35,118 research outputs found

    A Comparison Study of Two Methods for Elliptic Boundary Value Problems

    Full text link
    In this paper, we perform a comparison study of two methods (the embedded boundary method and several versions of the mixed finite element method) to solve an elliptic boundary value problem

    Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids

    Full text link
    In this paper, we consider anisotropic diffusion with decay, and the diffusivity coefficient to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with increase in the decay coefficient for isotropic medium and violates the discrete maximum principle. However, in the case of isotropic medium, the extent of violation decreases with mesh refinement. We then show that, in the case of anisotropic medium, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation

    Energy-corrected FEM and explicit time-stepping for parabolic problems

    Full text link
    The presence of corners in the computational domain, in general, reduces the regularity of solutions of parabolic problems and diminishes the convergence properties of the finite element approximation introducing a so-called "pollution effect". Standard remedies based on mesh refinement around the singular corner result in very restrictive stability requirements on the time-step size when explicit time integration is applied. In this article, we introduce and analyse the energy-corrected finite element method for parabolic problems, which works on quasi-uniform meshes, and, based on it, create fast explicit time discretisation. We illustrate these results with extensive numerical investigations not only confirming the theoretical results but also showing the flexibility of the method, which can be applied in the presence of multiple singular corners and a three-dimensional setting. We also propose a fast explicit time-stepping scheme based on a piecewise cubic energy-corrected discretisation in space completed with mass-lumping techniques and numerically verify its efficiency
    • …
    corecore