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Abstract

The rotating shallow water (RSW) equations are the usual testbed for the development of
numerical methods for three-dimensional atmospheric and oceanic models. However, an ar-
guably more useful set of equations are the thermal shallow water equations (TSW), which
introduce an additional thermodynamic scalar but retain the single layer, two-dimensional
structure of the RSW. As a stepping stone towards a three-dimensional atmospheric dy-
namical core, this work presents a quasi-Hamiltonian discretization of the thermal shallow
water equations using compatible Galerkin methods, building on previous work done for the
shallow water equations. Structure-preserving or quasi-Hamiltonian discretizations methods,
that discretize the Hamiltonian structure of the equations of motion rather than the equa-
tions of motion themselves, have proven to be a powerful tool for the development of models
with discrete conservation properties. By combining these ideas with an energy-conserving
Poisson time integrator and a careful choice of Galerkin spaces, a large set of desirable prop-
erties can be achieved. In particular, for the first time total mass, buoyancy and energy are
conserved to machine precision in the fully discrete model.

Keywords: thermal shallow water equations, dynamical core, mixed finite elements, finite
element exterior calculus, mimetic Galerkin differences, Hamiltonian mechanics

1. Introduction

The rotating shallow-water (RSW) equations are a useful model in their own right for a
diversity of natural flows. This has motivated many previous authors to propose and study
numerical methods for the RSW. They are also of interest as an intermediate model towards
three-dimensional modeling of atmospheric and oceanic circulations. A further step along
the path towards the full equations is the thermal shallow water equations (also known as the
Ripa equations) [1], which augment the shallow water equations with an additional field akin
to temperature or entropy that is transported and modifies the dynamics through its effects
on the fluid density and the horizontal pressure gradient. Indeed, when expressed in a floating
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Lagrangian vertical coordinate, rather than the usual Eulerian vertical coordinate, three-
dimensional equations of oceanic and atmospheric motion (see, e.g. [2]) closely resemble a
system of multiple layers obeying TSW-like dynamics and coupled only by the pressure force.
Additionally, the thermal shallow water equations and the fully compressible equations in
both Eulerian and generalized vertical coordinates share similar Hamiltonian structures [3],
with near-identical Poisson brackets and differing only in the Hamiltonian. Compared to
the RSW equations, the TSW equations have attracted relatively little attention [4, 5], and
few numerical solutions have ever been produced (although see [6, 7, 8]). This is especially
true in the atmospheric and oceanic dynamical core development communities, particularly
when considering structure-preserving discretizations. Here, we are interested in solving the
TSW equations as a milestone towards solving three-dimensional equations and as a testbed
to demonstrate novel ideas elaborating on recent work on structure-preserving discretization
for the RSW equations [9, 10, 11].

Regarding the RSW equations, previous work on numerical methods fall roughly in two
categories. In the first category, the hyperbolic structure of the equations expressed in flux-
form is exploited, leading generally to schemes of finite-volume or discontinuous-Galerkin
type. Typical issues to be dealt with are the design of low-dissipation Riemann solvers, the
preservation of steady states in the presence of source terms due to bottom topography, or
the stability of extensions to higher order. In the second category, to which the present work
belongs, the curl-form of the equations (akin to the Crocco equation for compressible fluid)
is exploited, leading generally to finite-difference [12, 13, 14, 15, 16, 17] or finite-element
schemes, including spectral elements [18] and mixed finite elements [9, 10, 19, 20, 21, 22].
The latter have paved a way towards higher-order spatial accuracy, which for finite-difference
methods is limited to first or second order at best, especially on irregular meshes [23]. Typical
concerns (a more exhaustive list of desirable numerical properties is discussed in Section 3.1)
are then the possibly anomalous numerical dispersion of waves [24, 25, 26, 27, 28, 29, 30, 31,
32], the preservation of steady states, especially geostrophic balance [33, 34], the numerical
dynamics of potential vorticity [35, 36], the Hollingsworth instability [37, 38, 39, 40, 41] and
the exact conservation of discrete energy and enstrophy [10, 12, 13, 14, 16, 17, 19, 42, 43, 44].

The desire to conserve exactly a discrete approximation of total energy stems from the
ultimate goal to simulate atmospheric and oceanic flows over long time scales, an exercise
which can be imperiled by the slow accumulation of tiny conservation errors. There is
a long history of finite-difference schemes successfully exploiting the curl-form to achieve
energy conservation up to time discretization errors. To date however, the majority of
such successes have been singular achievements due to the intuition and ingenuity of the
authors, without a clear path towards the systematic design of energy-conserving schemes.
Probably, this is because it has taken time to realize that the RSW equations conserve total
energy because they derive from a variational principle, which also implies the existence
of the curl-form, itself reflecting a non-canonical Hamiltonian structure (see Section 2).
Following this recognition, it has been suggested that this structure could be imitated at
the discrete level to systematically design energy-conserving spatial discretizations, so-called
quasi-Hamiltonian schemes [43]. Still, more than thirty years later, this strategy remains the
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exception [14, 42, 45, 46, 47] rather than the rule. Apart from those exceptions, recent work
on energy-conserving discretizations either ignores altogether the connection between the
curl form and the Hamiltonian structure [19, 48] or identifies a quasi-Hamiltonian structure
after the fact [10]1.

The present work defines, implements and evaluates structure-preserving finite element
schemes for the TSW along the lines of recent work for the RSW [10] and innovates over it
in four main areas :

1. Rather than the RSW, we address the TSW whose structure more closely resembles
that of three-dimensional fluid equations and which have received less attention; espe-
cially, several possible choices for the discretization of the additional prognostic field
of the TSW are considered theoretically and the consequences of these choices are
discussed based on numerical experiments,

2. In addition to previously considered combinations of compatible mixed finite element
spaces, which lead to certain dispersive anomalies when applied to the linearized RSW
equations [26, 27, 31], we consider the recently proposed Mimetic Galerkin Difference
elements [49], which have been shown to be free of those dispersive anomalies [24],

3. The Hamiltonian structure of the TSW equations is the starting point of our discretiza-
tion procedure, leading systematically to energy-conserving quasi-Hamiltonian spatial
discretizations, while still leaving some free choices whose numerical consequences are
studied,

4. In a major step forward, we leverage the quasi-Hamiltonian structure of our spatial
discretizations and recently proposed temporal discretization schemes to achieve exact
conservation of discrete energy (along with mass and total buoyancy) for all variants of
the discretization, while previous schemes conserve energy only up to time discretiza-
tion errors; the resulting scheme, while implicit in time, is arguably not significantly
more expensive than similar schemes currently used for numerical weather forecasting.

This work is presented as follows. In Section 2, we present the TSW and linearized TSW
equations in various forms. We focus on the curl-form equations, which we reformulate
in terms of the Poisson brackets that give them their Hamiltonian structure. In Section
3, Mimetic Galerkin Difference spaces are presented and a general procedure for finite-
element spatial discretization is developed. The fundamental idea is to discretize the Poisson
brackets and the total energy (Hamiltonian) themselves. This systematic procedure yields
weak forms of the equations with a quasi-Hamiltonian structure. In Section 4, a second-
order energy-conserving temporal scheme for quasi-Hamiltonian systems is presented. It
resembles a Crank-Nicholson scheme or an implicit midpoint rule, and is implemented using
a similar quasi-Newton iteration. In Section 5, we conduct numerical experiments to verify

1In fact, a quasi-Hamiltonian structure was a design principle for this discretization, but the presentation
avoided this aspect in an effort to improve accessibility.
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the properties of our scheme, such as: order of convergence and exact conservation of total
mass, buoyancy and energy. Section 6 summarizes and discusses our results.

2. Continuous Equations

Let the domain Ω ⊂ M be a compact, closed two dimensional subset of a manifold M,
that is rotating with some constant rotation rate Ω, which gives rise to a (possibly spatially
varying) Coriolis parameter f . Boundary terms can be introduced in what follows in order
to handle compact domains with boundaries, such a β channel, but this is deferred to later
work. Useful operators are the gradient ∇, divergence ∇·, skew-gradient ∇T = k̂×∇, curl
∇T · = k̂ · ∇× and vector transpose xT = k̂ × x; where k̂ is the local unit vertical vector.
This section is a review and compilation of existing material in the literature, and no claim
to originality is made.

2.1. Thermal Shallow Water Equations
Now consider a thin layer of hydrostatic Boussinesq fluid in Ω, moving in columns, on top

of a rigid bottom with height b = b(x, y) and with horizontally varying density ρ = ρ(x, y, t),
where ρ̄ is the density used in the Boussinesq approximation. The equations of motion that
govern such a system are known as the thermal shallow water equations, and they are written
in curl form [1] as:

∂h

∂t
+∇ · (hu) = 0 (1)

∂ u

∂t
+ hq uT +∇(

u ·u
2

) + s∇(h+ b) +
h

2
∇s = 0 (2)

∂s

∂t
+ u ·∇s = 0 (3)

Here h is the fluid height, u is the relative velocity, s = g ρ
ρ̄
is the buoyancy, S = hs is the

mass-weighted buoyancy, g is the (constant) gravity, b is the topographic height, ζ = ∇T · u
is the relative vorticity, η = ζ+f is the absolute vorticity and q = η

h
is the potential vorticity.

The standard shallow water equations are recovered for the case of constant buoyancy s = g
i.e. ρ = ρ̄. In the multilayer extension, a constant s in each layer would represent a barotropic
flow, while allowing s to vary leads to baroclinic flows. Combining (1) and (3), an evolution
equation for S can be written as

∂S

∂t
+∇ · (shu) = 0 (4)

It is also possible to rewrite the momentum equation (2) to involve ∇S instead of ∇s as

∂ u

∂t
+ hq uT +∇(

S

2
) +∇(

u ·u
2

) + s∇(
h

2
+ b) = 0 (5)

Two possible choice for prognostic variables are (h,u, S) and (h,u, s), which are discussed
in the following sections.
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Hamiltonian Formulation. As detailed in [1], the thermal shallow water equations in Ω can be
described using a Hamiltonian H and a Poisson bracket, which is a bilinear, anti-symmetric
operator that satisfies the Jacobi identity and the Leibniz rule. The dynamics of an arbitrary
functional F [x] (where x are the prognostic variables) are then given by

dF
dt

= {F ,H} (6)

The time evolution of a particular prognostic variable xi can be obtained by choosing F =∫
x̂ixi, where x̂i is an arbitrary function belonging to the same infinite-dimensional function

space as xi (also commonly referred to as a test function). This leads to the weak-form
equations, from which the usual strong form equations are deduced upon the assumption
of smoothness. Typically, for fluid dynamical systems in Eulerian coordinates the Poisson
bracket is non-canonical: it has a non-trivial nullspace. There exists a set of functionals,
termed Casimirs C, that satisfy:

{A, C} = 0 (7)

for any functional A. Therefore d C
dt

= {C,H} = 0, and these quantities are conserved.

2.2. Predicting (h,u, S)
The first approach predicts the mass-weighted buoyancy S.

Hamiltonian. The Hamiltonian H[h,u, S] is given by

H[h,u, S] =

∫
Ω

Sh

2
+ Sb+ h

u ·u
2

(8)

with associated functional derivatives

δH
δh

:= B =
S

2
+

u ·u
2

δH
δ u

:= F = hu
δH
δS

:= T =
h

2
+ b (9)

Poisson Bracket. The Poisson bracket is given by

{A,B} = {A,B}R + {A,B}Q + {A,B}S (10)

where:

{A,B}R =

∫
Ω

(−δA
δh
∇ · δ B

δ u
+
δ B
δh
∇ · δA

δ u
) (11)

{A,B}Q =

∫
Ω

−q δA
δ u
· δA
δ u

T

(12)

{A,B}S =

∫
Ω

(−δA
δS
∇ · (sδ B

δ u
) +

δ B
δS
∇ · (sδA

δ u
)) (13)

These brackets conserveH by virtue of their anti-symmetry, and since they are non-canonical
there will be additional conserved quantities known as Casimirs (see below).
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Equations of Motion. The equations of motion that come from the substituting the functional
derivatives (9) into the Poisson brackets (11) - (13) are:

∂h

∂t
+∇ · F = 0 (14)

∂ u

∂t
+ qFT +∇B + s∇T = 0 (15)

∂S

∂t
+∇ · (sF) = 0 (16)

Upon substitution of actual values of functional derivatives (9), it is easy to see that (14) -
(16) are the same as (1) - (4). When s = g the shallow water equations are recovered.

Linearized Equations. The dynamics associated with small-amplitude perturbations around
a resting steady state (h,u, S) = (H, 0, gH) (with b = 0), where H is a constant, can
be derived following well-established procedures in Hamiltonian mechanics [50]. This is
commonly referred to as linearization, and proceeds as follows. The linearized Hamiltonian
HL[h,u, S], which is the small-amplitude pseudo-energy associated with the steady state, is

HL[h,u, S] =

∫
Ω

Sh+ ghH + SH

2
+H

u ·u
2

(17)

with associated functional derivatives
δHL

δh
=
S

2
+
gH

2

δHL

δ u
= H u

δHL

δS
=
h

2
+
H

2
(18)

The dynamics are then given by the Poisson brackets evaluated at the steady state. The
{A,B}R bracket is unchanged, while {A,B}Q → {A,B}W and {A,B}S → {A,B}SL where

{A,B}W =

∫
Ω

− f
H

δA
δ u
· δ B
δ u

T

(19)

{A,B}SL =

∫
Ω

(−δA
δS
∇ · (g δ B

δ u
)− g δA

δ u
· ∇δ B

δS
) (20)

Substituting functional derivatives (18) into the Poisson brackets (11) and (19) - (20) gives
the equations of motion as

∂h

∂t
+H∇ · u = 0 (21)

∂ u

∂t
+ f uT +∇S

2
+ g∇h

2
= 0 (22)

∂S

∂t
+ gH∇ · u = 0 (23)

When S = gh, we recover the linearized shallow water equations. This is not a particularly
physically interesting linearization (there are much better found in [51]), but it suffices as
the basis for a simplified Jacobian to be used in solving the nonlinear system that arises
from an implicit time stepping scheme, which is what it is needed for.
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Casimirs. The Casimirs are given by

C[h,u, S] =

∫
Ω

hqG(
S

h
) + hK(

S

h
) (24)

where G and K are arbitrary functions of s. The associated functional derivatives are

δ C
δh

= K − sqG′ − sK ′ δ C
δ u

= −∇TG
δ C
δS

= qG′ +K ′ (25)

Important cases are total mass (G = 0,K = 1), total potential vorticity (G = 1,K = 0) and
total buoyancy (G = 0,K = s). Unlike the shallow water equations, potential enstrophy and
higher moments of the potential vorticity are no longer conserved. This is because potential
vorticity is no longer a material invariant. Taking ∇· of (15) gives the vorticity equation

∂η

∂t
+∇ · (hq u) +∇T ·

(
s∇(

h

2
+ b)

)
= 0 (26)

which yields (noting η = hq)

Dq

Dt
+

1

h
∇T ·

(
s∇(

h

2
+ b)

)
= 0 (27)

The extra terms (compared to the shallow water equations, which have Dq
Dt

= 0) are zero
only when s is a constant.

2.3. Predicting (h,u, s)
It is also possible to predict buoyancy s instead of mass-weighted buoyancy S. Using the

chain rule, the functional derivatives of an arbitrary functional A′[h,u, s] in terms of those
for A[h,u, S] can be written as

δA′

δh
=
δA
δh

+ s
δA
δS

δA′

δ u
=
δA
δ u

δA′

δS
= h

δA
δS

(28)

Hamiltonian. The Hamiltonian is

H′[h,u, s] =

∫
Ω

h2s

2
+ hsb+ h

u ·u
2

(29)

which gives

δH′

δh
:= B′ =

u ·u
2

+ sh+ sb
δH′

δ u
:= F = hu

δH′

δs
:= T ′ =

1

2
h2 + hb (30)

These can be obtained either by using the chain rule (28) in (9), or by directly taking
functional derivatives of (29).
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Poisson Bracket. The chain rule (28) is also used to transform the brackets (11) - (13). They
become

{A′,B′}R =

∫
Ω

(−δA
′

δh
∇ · δ B

′

δ u
+
δ B′

δh
∇ · δ B

′

δ u
) (31)

{A′,B′}Q =

∫
Ω

−q δA
′

δ u
· δ B

′

δ u

T

(32)

{A′,B′}S =

∫
Ω

∇s
h
·
(
δA′

δ u

δ B′

δs
− δ B′

δ u

δA′

δs

)
dΩ (33)

Note that (31) - (32) have the same form as (11) - (12).

Equations of Motion. Putting the functional derivatives (30) into the Poisson brackets (31)
- (33) gives the equations of motion as

∂h

∂t
+∇ · F = 0 (34)

∂ u

∂t
+ qFT +∇B′ − T ′

h
∇s = 0 (35)

∂s

∂t
+

F

h
· ∇s = 0 (36)

Again, substitution of the actual values for (30) into (34) - (36) yields (1) - (4), and when
s = g is the shallow water equations are recovered.

Linearized Equations. Linearizing about the same state (which has s = g), the chain rule
between functional derivatives becomes

δA′

δh
=
δA
δh

+ g
δA
δS

δA′

δ u
=
δA
δ u

δA′

δS
= H

δA
δS

(37)

This is understood by noting that the linearized version of the relationship S = sh is

S = gh+ sH (38)

Therefore the functional derivatives of the linearized Hamiltonian H′L[h,u, s]

H′L[h,u, s] =

∫
Ω

shH

2
+ g

h2

2
+ ghH +

sH2

2
+H

u ·u
2

(39)

are

δH′L
δh

= gh+
sH

2
+ gH

δH′L
δ u

= H u
δH′L
δs

=
hH

2
+
H2

2
(40)

The {A′,B′}R bracket is unchanged, while {A′,B′}Q → {A′,B′}W = {A,B}W and
{A′,B′}s → {A′,B′}SL = 0. This exposes the fact that ∂s

∂t
= 0 for this choice of lin-

earization. This can be seen in the S variant, but it is somewhat hidden. The equations of
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motion are

∂h

∂t
+H∇ · u = 0 (41)

∂ u

∂t
+ f uT +g∇h+

H

2
∇s = 0 (42)

∂s

∂t
= 0 (43)

As before, when s = 0 we recover the linear shallow water equations.

Casimirs. If s is predicted, the Casimirs C ′[h,u, s] = C[h,u, S] are written in the form

C ′[h,u, s] =

∫
Ω

hqG(s) + hK(s) (44)

and by the chain rule (28) or direct calculation we have

δ C ′

δh
= K

δ C ′

δ u
= −∇TG

δ C ′

δs
= hqG′ + hK ′ (45)

3. Compatible Galerkin Spatial Discretization

The thermal shallow water equations (14) - (16) or (34) - (36) are discretized following a
Galerkin approach. Utilizing the Hamiltonian formulation, a particularly elegant procedure
is

1. Restrict the Poisson bracket (and possibly perform integration by parts) to a set of
compatible Galerkin spaces, which is one that forms a discrete version of the deRham
complex [52, 53]. The construction of such spaces is described in Section 3.2.

2. Discretize the functionals H and F using variables from the same spaces.

Then the discrete equations of motion come from simply inserting the discrete functional
derivatives into the discretized brackets. This is the Galerkin version of the finite-difference
approach advocated in [43] (and further developed in [2, 42, 45, 46, 47]) which discretizes the
functionals H and F , and the Poisson bracket {A,B} directly, rather than the equations of
motion themselves. Using compatible Galerkin spaces ensures that the discrete brackets are
anti-symmetric and have some subset of the Casimirs of the continuous bracket. However,
it does not seem possible to also give the discrete brackets the Jacobi identity. We therefore
refer to this approach as a quasi-Hamiltonian discretization. Before pursing this idea, first a
set of desirable properties for a numerical model of the thermal shallow water equations to
possess is identified.
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3.1. Desirable Properties
As discussed in [54], there are many desirable properties that a numerical model of the

atmosphere should posses. Here we propose a similar list for the case of the thermal shallow
water equations, and give a general approach to achieve them. We separate the properties
into two groups:

Category 1

(A1) Conservation of total mass through a flux based formulation

(A2) Conservation of total buoyancy, through a flux based formulation

(A3) Conservation of total energy, through the correct energy conversion terms (note that
this also implies the linearized equations conserve energy):

(a) The pressure gradient terms ∇B and ∇ ·F cancel to conserve energy (equivalent
to an anti-symmetric {A,B}R = {A′,B′}R bracket)

(b) The Coriolis term qFT is energy conserving (equivalent to an anti-symmetric
{A,B}Q = {A′,B′}Q bracket)

(c) The buoyancy gradient terms s∇T and ∇ · (sF) cancel to conserve energy (or
their counterparts in the s variant; equivalent to an anti-symmetric {A,B}S or
{A′,B′}s bracket)

(A4) Conservation of total potential vorticity
∫
hq =

∫
η, through

(a) The pressure gradient term ∇B does not produce vorticity

(b) The entropy gradient term s∇T (or the counterpart in the s variant) does not
produce vorticity

(A5) Compatible advection of s: If s is uniform initially, then ∂s
∂t

= 0. If predicting S, this
is equivalent to the S equation becoming the h equation when s = 1.

(A6) At least 2nd order Taylor series accuracy (preferably arbitrary order)

Additionally, the implied shallow water discretization (that is obtained when s = g)
should satisfy:

(B1) Conservation of mass through a flux based formulation

(B2) Conservation of total energy, through the correct energy conversion terms (note that
this also implies the linearized equations conserve energy):

(a) The pressure gradient terms ∇B and ∇ ·F cancel to conserve energy (equivalent
to an anti-symmetric {A,B}R = {A′,B′}R bracket)
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(b) The Coriolis term qFT is energy conserving (equivalent to an anti-symmetric
{A,B}Q = {A′,B′}Q bracket)

(B3) Conservation of total potential vorticity, through a flux based formulation

(B4) Conservation of potential enstrophy, through the correct conversion terms

(B5) Compatible potential vorticity advection for the nonlinear equations = Steady geostrophic
modes for the linear equations: A initially uniform q field should remain uniform

(B6) Good linear mode properties:

(a) Free of spurious stationary modes, such as pressure modes

(b) Free of spurious inertial modes

Note that generally, (A1), (A3) and (A4) will imply (B1), (B2) and (B3), respectively. Spu-
rious stationary modes are non-propagating linear modes that do not have a physical ana-
logue, and are often damaging to simulations. A prominent example is the pressure mode
that arises for unstabilized Pn - Pn discretizations of the shallow water equations. Spuri-
ous inertial modes are propagating but not wavelike, unphysical linear modes related to the
physical inertial mode. They occur in Pm - Pn (m > n) discretizations of the shallow water
equations. More discussion of spurious stationary and inertial modes can be found in [30].
Non-steady geostrophic modes are known to arise for certain hexagonal C-grid finite differ-
ence models (also hexagonal B/D/E grids) [33] (where they spuriously propagate but do not
decay) and for discontinuous Galerkin methods (Daniel Le Roux, personal communication,
where they decay but do not propagate).

Category 2

(C1) Good linear mode properties for the implied shallow water discretization:

(a) Free of spurious branches of dispersion relationship

(b) Discrete dispersion relationships that are good approximations of the continuous
ones, without spectral gaps and with higher-order accuracy

(C2) Computational efficiency on a range of architectures, including expected future trends
towards high levels of parallelism and increasing memory hierarchy depths

(C3) Freedom from the Hollingsworth instability

Spurious branches of the dispersion relationship are unphysical inertia-gravity or Rossby
wave branches, that arise due to a mismatch in the number of degrees of freedom (finite-
difference models) or dimensionality of the spaces (finite element models) between the wind
and mass fields. This typically occurs on non-quadrilateral grids, although they also occur
for the SrΛk family on quadrilaterals from finite element exterior calculus. Spectral gaps are
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non-dimensional wavenumbers where the dispersion relationship is double-valued and the
group velocity goes to zero, and they are unphysical artifacts that lead to noisy simulations
and incorrect propagation of wave packets with energy at the gap frequencies. They often
occur for higher-order finite element methods. The Hollingsworth instability [38, 39] is a
nonlinear numerical instability seen in 3D models for small equivalent depths (slow internal
modes), typically for C grid finite difference models using energy-conserving discretizations.
It is though to arise from a mismatch between the advective and vector invariant forms of
momentum transport, and despite several decades passing since its discovery it is still not
well understood. However, recently some progress has been made [37, 40, 41].

How to obtain them. This is a rather long list of properties, but they are all achievable
through using compatible Galerkin methods to construct a quasi-Hamiltonian discretiza-
tion. A compatible Galerkin space discretization is a generalization of finite element exterior
calculus [52, 55] to any set of spaces that construct a discrete deRham complex. There
are many known sets of spaces that do this, for examples see [9, 53]. The specific quasi-
Hamiltonian discretizations presented in Section 3.5, 3.6 and 3.7 achieve (A1) - (A5), which
is demonstrated in Section 3.8, 3.9 and 3.10; and they are arbitrary-order, giving (A6). As
demonstrated in [9, 10, 11], a quasi-Hamiltonian discretization of the shallow water equa-
tions using compatible Galerkin methods gives (B1) - (B6), which the discretizations in this
paper reduce to when s = g.

The specific choice of compatible Galerkin spaces and their implementation then deter-
mines the ability to satisfy the properties (C1) and (C2) in Category 2, and Table 1 details
the ability of various choices of compatible Galerkin families to obtain properties (C1) and
(C2). In particular, on triangular meshes the standard finite element exterior calculus fam-
ilies P−r Λk and PrΛ

k have spurious branches [9], spectral gaps and there is not a known
tensor-product formulation for the basis functions. It is possible to avoid spurious branches
on triangles using the BDFM1 space [9], but this still does not avoid spectral gaps and the
extension of this approach to higher-order is unclear. For these reasons, we have chosen
instead to use tensor-product Galerkin methods on structured, quadrilateral meshes. In this
approach, a set of compatible Galerkin spaces in 1D are chosen, and tensor products are
used to construct the 2D spaces. More details are found in Section 3.2. A tensor-product
structure enables many computational techniques such as sum factorization that accelerate
the resulting code, helping satisfy (C2). Additionally, a tensor-product structure ensures
that spurious branches of the dispersion relationship are avoided at any order of accuracy,
since there are always two degrees of freedom in the wind field for every degree of freedom
in the mass field; this gives (C1a). However, the 1D spaces must be chosen with care. As
shown in [26, 27, 31], the standard finite element exterior calculus choice of Q−r Λk in 2D and
PC
n −PDG

n−1 in 1D, where PC
n is the order n Lagrange space and PDG

n−1 is the order n−1 discon-
tinuous Lagrange space, leads to the presence of spectral gaps when n ≥ 2. A set of spaces,
called mimetic Galerkin differences (MGDn), that avoids spectral gaps are introduced in
[24, 49] and discussed further below.

It should be noted that all of the compatible Galerkin methods investigated in the liter-
ature and by the authors suffer from a CD mode [30] (also known as the f -mode or Coriolis
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Element family C1a C1b C2
Spurious Branches Spectral Gaps Tensor-Product Structure

P−r Λk Yes1 Likely3 No
PrΛ

k Yes2 Likely3 No
SrΛ

k Yes2 Likely3 No
BDFM1 No Likely3 No
Q−r Λk No Yes4 Yes
MGDn No No Yes

1: Spurious inertia-gravity waves 2: Spurious Rossby waves
3: Proven for 1D version (PC

n − PDG
n−1), seems extremely likely for 2D

4: Lowest-order avoids gaps

Table 1: Effects of space choice on ability to obtain the desirable properties of Section 3.1. All spaces
achieve the Category 1 properties. Here we have used the finite element exterior calculus [55, 52] names
for the families, where appropriate. Only the MGDn spaces are able to obtain all of the properties. The
P−r Λk (RTn on triangles for velocity), PrΛk (BDMn on triangles for velocity), Q−r Λk (RTn on quadrilaterals
for velocity) and BDFM1 families were investigated in [9], where the presence or lack of spurious branches
was demonstrated. The presence of spurious Rossby modes might be acceptable (as in hexagonal C grid
finite difference schemes), but spurious inertia-gravity modes (such as those present for the triangular C
grid) are known to cause issues [56]. The SrΛk family has never been studied (to the author’s knowledge)
in geophysical fluid dynamics before, but the analysis in [9] applies and indicates that it will have spurious
Rossby modes (too many wind degrees of freedom compared to mass).

mode), which occurs due to the rank deficiency of the discrete Coriolis matrix. The CD
mode is the zero group velocity mode occurring at the highest wavenumber associated with
the averaging required for the Coriolis term. It appears to be an unavoidable feature of
compatible Galerkin (and C-grid finite difference) methods. This mode does not appear to
have any detrimental impact on simulations with a sufficiently resolved Rossby radius, which
is the case for most realistic atmospheric models today.

A detailed study of the Hollingsworth instability for compatible Galerkin methods is still
lacking. However, we have run the test case discussed in Section 5.2 of [37] with Ru = 20
and Fu = 10 using the EC2-SI time integrator and MGD3 family, and found no sign of
the Hollingsworth instability out to a non-dimensional time of T = 4. Similar results were
obtained for a different but related discretization using the BDM2 family on triangles (Pedro
Peixoto, personal communication). We are currently undertaking a numerical version of the
stability study performed in [37] for several compatible Galerkin families on triangles and
quadrilaterals (including MGDn) and discretization choices for the nonlinear PV flux term,
and will report on the results of this in a future publication.

In summary, we have chosen to discretize the Hamiltonian formulation using a tensor-
product compatible Galerkin method, with a specific choice of underlying 1D spaces such
that a good dispersion relationship is obtained for arbitrary order. In this way, our spatial
discretization is able to obtain all of the desired properties. To our knowledge, this is the
first discretization that achieves this.
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3.2. Mimetic Galerkin Differences (MGDn)
Start with a set of 1D spaces A ⊂ H1 and B ⊂ L2 that are a partition of unity and

form the 1D discrete deRham complex A ∂/∂x−−−→ B. From these it is possible to construct a
2D discrete deRham complex satisfying the necessary properties by forming the subspaces
of H1, L2 and H(div) using tensor products of the 1D spaces:

W0 = A⊗ A ⊂ H1 (46)
W1 = (A⊗ B)̂i + (B⊗ A)̂j ⊂ H(div) (47)
W2 = B⊗ B ⊂ L2 (48)

where î and ĵ are unit vectors on the reference quadrilateral in the x̂ and ŷ directions,
respectively. More details about the tensor product construction can be found in [11, 53, 57].
One possible choice is A = PC

n and B = PDG
n−1, which gives rise to the Q−r Λk family from

finite element exterior calculus. Alternative choices give rise to the mimetic spectral element
method [53] and isogeometric discrete differential forms [53, 58, 59]. We choose instead to
use Galerkin differences [60] GDn for A, and to define the corresponding space B = DGDn−1

(referred to as discontinuous Galerkin differences) using the ideas in [53]. We will refer to
this approach as the mimetic Galerkin differences (MGDn) family, which is defined for n
odd. Specifically, consider the m basis functions Ni(x) for GDn, where i ∈ [0, . . . ,m − 1],
on a periodic 1D mesh with m elements. The corresponding m basis functions Mj(x) (with
j ∈ [1, . . . ,m]) for DGDn−1 are given by

Mj(x) = −
j−1∑
k=0

d

dx
Nk(x) =

m−1∑
k=j

d

dx
Nk(x) (49)

where the two expressions are identical since A = GDn forms a partition of unity and
therefore

m−1∑
i=0

Ni(x) = 1→
m−1∑
i=0

d

dx
Ni(x) = 0 (50)

There are the same number of degrees of freedom for A and B since the domain is periodic.
Figure 1 shows plots of the basis functions for theW0,W1 andW2 spaces of theMGD3 family.
Note that unlike finite elements, the basis function for a degree of freedom has support that is
not limited to the topological support of the associated geometric entity, although the support
is still compact. As a historical note, the n = 3 version of these elements were developed
using different methods, discussed further in [49]. Following standard practice for element
based Galerkin methods, integrals are evaluated first by pulling back to a reference element
(using the appropriate Piola transform), and then calculating the resulting transformed
integral numerically with a quadrature rule of the appropriate degree. More details on this
are found in Section 3.4. Optimal quadrature rules for the standard Q−r Λk family are known
(they are simply Gaussian quadrature for each element), but optimal quadrature rules for
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other compatible Galerkin families, including the MGDn family, remain a subject of active
research (see [61] for an example of such rules for isogeometric analysis).

As detailed in [24], the GDn−DGDn−1 pair in 1D gives an inertia-gravity wave dispersion
relationship that is free of spectral gaps for any n. This is in contrast to PC

n −PDG
n−1 element,

which has spectral gaps [26] for n ≥ 2. Although it is possible to eliminate these gaps for
n = 2 through partial lumping of the velocity mass matrix, it does not seem possible to do so
for n ≥ 3. In any case, mass lumping is an equation dependent procedure that also destroys
the higher-order convergence of the dispersion relationship. This is a strong motivation for
the use of mimetic Galerkin differences. Numerical calculations have confirmed that the
spectral gaps are also eliminated in the case of the 2D linear shallow water equations, and
work is ongoing to verify this analytically.

One major advantage of these spaces is that there is a single degree of freedom per
geometric entity (vertex, edge or cell) of the mesh. In fact, the basis coefficients at any order
n are scalars sampled at vertices for the W0 space, fluxes integrated over edges for the W1

space; and densities integrated over cells for the W2 space. These are precisely the degrees of
freedom for a standard C grid finite-difference method, and this is expected to make coupling
to existing physics parameterizations and tracer transport schemes for the development of
a full model much simpler than with other Galerkin methods. This property is also shared
with the lowest-order Q−r Λk family (corresponding to the PC

1 − PDG
0 element in 1D) for an

appropriate choice of basis function, but not any of the higher order variants. The mimetic
spectral element method also shares this property, albeit for a non-uniform subelement set
of cells, vertices and edges [19]. The MGDn family is shown schematically Figure 2.

3.3. Prognostic Variables and Choice of Spaces
The discretizations presented in this section predict h and u, and either S or s. If S

is predicted, s must be diagnosed. Additionally, if the indirect form of the nonlinear PV
flux term is used, then q must also be diagnosed. Following ideas from differential geometry
[62, 63, 64], we place h, S, b, B,B′ ∈ W2, u,F ∈ W1 and q ∈ W0. This corresponds with
h and S being 2-forms, u and F being 1-forms and q being a 0-form. The test functions
(denoted with hats) are ĥ, Ŝ ∈ W2; û ∈ W1 and q̂ ∈ W0. For the variant that predicts
S (Section 3.5), we also place s, ŝ ∈ W2. For the variant that predicts s (Section 3.6), we
either place s, ŝ, T ′ ∈W2 or s, ŝ, T ′, h′ ∈W0. Finally, it is possible to directly discretize the
nonlinear PV flux term, instead of using the form involving q (Section 3.7). This amounts
to discretizing a {A,B}Q bracket of the form

{A,B}Q =

∫
Ω

−∇ · u
h

δA
δ u
· δ B
δ u

T

(51)

instead of (12). Then purely for diagnostic purposes it is useful to introduce absolute vorticity
η ∈ W0 with η̂ ∈ W0. All of these possible choices are shown schematically in Table
2. This choice of spaces corresponds to an Arakawa C-Grid for a finite difference model.
Table 3 shows the form of conserved quantities and other properties achieved by the various
discretization variants presented in this section.
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Variant W0 W1 W2

Predict S, use q form q u,F h,S,b,B,T ,s
Predict S, use direct form η u,F h,S,b,B,T ,s
Predict s ∈W0, use q form q,h′,s,T ′ u,F h,b,B′

Predict s ∈W0, use direct form η,h′,s,T ′ u,F h,b,B′

Predict s ∈W2, use q form q u,F h,s,b,B′,T ′

Predict s ∈W2, use direct form η u,F h,s,b,B′,T ′

Table 2: Choice of spaces for prognostic variables, constants, diagnostic variables and auxiliary variables;
for the 6 possible variants presented in this work. Prognostic variables (red) have a time evolution equation.
Constants (light blue) do not change in time, and are set once at the beginning of the simulation. Diagnostic
variables are determined from the prognostic variables as needed; and are divided into two categories:
those associated with the Poisson bracket (blue) and those associated with the functional derivatives of the
Hamiltonian (green). This distinction is useful when considering the time discretization, since the integrator
treats the two types separately. Auxiliary variables (black) are useful for computing statistics and making
plots, they are not needed for the evolution of the system.

Variant A4 A2 A3 and B1 B2 B3
H B PV PE PV compatability

Predict S, use q form 1
2
〈S, h+ 2b〉+HK 〈1, S〉 〈h, q〉 Yes Yes

Predict S, use direct form 1
2
〈S, h+ 2b〉+HK 〈1, S〉 〈1, η〉 No No

Predict s ∈W0, use q form 1
2
〈hs, h+ 2b〉+HK 〈h′, s〉 〈h, q〉 Yes Yes

Predict s ∈W0, use direct form 1
2
〈hs, h+ 2b〉+HK 〈h′, s〉 〈1, η〉 No No

Predict s ∈ L2, use q form 1
2
〈hs, h+ 2b〉+HK 〈h, s〉 〈h, q〉 Yes Yes

Predict s ∈ L2, use direct form 1
2
〈hs, h+ 2b〉+HK 〈h, s〉 〈1, η〉 No No

HK = 1
2
〈hu,u〉 = 1

2
〈F,u〉 = 〈h,K〉 with K = 1

2
u ·u

Table 3: Form of the conserved quantities total energy H, total buoyancy B and total potential vorticity
PV for the six variants discussed in the text; and their ability to obtain potential enstrophy PE = 1

2 〈hq, q〉
conservation and PV compatibility for the implied shallow water discretization in the limit s = g. Note
that although all discretizations conserve discrete analogues of H, B and PV, these analogues are different.
Unless otherwise noted, the variants achieve all of the other properties from Section 3.1.
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3.4. Discrete Grid and Operators
The domain Ω is discretized using a conforming mesh of curvilinear quadrilateral elements

e and facets (curvilinear lines) f , with facet normals denoted by n̂. Given a variable x, x+

and x− are the restrictions of x to each side of the facet, arbitrarily labeled + and −. All
calculations are done on a reference element, with Piola transformations used to pullback
from physical space to reference space. The transformation x = F (x̂) from reference space
to Ω, where x = (x, y) are coordinates in Ω and x̂ = (x̂, ŷ) are coordinates in reference space,
has associated Jacobian J

J =

(
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

)
(52)

The Piola transforms are then defined as

β = β̂ for β, β̂ ∈W0 (53)
γ = J−T γ̂ for γ, γ̂ ∈W1 (54)

β =
β̂

|J|
for β, β̂ ∈W2 (55)

where β is a scalar quantity in physical space, β̂ a scalar quantity in reference space, γ a
vector quantity in physical space and γ̂ a vector quantity in reference space. The situation
is somewhat more complicated on a manifold, but provided the manifold is orientable all the
needed transformations exist (see [65] for more information).

The L2 inner products over elements 〈a, b〉 and over facets 〈a, b〉Γ are defined as

〈a, b〉 =
∑
e

∫
e

a 〈a, b〉Γ =
∑
f

∫
f

ab (56)

where ab is the appropriate scalar product (for example, it is the dot product for vectors).
Due to the choice of spaces (i.e. the discrete deRham complex), the divergence ∇T · for W1

and skew-gradient ∇· for W0 are strong operators. However, the gradient ∇ for W2 and curl
∇T · for W1 are defined weakly as 〈

û, ∇̃φ
〉

= −〈∇ · û, φ〉 (57)〈
q̂, ∇̃T · u

〉
= −

〈
∇T q̂,u

〉
(58)

where û ∈W1 and q̂ ∈W0 are arbitrary test functions. The gradient ∇ for W0 is strong, but
it actually maps into a subspace Ŵ1 ⊂ H(curl) belonging to the other 2D discrete deRham
complex that has strong ∇ for W0 and ∇T · for Ŵ1 operators and weak ∇̃T for W2 and ∇̃·
for Ŵ1 operators. Given a vector x = (a,b), the transpose is defined as

xT = (−b, a) (59)
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For facet integrals it is useful to introduce the broken operators ∇H , ∇T
H , ∇H · and ∇T

H · that
are local to an element. The jump operator [x] is defined as

[x] = x+ − x− (60)

for scalar and vector x. It is also useful to define a jump operator for vectors that produces
a scalar as

[x, n̂] = x+ n̂+ +x− n̂− (61)

and a jump operator for scalars that produces a vector as

[x, n̂] = x+ n̂+ +x− n̂− (62)

The average operator {x} is defined as

{x} =
1

2
(x+ + x−) (63)

for scalar and vector x.

3.5. Predicting S
One variant utilizes the prognostic variables (h,u, S), and diagnoses s ∈W2 from S and

h.

3.5.1. Hamiltonian and Functional Derivatives
The Hamiltonian H[h,u, S] is given as

H[h,u, S] =
1

2
〈S, h+ 2b〉+

1

2
〈hu,u〉 (64)

Therefore, the auxiliary equations for the functional derivatives are:〈
ĥ,
δH
δh

〉
=

〈
ĥ, B

〉
=

〈
ĥ,
S

2
+

u ·u
2

〉
(65)〈

û,
δH
δ u

〉
= 〈û,F〉 = 〈û, hu〉 (66)〈

Ŝ,
δH
δS

〉
=

〈
Ŝ, T

〉
=

〈
Ŝ,
h

2
+ b

〉
(67)

Note that the functional derivatives live in the same space as their associated variable:
B, T ∈W2 and F ∈W1.
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3.5.2. Discrete Brackets
Based on ideas from [66, 11], the discrete brackets are given as

{A,B}R = −
〈
δA
δh

,∇ · δ B
δ u

〉
+

〈
δ B
δh

,∇ · δA
δ u

〉
(68)

{A,B}Q = −
〈
δA
δ u

, q
δ B
δ u

T〉
(69)

{A,B}S =

〈
∇H

δA
δS

, s
δ B
δ u

〉
−
〈
∇H

δ B
δS

, s
δA
δ u

〉
(70)

+

〈
[
δ B
δS

δA
δ u

, n̂], {s}+ cf [s]

〉
Γ

−
〈

[
δA
δS

δ B
δ u

, n̂], {s}+ cf [s]

〉
Γ

(71)

The diagnostic quantities q and s used in the brackets are obtained from:

〈q̂, hq〉 = −
〈
∇T q̂,u

〉
+ 〈q̂, f〉 (72)

〈ŝ, hs〉 = 〈ŝ, S〉 (73)

The stabilization term cf is given by

cf =
α

2
if F · n̂ > 0 cf = −α

2
if F · n̂ < 0 (74)

where α is a parameter. When α = 0, this results in a centered flux, while α = 1 gives an
upwind flux. These brackets are only anti-symmetric, they do not satisfy the Jacobi identity.
However, anti-symmetry is sufficient to ensure conservation of H.

3.5.3. Discrete Equations of Motion
The discrete equations of motion are then obtained through the discrete brackets by

letting the functional F be simply the relevant variable multiplied by a test function from
the appropriate space, exactly as in the continuous case. For example, the h evolution
equation is obtained by setting

F =
〈
ĥ, h
〉

(75)

This works since the test functions are, by definition, independent of time and therefore

dF
dt

=

〈
ĥ,
∂h

∂t

〉
(76)

which is precisely the correct time derivative term. Applying this approach and using func-
tional derivatives (65) - (67) in the Poisson brackets (68) - (70) yields:〈

ĥ,
∂h

∂t

〉
+
〈
ĥ,∇ · F

〉
= 0 (77)〈

û,
∂ u

∂t

〉
+
〈
û, qFT

〉
− 〈∇ · û, B〉+ 〈s û,∇HT 〉 − 〈[T û, n̂], {s}+ cf [s]〉Γ = 0 (78)〈
Ŝ,
∂S

∂t

〉
−
〈
∇H Ŝ, sF

〉
+
〈

[Ŝ F, n̂], {s}+ cf [s]
〉

Γ
= 0 (79)
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Due to the choice of spaces, (77) holds pointwise, not just in an integral sense. Additionally,
(65) can be directly substituted into (78), leaving only the auxiliary equations (66) and
(67) to be solved. So the final system consists of the prognostic equations (77) - (79) and
the diagnostic equations (66) - (67) and (72) - (73), with (65) substituted into (78). A
discretization of the shallow water equations can be obtained from the thermal shallow
water equations by setting S = gh (i.e. s = g), just as in the continuous case. This
eliminates the bracket {A,B}S and changes the Hamiltonian H and its associated functional
derivatives. Therefore, the evolution equation for S and the diagnostic equations for s and
T are eliminated. In fact, the spatial discretization scheme in [10] will be recovered.

3.5.4. Discretization of Linearized Equations
Again following the procedure in [50], and using the same reference state, the linearized

equations can be obtained from the nonlinear equations. They are〈
ĥ,
∂h

∂t

〉
+H

〈
ĥ,∇ · u

〉
= 0 (80)〈

û,
∂ u

∂t

〉
+
〈
û, f uT

〉
− 1

2
〈∇ · û, S〉 − g

〈
∇ · û, h

2

〉
= 0 (81)〈

Ŝ,
∂S

∂t

〉
+ gH

〈
Ŝ,∇ · u

〉
= 0 (82)

This discretization of the linear equations is useful in the construction of a semi-implicit
variant of the energy-conserving integrator discussed below. As for the nonlinear equations,
when S = gh, the linear thermal shallow water equations reduce to the linear shallow water
equations.

3.6. Predicting s
It is also possible to predict s instead of S, and we can place s in either W2 or W0. For

both variants, the new Hamiltonian H′[h,u, s] is

H′[h,u, s] =
1

2
〈hs, h+ 2b〉+

1

2
〈hu,u〉 (83)

with functional derivatives〈
ĥ,
δH′

δh

〉
=

〈
ĥ, B′

〉
=
〈
ĥ, sh+ sb+

u ·u
2

〉
(84)〈

û,
δH′

δ u

〉
= 〈û,F〉 = 〈û, hu〉 (85)〈

ŝ,
δH′

δs

〉
= 〈ŝ, T ′〉 =

〈
ŝ,
h2

2
+ hb

〉
(86)
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Equation (84) can be directly substituted into (92) or (97), but (85) and (86) must be solved.
The {A′,B′}R and {A′,B′}Q brackets are given by

{A′,B′}R = −
〈
δA′

δh
,∇ · δ B

′

δ u

〉
+

〈
δ B′

δh
,∇ · δA

′

δ u

〉
(87)

{A′,B′}Q = −

〈
δA′

δ u
, q
δ B′

δ u

T
〉

(88)

which have the same form as (68) - (69) from the variant predicting S, while the {A′,B′}s
bracket will differ depending on the choice of space for s. The two variants are described
below.

3.6.1. s ∈W0

One variant places s ∈W0. The discrete {A′,B′}s bracket is

{A′,B′}s =

〈
∇s
h′
,
δA′

δ u

δ B′

δs

〉
−
〈
∇s
h′
,
δ B′

δ u

δA′

δs

〉
(89)

where h′ ∈W0 is defined through
〈ŝ, h′〉 = 〈ŝ, h〉 (90)

This bracket is anti-symmetric, so energy will be conserved. Note that T ′ ∈W0 since s ∈W0.
The equations of motion are: 〈

ĥ,
∂h

∂t

〉
+
〈
ĥ,∇ · F

〉
= 0 (91)〈

û,
∂ u

∂t

〉
+
〈
û, qFT

〉
− 〈∇ · û, B′〉 −

〈
∇s
h′
, ûT ′

〉
= 0 (92)〈

ŝ,
∂s

∂t

〉
+

〈
∇s
h′
,F ŝ

〉
= 0 (93)

Since (77) holds pointwise, an evolution equation for h′ is given as〈
ŝ,
∂h′

∂t

〉
+ 〈ŝ,∇ · F〉 = 0 (94)

This form is well-suited to the application of Streamline Upwind Petrov-Galerkin for the s
equation, since there are no derivatives on ŝ. However, it is not clear how to keep energy
conservation when using SUPG in this way, since the test function for the time derivative
term would also be modified.
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3.6.2. s ∈W2

Alternatively, we can place s ∈ W2 and use ideas from [66]. Now T ′ ∈ W2 and the
discrete {A′,B′}s bracket is

{A′,B′}s =

〈
∇ · ( 1

h

δ B′

δ u

δA′

δs
)−∇ · ( 1

h

δA′

δ u

δ B′

δs
), s

〉
−
〈

[
1

h

δ B′

δ u

δA′

δs
, n̂]− [

1

h

δA′

δ u

δ B′

δs
, n̂], {s}+ cf [s]

〉
Γ

(95)

This yields the equations of motion as 〈
ĥ,
∂h

∂t

〉
+
〈
ĥ,∇ · F

〉
= 0 (96)〈

û,
∂ u

∂t

〉
+ · · ·+

〈
∇ · ( 1

h
ûT ′), s

〉
−
〈

[
1

h
ûT ′, n̂], {s}+ cf [s]

〉
Γ

= 0 (97)〈
ŝ,
∂s

∂t

〉
−
〈
∇ · ( 1

h
F ŝ), s

〉
+

〈
[
1

h
F ŝ, n̂], {s}+ cf [s]

〉
Γ

= 0 (98)

3.6.3. Linearized Equations
For both approaches that predict s instead of S (with s ∈W2 or s ∈W0), the discretiza-

tion of the linearized equations becomes〈
ĥ,
∂h

∂t

〉
+H

〈
ĥ,∇ · u

〉
= 0 (99)〈

û,
∂ u

∂t

〉
+
〈
û, f uT

〉
−
〈
∇ · û, gh+

sH

2

〉
= 0 (100)〈

ŝ,
∂s

∂t

〉
= 0 (101)

3.7. Alternative form of {A,B}Q
Following ideas from [11, 66, 67, 68], an alternative to diagnosing q and computing the

nonlinear PV flux term in the ∂ u
∂t

equation as〈
û,
∂ u

∂t

〉
+
〈
û, qFT

〉
+ · · · = 0 (102)

is to directly discretize it as〈
û,
∂ u

∂t

〉
−
〈
∇T
H

(
û ·F

T

h

)
,u

〉
+

〈
û, f

FT

h

〉
+

〈
[û ·F

T

h
, n̂]T , {u}+ cf [u]

〉
Γ

+ · · · = 0 (103)

where ∇T
H is the broken skew-gradient local to an element. This comes from a discrete

{A,B}Q = {A′,B′}Q bracket given by

{A,B}Q = {A′,B′}Q =

〈
∇T
H

(
1

h

δA
δ u
· (δ B
δ u

)T
)
,u

〉
−
〈
f

h

δA
δ u

, (
δ B
δ u

)T
〉
−
〈

[
1

h

δA
δ u
· (δ B
δ u

)T , n̂]T , {u}+ cf [u]

〉
Γ

(104)
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This bracket is still anti-symmetric, so the discrete system will conserve energy H. This
approach is of interest because it offers an alternative to the q based variant that retains
almost all of its properties, but might have different behavior in terms of the Hollingsworth
instability.

3.8. Compatible Advection of s
Compatible advection of s requires that an initially uniform s remains so for all time.

3.8.1. S predicted
When S is predicted, compatible advection is equivalent to the requirement that the S

equation reduces to the h equation when s = 1. Start by letting s = 1 in (79) to get〈
Ŝ,
∂S

∂t

〉
−
〈
∇H Ŝ,F

〉
+
〈

[Ŝ F, n̂], 1
〉

Γ
= 0 (105)

where [s] = 0 and {s} = 1 have been used. The last two terms can be combined using
integration by parts (since F has continuous normals) to yield〈

Ŝ,
∂S

∂t

〉
+
〈
Ŝ,∇ · F

〉
= 0 (106)

Finally, the time derivative of (73) gives〈
ŝ,
∂(hs)

∂t

〉
=

〈
ŝ,
∂S

∂t

〉
(107)

Equations (106) and (107) can be combined (using s = 1 and ŝ = ĥ, the latter because they
are in the same space) to yield 〈

Ŝ,
∂h

∂t

〉
+
〈
Ŝ,∇ · F

〉
= 0 (108)

This is equivalent to (77) since Ŝ and ĥ are in the same space.

3.8.2. s predicted
Here we consider what happens to the s equation when s is a constant. We start by

noting that ∇s = ∇Hs = [s] = 0. Simple inspection of (93) gives〈
ŝ,
∂s

∂t

〉
= 0 (109)

For (98), similar calculations to those for the S variant, involving integration by parts also
give

〈
ŝ, ∂s

∂t

〉
= 0. Therefore, an initially constant s will remain so for all time.
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3.9. Implied Vorticity Equation and PV Compatibility
If we let û = −∇T q̂ and time differentiate (72), a discrete PV equation emerges by

combining this with (78):〈
q̂,
∂(hq)

∂t

〉
+ 〈q̂,∇ · (qF)〉 −

〈
s∇T q,∇HT

〉
+
〈
[T∇T q, n̂], {s}+ cf [s]

〉
Γ

= 0 (110)

As expected, the term involving B has dropped out, and when s is a constant the terms
involving T will also be zero. Showing the latter again requires integration by parts and
exploiting the fact that ∇T q ∈W1 and therefore has continuous normals. This is a demon-
stration that the scheme does not have spurious sources of vorticity. Similarly, using (92)
yields 〈

q̂,
∂(hq)

∂t

〉
−
〈
∇q̂T , qFT

〉
+

〈
∇s
h′
, T ′∇T q̂

〉
= 0 (111)

and using (97) yields〈
q̂,
∂(hq)

∂t

〉
−
〈
∇T q̂, qFT

〉
−
〈
∇ · ( 1

h
∇T q̂T ′), s

〉
+

〈
[
1

h
∇T q̂T ′, n̂], {s}+ cf [s]

〉
ΓI

= 0 (112)

which both have the same property that the terms involving T drop out when s is a constant.
All of these equations reduce to〈

q̂,
∂(hq)

∂t

〉
−
〈
∇T q̂, qFT

〉
= 0 (113)

when s is a constant, which is the same as in [10]. Therefore by letting q = 1 it is clear that
the advection of potential vorticity is compatible with the continuity equation, since (77)
holds pointwise. It is also easy to show that potential enstrophy PE = 1

2
〈hq, q〉 is conserved

when s is a constant. The implied vorticity equation for the direct variant (103) is〈
η̂,
∂η

∂t

〉
+

〈
∇T
H

(
∇T η̂ · F

T

h

)
,u

〉
−
〈
∇T η̂, f

FT

h

〉
−
〈

[∇T η̂ · F
T

h
, n̂]T , {u}+ cf [u]

〉
Γ

+· · · = 0

(114)
which does not have PV compatibility or potential enstrophy conservation, since there is no
longer an associated diagnostic q that appears in the implied vorticity equation. However,
the resulting linear equations are the same (seen by letting u = 0 and h = H in (103)),
so the discretization still supports steady geostrophic modes and does not produce spurious
vorticity, and the discrete dispersion relationship does not change.

3.10. Conservation Properties and Casimirs
The discretizations presented above all conserve total energyH through the anti-symmetry

of the discrete brackets. However, only specific choices of time integrators that are capable
of handling polynomial Hamiltonians of cubic order will maintain this conservation. There
are also three conserved Casimirs: total mass, total potential vorticity and total buoyancy.
These Casimirs are at most quadratic.
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3.10.1. Mass Conservation
For all discretizations the mass is given by

M = 〈1, h〉 (115)

Mass conservation is demonstrated by letting ĥ = 1 in (77). This is a flux-form conservation
law and therefore any consistent time integrator will continue to conserve mass.

3.10.2. Total Potential Vorticity
The variant that diagnoses q and uses it in the u equation conserves a total potential

vorticity (or in other words, an absolute vorticity) given by

PV = 〈h, q〉 (116)

This is seen by letting q̂ = 1 in (110), (111) or (112). The variant in Section 3.7 instead
conserves

PV = 〈1, η〉 (117)

where η ∈W0 is defined by

〈η̂, η〉 = −
〈
∇T η̂,u

〉
+ 〈η̂, f〉 (118)

This can be seen by letting η̂ = 1 in (114). Both quantities arise from flux-form conservation
laws and any consistent time integrator will preserve them.

3.10.3. Total Buoyancy
The variant that predicts S will conserve a total buoyancy of the form

B = 〈1, S〉 (119)

demonstrated by setting Ŝ = 1 in (79). Again, this is a flux-form conservation law and
any consistent time integrator will preserve total buoyancy of this form. The variant that
predicts s ∈W2 will conserve

B = 〈h, s〉 (120)

(set ŝ = h and ĥ = s, and combine (77) and (93)). Finally, the variant that predicts s ∈W0

will conserve
B = 〈h′, s〉 (121)

which is seen by combining (93) and (94) with ŝ = h′ and ĥ′ = s. However, the last two
variants require a time integrator that preserves quadratic Casimirs, since S is no longer
being predicted directly using a flux-form scheme. Fortunately, the EC2 (and it’s semi-
implicit variant EC2-SI) integrators from Section 4 satisfy this. Unfortunately, standard
explicit time integrators such as those of the Runge-Kutta or Adams-Bashford families do
not.
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4. Time Discretization

Under the assumption of continuity in time, the spatial discretization scheme developed in
Section 3 obtains all of the desirable properties detailed in Section 3.1. However, the complete
model also requires a time discretization scheme, and it is not clear that it is still possible to
obtain these properties when the two are combined. Specifically, unless carefully designed,
a time discretization scheme will fail to conserve quadratic and higher order invariants; and
will lead to alterations in the discrete linear modes. Of the conserved quantities of interest,
the higher-order ones are the Hamiltonian H (cubic); and for the variants predicting s, the
total buoyancy Casimir B (quadratic). A time integrator and thus fully discrete scheme that
conserves arbitrary H and quadratic Casimirs to machine precision is presented below. Work
is currently ongoing on evaluating the fully discrete dispersion relationship and linear modes
for this scheme.

4.1. Energy Conserving Time Integrator
We start by noting that the discrete equations of motion for all the variants can be

written as:
∂x

∂t
= J

δH
δx

(122)

where x is a vector of the prognostic variables (basis coefficients), J is a skew-symmetric,
singular matrix that depends on x and δH

δx
are the functional derivatives of the discrete

Hamiltonian H. The matrix J arises from the discrete bracket as

{A,B} =

〈
δA
δx

, J
δ B
δx

〉
(123)

and therefore the nullspace of J is the discrete Casimirs. This is a specific instance of the
general theorem proved in [69] that any system of ODE’s possessing a conserved quantity can
be written as (122). In the ODEs literature, these systems are known as Poisson (or gradient)
systems. Fortunately, there exists a rich variety of energy conserving time integrators for
Poisson systems. One such integrator (hereafter called EC2, from [70]; see also [42] for an
example of its use for the shallow water equations) is the following:

xn+1 − xn

∆t
= J(

xn+1 + xn

2
)

∫ 1

0

δH
δx

(xn + τ(xn+1 − xn))dτ (124)

which is a fully implicit, second-order accurate time integrator. As discussed in [70], this is
an example of a continuous stage partitioned Runge-Kutta (CSPRK) method, and it is also
an example of a discrete gradient or average method field method.

It is clear that H is conserved by anti-symmetry, and that quadratic Casimirs will also
be conserved. The latter rests on the fact that for a quadratic Casimir,

∫ 1

0
δ C
δx

(xτ )dτ can
be evaluated with a single quadrature point at τ = 0.5 and therefore both

∫ 1

0
δF
δx

(xτ )dτ
and J are evaluated at x∗. Unfortunately, this does not generalize to higher-order Casimirs.
This integrator can be viewed as a generalization of the implicit midpoint rule: when the
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Hamiltonian H is quadratic, a single quadrature point at τ = 0.5 is sufficient and the
scheme reduces to the implicit midpoint rule. Practical implementation of this integrator
for general H requires the evaluation of the integral on the right hand side of (124). When
H is polynomial, as is the case for the thermal shallow water equations, this can be done
exactly with a Gaussian quadrature rule of the appropriate degree. Proceed by discretizing
the integral on the right-hand side of (124) using a p-pt Gaussian quadrature rule on [0, 1]
with weights γ and points τi, where i = [1, . . . , p]. Define

γ̂i = γi∆t (125)
δxn+1 = xn+1 − xn (126)

x∗ = xn +
δxn+1

2
(127)

xi = xτi = xn + τiδx
n+1 (128)

Then the time-discrete system of nonlinear equations is given by

δxn+1 = J(x∗)
∑
i

γ̂i
δH
δx

(xi) = J(x∗)
δH
δx

(xi) (129)

where δH
δx

(xi) =
∑

i γ̂
i δH
δx

(xi), along with any auxiliary equations needed for δH
δx

(xi) and any
diagnostic equations needed for J(x∗). Now, since H for the thermal shallow water equations
is cubic, let p = 2. In fact, it is even possible to use different numbers of quadrature points
for different parts of the Hamiltonian H, although this suggestion is not pursued here. This
is useful, for example, in the shallow water equations or the thermal shallow water equations
predicting S, when the potential energy HP is only quadratic and therefore can be exactly
integrated with just one quadrature point. For simplicity, we show only the fully discrete
system for the variant predicting s with s ∈ W0 and using the q form of PV flux. Here we
also drop the primes on B and T to ease the notation, and let m = h′. The other variants
give very similar fully discrete equations. A fully discrete model of prognostic equations (91)
- (93), the functional derivative equations (84) -(86) and the auxiliary equations (72) and
(94) using this integrator results in the following system:〈

ĥ, δhn+1
〉

+
〈
ĥ,∇ · F

〉
= 0 (130)

〈
û, δ un+1

〉
+
〈
û, q∗F

T
〉
−
〈
∇ · û, B

〉
−
〈

1

m∗
∇s∗, T

〉
= 0 (131)

〈
ŝ, δsn+1

〉
+

〈
ŝ

1

m∗
∇s∗,F

〉
= 0 (132)

〈q̂, h∗q∗〉 = −
〈
∇T q̂,u∗

〉
+ 〈q̂, f〉 (133)

〈ŝ, m∗〉 = 〈ŝ, h∗〉 (134)
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〈
û,F

〉
=

〈
û, γ̂1h

1 u1 +γ̂2h
2 u2
〉

(135)〈
ĥ, B

〉
=

〈
ĥ, γ̂1

(
s1h1 + s1b+

u1 ·u1

2

)
+ γ̂2

(
s2h2 + s2b+

u2 ·u2

2

)〉
(136)

〈
ŝ, T

〉
=

〈
ŝ, γ̂1

(
(h1)2

2
+ h1b

)
+ γ̂2

(
(h2)2

2
+ h2b

)〉
(137)

As in the semi-discrete case, (136) can be directly substituted into (131), giving a nonlinear
system F (x) = 0 in 7 variables: δhn+1, δ un+1, δsn+1, F, T , m∗, q∗. This can be solved, for
example, using a Newton-Krylov method.

4.2. Semi-Implicit (Quasi-Newton) Implementation
Although the fully implicit integrator gives the desired properties (such as conservation),

it is computationally expensive, and the Jacobian matrix that appears in the Newton-Krylov
method is difficult to precondition. Therefore, following [65], an alternative approach is taken
(called hereafter EC2-SI) to reduce the computational cost while retaining the properties.
Instead of a Newton method with the full Jacobian, a quasi-Newton (also called inexact
Newton) approach using a simplified Jacobian is employed: the Jacobian from discretizing
the linearized thermal shallow water equations (80) - (82) or (99) - (101) using an implicit
midpoint time integrator. This has the advantage that the Jacobian becomes constant in time
(and therefore must be calculated only once per simulation instead of at each outer solver
iteration), and also that the resulting linear problem involves only 3 variables: δhn+1, δ un+1,
δsn+1 rather than the full set of 7 variables. This must be supplemented with auxiliary solves
for q∗, m∗, F and T using the latest guess for δxn+1, done before evaluating the residual.
The final linear system that results is much faster to solve and easier to precondition than
the original system. In fact, since the δhn+1 equation holds pointwise, this problem could be
further simplified by directly substituting it into the relevant other equations, but this is not
pursued. Since the same residual is used, at convergence the solution is the same. The choice
of simplified Jacobian will affect only the number of iterations required to reach convergence
(and in some cases, whether convergence can be reached at all). This quasi-Newton approach
is strongly related to the semi-implicit2 time stepping schemes described in [65, 71, 72].

Specifically, for (130) - (137), the Jacobian from the implicit midpoint discretization of
the linearized thermal shallow water equations (99) - (101) is used〈

ĥ, δ̂h
〉

+
H∆t

2

〈
ĥ,∇ · δ̂v

〉
(138)

〈
û, δ̂v

〉
+
f∆t

2

〈
û, (δ̂v)T

〉
− H∆t

4

〈
∇ · û, δ̂s

〉
− g∆t

2

〈
∇ · û, δ̂h

〉
(139)

2The use of a simplified Jacobian to obtain a simpler (inner) linear system, usually one related to a
linearization at the continuous level, is often referred to as a semi-implicit method in the atmospheric
dynamical core literature. However, confusingly this term is also used to refer to single-step or diagonally
implicit methods.
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〈
ŝ, δ̂s

〉
(140)

where δ̂x = (δ̂h, δ̂v, δ̂s) is a trial function for the mixed space W2 ⊗W1 ⊗W0, so that the
above is a variational 2-form in x̂ and δ̂x. Again, we show only the variant predicting s with
s ∈W0. Written in matrix form, the Jacobian J is

J =

 Mh
H∆t

2
D 0

−g∆t
2

Gh Mu + f∆t
2
C −H∆t

4
Gs

0 0 Ms

 (141)

where

Mh =
〈
ĥ, δ̂h

〉
Mu =

〈
û, δ̂v

〉
Ms =

〈
ŝ, δ̂s

〉
C =

〈
û, (δ̂v)T

〉
D =

〈
ĥ,∇ · δ̂v

〉
Gh =

〈
∇ · û, δ̂h

〉
Gs =

〈
∇ · û, δ̂s

〉
(142)

This is a suboptimal simplified Jacobian (see Section 5.1), but it suffices to demonstrate
the ability of the scheme to conserve quantities to machine-precision even with a simplified
Jacobian.

5. Results

5.1. Implementation
The various discretizations given above were implemented using the Themis software

framework ([73]), which shares a front-end with the Firedrake [74] project consisting of
UFL (Unified Form Language, [75]), TSFC (Two-Stage Form Compiler, [76, 77]), FInAT
(FInAT/FInAT: a smarter library of finite elements, [78]), COFFEE (COmpiler For Fast
Expression Evaluation,[79, 80]) and FIAT (FInite element Automatic Tabulator, [81]). In
fact, as currently implemented the model code runs using both Themis and Firedrake without
changes. The resulting numerical kernels are used along with the Portable Extensible Toolkit
for Scientific Computation (PETSc, [82]) to solve the various linear and nonlinear systems
that arise in the fully discrete schemes. Themis is a software framework designed for par-
allel, high-performance automated discretization of variational forms using tensor-product
Galkerin methods on multipatch structured-grids; with an emphasis on compatible Galerkin
methods. Currently support exists for the MGDn and Q−r Λk families on single patch grids,
with extensions to multipatch grids and additional compatible Galerkin families under devel-
opment. All of the results in this paper use theMGD3 family and the EC2-SI time integrator
with 2-pt Gaussian quadrature in the time integrator and 5-pt Gaussian quadrature in the
spatial integrals, and were run on a workstation using 9 MPI threads. The nonlinear system
arising from the quasi-Newton EC2-SI time integrator was solved using a line search New-
ton method, with all associated linear systems solved using either the conjugate gradient
(CG, for symmetric matrices) or generalized gradient minimal residual method (GMRES,
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for non-symmetric matrices) with Jacobi preconditioning. This included the block matrix
system occurring in the inner solve for the quasi-Newton integrator, which was treated in a
monolithic manner. The use of Jacobi preconditioning is clearly suboptimal, especially for
the block-matrix system. We intend to explore more sophisticated preconditioning options
that exploit both the block structure and the MGDn basis functions in future work, and to
study the effects of grid resolution and order of accuracy on the number of inner iterations
required. For the double vortex and thermal instability test cases we also performed runs
for all six variants using the full Jacobian rather than the simplified Jacobian. When using
the full Jacobian the Newton method took approximately 4-5 iterations to each convergence,
while quasi-Newton method using the simplified Jacobian took approximately 30-40 itera-
tions. This is a demonstration of the suboptimality of the simplified Jacobian, and we intend
to explore more accurate simplified Jacobians in future work.

Three separate test cases were run to demonstrate conservation properties, correct so-
lution behavior and convergence of the proposed schemes. Differences between the various
schemes presented in Section 3 will be highlighted. The first test case, described in Section
5.2, is an analogue of the Williamson Test Case 2 [83] on the f -plane for the thermal shallow
water equations, and is intended mainly to show convergence and the ability of the schemes
to maintain a thermogeostrophically balanced state. The second, in Section 5.3, is a pair of
vortices in a zonally varying buoyancy field, and is used to investigate conservation prop-
erties for complicated, non-linear flow; and also compare the various discretization options.
The final, in Section 5.4, is based on thermogeostrophic instability from [6]. It is used to
look at conservation properties and the ability to correctly simulate the onset of the flow
instability identified in [6]. Table 5.1 details the various test cases and settings used. For
Section 5.2 and 5.4, the initial condition is in thermogeostrophic balance (see [6] and Ap-
pendix Appendix A), with Section 5.4 adding a perturbation to start the flow. For all tests,
the time step was chosen as ∆t = C∆x√

gH0
where ∆x = L

nx
and C = 2.0 (it is based on the

gravity wave CFL condition). The parameters L, g and H0 are defined separately for each
test case below, and were chosen to correspond with those used in [84]. All test cases were
run on a uniform square mesh of nx by ny quadrilateral elements. It is worth noting that
all simulations were performed without any numerical dissipation.

5.2. Zonal Thermogeostrophic Balance
This test is designed to test the ability of the schemes to maintain a state of thermo-

geostrophic balance, and to assess the convergence of the schemes (since there is an analytic
solution available). The initial condition is a zonally symmetric, thermogeostrophically bal-
anced zonal flow without topography (b = 0):

h = H0 −
afu0

g
sin(

y

a
) u = u0 cos(

y

a
) v = 0 s = g

(
1 +

cH2
0

h2

)
(143)

This state was obtained following the procedure in Appendix A (let h and u be in geostrophic
balance, and then find s such that thermogeostrophic balance holds). When c = 0, s = g and
a geostrophically balanced zonal flow is recovered. The domain Ω = [0, L]2 is doubly periodic,
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Test Case nx ny ∆x N ∆t αs αq

Zonal Thermogeostrophic Balance (5.2) 10 10 4003km 340 16560s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 15 15 2670km 500 11040s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 30 30 1334km 1000 5520s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 45 45 890km 1500 3680s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 60 60 667km 2000 2760s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 90 90 444km 3000 1840s 0.0 0.0
Zonal Thermogeostrophic Balance (5.2) 120 120 333km 4000 1380s 0.0 0.0

Double Vortex (5.3) 120 120 42km 500 486s 0.0 0.0
Thermal Instability (5.4) 120 120 0.0666 500 0.0666 0.0 0.0

Table 4: Table of parameters for the test cases, where nx and ny are the number of elements in the x and y
directions, ∆x is the width of each element, N is the number of time steps, ∆t is the length of a time step
and αs/αq are the upwinding parameters for the {A,B}S or {A′,B′}s and {A,B}Q = {A′,B′}Q brackets,
respectively. Note that the thermal instability test case was non-dimensionalized.

with L = 2πa. The parameters, chosen to correspond with [48], are f = 0.00006147s−1,
a = 6371120m, H0 = 5960m, g = 9.80616ms−2, u0 = 20ms−1 and c = .05.

This test was run with for a range of grid sizes and number of time steps as shown in
Table 5.1. These were chosen so that the same total simulation time was performed for all
choices. The L2 norms of the difference between the initial (h,u, s) and the final (h,u, s)
are found in Figure 3. From the figures, it is clear that all of the variants are converging at
between fourth and fifth order. This is significantly better than expected, and likely a result
of superconvergence due to the uniform grid and alignment of the test case with the grid
lines. The flattening at the end of convergence covers indicates that the limits of numerical
precision have been reached.

5.3. Double Vortex Test Case
This test case is based on the double vortex test case from [84]. The domain Ω = [−L

2
, L

2
]2

is doubly periodic without topography (b = 0). The initial conditions are given by

h = H0 −∆h

[
e−0.5((x′1)2+(y′1)2) + e−0.5((x′2)2+(y′2)2) − 4πσxσy

L2

]
(144)

u =
−g∆h

fσy

[
y′′1e
−0.5((x′1)2+(y′1)2) + y′′2e

−0.5((x′2)2+(y′2)2)
]

(145)

v =
g∆h

fσx

[
x′′1e

−0.5((x′1)2+(y′1)2) + x′′2e
−0.5((x′2)2+(y′2)2)

]
(146)

s = g

(
1 + 0.05 sin

[
2π

L
(x− xc)

])
(147)
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where xc = L
2
and

x′1 =
L

πσx
sin
[π
L

(x− xc1)
]

x′2 =
L

πσx
sin
[π
L

(x− xc2)
]

(148)

y′1 =
L

πσy
sin
[π
L

(y − yc1)
]

y′2 =
L

πσy
sin
[π
L

(y − yc2)
]

(149)

x′′1 =
L

2πσx
sin

[
2π

L
(x− xc1)

]
x′′2 =

L

2πσx
sin

[
2π

L
(x− xc2)

]
(150)

y′′1 =
L

2πσy
sin

[
2π

L
(y − yc1)

]
y′′2 =

L

2πσy
sin

[
2π

L
(y − yc2)

]
(151)

This is not in thermogeostrophic or geostrophic balance. The centers of the two vortices are
given by

xc1 = (0.5− ox)L xc2 = (0.5 + ox)L (152)
yc1 = (0.5− oy)L yc2 = (0.5 + oy)L (153)

The parameters are L = 5000km, f = 0.00006147s−1, H0 = 750m, ∆h = 75m, g =
9.80616ms−2, σx = σy = 3

40
L and ox = oy = 0.1. This test was run for the grid size

and time step detailed in Table 5.1. Plots of the conservation properties are found in Figure
5, demonstrating that all of the variants are conservingM, B, HA and PV to machine pre-
cision. Here HA is the available energy, rather than the total energy, since available energy
is the dynamically active part. The available energy is defined as

HA = H−HUA = H−1

2
〈h0, S0〉 (154)

where h0 = M
Lx∗Ly and S0 = B

Lx∗Ly . The second term on the right hand side is the unavailable
energy HUA associated with a state of rest and constant h and s. The initial potential
vorticity q and the buoyancy s are found in Figure 4, while the corresponding quantities at
N = 250 are given in Figures 6 and 7. This test case is a direct cascade without diffusion.
As the simulation proceeds, progressively smaller scales are generated, and even by N =
250 there is significant development of small scale features. The ability of the schemes to
successfully complete these runs without any numerical viscosity is a demonstration of their
robustness. For this test case, there does not appear to be any significant difference between
the variants.

5.4. Thermal Instability
The final test case is thermal instability, from [6]. To define this test case, it is useful

to non-dimensionalize the equations with a length scale L, a velocity scale U , a fluid height
scale H0 and a buoyancy scale s0. From these, a Rossby number Ro = U

fL
and a Burgers

number Bu = s0H0

f2L2 are naturally defined. The variables are then scaled as

h

H0

= 1 +
Ro

Bu
H

s

s0

= 1 + 2
Ro

Bu
B

v

U
= 1 (155)
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Now consider an axisymmetric state in thermogeostrophic balance, such that the non-
dimensional variables are functions only of radial distance r, not of polar angle ψ; and
we assume only an azimuthal velocity va(r) = UV (r). The non-dimensional variables H(r),
B(r) and V (r) are given by

H(r) = 0 (156)

B(r) = −
∫ ∞
r

(1 +
RoV

r′
)V dr′ (157)

V (r) = re
1−rβ
β (158)

This corresponds to choosing α = 0 in [85]. The velocity vector is then given by

u = vaψ̂ = va(− sinψ, cosψ) (159)

The domain Ω = [−D
2
, D

2
]2 is doubly periodic, with no topography. The parameters are

D = 4, g = H0 = f = s0 = L = 1.0, U = 0.1 and β = 2. This gives Ro = 0.1 and Bu = 1.0.
For β = 2 the equation for B(r) can be solved explicitly to yield

B(r) = −
[
e

1−r2
2 +

Ro

2
e1−r2

]
(160)

Re-dimensionalizing, the variables are given by

h = H0 (161)

u = −Ure
1−rβ
β sinψ (162)

v = Ure
1−rβ
β cosψ (163)

s = s0 − 2
s0Ro

Bu

[
e

1−r2
2 +

Ro

2
e1−r2

]
(164)

This is different to [6], where the choice β = 3 was made instead. We chose β = 2 instead, to
facilitate the explicit solution of the B(r) equation. To this thermogeostrophically balanced
state a perturbation of the form

dh = 0.01sf cos(lφ) (165)
ds = −0.01sf cos(lφ) (166)
du = −0.01sf cos(lφ) (167)
dv = −0.01sf cos(lφ) (168)

was added, where
sf = −e−60(r−rc)2 sin(6π(r − rc)) (169)

with l = 4 and rc = 0.5. Plots of the initial buoyancy s and the perturbation are found in
Figure 8. The perturbation is an approximation to the most unstable linear mode structures
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discussed in [6]. This test was run for the grid size and time step detailed in Table 5.1.
The buoyancy at N = 180 is given in Figure 9. Similar to [6], there is an initial period of
growth reflecting the wavenumber of the perturbation (l = 4 in this case). As simulation
progresses, nonlinear saturation of the instability occurs (not shown). Despite the appearance
of extremely small scales and nonlinear saturation, the schemes are robust and stable. Again,
there appears to be little difference between the six variants of the scheme. The conservation
properties for M, B, HA and PV are found in Figure 10. Just like the double vortex test
case, there is conservation to machine precision for all these invariants.

6. Conclusions and Future Work

This work represents the beginning of the development of a structure-preserving atmo-
spheric dynamical core using tensor-product compatible Galerkin methods. For the first
time, through the combination of a Hamiltonian formulation, compatible Galerkin meth-
ods, a specific choice of Galerkin spaces and an energy-conserving time integrator, all of
the desirable properties listed in Section 3.1 have been achieved. Several choices for prog-
nostic thermodynamic variable (S versus s), choice of finite element space for s when it is
predicted (W0 or W2) and representation of the non-linear PV flux term (direct and using
q) were explored. In terms of the desirable properties, only the last choice impacts them:
use of a direct representation does not allow conservation of potential enstrophy (for the
implied shallow water case when s = g) and potential vorticity compatibility. The conserved
quantities PV , H and B have different forms for various choices, but they always exist. The
balance, convergence and conservation properties of the scheme were demonstrated by the
three test cases in Section 5. For these test cases, there appears to be little difference between
the variants introduced here. Of particular interest is the ability of the schemes to conserve
nonlinear invariants H and B to machine precision, even when using the suboptimal simpli-
fied Jacobian in the quasi-Newton solver; and the robustness and stability of the schemes
without any added dissipation.

Given the similarities in Hamiltonian structure between the thermal shallow water equa-
tions and the fully compressible equations (both hydrostatic and non-hydrostatic variants,
with various choices for vertical coordinates), it is anticipated that many of the develop-
ments in this paper will immediately carry over to those equations. Preliminary results on a
fully compressible quasi-Hamiltonian model in Eulerian coordinates built using these ideas
indicate that the key results of fully discrete conservation properties and other desirable
characteristics carry over, and will be reported in a future publication. Possible future work
on the thermal shallow water equations includes further investigation into optimal simpli-
fied Jacobians and preconditioners; the extension of these ideas to domains with boundaries
(following the approach in [42]); and the extension to spherical and spheroidal domains
with complete representations of the Coriolis force and meridionally varying gravitational
potentials. A more detailed study of the Hollingsworth instability for compatible Galerkin
methods (especially comparing the two variants of nonlinear PV flux term) is also being
undertaken.
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Appendix A. Thermogeostrophic Balance

Start with the equation of thermogeostrophic balance [6] (with b = 0)

f uT +s∇h+
h

2
∇s = 0 (A.1)

Now consider the case where u and h satisfy geostrophic balance

f uT +g∇h = 0 (A.2)

Then thermogeostrophic balance can be rewritten as

2
(s− g)

h
∇h+∇s = 0 (A.3)

Given h, this can be solved for s. Additionally, it is clear that if s = g, this will be identically
zero, and thermogeostrophic balance will reduce to geostrophic balance. Unlike the shallow
water equations and geostrophic balance, it is not clear if the discretization presented in this
paper has a discrete analogue of thermogeostrophic balance.
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Figure 1: Basis functions for the W0 (upper left), W1 (x/u component in upper right, y/v component in
lower left) and W2 (lower right) spaces of the MGD3 family. Here the element width and basis functions
have been normalized to unity. Note that unlike standard mixed finite elements, all of the basis functions in
a given space are identical; and the basis functions are not localized to an element or a pair of neighboring
elements, but instead have extended support (although they remain local).
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Figure 2: Compatible Galerkin spaces W0, W1 and W2 and corresponding discrete deRham complex in
2D for the MGDn family. Solid lines indicate strong operators (∇T , ∇·), while dashed lines indicate weak
operators (∇̃, ∇̃T ·). The degrees of freedom are illustrated for the MGDn family, which are also correct for
the lowest order Q−r Λk/mimetic spectral element and odd-order isogeometric analysis families.
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Figure 3: Convergence plot for the zonal geostrophic balance test case, showing the L2 norms of the difference
between the initial (h,u, X) and the final (h,u, X) for all 6 variants, where X ∈ (s, S) is the predicted
buoyancy variable. This explains the difference in scales between the errors in the rightmost plot. All of the
variants are converging at between 4th and 5th order in (h,u, X), significantly better than expected.
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q s

Figure 4: The initial values for potential vorticity q (left) and buoyancy s (right) in the double vortex test
case.
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Figure 5: Convergence properties for M, B, HA and PV in the double vortex test case, shown for all six
variants. The fractional change (x−x0

x0
∗ 100) in the relevant quantity versus the time step is plotted. All

variants are conservingM, B, HA and PV to machine precision.
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Figure 6: The potential vorticity q at N = 250 for the double vortex test case for all six variants. Small scale
features have developed following the path of the vortices, although the main vortex cores remain coherent.
There is little difference between the six variants.
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Figure 7: The buoyancy s at N = 250 for the double vortex test case for all six variants. The perturbations
from the initial s0 follow the path of the vortices, and small scale features have appeared. As in Figure 6,
there is little difference between the six variants.
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Figure 8: The initial (left) and perturbation (right) values for the buoyancy s in the thermal instability test
case. Recall that l = 4, and the perburation is localized to a small ring of the domain.
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Figure 9: The buoyancy s at N = 400 for the thermal instability test case. The wavenumber 4 structure is
clearly apparent, and small scale features have developed. Further simulations leads to a complete breakdown
of the initial buoyancy and nonlinear saturation of the instability (not shown). It is remarkable that these runs
are stable without any added dissipation, even after nonlinear saturation, despite the small scale features.
However, it is not unexpected, given the total energy, potential vorticity and buoyancy conserving capabilities
of the schemes.
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Figure 10: Convergence properties forM, B, HA and PV in the thermal instability test case, shown for all
six variants. The fractional change (x−x0

x0
∗ 100) in the relevant quantity versus the time step is plotted. As

in Figure 5, all variants are conservingM, B, HA and PV to machine precision, albeit with a strange (and
still unexplained) jump in mass in the first time step for all variants.

53


