y -variables.
For Y -variables observe that F is the only new Y -variable hereditary
free in N that is not hereditary free in F . For F the invariant clearly
holds. For the other Y -variables the invariant holds by the induction
hypothesis.

• For fixpoint variable the situation is:

v1 :q ≤ (F, ρ, S) v2 :q ≤ (F, ϑ,~g)

↓v ↓r
v′1 :q ≤ (Y rF.N, ρF , S)

v′′1 :q ≤ (N, ρF [(v′1, Y
rF.N, ρF)/F], S) v′′2 :q ≤ (N,ϑ,~g)

where ρ(F) = (v, Y rF.N, ρF) for some v, and term(F) = Y rF.N .
Observe that pr(v) is r since the priority of the fixpoint is r. As we
have assumed that the initial term is semi-closed, N does not have free
λ-variables. So the pair of nodes v′′1 , and v′′2 satisfies the invariant I1.
Concerning I2, the invariant holds for F directly from the definition.
For any other Y -variable G hereditary free in N , we have that it is also
hereditary free in F . This G is hereditary free in all terms on the path
from v to v1, since F is. We claim that ρ(G) = ρF (G). Let vG be the
vertex in ρ(G) and vFG be the vertex in ρF (G). By invariant we know
that vG is the last node before v1 where G was regenerated. Similarly,
vFG is the last node before v where G was regenerated. Since G is
hereditary free between v and v1, it could not be regenerated between
v and v1. So vG = vFG.

We have shown how Eve can play in G(M) while preserving the invariant.
We have also shown that Eve wins if such a play terminates.

47

Let us show that the biggest priority appearing infinitely often on an
infinite play in PSG(M,D), is the same as the one from the corresponding
play in K(M,D, q0). Suppose this priority on a play in PSG(M,D) is r,
and let F be the Y -variable responsible for this priority; in other words we
have: term(F) = Y rF.N , and F regenerated infinitely often on the path.
Because of invariant I2, and the fixpoint variable rule we have that on the
corresponding play in K(M,D, q0) we can find a sequence of vertices:

−→∗ v1 −→∗ v′1
v1−→ v2 −→∗ v′2

v2−→ v3 · · ·

With vi labeled by (Y rF.N, ρi, Si), and v′i labeled by (F, ρi+1, Si+1) with
ρi+1(F) = (vi, Y

rF.N, ρi), for some ρi and Si. Observe that the fact the vi
is the vertex in ρi+1 is the consequence of I2. Another important point is
that pr(vi) = r, so by the priority invariant, Lemma 20, the biggest priority
appearing between vi, and vi+1 is r. This shows that the biggest priority on
this play is also r.

The proof also shows that Eve can win by playing residuals Rσ(v).
The argument for Adam is analogous to that from Lemma 34, with the

same adaptations as we have done above for the case of the fixpoint.

7.3 Model-checking for disjunctive automata

We show how to do model-checking for disjunctive automata in (n − 1)-
Exptime. This result has been proved by Kobayashi and Ong [31]. Tech-
nically, it is a very interesting result because it is difficult to prove without
going into internals of a decision procedure for higher-order model-checking.
In our case we will use the game PSG(M,D) and the fact that in this game
Eve may play only with residuals. It is this later fact that is difficult to
capture on the level of semantics.

A disjunctive automaton is a parity automaton whose transition function
has the property: for every (S1 . . . , Sar(b)) ∈ δb, the union S1 ∪ · · · ∪ Sar(b)

is a singleton. In particular, at most one of S1, . . . , Sar(b) is not empty. The
dual of a disjunctive automaton is a deterministic automaton, potentially
exponentially bigger. Observe that if A is disjunctive then expp(A) is also
disjunctive. In the light of the above discussion, to get (n−1)-Exptime algo-
rithm it is enough to show it for λY -calculus with priorities and disjunctive
visibly parity automata.

Let us look at K(M,DA, q0) when A is a disjunctive visibly parity au-
tomaton. A winning strategy for Eve in this game is a path. Indeed,
branching for Adam appears only at nodes of the form (d1, . . . , dar(b)) ≤
(C1, . . . , Car(b)). Because of disjunctiveness, Adam has no choice there. The
consequence of this is that every closure of type o is used at most once when
Eve is playing her strategy. Indeed, when a v-closure is used in v′ due to the
transition

v−→ (Kv, ρv, ε) then v-closure cannot appear in ρv, and the stack

48

must be empty since Kv is a term of type o. So there cannot be any use of
the v-closure below v′.

By Lemma 37, Eve can win in PSG(M,D) when playing with residuals
coming from a winning strategy σ for Eve in K(M,D, q0). By the preceding
paragraph, for every closure (v,Kv, ρv) with Kv of type o, the residual Rσ(v)
is a singleton or an empty set. So it is an element ofDthin

0 = {{q} :∈ Q}∪{∅}.
By definition of residuals, a residual of a type A1 → · · · → Ak → o is a
set of step functions from Dthin

A1
× · · · × Dthin

Ak
to Dthin

o . Hence the size of

Dthin
A , for a type A of order n, is bounded by Towern(O(K|Q|)), compared

to Towern+1(O(K|Q|)) for DA. So the size of the game PSG(M,D) is of
order of magnitude Towern−1, and it can be solved in time exponential in
the number of priorities.

8 Conclusions

This work pursues a model-based approach to higher-order model-checking.
It proposes an extension of the λY -calculus with priorities and shows that
its semantics is perfectly suited for higher-order model-checking, in a sense
that there is a correspondence between models and visibly parity automata
(Fact 15), such that value in the model coincides with acceptance by the
corresponding automaton (Theorem 16). This gives a partial answer to
the most fundamental question about the model-based approach, namely
is there a simple semantically defined class of models recognizing exactly
properties expressed in monadic second-order logic.

The answer is partial since it concerns only λY -calculus with priori-
ties, and is restricted to ⊥-blind parity automata. Yet, λY -calculus with
priorities is sufficiently expressive, as it generates the same Böhm trees as
λY -calculus. Moreover, Theorem 16 says that ⊥-blindness is unavoidable if
we want to stay with the interpretation with least and greatest fixpoints.

There exist models that can recognize ⊥-insightful properties [12, 15],
but they are substantially more complicated. The easiest way around seems
to simply assume that terms are productive, i.e., their Böhm trees do not
have ⊥. Every term can be transformed to a productive term [15, 32], but
the transformation is algorithmically expensive. Instead, one may simply
add a new constant in front of every fixpoint operator: the resulting term
would be productive, and in its Böhm tree one could see the unfoldings of fix-
points. Observe that already in the propositional mu-calculus guardedness
is a technical issue [33].

From a more general perspective, models have a rich structure, and this
can guide refinement of the syntax to make this structure explicit. De-
velopment of linear logic and differential calculus are flagship examples of
this approach. On a much more modest scale, we have followed the same
methodology here. We have extracted priorities from models to the syntax,

49

capturing the interactions between computation and priorities in a form of
a type system.

Models are modular, and agnostic to syntax. One can extend the syntax
as long as it can be interpreted in the model. They may be useful in the
context of modular model-checking [34]. It would be interesting to extend
the current work to linear constructs investigated recently by Clairambault,
Grellois and Murawski [35]. Observe that the size of domains for linear
types indicates that it could be possible to recover their complexity results
through the model approach.

This work was inspired by the paper of Kobayashi et. al. [19] studying
the relation with model checking of higher-order fixpoint logic (HFL-MC).
The reduction to λY -calculus with priorities gives a reduction of higher-
order model-checking problem to HFL-MC. Except for fixpoints, this is the
same reduction as in [19]. It would be very interesting to find an inverse
reduction that preserves the structure of fixpoints, depends only on the
nesting of fixpoints and not the size of the transition system. A recent
paper of Kobayashi, Tsukada, and Watanabe [36] makes a strong case for
HFL-MC.

References

[1] N. Kobayashi, “Model checking higher-order programs,” J. ACM,
vol. 60, no. 3, p. 20, 2013.

[2] T. Tsukada and N. Kobayashi, “Untyped recursion schemes and infinite
intersection types,” in FOSSACS’10, ser. LNCS, vol. 6014, 2010, pp.
343–357.

[3] A. Murase, T. Terauchi, N. Kobayashi, R. Sato, and H. Unno,
“Temporal verification of higher-order functional programs,” in
POPL’16, 2016, pp. 57–68. [Online]. Available: https://doi.org/10.
1145/2837614.2837667

[4] Y. Nanjo, H. Unno, E. Koskinen, and T. Terauchi, “A fixpoint
logic and dependent effects for temporal property verification,”
in LICS’18, 2018, pp. 759–768. [Online]. Available: https:
//doi.org/10.1145/3209108.3209204

[5] H. Unno, Y. Satake, and T. Terauchi, “Relatively complete refinement
type system for verification of higher-order non-deterministic pro-
grams,” PACMPL, vol. 2, no. POPL, pp. 12:1–12:29, 2018. [Online].
Available: https://doi.org/10.1145/3158100

[6] C.-H. L. Ong, “On model-checking trees generated by higher-order re-
cursion schemes,” in LICS, 2006, pp. 81–90.

50

https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/2837614.2837667
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3209108.3209204
https://doi.org/10.1145/3158100

[7] M. Hague, A. S. Murawski, C. L. Ong, and O. Serre, “Collapsible
pushdown automata and recursion schemes,” ACM Trans. Comput.
Log., vol. 18, no. 3, pp. 25:1–25:42, 2017. [Online]. Available:
https://doi.org/10.1145/3091122

[8] N. Kobayashi and L. Ong, “A type system equivalent to modal mu-
calculus model checking of recursion schemes,” in LICS, 2009, pp. 179–
188.

[9] S. Salvati and I. Walukiewicz, “Krivine machines and higher-order
schemes,” Inf. Comput., vol. 239, pp. 340–355, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.ic.2014.07.012

[10] T. Tsukada and C. L. Ong, “Compositional higher-order model check-
ing via ω-regular games over böhm trees,” in CSL-LICS ’14. ACM,
2014, p. 78.

[11] C. Grellois and P. Melliès, “Finitary semantics of linear logic and
higher-order model-checking,” in MFCS’15, ser. LNCS, vol. 9234,
2015, pp. 256–268. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-48057-1 20

[12] S. Salvati and I. Walukiewicz, “A Model for Behavioural Properties
of Higher-order Programs,” in CSL’15, ser. LIPIcs, vol. 41, 2015,
pp. 229–243. [Online]. Available: http://drops.dagstuhl.de/opus/
volltexte/2015/5417

[13] S. Salvati, “Recognizability in the simply typed lambda-calculus,” in
WoLLIC, ser. LNCS, vol. 5514, 2009, pp. 48–60.

[14] S. Salvati and I. Walukiewicz, “Evaluation is MSOL-compatible,” in
FSTTCS 2013, ser. LIPIcs, vol. 24, 2013, pp. 103–114. [Online].
Available: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.103

[15] ——, “Using models to model-check recursive schemes,” Logical
Methods in Computer Science, vol. 11, no. 2, 2015. [Online]. Available:
http://dx.doi.org/10.2168/LMCS-11(2:7)2015

[16] K. Aehlig, “A finite semantics of simply-typed lambda terms for infinite
runs of automata,” Logical Methods in Computer Science, vol. 3, no. 1,
pp. 1–23, 2007.

[17] P. Melliès, “Higher-order verification,” June, 2014, workshop on Ab-
straction and Verification in Semantics. A part of IHP semester on
Semantics of proofs and certified mathematics (Paris,France).

[18] N. Kobayashi and C.-H. L. Ong, “Complexity of model checking recur-
sion schemes for fragments of the modal mu-calculus,” Logical Methods
in Computer Science, vol. 7, no. 4, 2011.

51

https://doi.org/10.1145/3091122
http://dx.doi.org/10.1016/j.ic.2014.07.012
http://dx.doi.org/10.1007/978-3-662-48057-1_20
http://dx.doi.org/10.1007/978-3-662-48057-1_20
http://drops.dagstuhl.de/opus/volltexte/2015/5417
http://drops.dagstuhl.de/opus/volltexte/2015/5417
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2013.103
http://dx.doi.org/10.2168/LMCS-11(2:7)2015

[19] N. Kobayashi, É. Lozes, and F. Bruse, “On the relationship between
higher-order recursion schemes and higher-order fixpoint logic.” in
POPL’17, 2017, pp. 246–259.

[20] C. Grellois, “Semantics of linear logic and higher-order model-checking.
(sémantique de la logique linéaire et ”model-checking” d’ordre
supérieur),” Ph.D. dissertation, Paris Diderot University, France, 2016.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-01311150

[21] F. Bruse, “Alternating parity krivine automata,” in MFCS, ser. LNCS,
vol. 8634, 2014, pp. 111–122.

[22] P. Melliès, “Higher-order parity automata,” in LICS, 2017, pp. 1–12.

[23] R. Suzuki, K. Fujima, N. Kobayashi, and T. Tsukada, “Streett
automata model checking of higher-order recursion schemes,” in
FSCD’ 2017, ser. LIPIcs, vol. 84, 2017, pp. 32:1–32:18. [Online].
Available: https://doi.org/10.4230/LIPIcs.FSCD.2017.32

[24] M. Hague, R. Meyer, and S. Muskalla, “Domains for higher-order
games,” in MFCS’17, ser. LIPIcs, vol. 83, 2017, pp. 59:1–59:15.
[Online]. Available: https://doi.org/10.4230/LIPIcs.MFCS.2017.59

[25] M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann, “Parity to
safety in polynomial time for pushdown and collapsible pushdown
systems,” in MFCS’18, ser. LIPIcs, vol. 117, 2018, pp. 57:1–57:15.
[Online]. Available: https://doi.org/10.4230/LIPIcs.MFCS.2018.57

[26] R. M. Amadio and P.-L. Curien, Domains and Lambda-Calculi, ser.
Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1998.

[27] N. Kobayashi, K. Matsuda, and A. Shinohara, “Functional programs
as compressed data,” in Workshop on Partial Evaluation and Program
Manipulation, PEPM 2012. ACM, 2012, pp. 121–130. [Online].
Available: http://dl.acm.org/citation.cfm?id=2103746

[28] A. Haddad, “Model checking and functional program transformations,”
in FSTTCS, ser. LIPIcs, vol. 24, 2013, pp. 115–126.

[29] S. van Bakel, “The heart of intersection type assignment: Normalisation
proofs revisited,” Theor. Comput. Sci., vol. 398, no. 1-3, pp. 82–94,
2008. [Online]. Available: https://doi.org/10.1016/j.tcs.2008.01.020

[30] S. Salvati and I. Walukiewicz, “Simply typed fixpoint calculus and
collapsible pushdown automata,” Mathematical Structures in Computer
Science, vol. 26, no. 7, pp. 1304–1350, 2016. [Online]. Available:
https://doi.org/10.1017/S0960129514000590

52

https://tel.archives-ouvertes.fr/tel-01311150
https://doi.org/10.4230/LIPIcs.FSCD.2017.32
https://doi.org/10.4230/LIPIcs.MFCS.2017.59
https://doi.org/10.4230/LIPIcs.MFCS.2018.57
http://dl.acm.org/citation.cfm?id=2103746
https://doi.org/10.1016/j.tcs.2008.01.020
https://doi.org/10.1017/S0960129514000590

[31] N. Kobayashi and C.-H. L. Ong, “Complexity of model checking recur-
sion schemes for fragments of the modal mu-calculus,” Logical Methods
in Computer Science, vol. 7, no. 4, 2011.

[32] A. Haddad, “IO vs OI in higher-order recursion schemes,” in FICS, ser.
EPTCS, vol. 77, 2012, pp. 23–30.

[33] F. Bruse, O. Friedmann, and M. Lange, “On guarded transformation
in the modal µ-calculus,” Logic Journal of the IGPL, vol. 23, no. 2,
pp. 194–216, 2015. [Online]. Available: https://doi.org/10.1093/jigpal/
jzu030

[34] R. Sato and N. Kobayashi, “Modular verification of higher-
order functional programs,” in ESOP’17, ser. LNCS, vol. 10201,
2017, pp. 831–854. [Online]. Available: https://doi.org/10.1007/
978-3-662-54434-1 31

[35] P. Clairambault, C. Grellois, and A. S. Murawski, “Linearity in
higher-order recursion schemes,” PACMPL, vol. 2, no. POPL, pp.
39:1–39:29, 2018. [Online]. Available: https://doi.org/10.1145/3158127

[36] N. Kobayashi, T. Tsukada, and K. Watanabe, “Higher-order
program verification via HFL model checking,” in ESOP’18,
ser. LNCS, vol. 10801, 2018, pp. 711–738. [Online]. Available:
https://doi.org/10.1007/978-3-319-89884-1 25

53

https://doi.org/10.1093/jigpal/jzu030
https://doi.org/10.1093/jigpal/jzu030
https://doi.org/10.1007/978-3-662-54434-1_31
https://doi.org/10.1007/978-3-662-54434-1_31
https://doi.org/10.1145/3158127
https://doi.org/10.1007/978-3-319-89884-1_25

	Introduction
	The Y-calculus and parity automata
	Y-calculus
	Böhm trees of terms
	Alternating parity automata
	GFP-semantics and automata with trivial acceptance conditions

	The Y-calculus with priorities
	Subject reduction and Böhm trees
	Semantics
	Terms with priorities are priority-homogenous

	Recognizability by automata and models
	Game K(M,D,q)

	Proof of Theorem 18
	Priority invariant in K(M,D,d0)
	A game characterization of the semantics
	Game SG(M,D)

	Equivalence of K(M,D,q0) and SG(M,D).

	Expressiveness of the Y-calculus with priorities
	Higher-order model-checking through powerset models
	Model-checking Y-calculus
	Model-checking higher-order recursive schemes
	Game PSG(M,D)

	Model-checking for disjunctive automata

	Conclusions

