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Abstract
Complementation of finite automata on infinite words is not only a fundamental problem in
automata theory, but also serves as a cornerstone for solving numerous decision problems in
mathematical logic, model-checking, program analysis and verification. For Streett complement-
ation, a significant gap exists between the current lower bound 2Ω(n lgnk) and upper bound
2O(nk lgnk), where n is the state size, k is the number of Streett pairs, and k can be as large as 2n.
Determining the complexity of Streett complementation has been an open question since the late
80’s. In this paper we show a complementation construction with upper bound 2O(n lgn+nk lg k)

for k = O(n) and 2O(n2 lgn) for k = ω(n), which matches well the lower bound obtained in [3].
We also obtain a tight upper bound 2O(n lgn) for parity complementation.
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1 Introduction

Automata on infinite words (ω-automata) have wide applications in synthesis and verification
of reactive concurrent systems. Complementation plays a fundamental role in many of these
applications, especially in solving the language containment problem: whether a language
recognized by automaton A is contained by another language represented by automaton
B, which is equivalent to whether the language of A and the complementary language of B
intersect. In automata-theoretic model checking [10, 27], both system behaviors and logical
specifications are represented as formal languages, and model checking by and large amounts
to solving the corresponding language containment problem. As both language intersection
and emptiness test are rather easy, the efficiency of complementation becomes crucial to
practical deployment of model-checking tools. For this reason and many others, determining
the state complexity of the complementation problem has been extensively studied in the
last four decades [26].
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Related Work

ω-automata were invented by Büchi in 1962 as a method of attack on definability and
decision problems for monadic second order logic on arithmetics (S1S) [1]. That type of
ω-automata are nowadays called Büchi automata. The initial Büchi complementation was
not explicitly constructive and required double exponential blow-up [1]. But since then Büchi
complementation has been extensively studied. The upper bound was continuously improved
to 2O(n2) [24], 2O(n lgn) [21], O((6n)n) [11], O((0.97n)n) [6] and finally to O(n2L(n)) where
L(n) ≈ (0.76n)n [23], which matched well the lower bound Ω(L(n)) [28].

Complementation for automata with rich acceptance conditions, such as Rabin automata
and Streett automata, is much more sophisticated. Kupferman and Vardi showed a 2O(nk lgn)

complementation construction for Rabin automata [14], and we showed this construction
is essentially optimal [2]. This leaves Streett complementation the last classical problem
where the gap between the lower and upper bounds is substantial. Besides that, Streett
complementation has an importance of its own. Streett automata share identical algebraic
structures with Büchi automata, except being equipped with richer acceptance conditions. A
Streett acceptance condition comprises a finite list of indexed pairs of sets of states. Each
pair consists of an enabling set and a fulfilling set. A run is accepting if for each pair, if
the run visits states in the enabling set infinitely often, then it also visits states in the
fulfilling set infinitely often. This naturally corresponds to the strong fairness condition
that infinitely many requests are responded infinitely often, a necessary requirement for
meaningful computations [5, 7]. Another advantage of Streett automata is that they are
much more succinct than Büchi automata; it is unavoidable in the worst case to have 2n
state blow-up to translate a Streett automaton with O(n) states and O(n) index pairs to an
equivalent Büchi automaton [25]. An interesting question is: to what extent does the gain
from the succinctness have to be paid back at the time of complementation?

The first construction for Streett complementation was given by Safra and Vardi, and
that construction required 2O((nk)5) state blow-up [25]. Klarlund improved this bound to
2O(nk lgnk) [8]. The same bound was achieved by Safra via determinization [22], by Piterman
with an improved determinization construction [19], and by Kupferman and Vardi [14].
However, so far no construction has been proved to cost less than 2O(nk lgnk) states. The
question of whether Streett complementation can be further improved from 2O(nk lgnk) has
been constantly raised in the recent literature [14, 28, 26]. In this paper we answer this
question affirmatively.

Ranking-based Complementation

A Ranking-based complementation was first proposed by Klarlund [8]. Klarlund’s Büchi
complementation (resp. Streett complementation) relies on quasi co-Büchi measure (resp.
quasi Rabin measure), which is a ranking function on states in a run graph, measuring the
progress of a run toward being accepted. By this complementation scheme, Klarlund gave a
2O(n lgn) Büchi complementation and a 2O(nk lgnk) Streett complementation [8]. Kupferman
and Vardi developed a similar idea into an elegant and comprehensive framework [13, 9],
obtaining complementation constructions for Büchi [11], generalized Büchi [12], Rabin and
Streett [14].

Our Results

Our Streett complementation is obtained by improving Kupferman and Vardi’s construction
in [14]. We show that the larger the Rabin index size k, the higher the correlation between
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114 Tight Upper Bounds for Streett and Parity Complementation

Type Bound Lower Upper
Büchi 2Θ(n lg n) [17] [21]
Generalized Büchi 2Θ(n lg nk) k = O(2n) [28] [14]

Streett 2Θ(n lg n+nk lg k) k = O(n) [3] this
2Θ(n2 lg n) k = ω(n)

Rabin 2Θ(nk lg n) k = O(2n) [2] [14]
Parity 2Θ(n lg n) k = O(n) [17] this

Figure 1 The complementation complexities for ω-automata of common types.

infinite paths in a run graph satisfying a universal Rabin condition (the dual of an existential
Streett condition), and characterize the correlation using two tree structures: ITS (Increasing
Tree of Sets) and TOP (Tree of Ordered Partitions), both with elegant combinatorial proper-
ties. We show that our construction renders a upper bound U(n, k), which is 2O(n lgn+nk lg k)

for k = O(n) and 2O(n2 lgn) for k = ω(n). U(n, k) is a significant improvement from the
previous best bound when k = ω(n). Speaking loosely, we gain succinctness without paying
a dramatically higher price for complementation. U(n, k) also matches the lower bound
L(n, k), which is 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n) [3]. By a similar
technique, we also obtain a 2O(n lgn) upper bound for parity complementation, which is
essentially optimal, as parity automata generalizes Büchi automata, whose complementation
lower bound is 2Ω(n lgn) [17, 15]. This is surprising as the index size k (though small as
k ≤ b(n + 1)/2c) has no appearance in the asymptotical bound. We believe this is of
practical interest as well, because it tells us that parity automata provide a richer acceptance
condition without incurring an asymptotically higher cost on complementation. Combining
the result with the one in [3] and previous findings in the literature, we now have a complete
characterization of complementation complexity for ω-automata of common types. Figure 1
summarizes these results.

Paper Organization

Section 2 introduces basic notations and terminology in automata theory. Section 3 presents
the framework of ranking based complementation; it introduces Büchi complementation [11],
generalized Büchi complementation [12] and Streett complementation [14]. Section 4 presents
our Streett complementation construction and Section 5 proves its complexity. Section 6
establishes a tight upper bound for parity complementation. Section 7 concludes with a
discussion of future work. Due to space limit, all proofs are omitted, but they can be found
in the full version of this paper at arXiv:1102.2960.

2 Preliminaries

Basic Notations

Let N denote the set of natural numbers. We write [i..j] for {k ∈ N | i ≤ k ≤ j}, [i..j)
for [i..j − 1], [n] for [0..n), and [n]even and [n]odd for even numbers and odd numbers in
[n], respectively. For an infinite sequence %, we use %(i) to denote the i-th component for
i ∈ N. For a finite sequence α, we use |α| to denote the length of α, α[i] (i ∈ [1..|α|]) to
denote the object at the i-th position, and α[i..j] (resp. α[i..j)) to denote the subsequence
of α from position i to position j (resp. j − 1). When we compare finite sequences of



Y. Cai and T. Zhang 115

numbers, >m,≥m,=m, <m,≤m mean the corresponding standard lexicographical orderings
up to position m. We reserve n and k as parameters of complementation instances (n for
state size and k for index size), and define µ = min(n, k) and I = [1..k].

Automata and Runs.

A finite automaton on infinite words (ω-automaton) is a tuple A = (Σ, Q,Q0,∆,F) where Σ
is an alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, ∆ ⊆ Q× Σ×Q is
a set of transitions, and F is an acceptance condition.

An infinite word (ω-word) over Σ is an infinite sequence of letters in Σ. A run %

of A over an ω-word w is an infinite sequence of states in Q such that %(0) ∈ Q0 and,
〈%(i), w(i), %(i+1)〉 ∈ ∆ for i ∈ N. Let Inf(%) be the set of states that occur infinitely many
times in %. An automaton accepts w if a run % over w exists that satisfies F , which is usually
defined as a predicate on Inf(%). The language of A, written L (A), is the set of ω-words
accepted by A.

Acceptance Conditions and Types

ω-automata are classified according to their acceptance conditions. Below we list automata
of common types. Let G and B be functions from I to 2Q.

Generalized Büchi: 〈B〉I : ∀i ∈ I, Inf(%) ∩B(i) 6= ∅.
Büchi: 〈B〉I with I = {1} (i.e., k = 1).
Streett: 〈G,B〉I : ∀i ∈ I, Inf(%) ∩G(i) 6= ∅ → Inf(%) ∩B(i) 6= ∅.
Parity: 〈G,B〉I with B(1) ⊂ G(1) ⊂ · · · ⊂ B(k) ⊂ G(k).
Generalized co-Büchi: [B]I : ∃i ∈ I, Inf(%) ∩B(i) = ∅.
Co-Büchi: [B]I with I = {1} (i.e., k = 1).
Rabin: [G,B]I : ∃i ∈ I, Inf(%) ∩G(i) 6= ∅ ∧ Inf(%) ∩B(i) = ∅.

We use GB, B, S, P, GC, CB, and R, respectively, to denote the above acceptance conditions.
By T -automata we mean the ω-automata with T -condition. Note that B and CB, GB and
GC, and S and R are dual to each other, respectively. Also note that generalized Büchi and
parity automata are both subclasses of Streett automata, and so are generalized co-Büchi
and parity automata to Rabin automata. Let J ⊆ I. We use [G,B]J to denote the Rabin
condition with respect to only indices in J . When J is a singleton, say J = {j}, we simply
write [G(j), B(j)] for [G,B]J . The same convention is used for other conditions. For a Streett
condition 〈G,B〉I , we can assume that B is injective, because if B(i) = B(i′) for two different
i, i′ ∈ I, then we can replace 〈G,B〉{i,i′} by 〈G(i) ∪ G(i′), B(i)〉. The same assumption is
made for any Rabin condition [G,B]I .

∆-Graphs.

A ∆-graph of an ω-word w under A is a directed graph Gw = (V,E) where V = Q× N and
E = {〈〈q, l〉, 〈q′, l + 1〉〉 ∈ V × V | q, q′ ∈ Q, i ∈ N, 〈q, w(i), q′〉 ∈ ∆ }. By the i-th level, we
mean the vertex set Q× {i}. Let S be a subset of Q. We call a vertex v = 〈q, l〉 S-vertex if
q ∈ S. When level index is of no importance in the context, we use q and v interchangeably.
In particular, by an abuse of notation we write v ∈ S to mean v = 〈q, l〉 for some l ∈ N and
q ∈ S. ∆-graphs for finite words are similarly defined. The length of a finite ∆-graph is the
number of levels minus 1. By unit ∆-graphs we mean ∆-graphs of length 1. A unit ∆-graph
encodes all possible transitions upon reading a letter. By width of Gw (written width(Gw))
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we mean the maximum number of pairwise non-intersecting infinite paths in Gw. Clearly, for
any w, width(Gw) ≤ |Q|.

3 Ranking-based Complementation

In this section we introduce ranking-based complementation constructions developed by
Klarlund, Kupferman and Vardi [8, 11, 13, 9]. Note that all complexity related notions are
parameterized with n and k, but we do not list them explicitly unless required for clarity. We
adopt the following naming convention: when we talk about behaviors of a source automaton,
a T -condition means an existential one (i.e., a path in a ∆-graph that satisfies T ), while in
the context of complementation, a T -condition means a universal one (i.e., every path in a
∆-graph satisfies T ).

Ranking-based Complementation Scheme

Let A be a T -automaton and CA a purported Büchi automaton that complements A. An
ω-word w is accepted by A if and only if the ∆-graph Gw contains an infinite path that
satisfies the T -condition. Consequently, w is accepted by CA if and only if all paths in Gw
satisfy the dual co-T condition (for short, Gw is co-T accepting). Complementation essentially
amounts to transforming a universal co-T condition into an existential Büchi condition.
Rankings on ∆-graphs provide a solution; Gw satisfying a universal co-T condition is precisely
captured by the existence of a so-called odd co-T ranking on Gw. Complementation then
reduces to recognition of ∆-graphs that admit odd co-T rankings.

The general scheme goes as follows. Vertices of Gw are associated with certain values.
The association at a level can be viewed as a function with domain Q (with level indices
dropped), called co-T level ranking. The values in the range of a co-T level ranking are called
co-T ranks, and the n-tuple of co-T ranks at a level is called a co-T level rank. By a co-T
ranking we mean an ω-sequence of co-T level rankings, each of which is associated with a
level in Gw. Co-T rankings are required to satisfy a local property, which holds between every
two adjacent levels and is solely defined with respect to the unit ∆-graph of the two levels.
The local property therefore can be enforced in a step-by-step check by the transitions of CA.
But the local property itself is not enough to ensure that a co-T condition holds universally.
A special kind of co-T ranking, called odd co-T ranking, is singled out. A co-T ranking
is odd if and only if every path visits certain vertices (called odd vertices) infinitely many
times. This global property can be captured by a Büchi condition, using the Miyano-Hayashi
breakpoint technique for universality (alternation) elimination [16].

Let A = 〈Q,Q0,Σ,∆,FT 〉 be a source T -automaton. The complementation algorithm
produces a target Büchi automaton CA = 〈Q′, Q′0,Σ,∆′, 〈F ′〉〉. The state setQ′ is 2Q×2Q×R,
where for 〈S,O, g〉 ∈ Q′, S records the reachable states, O ⊆ S records the reachable states
that have an obligation to visit odd vertices in the future, and g is a guessed co-T level
ranking, all at the current level. The transition function ∆′ : Q′ → 2Q′ is defined such that
∆′(〈S,O, g〉) is

{ 〈∆(S, σ),∆(O, σ) \ odd(g′), g′〉 : g′ ∈ Succ(g, S, σ) } (O 6= ∅), (1)
{ 〈∆(S, σ),∆(S, σ) \ odd(g′), g′〉 : g′ ∈ Succ(g, S, σ) } (O = ∅), (2)

where Succ(g, S, σ) returns the set of legitimate level rankings provided that the current
level ranking is g and the current letter is σ, and odd(g′) gives the set of odd vertices at
the level ranked by g′. When CA reads the letter w(i) at level i with a level ranking fi
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and reachable state set Si, it nondeterministically guesses a level ranking fi+1 such that
fi+1 ∈ Succ(fi, Si, w(i)). The evolvement of both S and O are done by the classic subset
construction [20] with the exception that odd vertices are excluded from O (see “\odd(g′)”
in (1) and (2)). Once O becomes empty, it takes the value of the current S in the next stage
(see the second S in (2)). The final state set F ′ is 2Q × {∅} ×R. This Büchi condition 〈F ′〉
requires that O be cleared infinitely often, which in turn enforces that every path visits odd
vertices infinitely many times [16]. It is now clear that Succ represents the local property
(being co-T ) and F ′ captures the global property (being odd).
I Procedure 1 (Generic Complementation).
Input: T -automaton A = 〈Σ, Q,Q0,∆,FT 〉.
Output: Büchi automaton CA = 〈Σ, Q′, Q′0,∆′, 〈F ′〉〉:

Q′ = 2Q × 2Q ×R, Q′0 = Q0 × {∅} ×R,

∆′ : Q′ → 2Q
′
defined as in (1) and (2), F ′ = 2Q × {∅} ×R.

The state complexity of complementation is |Q′|. For every instantiation shown below, |R|
dominates 2|Q| and hence the complexity is O(|R|).

We now show complementation constructions for Büchi, GB and Streett, with the
corresponding co-T rankings being co-Büchi, GC and Rabin, respectively. We use DT to
denote the set of T -ranks, RT the set of T level rankings and LT the set of level ranks.
Clearly, |RT | = |LT |.

Büchi Complementation

Let A = 〈Q,Q0,Σ,∆, 〈F 〉〉 be a Büchi automaton. Gw is co-Büchi accepting if every path in
Gw visits F -vertices finitely often. Let DCB (the set of co-Büchi ranks) be [2n+ 1].

I Definition 1 (Co-Büchi Ranking). A co-Büchi ranking on Gw is a function f : V → DCB

such that:

1.1 for all vertices v ∈ V , if f(v) ∈ [2n]odd, then v 6∈ F ;
1.2 for all edges 〈v, v′〉 ∈ E, f(v) ≥ f(v′).

A vertex v ∈ V is odd if f(v) ∈ [2n]odd. A co-Büchi ranking f is odd if every path in Gw visits
infinitely many odd vertices. A path % stabilizes at a rank r if (∃i ∈ N)(∀j ≥ i), f(%(j)) =
f(%(i)) = r and the smallest such i is called the stabilization point of %. If Gw admits an odd
co-Büchi ranking f , then by (1.2) every path eventually stabilizes at an odd rank. Then
by (1.1), every path eventually does not visit F -vertices; that is, Gw is co-Büchi accepting.

Conversely, if Gw is co-Büchi accepting, then an odd co-Büchi ranking can be constructed
through a series of graph transformations. Let G0 = Gw. Vertices with only a finite number
of descendants are called finite. Vertices that are not F -vertices and have no F -vertices as
their descendants are called F -free. At stage 0, we assign all finite vertices rank 0 and remove
them, obtaining G1, in which there is no finite vertices. Because G0 is co-Büchi accepting,
there must exist in G1 an F -free vertex; otherwise we can select a path on which F -vertices
occur infinitely often. We assign all F -free vertices rank 1 and remove them too, obtaining
G2. Now some vertices in G2 are finite due to the removal of F -free vertices in stage 0. We
repeat this process in the following manner: at the first phase of stage i, we assign even rank
2i to finite vertices and remove them; at the second phase, we assign F -free vertices odd
rank 2i+ 1 and remove them. By F -freeness, removing F -free vertices from G2i+1 gets rid
of at least one infinite path, and hence width(G2i+2) < width(G2i). Therefore, this process

CSL’11



118 Tight Upper Bounds for Streett and Parity Complementation

terminates at a stage j ≤ n. In the following summary, by G \ V we mean removing from G

all vertices in V and their incoming and outgoing edges.
I Procedure 2 (Co-Büchi Ranking Assignment).
Input: a co-Büchi accepting G0. Output: a co-Büchi ranking f . Repeat for i ∈ [0..n] if
G2i 6= ∅.
2.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

2.2 (a) V2i+1 = {v ∈ V |
v is F -free in G2i+1};
(b) f(v) = 2i+ 1 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

I Lemma 2 ([11]). Gw is co-Büchi accepting if and only if Gw admits an odd co-Büchi
ranking.

We have |DCB| = O(n), and hence |RCB| = (O(n))n = 2O(n lgn).

GB Complementation

Let A = 〈Q,Q0,Σ,∆, 〈B〉I〉 be a generalized Büchi automaton. GC ranking is meant to be
used for GB complementation. A Gw is GC accepting if for every path % in Gw there exists
j ∈ I such that % only visits B(j)-vertices finitely often. Let DGC = ([2n]odd×I)∪[2n+ 1]even

be the set of GC ranks. We refer to values in [2n]odd×I as odd ranks, and values in [2n+ 1]even

as even ranks. For an odd GC rank 〈t, u〉, we call t numeric rank (r-rank) and u index
rank (h-rank). Even GC ranks are just numeric ranks. The greater-than and less-than
orders on GC ranks are solely defined on r-ranks. For example, 〈t, u〉 > 〈t′, u′〉 (or 〈t, u〉 > t′,
t > 〈t′, u′〉) if and only if t > t′. This definition is sound with respect to its usage in this
paper; as shown below, we never need to compare two odd GC ranks having the same r-rank
but different h-ranks.

I Definition 3 (GC Ranking). A GC ranking on Gw is a function f : V → DGC such that:

3.1 for every vertex v ∈ V , if f(v) = 〈2i+ 1, j〉 for some j ∈ I, then v 6∈ B(j);
3.2 for every edge 〈v, v′〉 ∈ E, f(v) ≥ f(v′).

A vertex v is called odd (resp. even) if f(v) ∈ [2n]odd × I (resp. f(v) ∈ [2n+ 1]even). A
GC ranking f is odd if every path in Gw visits infinitely many odd vertices. Note that (3.2)
implies that if two adjacent odd vertices have the same r-rank, then they have the same
h-rank. As in Büchi complementation, if Gw admits an odd GC ranking, then every path
eventually stabilizes at an odd GC rank 〈t, j〉, and from the stabilization point on never
visits B(j)-vertices. Therefore, Gw is GC accepting.

Conversely, if Gw is GC accepting, then we can find a GC ranking by a series of graph
transformations as in Büchi complementation. Each stage has two phases. We begin stage i
with G2i (G0 = Gw). In the first phase, finite vertices receive even rank 2i and are removed,
resulting in G2i+1. Thanks to GC condition, if G2i+1 is not empty, then for some j ∈ I

and v ∈ V , v is B(j)-free. In the second phase, those B(j)-free vertices receive odd rank
〈2i+ 1, j〉 and are removed, producing G2i+2. This procedure repeats for all i ∈ [0..n] unless
G2i is empty. The termination condition is justified by width(G2i+2) < width(G2i), just as
before.
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I Procedure 3 (GC Ranking Assignment).
Input: a GC accepting G0. Output: a GC ranking f . Repeat for i ∈ [0..n] if G2i 6= ∅.
3.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

3.2 (a) V2i+1 = {v ∈ V | v is B(j)-free in
G2i+1} for a j ∈ I such that B(j)-free ver-
tices exist;
(b) f(v) = 〈2i+ 1, j〉 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

In (3.2), it does not matter which j ∈ I is chosen. But this flexibility plays an important
role in our Streett complementation construction (see Procedure 5).

I Lemma 4 ([12]). Gw is GC accepting if and only if Gw admits an odd GC ranking.

We have |DGC| = O(nk), and hence |RGC| = (O(nk))n = 2O(n lgnk).

Streett Complementation

Let A = 〈Q,Q0,Σ,∆, 〈G,B〉I〉 be a Streett automaton. Rabin ranking is meant for Streett
complementation. Let us first examine the simple case where k = 1, i.e., every path satisfies
[G(1), B(1)]. Easily seen, Gw admits a co-Büchi ranking, and hence we can instantiate
Procedure 1 with R being co-Büchi level rankings (which are also GC level rankings with
index size 1). The only modification needed is to enforce that every path visits G(1)-vertices,
which can be easily realized by a Büchi accepting condition (see the definition of 〈F ′〉
in Procedure 1). This simple procedure fails for k > 1, because a path visiting a finite
number of B(j)-vertices may not have to visit infinitely many G(j)-vertices; it just satisfies
[G(j′), B(j′)] for j′ 6= j. Nevertheless, if we could find a way to reduce the number of Rabin
pairs one by one, eventually the simple scenario has to occur. The idea in [14] is to use GC
rankings to approximate Rabin accepting behaviors step by step until finally obtaining the
precise characterization. As a result, Rabin ranks are tuples of GC ranks, considerably more
sophisticated than GC ranks. We first put aside the formal definition of Rabin rankings and
show how a Rabin ranking can be obtained provided Gw is Rabin accepting. Once again,
this is done through a series of graph transformations.
I Procedure 4 (Rabin Ranking Assignment).
Input: a Rabin accepting G0. Output: a Rabin ranking f . Repeat for i ∈ [0..k] if Gi 6= ∅.

4.1 Assign Gi a GC ranking gci+1.
4.2 Remove all vertices v if gci+1(v) is even.
4.3 Remove all edges 〈v, v′〉 if gci+1(v) > gci+1(v′).
4.4 Remove all edges 〈v, v′〉 if gci+1(v) is odd with index j and v is a G(j)-vertex.
4.5 f(v) = 〈gc1(v), . . . gci+1(v)〉 iff v is removed from Gi.

Obviously, if Gw is Rabin accepting for a Rabin condition [G,B]I , then it is also GC accepting
for the GC condition [B]I . By Lemma 4, a GC ranking gc1 exists for G0, which justifies
Step (4.1) at stage 0. Steps (4.2)-(4.3) may break up G0 into a collection of graph components
(in the undirected sense). Let C be such a component. Steps (4.2)-(4.3) ensure that vertices
in C have the same odd rank with some index j ∈ I, and hence all are B(j)-free. Step (4.4),
deleting all outgoing edges from G(j)-vertices, may further break up C into more components.
In particular, any infinite path is destroyed (i.e., broken into a collection of finite paths) if the
path satisfies [G(j), B(j)] (i.e., visiting infinitely many G(j)-vertices but only finitely many
B(j)-vertices). Let C′ ⊆ C be a resulting component after Step (4.4). As a result, C′ should
satisfy the reduced Rabin condition [G,B]I\{j}, and hence the reduced GC condition [B]I\{j}.
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So after stage 0, G1 is composed of a collection of pairwise disjoint components, each of which
satisfies a Rabin condition whose cardinality is at most k − 1. Precisely speaking, at the
beginning of each stage i ≥ 1, Gi is composed of a collection of pairwise disjoint components,
and at Step (4.1), gci+1 is obtained by independently assigning each component in Gi a GC
ranking according to the reduced GC condition the component satisfies. By induction, at
stage i ≥ 1, vertices in each component in Gi have been assigned the same tuple of odd GC
ranks of length i and each component satisfies a Rabin condition whose cardinality is at most
k − i. It follows that the procedure terminates and each vertex in Gw eventually gets a tuple
of GC ranks of length at most k + 1. Note that the last GC rank in a tuple is always an
even GC rank (r-rank).

Let DR denote the set of Rabin ranks of the form 〈〈r1, i1〉, . . . , 〈rm, im〉, rm+1〉 (m ≤ k).
Ordering relations (<m,≤m, >m,≥m,=m) on Rabin ranks are defined to be the standard
lexicographical extension (up to m-th component) of orderings on GC ranks. For a Rabin
rank γ of the above form, the index projection (or the h-projection) of γ, written Projh γ,
is 〈i1, . . . , im〉 and the numeric projection (or the r-projection) of γ, written Projr γ, is
〈r1, . . . , rm+1〉. With respect to a given function f : V → DR, the width of v ∈ V is the
length of f(v), denoted by |v|f (or |v|, when f is clear from the context). We say that v is
odd (called happy in [14]) if |v| > 1 and v is a G(|v| − 1)-vertex. We arrive at the formal
definition of Rabin rankings.

I Definition 5 (Rabin Ranking). A Rabin ranking is a function f : V → DR satisfying the
following conditions.

5.1 For every vertex v ∈ V with |v| = m+ 1 ≥ 2 and α = Projh f(v), we have
a. for i ∈ [1..m), v 6∈ G(α[i]); b. for i ∈ [1..m], v 6∈ B(α[i]).

5.2 For every edge 〈v, v′〉 ∈ E with |v| = m+ 1, |v′| = m′ + 1 and m′′ = min(m,m′), we have
a. f(v) ≥m′′ f(v′); b. f(v) ≥m′′+1 f(v′), or v is odd.

A Rabin ranking is odd if every path in Gw visits infinitely many odd vertices.

I Lemma 6 ([14]). Gw is Rabin accepting if and only if Gw admits an odd Rabin ranking.

We have |DR| = (O(nk))k+1 and hence |RR| = ((O(nk))k+1)n = (nk)O(nk) = 2O(nk lgnk).

4 Improved Streett Complementation

The above construction requires 2O(nk lgnk) state blow-up [14], which is substantially larger
than the lower bound in [3]. In the extreme case of k = O(2n), the construction is double
exponential in n. Intuitively, the larger the k, the more overlaps between B(i)’s and between
G(i)’s (i ∈ I). A natural question is: can all Rabin pairs [G(i), B(i)] independently impose
behaviors on a Rabin accepting Gw? We showed in [2] that in Rabin complementation we
can build a Streett accepting Gw for which no Streett pair 〈G(i), B(i)〉 is redundant. We
observed the opposite in Streett complementation; the larger the k, the higher the correlation
between infinite paths that satisfy [G,B]I . By exploiting this correlation, we can walk in
big steps in approximating Rabin accepting behaviors using GC rankings. As a result, our
Rabin ranks are tuples of GC ranks of length at most µ = min(n, k). This simple but crucial
observation leads to a significant improvement on the construction complexity. We elaborate
on this below.

The first idea is that at Step (4.4) in stage i, in a component C of Gi, instead of removing
all outgoing edges from G(j)-vertices, we can remove all outgoing edges from G(j′)-vertices
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for all j′ such that B(j′) ⊆ B(j). Let J = {j′ ∈ I | B(j′) ⊆ B(j)}. Since vertices in C are
B(j)-free, they are also B(j′)-free for any j′ ∈ J . Recall that Step (4.4) is to break all infinite
paths that satisfy [G(j), B(j)] so that in each resulting component we have a simpler Rabin
condition to satisfy. If an infinite path in C satisfies [G,B]J , then removing all outgoing
edges from G(j′)-vertices (for j′ ∈ J) certainly serves the same purpose, and moreover, any
resulting component only needs to satisfy a Rabin condition whose cardinality is |J | less
than at the beginning of stage i.

The second idea is that at Step (4.1) in stage i, we can assign special GC rankings to
components in Gi. Recall that a GC ranking is obtained by a series of graph transformations
too. In Step (3.2), we assign and remove B(j)-free vertices for some j ∈ I. In fact any fixed
j ∈ I is sufficient as long as B(j)-free vertices exist. Therefore, we can choose a j such that
not only B(j)-free vertices exist, but also for any other j′ ∈ I, B(j′) 6⊂ B(j), if B(j′)-free
vertices also exist. Intuitively, we prefer a j such that B(j) is minimal (with respect to set
inclusion) because more vertices would be B(j)-free and subject to removal.

We refine those ideas by taking into account the history of GC rankings. In stage i, right
before Step (4.1), vertices in Gi were assigned a tuple of GC ranks of length i. Consider a
component C ⊆ Gi. No vertices in C received an even GC rank in stage i′ ∈ [0..i), because
otherwise they were already removed by Step (4.2) in that stage. Also all vertices in Gi
received the same odd GC rank in each stage i′ ∈ [0..i), for otherwise Step (4.3) in stage i′
would have broken the component. Now let 〈〈r1, j1〉, . . . , 〈ri, ji〉〉 be the tuple that has been
assigned to all vertices in C. Let B′ = ∪t∈[1..i]B(jt) and J ′ = {j′ ∈ I | B(j′) ⊆ B′}. So all
vertices in C are B′-free. When we assign GC rankings for C, in each stage at Step (3.2) (in
Procedure 3), we choose a j ∈ I \ J ′ such that (1) B(j)-free vertices exist, (2) B(j) 6⊆ B′ (we
say B(j) is not covered by B′), and (3) no B(j′)-free vertices exist for any other j′ ∈ I \ J ′
with B′ ∪B(j′) ⊂ B′ ∪B(j). In other words, we choose a j such that not only we can find
B(j)-free vertices, but also B′∪B(j) minimally extends B′. Now let C′ be a component right
before Step (4.4) is taken and let 〈〈r1, j1〉, . . . , 〈ri+1, ji+1〉〉 be the tuple of ranks that has been
assigned to all vertices in C′ (for the same reason as before, all vertices in C′ have received the
same sequence of odd GC ranks). Let B′′ = B′ ∪B(ji+1) and J ′′ = {j′′ ∈ I | B(j′′) ⊆ B′′}.
In Step (4.4) we remove all outgoing edges of G(j′′)-vertices if B(j′′) ⊆ B′′. This deletion
destroys all infinite paths that satisfy [G,B]J′′ because all vertices in C′ are B′′-free. Let
C′′ be a resulting component and % an infinite path in C′′. Then % only needs to satisfy
[G,B]I\J′′ .

Now let us assume that we have incorporated the above ideas into Procedure 4 and
obtained a new Rabin rank γ = 〈〈r1, j1〉, . . . , 〈rm, jm〉, rm+1〉〉. Let α = Projh γ. The
non-covering condition stated above requires α to satisfy:

∀i ∈ [1..m] B(α[i]) 6⊆ ∪i−1
j=1B(α[j]), (3)

which implies |α| ≤ n. By definition, |α| ≤ k and so we have |α| ≤ µ and |γ| ≤ µ+ 1. From
now on we switch to terms µR ranks (i.e., minimal Rabin ranks), µR rankings, µR level
rankings and µR level ranks. Their precise definitions are to be given below. We define two
functions Cover : I∗ → 2I and Mini : I∗ → 2I to formalize the intuition of minimal extension.
Cover maps tuples of indices to subsets of I such that

Cover(α) = { j ∈ I | B(j) ⊆ ∪|α|i=1B(α[i]) }.

Note that Cover(ε) = ∅. Mini maps tuples of indices to subsets of I such that j ∈ Mini(α) if
and only if j ∈ I \ Cover(α) and

∀j′ ∈ I \ Cover(α)
(
j′ 6= j → B(j′) ∪ Cover(α) 6⊂ B(j) ∪ Cover(α)

)
, (4)
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∀j′ ∈ I \ Cover(α)
(
j′ < j → B(j′) ∪ Cover(α) 6= B(j) ∪ Cover(α)

)
. (5)

Mini(α) consists of choices of indices to minimally enlarge Cover(α); ties (with respect to set
inclusion) are broken by numeric minimality (Condition (5)). Before introducing µR ranking
assignment, we need a new GC ranking assignment which takes a tuple of I-indices as an
additional input. We call so obtained GC rankings (resp. GC ranks) µGC rankings (resp.
µGC ranks).
I Procedure 5 (µGC Ranking Assignment).
Input: a GC accepting G0, a tuple of I-indices α. Output: a µGC ranking f .
Repeat for i ∈ [0..n] if G2i 6= ∅.
5.1 (a) V2i = {v ∈ V | v is finite in G2i};

(b) f(v) = 2i for v ∈ V2i;
(c) G2i+1 = G2i \ V2i.

5.2 (a) V2i+1 = {v ∈ V | v is B(j)-free in
G2i+1} for a j ∈ Mini(α) such that B(j)-
free vertices exist;
(b) f(v) = 〈2i+ 1, j〉 for v ∈ V2i+1;
(c) G2i+2 = G2i+1 \ V2i+1.

As in GC ranking assignment, in (5.2) there maybe more than one j such that B(j)-free
vertices exist, and it does not matter which one we choose. But in case Mini(α) is a singleton,
we have a unique j at all stages, essentially synchronizing all h-ranks in the µGC ranks
obtained. This synchronization is crucial in our construction for parity complementation
(see Section 6).

I Procedure 6 (µR Ranking Assignment).
Input: a Rabin accepting G0. Output: a µR ranking f . Repeat for i ∈ [0..µ] if Gi 6= ∅.

6.1 Assign Gi a µGC ranking gci+1.
6.2 Remove all vertices v ∈ V if gci+1(v) is even.
6.3 Remove all edges 〈v, v′〉 ∈ E if gci+1(v) > gci+1(v′).
6.4 Remove all edges 〈v, v′〉 ∈ E if v ∈ G(t) for some t ∈ Cover(Projh(〈gc1, . . . , gci+1〉)).
6.5 f(v) = 〈gc1(v), . . . gci+1(v)〉 iff v is removed from Gi.

Note that Step (6.1) actually means that Procedure 5 is called upon for every component
C ⊂ Gi, with the corresponding α being Projh(〈gc1(v), . . . , gci(v)〉) for some v ∈ C (α is
well-defined since all vertices in C have received the same sequence of µGC ranks). It is time
to formally define µR ranking. Let f be a function V → (DGC)µ+1. We say that v is odd if
|v| > 1 and v is a G(t)-vertex for some t ∈ Cover(α[1..|v| − 1]) where α = Projh f(v).

I Definition 7 (µR Ranking). A µR ranking is a function f : V → (DGC)µ+1 satisfying the
following conditions.

7.1 For every vertex v ∈ V with |v| = m+ 1 ≥ 2 and α = Projh f(v), we have

a. for i ∈ [1..m), v 6∈ G(t) for t ∈ Cover(α[1..i]);
b. for i ∈ [1..m], v 6∈ B(t) for t ∈ Cover(α[1..i]);
c. for i ∈ [1..m], α[i] ∈ Mini(α[1..i)).

7.2 For every edge 〈v, v′〉 ∈ E with |v| = m+ 1, |v′| = m′ + 1 and m′′ = min(m,m′), we have
a. f(v) ≥m′′ f(v′); b. f(v) ≥m′′+1 f(v′), or v is odd.

A µR ranking is odd if every infinite path in Gw visits infinitely many odd vertices.

I Lemma 8. Gw is Rabin accepting if and only if Gw admits an odd µR ranking.
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5 Complexity

In this section we analyze the complexity of our construction. As shown below, all complexity
related notions X are also parameterized with B (besides n and k). Still, we choose to
list some or all of them when clarity is needed. In particular, we use |X| to abbreviate
|X(n, k)| = maxB |X(B,n, k)|.

Let DµR be the set of µR ranks that can be produced by Procedure 6. Formally,
DµR = ∪f range(f) where f ranges over all possible outputs of Procedure 6. In a similar
manner, we define RµR and LµR. We have |RµR| = |LµR|. We note that these notions are
defined differently from their counterparts in Section 3; due to two kinds of correlations (which
we refer to as horizontal and vertical correlation), |LµR| is much smaller than |DµGC|n(µ+1).
We view LµR as a set of n × (µ + 1) matrices of µGC ranks and carry out a further
simplification. Let MµR be a set of n × µ matrices obtained from LµR by the following
mapping: each n × (µ + 1) matrix M is mapped to an n × µ matrix M ′ by (a) deleting
from M even ranks at the end of each row, (b) changing odds rank of the form 〈2i− 1, j〉 to
〈i, j〉, and (c) aligning each row to length µ by filling 〈1, 0〉’s. Clearly, |LµR| ≤ nn · |MµR|;
the factor nn suffices to compensate (a), the deletion of even ranks, and (b) and (c) have
no effect to the cardinality (for (b), i→ 2i− 1 is one-to-one from [1..n] onto [2n]odd). Let
M ∈ MµR be called µR-matrices. We write ProjrM and ProjhM to mean, respectively,
the projection of M on numeric ranks (called an r-matrix) and on index ranks (called an
h-matrix). Let Mr = ProjrMµR, Mh = ProjhMµR, and Dr and Dh be the sets of rows
occurring in matrices inMr andMh, respectively. Obviously, we have |MµR| ≤ |Mr| · |Mh|
and |Mh| ≤ (|Dh|)n.

I Example 9 (µR-Matrix). Let us consider a case where n = 3, k = 3, and Q = {q0, q1, q2}.
Below we show that a µR level rank f corresponds to a µR-matrix M , which projects to Mr

and Mh.q0
q1
q2

 ∣∣∣∣∣∣
〈1, 2〉 〈1, 3〉 4
〈1, 2〉 〈3, 1〉 2
〈1, 2〉 〈3, 1〉 〈3, 3〉 0

∣∣∣∣∣∣
∣∣∣∣∣∣
〈1, 2〉 〈1, 3〉 〈1, 0〉
〈1, 2〉 〈2, 1〉 〈1, 0〉
〈1, 2〉 〈2, 1〉 〈2, 3〉

∣∣∣∣∣∣
∣∣∣∣∣∣
1 1 1
1 2 1
1 2 2

∣∣∣∣∣∣
∣∣∣∣∣∣
2 3 0
2 1 0
2 1 3

∣∣∣∣∣∣
Q f M Mr Mh

Bounding |Mh|

It turns out that we only need to exploit a horizontal correlation to bound |Mh|. Recall that
each α ∈ I∗ names a subset of Q, namely Cover(α). The idea is to order all α that could
occur in Dh into a tree structure. Consider an unordered tree where the root is labeled by ε
and each non-root node is labeled by an index in I. With little confusion, we identify a node
α with the path from the root to α and represent α by the sequence of indices on the path.
So a non-root node α has α[|α|] as its label and names Cover(α). We arrive at the following
important notion.

I Definition 10 (Increasing Tree of Sets (ITS)). An ITS T (n, k,B) is an unordered I-labeled
tree (except the root which is labeled by ε) such that

10.1 A non-root node α exists in T (n, k,B) iff ∀i ∈ [1..|α|], α[i] ∈ Mini(α[1..i)).

Property (10.1) succinctly encodes three important features of ITS. First, an ITS is
maximal in the sense that no node can be added. Second, if β is a direct child of α, then β
must name at least one new state that has not been named by α. Third, the new contributions
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ε : ∅

4 : {q2}

2 : {q0}

1 : {q0, q1}

3 : {q1, q2}

2 : {q0}

2 : {q0}

4 : {q2}

1 : {q0, q1}

1 : {q0, q1}

3 : {q1, q2}

ε : ∅

4 : {q2}

2 : {q0}

1 : {q0, q1}

3 : {q1, q2}

2 : {q0}

2 : {q0}

4 : {q2}

1 : {q0, q1}

1 : {q0, q1}

3 : {q1, q2}

5 : {q1}

4 : {q2}

2 : {q0}

2 : {q0}

4 : {q2}

T (3, 4, B) T (3, 5, B′)

Figure 2 Two ITS in Example 11.

by β cannot be covered by contributions made by any another sibling β′. In particular,
if more than one sibling can make the same contribution, then the one with the smallest
index is selected. It follows that each tuple of n, k and B uniquely determines T (n, k,B) (in
the unordered sense). Note that the height of T (n, k,B) (the length of the longest path in
T (n, k,B)) is bounded by µ.

I Example 11 (ITS). Consider n = 3, k = 4, Q = {q0, q1, q2}, B : [1..4] → 2Q and
B′ : [1..5]→ 2Q,

B(1) = {q0, q1}, B(2) = {q0}, B(3) = {q1, q2}, B(4) = {q2},

and B′ extends B with B′(5) = {q1}. T (3, 4, B) and T (3, 5, B′) are given in Figure 2. For
clarity, for each non-root node α, we also list B(α[|α|]) as the set label of α. In T (3, 4, B),
neither {q0, q1} nor {q1, q2} can appear at height 1, because {q0, q1} covers {q0} and {q1, q2}
covers {q2}. The leftmost node at the bottom level is labeled by {q1, q2} instead of by {q2}
due to the index minimality requirement. For the same reason, in T (3, 5, B′), we have nodes
〈2, 1〉, 〈2, 4, 1〉 and 〈4, 2, 1〉 all labeled with {q0, q1}, and nodes 〈2, 1, 3〉 and 〈4, 3〉 all labeled
with {q1, q2}.

It is easily seen that Property (7.1c) corresponds exactly to Property (10.1). So a
one-to-one correspondence exists between non-root nodes in T (n, k,B) and elements in
Dh(n, k,B). Let |T (n, k,B)| denote the number of non-root nodes in T (n, k,B) andH(n, k) =
maxB |T (n, k,B)|. Clearly, we have |Mh| ≤ (H(n, k))n.

I Lemma 12. H(n, k) = 2O(k lg k) for k = O(n) and H(n, k) = 2O(n lgn) for k = ω(n).

Bounding |Mr|

Here we need to exploit both horizontal and vertical correlations. We show that every n× µ
r-matrix induces a 2Q-labeled ordered tree with at most n leaves and with height at most µ.
Such a tree is called an n× µ tree. We bound |Mr| by counting the number of n× µ trees.

Let M be an r-matrix. Since M comes from a µR level rank, M is associated with
vertices at a level. To facilitate the discussion below, we use term states to specifically mean
those vertices at the level where M is associated with, and use term vertices just as before.
By rank i we simply mean a number i in M , which corresponds to the numeric µGC rank
2i− 1.

Let us first consider ranks in column 1 of M . A state q being ranked with an odd µGC
rank means that at certain stage of µGC ranking assignment, q becomes B(j)-free for some
j ∈ I, which implies that there exists an infinite path starting from q (recall that all finite



Y. Cai and T. Zhang 125

vertices have been removed before this odd µGC rank is assigned). If two states q, q′ are
ranked with different odd µGC ranks, say q with 〈2i− 1, j〉 and q′ with 〈2i′ − 1, j′〉 where
i > i′, then there exist two infinite paths % and %′ such that % starts from q, %′ starts from q′,
and % and %′ never intersect. This is due to the nature of µGC ranking assignment; 〈2i−1, j〉
is assigned to some B(j)-free vertices only after those B(j′)-free vertices with odd µGC rank
〈2i′ − 1, j′〉 have been removed.

Note that it is perfectly possible that an infinite path starting from q intersects another
infinite path starting from q′. But a maximal subset S(1) of states, all with the same rank,
called a cell at column 1, should “own” at least one private infinite path that does not
intersect the private paths owned by any other cells at column 1. We call a path named if it
is owned by a cell. Let m(1) be the maximum rank in column 1, and note that not all ranks
in [1..m(1)] necessarily appear in column 1. But again, by the way µGC ranking assignment
is carried out, for each non-occurring rank, at least one private infinite path exists, which
is called hidden and viewed as being owned by ∅. Easily seen now, each rank in [1..m(1)]
corresponds to a non-empty set of private infinite paths.

In general, a cell at column l is a maximal subset of states, each of which is assigned the
same tuple of ranks up to column l. Consider a cell S(l) = {qi1 , . . . , qij} at column l. Let
m(l+1) = max{M [i1, l + 1], . . . ,M [ij , l + 1]}. By the same reasoning as before, each rank
in [1..m(l+1)] corresponds to a non-empty set of private infinite paths. The private paths
associated with rank M [ij′ , l + 1] are owned by S(l+1)

j′ ⊆ S(l) which is a cell at column l + 1
with rank M [ij′ , l + 1] (S(l+1)

j′ = ∅ if no states in S(l) is mapped to M [ij′ , l + 1]). Moreover,
none of these paths, hidden or named, should intersect private paths owned by any cell at
column l that is a subset of Q \ S(l), because states in Q \ S(l) and states in S(l) are not in
the same component at stage l (the l + 1-th stage) in Procedure 6. Now we are ready to
show how to build an n× µ tree from M .

Each node in the tree is associated with a label which is a subset of Q. The root is
labeled with set Q. For each rank i ∈ [1..m(1)], we add a child to the root and we order those
children increasingly by the ranks associated with them. If i does not appear in column 1,
the i-th child (from left to right) is labeled with ∅ and is a terminal node (leaf). Otherwise,
the child is labeled with the cell at column 1 with rank i and the child is non-terminal if
its height is less than µ. We repeat the process column by column. Each maximal S(l) at
column l < µ corresponds to a non-terminal node at height l, from which we spawn a child
for each rank in i ∈ [1..m(l)], and we order and label the children using the rule stated above.
After processing column µ, we obtain an n× µ tree, because the number of leaves in the tree
cannot exceed width(Gw) ≤ n, which we refer to as the maximum width property (MWP).
Now we call an n× µ tree a TOP (Tree of Ordered Partitions) and let T r(n, k) denote the
set of TOPs. We have |Mr| ≤ |T r(n, k)|.

I Example 13 (TOP). Four 3× 3 matrices M1-M4 and their corresponding tree representa-
tions T1-T4 are given in Figure 3. M1-M3 obey MWP and hence T1-T3 are TOPs. T4 is not
a TOP because it has more than 3 leaves.

I Lemma 14 (Numeric Bound). |T r(n, k)| = 2O(n lgn).

Since |RµR| ≤ nn · |MµR|, |MµR| ≤ |Mr| · |Mh|, |Mr| ≤ |T r(n, k)|, and |Mh| ≤
(H(n, k))n, by Lemmas 12 and 14, we have

I Theorem 15 (Streett Upper Bound). Streett complementation is 2O(n lgn+nk lg k) for k =
O(n) and 2O(n2 lgn) for k = ω(n).

CSL’11



126 Tight Upper Bounds for Streett and Parity Complementation
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1 2 1

∣∣∣∣∣∣
∣∣∣∣∣∣
2 1 2
2 1 2
1 2 3
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{q0, q1, q2}

{q0, q1}

{q0, q1}

{q0, q1}∅

{q2}

{q2}

{q2}

{q0, q1, q2}

{q0, q1}

{q0, q1}

{q0, q1}∅

{q2}

{q2}

{q2}

∅

T1 T2 T3 T4

Figure 3 Four 3× 3 matrices and their corresponding tree representations in Example 13.

Note that we put bounds in the form 2O(·) just for simplicity. Even for a small k (i.e.
k = O(n)), our upper bound is substantially smaller than the current best one (nk)O(nk),
established by respective constructions in [8, 22, 14, 19]. Easily seen from the proofs of
Lemmas 12 and 14, our upper bound is in fact nO(n) · kO(nk) when k = O(n). Also note
that Lemma 14 is crucial in tightening parity complementation.

6 Parity Complementation

Parity automata is a special kind of Streett automata where a Streett condition 〈G,B〉I
is augmented with the so-called Rabin chain condition B(1) ⊂ G(1) ⊂ · · · ⊂ B(k) ⊂ G(k).
Now the short length of µR ranks is not enough to give us a better bound, because we
already have k ≤ b(n + 1)/2c. Nevertheless, the Rabin chain condition makes the GC
condition [B]I degenerate to the CB condition [B(1)], because being B(1)-free is equivalent
to being B(i)-free for some i ∈ I. This coincides with the way Mini works. Intuitively, Mini
synchronizes all components at a stage of µR ranking assignment. In the first stage of µR
ranking assignment, in Step (4.1), Mini makes every vertex get the h-rank 1, though vertices
may get different r-ranks. After disabling G(1) vertices (by deleting all outgoing edges from
them in Step (4.4)), we have a collection of components satisfying parity condition 〈G,B〉[2..k].
Then in the second stage of µR ranking assignment, Mini gives every vertex the h-rank
2. Repeating this process, the h-projection of a final µR rank is just 〈1, . . . ,m〉 for some
m ∈ [1..k], which is completely redundant, because the only useful information (having length
m) is already encoded by the corresponding r-projection. As a consequence, h-matrices
contribute nothing to the complexity. A customized construction for parity complementation
is given in the appendix.

I Theorem 16 (Parity Upper Bound). Parity complementation is in 2O(n lgn).

This bound matches the lower bound of Büchi complementation, and hence it is tight as
Büchi automata are a subclass of parity automata. To the best of our knowledge, the previous
best upper bound is 2O(nk lgn), which can be easily inferred from [14] by treating parity
automata as Rabin automata.
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7 Concluding Remarks

In this paper we improved Kupferman and Vardi’s construction and obtained tight upper
bounds for Streett and parity complementation (with respect to the 2Θ(X) asymptotic
notation). Figure 1 in the appendix rounds up the complementation complexities for ω-
automata of common types.

Our inquiry also leads to some unexpected outcomes, which we believe, would help
understand the strength and weakness of different types of ω-automata in modeling and
specifying system behaviors.

1. Parity complementation has the same asymptotical bound as Büchi complementation
while parity automata have richer and more elegant acceptance conditions than Büchi
automata.

2. Streett automata are exponentially more succinct than Büchi automata while Rabin
automata are not. On the other hand, Streett complementation is much easier than Rabin
complementation when k is large (i.e., k = ω(n)). In the extreme case where k = Θ(2n)
and N = Θ(nk) (the automata size), Streett complementation is in O(N lg2 N ) = O(2lg3 N )
while Rabin complementation is still in 2Ω(N).

Further investigation on Streett and parity complementation is desired as exponential
gaps can hide in the asymptotical notations of the form 2Θ(X). The situation is different
from that of Büchi where the best lower and upper bounds have been shown polynomially
close.

We think that ITS and TOP characterize intrinsic combinatorial properties on run graphs
with universal Rabin conditions. Interesting questions remain for further investigation.
What would be the counterparts for run graphs with existential Streett conditions? The
discovery of such combinatorial properties might help us understand the complexity of
Streett determinization, for which there exists a huge gap between the current lower bound
2Ω(n2 lgn) [3] and upper bound 2O(nk lgnk) [19] when k = ω(n). Also of theoretical interest
is whether there exists a type of ω-automata whose determinization is considerably harder
than complementation. In the case of Büchi, the two operations were both proved to be in
2Θ(n lgn).

Acknowledgment

We would like to thank anonymous reviewers for many useful comments, and we are grateful
to Laurel Tweed and Wanwu Wang for carefully proofreading the paper.

References
1 J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.Internat.

Congr. Logic, Method. and Philos. Sci. 1960, pages 1-12, Stanford, 1962. Stanford University
Press.

2 Y. Cai, T. Zhang, and H. Luo. An improved lower bound for the complementation of Rabin
automata. In Proc. 24th LICS, pages 167-176, 2009.

3 Y. Cai and T. Zhang. A Tight lower bound for Streett complementation. Manuscript at
arXiv:1102.2963 [cs.LO].

4 Nachum Dershowitz and Shmuel Zaks. Enumerations of ordered tress. Discrete Mathemat-
ics, Vol. 31, No. 1 (1980) 9-28.

5 N. Francez and D. Kozen. Generalized fair termination. In Proc. 11th POPL, pages 46-53,
1984.

CSL’11



128 Tight Upper Bounds for Streett and Parity Complementation

6 E. Friedgut and O. Kupferman and M.Y. Vardi. Büchi complementation made tighter.
International Journal of Foundations of Computer Science, Vol. 17, No. 4 (2006) 851-867.

7 N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.
8 N. Klarlund. Progress measures for complementation of omega-automata with applications

to temporal logic. In Proc. 32th FOCS, pages 358-367, 1991.
9 O. Kupferman. Avoiding Determinization. In Proc. 21th LICS, pages 243-254, 2006.
10 R.P. Kurshan. Computer aided verification of coordinating processes: an automata theor-

etic approach. Princeton University Press, 1994.
11 O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans-

actions on Computational Logic, 2(3): 408-429, 2001.
12 O. Kupferman and M.Y. Vardi. From complementation to certification. In 10th TACAS,

LNCS 2988, pages 591-606, 2004.
13 O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS, pages

531-540, 2005.
14 O. Kupferman and M.Y. Vardi. Complementation constructions for nondeterministic auto-

mata on infinite words. In Proc. 11th TACAS, pages 206-221, 2005.
15 C. Löding. Optimal bounds for transformations of omega-automata. In Proc. 19th FSTTCS,

volume 1738 of LNCS, pages 97-109, 1999.
16 S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer

Science, 32(3):321-330, 1984.
17 M. Michel. Complementation is more difficult with automata on infinite words. CNET,

Paris, 1988.
18 T. V. Narayana. A Partial Order and Its Applications to Probability Theory. Sankhyā: The
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