9 research outputs found

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Full text link
    We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor-Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We illustrate our discretisation with some standard rotating sphere test problems.Comment: accepted versio

    Higher-order compatible finite element schemes for the nonlinear rotating shallow water equations on the sphere

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record.We describe a compatible finite element discretisation for the shallow water equations on the rotating sphere, concentrating on integrating consistent upwind stabilisation into the framework. Although the prognostic variables are velocity and layer depth, the discretisation has a diagnostic potential vorticity that satisfies a stable upwinded advection equation through a Taylor–Galerkin scheme; this provides a mechanism for dissipating enstrophy at the gridscale whilst retaining optimal order consistency. We also use upwind discontinuous Galerkin schemes for the transport of layer depth. These transport schemes are incorporated into a semi-implicit formulation that is facilitated by a hybridisation method for solving the resulting mixed Helmholtz equation. We demonstrate that our discretisation achieves the expected second order convergence and provide results from some standard rotating sphere test problems.Natural Environment Research Council (NERC)Natural Environment Research Council (NERC)Engineering and Physical Sciences Research Council (EPSRC)Engineering and Physical Sciences Research Council (EPSRC

    Energy conserving SUPG methods for compatible finite element schemes in numerical weather prediction

    Get PDF
    We present an energy conserving space discretisation based on a Poisson bracket that can be used to derive the dry compressible Euler as well as thermal shallow water equations. It is formulated using the compatible finite element method, and extends the incorporation of upwinding for the shallow water equations as described in Wimmer, Cotter, and Bauer (2019). While the former is restricted to DG upwinding, an energy conserving SUPG scheme for the (partially) continuous Galerkin thermal field space is newly introduced here. The energy conserving property is validated by coupling the Poisson bracket based spatial discretisation to an energy conserving time discretisation. Further, the discretisation is demonstrated to lead to an improved temperature field development with respect to stability when upwinding is included. An approximately energy conserving full discretisation with a smaller computational cost is also presented.Comment: 27 pages, 9 figures, first version: all comments welcom

    A Mixed Mimetic Spectral Element Model of the Rotating Shallow Water Equations on the Cubed Sphere

    Full text link
    In a previous article [J. Comp. Phys. 357\mathbf{357} (2018) 282-304], the mixed mimetic spectral element method was used to solve the rotating shallow water equations in an idealized geometry. Here the method is extended to a smoothly varying, non-affine, cubed sphere geometry. The differential operators are encoded topologically via incidence matrices due to the use of spectral element edge functions to construct tensor product solution spaces in H(rot)H(\mathrm{rot}), H(div)H(\mathrm{div}) and L2L_2. These incidence matrices commute with respect to the metric terms in order to ensure that the mimetic properties are preserved independent of the geometry. This ensures conservation of mass, vorticity and energy for the rotating shallow water equations using inexact quadrature on the cubed sphere. The spectral convergence of errors are similarly preserved on the cubed sphere, with the generalized Piola transformation used to construct the metric terms for the physical field quantities

    A Quasi-Hamiltonian Discretization of the Thermal Shallow Water Equations

    Get PDF
    International audienceThe rotating shallow water (RSW) equations are the usual testbed for the development of numerical methods for three-dimensional atmospheric and oceanic models. However, an arguably more useful set of equations are the thermal shallow water equations (TSW), which introduce an additional thermodynamic scalar but retain the single layer, two-dimensional structure of the RSW. As a stepping stone towards a three-dimensional atmospheric dynamical core, this work presents a quasi-Hamiltonian discretization of the thermal shallow water equations using compatible Galerkin methods, building on previous work done for the shallow water equations. Structure-preserving or quasi-Hamiltonian discretizations methods, that discretize the Hamiltonian structure of the equations of motion rather than the equations of motion themselves, have proven to be a powerful tool for the development of models with discrete conservation properties. By combining these ideas with an energy-conserving Poisson time integrator and a careful choice of Galerkin spaces, a large set of desirable properties can be achieved. In particular, for the first time total mass, buoyancy and energy are conserved to machine precision in the fully discrete model

    Finite Element Exterior Calculus with Applications to the Numerical Solution of the Green–Naghdi Equations

    Get PDF
    The study of finite element methods for the numerical solution of differential equations is one of the gems of modern mathematics, boasting rigorous analytical foundations as well as unambiguously useful scientific applications. Over the past twenty years, several researchers in scientific computing have realized that concepts from homological algebra and differential topology play a vital role in the theory of finite element methods. Finite element exterior calculus is a theoretical framework created to clarify some of the relationships between finite elements, algebra, geometry, and topology. The goal of this thesis is to provide an introduction to the theory of finite element exterior calculus, and to illustrate some applications of this theory to the design of mixed finite element methods for problems in geophysical fluid dynamics. The presentation is divided into two parts. Part 1 is intended to serve as a self–contained introduction to finite element exterior calculus, with particular emphasis on its topological aspects. Starting from the basics of calculus on manifolds, I go on to describe Sobolev spaces of differential forms and the general theory of Hilbert complexes. Then, I explain how the notion of cohomology connects Hilbert complexes to topology. From there, I discuss the construction of finite element spaces and the proof that special choices of finite element spaces can be used to ensure that the cohomological properties of a particular problem are preserved during discretization. In Part 2, finite element exterior calculus is applied to derive mixed finite element methods for the Green–Naghdi equations (GN). The GN extend the more well–known shallow water equations to the regime of non–infinitesimal aspect ratio, thus allowing for some non–hydrostatic effects. I prove that, using the mixed formulation of the linearized GN, approximations of balanced flows remain steady. Additionally, one of the finite element methods presented for the fully nonlinear GN provably conserves mass, vorticity, and energy at the semi–discrete level. Several computational test cases are presented to assess the practical performance of the numerical methods, including a collision between solitary waves, the motion of solitary waves over variable bottom topography, and the breakdown of an unstable balanced state
    corecore