12 research outputs found

    Higher-Order Termination: from Kruskal to Computability

    Get PDF
    Termination is a major question in both logic and computer science. In logic, termination is at the heart of proof theory where it is usually called strong normalization (of cut elimination). In computer science, termination has always been an important issue for showing programs correct. In the early days of logic, strong normalization was usually shown by assigning ordinals to expressions in such a way that eliminating a cut would yield an expression with a smaller ordinal. In the early days of verification, computer scientists used similar ideas, interpreting the arguments of a program call by a natural number, such as their size. Showing the size of the arguments to decrease for each recursive call gives a termination proof of the program, which is however rather weak since it can only yield quite small ordinals. In the sixties, Tait invented a new method for showing cut elimination of natural deduction, based on a predicate over the set of terms, such that the membership of an expression to the predicate implied the strong normalization property for that expression. The predicate being defined by induction on types, or even as a fixpoint, this method could yield much larger ordinals. Later generalized by Girard under the name of reducibility or computability candidates, it showed very effective in proving the strong normalization property of typed lambda-calculi..

    Argument filterings and usable rules in higher-order rewrite systems

    Get PDF
    The static dependency pair method is a method for proving the termination of higher-order rewrite systems a la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed lambda-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the-art first-order automated termination provers. In this paper, we extend the class of higher-order systems on which the static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite systems

    Computability Closure: Ten Years Later

    Get PDF
    The notion of computability closure has been introduced for proving the termination of higher-order rewriting with first-order matching by Jean-Pierre Jouannaud and Mitsuhiro Okada in a 1997 draft which later served as a basis for the author's PhD. In this paper, we show how this notion can also be used for dealing with beta-normalized rewriting with matching modulo beta-eta (on patterns \`a la Miller), rewriting with matching modulo some equational theory, and higher-order data types (types with constructors having functional recursive arguments). Finally, we show how the computability closure can easily be turned into a reduction ordering which, in the higher-order case, contains Jean-Pierre Jouannaud and Albert Rubio's higher-order recursive path ordering and, in the first-order case, is equal to the usual first-order recursive path ordering

    The computability path ordering: the end of a quest

    Get PDF
    In this paper, we first briefly survey automated termination proof methods for higher-order calculi. We then concentrate on the higher-order recursive path ordering, for which we provide an improved definition, the Computability Path Ordering. This new definition appears indeed to capture the essence of computability arguments \`a la Tait and Girard, therefore explaining the name of the improved ordering.Comment: Dans CSL'08 (2008

    Church-Rosser Properties of Normal Rewriting

    Get PDF
    We prove a general purpose abstract Church-Rosser result that captures most existing such results that rely on termination of computations. This is achieved by studying abstract normal rewriting in a way that allows to incorporate positions at the abstract level. New concrete Church-Rosser results are obtained, in particular for higher-order rewriting at higher types

    Termination of rewrite relations on λ\lambda-terms based on Girard's notion of reducibility

    Get PDF
    In this paper, we show how to extend the notion of reducibility introduced by Girard for proving the termination of β\beta-reduction in the polymorphic λ\lambda-calculus, to prove the termination of various kinds of rewrite relations on λ\lambda-terms, including rewriting modulo some equational theory and rewriting with matching modulo β\betaη\eta, by using the notion of computability closure. This provides a powerful termination criterion for various higher-order rewriting frameworks, including Klop's Combinatory Reductions Systems with simple types and Nipkow's Higher-order Rewrite Systems

    A Higher-Order Iterative Path Ordering

    Get PDF

    Normal Higher-Order Termination

    No full text
    International audienceWe extend the termination proof methods based on reduction orderings to higher-order rewriting systems based on higher-order pattern matching. We accommodate, on the one hand, a weakly polymorphic, algebraic extension of Church's simply typed λ-calculus, and on the other hand, any use of eta, as a reduction, as an expansion or as an equation. The user's rules may be of any type in this type system, either a base, functional, or weakly polymorphic type

    Proof Theory at Work: Complexity Analysis of Term Rewrite Systems

    Full text link
    This thesis is concerned with investigations into the "complexity of term rewriting systems". Moreover the majority of the presented work deals with the "automation" of such a complexity analysis. The aim of this introduction is to present the main ideas in an easily accessible fashion to make the result presented accessible to the general public. Necessarily some technical points are stated in an over-simplified way.Comment: Cumulative Habilitation Thesis, submitted to the University of Innsbruc

    Scheme-based theorem discovery and concept invention

    Get PDF
    In this thesis we describe an approach to automatically invent/explore new mathematical theories, with the goal of producing results comparable to those produced by humans, as represented, for example, in the libraries of the Isabelle proof assistant. Our approach is based on ‘schemes’, which are formulae in higher-order logic. We show that it is possible to automate the instantiation process of schemes to generate conjectures and definitions. We also show how the new definitions and the lemmata discovered during the exploration of a theory can be used, not only to help with the proof obligations during the exploration, but also to reduce redundancies inherent in most theory-formation systems. We exploit associative-commutative (AC) operators using ordered rewriting to avoid AC variations of the same instantiation. We implemented our ideas in an automated tool, called IsaScheme, which employs Knuth-Bendix completion and recent automatic inductive proof tools. We have evaluated our system in a theory of natural numbers and a theory of lists
    corecore