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Abstract
We prove a general purpose abstract Church-Rosser result that captures most existing such results
that rely on termination of computations. This is achieved by studying abstract normal rewriting
in a way that allows to incorporate positions at the abstract level. New concrete Church-Rosser
results are obtained, in particular for higher-order rewriting at higher types.
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1 Introduction

Background. Rewrite rules have been used in mathematics and computer science for ages.
Orienting an equation into a rewrite rule is most convenient when the obtained set of rules
is terminating, since many other properties, such as “unique normal form”, become then
decidable. Orienting all equations at hand into rewrite rules is not always possible, forcing
us to distinguish a subset of rules from the subset of remaining equations. Consider the set:
Inv : x+ x−1 = 0, Z : x+ 0 = x, A : (x+ y) + z = x+ (y + z), C : x+ y = y + x.
Termination forbids orienting C, and orienting A contradicts termination in C-congruence
classes: it becomes necessary to distinguish rules from equations. Having A,C,Z as equa-
tions allows for cheaper pattern-matching and unification than A,C alone, but ACZ-con-
gruence classes are infinite, raising problems. A winning schema is to restrict computations
to terms in Z normal form modulo AC [4, 11, 16]. Rewriting with Inv then operates modulo
ACZ, but on terms in Z modulo AC normal form.
Goal. In this paper, we investigate rewriting with a set of rules R (Inv in our example)
modulo a set itself made of a set of rules S (Z) and a set of equations E (AC). Another
example is Nipkow’s higher-order rewriting, for which R is the user’s set of higher-order rules,
S corresponds to β-reduction and η-expansions which are built, together with α-conversion
(E), in the rewriting mechanism via higher-order pattern-matching. Higher-order rewriting is
indeed our main target, and our interest is in checking its confluence under some termination
assumption.
State of the art. Rewriting with rules only (when E and S are both empty) is called plain
rewriting. Confluence of plain rewriting reduces, under a termination assumption, to the

∗ INRIA Project FORMES, Laboratory of Formal Methods, Institute of Software Theory and System,
Tsinghua University. This work was supported by the Tsinghua National Laboratory for Information
Science and Technology (TNList) Cross-discipline Foundation 2011-9, Chinese National 973 Plan grant
2010CB328003, the NSFC-ANR grant 60811130468 and NSFC grant 60903030.

© Jean-Pierre Jouannaud and Jianqi Li;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 350–365

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.350
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


J.-P. Jouannaud and J. Li 351

joinability of its critical pairs, which are minimal divergent computations obtained by unify-
ing lefthand sides of rules at non-variable subterms [14]. When rewriting terms with mixed
sets of rules and equations, confluence must be replaced by the more general Church-Rosser
property [10]. There are several approaches corresponding to different definitions of rewriting
in presence of equations. In the first three, S is empty. Huet uses plain rewriting with R and
joinability modulo E, but must assume strong linearity conditions on E and R [9]. Lankford
uses plain rewriting with R in equivalence classes of terms modulo E [15]. His class rewrit-
ing may require searching the entire class of a term to be rewritten. The de facto standard
introduced by Peterson and Stickel, rewriting modulo, uses instead plain rewriting with all
possible E-variants of the instances of rules in R, which is implemented via E-pattern match-
ing [21]. All three approaches require finiteness of E-equivalence classes [10], see also [2].
To remove this assumption, Marché defined normalized rewriting, a complex schema where
the rules in S are confluent modulo E in Stickel’s sense and a term is first normalized with
S modulo E before being rewritten with R modulo E [16]. Normalized rewriting assumes
termination of R ∪ S in E-equivalence classes. Nipkow uses a subtle variation of the latter
requiring termination of R modulo E ∪S, in which simply typed higher-order terms in nor-
mal form for S modulo E are rewritten modulo S∪E (using higher-order pattern-matching)
with some set of higher-order rules which lefthand sides are patterns à la Miller [17].

In all these approaches, the Church-Rosser property is reduced, via a termination as-
sumption, to the joinability modulo E of some critical pairs. This reduction is doable
provided rewriting a term does not change its structure before it is pattern-matched. This
is the case of all definitions but that of class rewriting and of normalized rewriting. In the
latter case, the analysis of divergent computations leads to a notion of critical pair which is
quite complex. On the other hand, Nipkow’s variant, which we call normal rewriting, has
not lead yet to a general Church-Rosser test.

Very early on, the rewriting community has developed an abstract approach to the
analysis of the confluence and Church-Rosser properties [23], or to similar results such as the
finite development theorem in lambda calculus [8, 22]. This trend has been very successful
for orthogonal systems and extensions thereof, but has not yet delivered all its promises for
the case of terminating systems for which the presence of critical pairs requires a slightly
different analysis. A tentative to capture both cases within a unique framework, decreasing
diagrams, has been carried out by van Oostrom [20]. If this work has been very successful
at the abstract level of relations, it has not yet bared fruits in the more difficult case of
concrete relations over terms.

Contributions. Our main contribution is a careful investigation of an abstract rewriting
relation, normal rewriting, with a set of rules R modulo a pair (S,E), which set of rules
S is itself convergent modulo the set of equations E. Normal rewriting is then defined
as a compositional paradigm: normalization in the S ∪ E-structure is modulo E, while
normalization in the (R∪(S∪E))-structure is modulo S∪E on S modulo E normal forms. We
then reduce the abstract Church-Rosser property to properties of abstract critical rewriting
patterns. Our abstract treatment departs from the usual practice by introducing a setting
of ternary relations on an abstract set of terms and an abstract set of positions, which we
call abstract positional rewriting. This setting allows us to develop our notion of abstract
normal rewriting, and then to study the reduction from its Church-Rosser property to the
critical rewriting patterns quite smoothly, therefore solving the aforementioned problem.

Our second contribution, an application of the above results, is a careful investigation of
the Church-Rosser properties of first-order normal rewriting first, then of various variants of
Nipkow’s higher-order normal rewriting. These applications are direct reductions from ab-
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stract critical patterns to concrete critical pairs, which exploit the term structure explicitly.
A major strength of our result is that it allows to capture the existing notions of rewrit-
ing in both the first-order and higher-order cases. While its application to the first-order
case yields limited new results, it allows us in the higher-order case to overcome all typing
restrictions imposed in Nipkow’s work.

While it may seem that rewriting is a subject beaten to death, recent work has shown
that confluence of normal rewriting is indeed at the heart of important problems such as [1],
hence making the present contributions very timely. An early attempt appeared in [12].

Surveys are [7, 23, 22] for first and higher-order rewriting and [5] for typed lambda
calculus.

Organization. Section 2 investigates the Church-Rosser properties of abstract normal re-
writing. First-order rewriting is developed in Section 3 which ends with a study of our
introductory example. After a brief introduction of simply-typed lambda-calculi, higher-
order rewriting at simple types is studied in section 4.1 and at higher-types in Section 4.2.
Various definitions of formal derivation serve illustrating the results. Concluding remarks
come in Section 5.

2 Normal rewriting

We introduce the notion of normal rewriting on an abstract set, investigating then its
Church-Rosser properties. Our treatment differs from similar attempts by introducing ab-
stract positions from the start. This allows us to carry out the investigation of the abstract
Church-Rosser property much further, and reduce it to the joinability of abstract critical
patterns via clean, technically simpler proofs than in the current literature. The ability to
analyze the Church-Rosser property at the abstract level up to the analysis of critical pairs
is the key to the obtention of our main result, Theorem 2.5, which proof is quite delicate.

2.1 Abstract positional rewriting

2.1.1 Abstract terms and positions

In the entire Section 2, we assume given two abstract sets:
T which elements are called terms ;
P which elements are called positions, equipped with a partial order >P and a min-
imum Λ.

A domain Pp is any set of positions p′≥P p such that p′ ∈ Pp and p′≥P q≥P p implies
q ∈ Pp. A domain is meant to be the set of non-variable positions of some lefthand side of
rule in a term.

Lexicography: we shall use the letters s, t, u, v, w for terms and p, q for positions, the
notations Pp and Qq for domains, and the notation DP for the set of domains over P. We
write p#q for incomparable positions p, q, and q>P Pp for q≥P p and ∀p′ ∈ Pp . p′ 6 ≥P q.
We will freely use the following key property of domains, which first 3 cases are called
respectively “disjoint case”, “critical case” and “ancestor case” in the litterature:

∀p ∈ P ∀Pp ∈ P.(q#p ∨ q ∈ Pp ∨ q>P Pp ∨ p>P q).
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2.1.2 Relations
We use the notation u

Pp−→v with u, v ∈ T , Pp ∈ DP for an arbitrary ternary relation in
T ×DP×T . We may omit any of u, v, Pp, in which case they are existentially quantified. We
also write for short u p−→v, where p is understood as the minimum of some domain Pp, or

u
p∈P
−−→v to indicate the property P that the position p should satisfy, or even u P−→v, with

the same meaning. In practice, P will usually be the property (≥P q) for some given q,
characterizing the set of positions {p | p≥P q}.

The relation −→ is reflexive if ∀u ∈ T . u−→u, symmetric if for all s, t, p, s p−→t iff t p−→s,
and transitive if for all u, v, w s.t. u−→v−→w then u−→w. Given −→, we write ←− for its
inverse,←→ for its symmetric closure, +−→ for its transitive closure and ∗−→ for its reflexive,
transitive closure (domains become lists thereof in the latter two closures).

The term t is a successor below p ∈ P of s for −→ if s
≥P p
−−→t, and s is in normal form below

p if it has no successor below p. We denote by s↓p the term in normal form below p such

that s
(≥P p)∗
−−−→ s↓p. We omit the mention below p and write s↓ whenever p = Λ. A term s is

strongly normalizing below p for −→ iff it is in normal form below p, or if otherwise all its
successors are themselves strongly normalizing below p. The relation −→ is terminating if
all terms are strongly normalizing below Λ.

2.1.3 Rewriting modulo
I Definition 2.1 (Rewriting modulo). Given two relations p−→X and q←→

Z
(assumed sym-

metric) on T × DP × T , rewriting with X modulo Z at p is defined as:

p−→XZ :=
(≥P p)∗
←−−−→

Z

p−→X

Z and modulo Z are omitted if Z = ∅. The symmetric closure of Z should be understood
in case Z is not symmetric.

The beauty of rewriting modulo a theory lies in the assumption that equality steps can
only occur below the rewriting position: at the term level, rules can be fired by pattern
matching lefthand sides modulo the theory, avoiding searching the equivalence class of the
term to be rewritten.

Rewriting modulo is assumed to satisfy the commutation (*) and joinability (**) prop-
erties:

(*) X
p←− q−→Y ⊆

p−→Y X
q←− if p#q

(**) X
Pp←− q−→Y ⊆

(>P p)∗
−−−→ Y X

q←− Y

(>P Pp)∗
←−−−− if q>P Pp

Note that (*) is a particular case of (**), apart from the condition which could be generalized.
We prefer to distinguish these two axioms because they lead to different calculations in the
proof of our main result. Note also the absence of a “monotonicity” axiom allowing to move
rewrites up, which is achieved by changing the position incorporated to the rewrite.

2.1.4 Normal rewriting
I Definition 2.2. A normal abstract rewriting system (NARS) is a tuple (T ,P, R, S,E),
where T and P are (possibly omitted) abstract sets of terms and positions, while −→R, −→S
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and ←→
E

are ternary relations on T ×DP× T called respectively rewriting R, simplification
S and equality E, the latter being supposed symmetric, such that:

(i) the relation SE , called E-simplification, is Church-Rosser modulo E below any position
p:

s
(≥P p)∗
←−−−→
S∪E

t iff s
(≥P p)∗
−−−→ SE

(≥P p)∗
←−−−→

E
SE

(≥P p)∗
←−−−− t

(ii) −→RSE ∪−→SE is E-terminating: the relation s � t iff s =E (−→RSE ∪ −→SE ) =E t

is well-founded, where RSE stands for rewriting with R modulo S ∪ E
(iii) operating on terms in ↓pSE normal form, normal rewriting at q below p with R modulo

(S,E) is defined as s
p−→RSE↓

t = s
q≥P p
−−→RSE u↓pSE t.

The main reason for orienting simplifiers is indeed to bypass two fundamental assump-
tions of rewriting modulo: termination of −→R in finite S ∪ E-equivalence classes. The
finiteness assumption will disappear, while the termination assumption will be weakened.

Normal rewriting maintains SE normal forms below p, and satisfies (*, **). Nipkow’s
definition assumes p = Λ. Our definition is relative to a given position p, as are all our
rewriting notions. This definition is actually flexible. We might have chosen to operate on
terms in↓qSE -normal form or to normalize the result up to position Λ. These changes would
not impact our result for which p is Λ.

Notations. We use, possibly omitting the upper-index p: s
↓−→t for s ∗−→t with t = t↓,

s↓p for s↓pSE , s↓↓p for (s↓pSE )↓pRSE↓ , =E for the equivalence ∗←→
E

,
←→
SE

(SE) for ←→
S
∪←→

E
, and ←→

RSE
(RSE) for ←→

R
∪←→

S
∪←→

E
.

2.2 Church-Rosser properties of NARS
Our goal here is to reduce the Church-Rosser property of a terminating NARS to local prop-
erties of the rewrite relations involved that can be checked for concrete rewrite relations on
terms. After introducing key notations, we recall some Church-Rosser notions and introduce
our local properties which correspond exactly to critical patterns.

I Definition 2.3. We define:
convertibility of a pair (s, t) below p as s

(≥P p)∗
←−−−→
RSE

t ;

normal joinability of a convertible pair (s, t) below p as s↓↓p (≥P )∗←−−→
E

t↓↓p

normal Church-Rosser as the normal-joinability of all convertible pairs ;
local peaks (resp. cliffs) as triples (s, u, t) s.t. s p←−u (resp. s p←→

E
u) and u q−→t ;

joinability below p of a triple (s,u,t) or a pair (s,t) as s
(≥P p)∗
−−−→ SE∪RSE

(≥P p)∗
←−−−→

E
SE∪RSE

(≥P p)∗
←−−−− t.

I Definition 2.4 (Critical local peaks and cliffs).
(i) critical rewrite peak v R

Pp←−u q−→RSE w s.t. q ∈ Pp and u = u↓pSE
(ii) critical rewrite cliff s

p←→
E

u
q−→RSE t s.t. q∈Pp\{p}

(iii) critical simplification peak v R
Pp←−u q−→SE w s.t. q ∈ Pp

(iv) critical simplification cliff v S
p←−u q−→RSE w s.t. q ∈ Pp \ {p} and u = u↓qSE
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Figure 1 Abstract critical peaks.

Unlike standard practice, our local properties are critical in that they specialize as the
usual notions of critical peaks at the concrete level. Criticality follows from two observations:
(i) each peak must satisfy the condition q ∈ Pp (or q ∈ Pp \{p}), which implies the existence
of an overlap; (ii) all local properties use a plain step from u at p, this is crucial to compute a
critical pair by equating two different calculations of u|q, requiring the absence of equational
steps above q.

Our figures also show the properties expected from the critical peaks: joinability below
p for all except critical simplification peaks, for which shallow joinability is required.

We can now state and prove our key abstract Church-Rosser result, without help of
any intermediate step involving non-local peaks corresponding to local confluence, local
coherence and the like: despite the complex hierarchical structure of a NARS, our abstract
approach allows us to reduce directly the Church-Rosser property to the joinability of the
critical peaks introduced above.

I Theorem 2.5. A NARS is normal Church-Rosser if its critical (i) rewrite peaks, (ii) re-
write cliff, (iii) simplification cliffs are joinable, and its (iv) critical simplification peaks are
shallow joinable.

Proof. By definition of rewriting modulo, ∗←−−→
RSE

=
∗

←−−−→
RSE∪SE∪E

. The proof is by induction

on conversions
∗

←−−−→
RSE∪SE∪E

. Conversions are interpreted by multisets which elements are

pairs of terms (u, v) written as u v, and are therefore compared in the well-founded order

CSL’12



356 Church-Rosser Properties of Normal Rewriting

��:= ((�)lex)mul. Each step in a conversion contributes with one or two pairs: a step
s−→RSE t with s t ; a step s−→SE t with t s ; a step s←→

E
t with both s t and t s.

By definition, the shape of a normal joinable conversion s
∗

←−−−→
RSE∪SE∪E

t must be of the form

s
↓−→SE (−→RSE

↓−→SE )∗ ∗←→
E

(RSE←−SE
↓←−)∗SE

↓←− t. It follows that conversions which are
not already normal joinable must contain one of the six (up to symmetry) following patterns:
u

p−→RSE v with u 6= u↓p, v RSE
p←−u q−→RSE w with u = u↓p and u = u↓q, v←→

E
u

p−→RSE w

with u = u↓p, v SE←−u
p−→RSE w with u = u↓p, v SE←−u−→SE w, and v←→

E
u−→SE w.

In each case, we provide a smaller conversion for (v, w) yielding a smaller conversion for
(s, t), hence allowing us to conclude by induction. We are indeed rewriting conversions in
the style of [3].

1. v SE←−u−→SE w, a local peak interpreted by {u v,w u}. By definition of a NARS,
we have v ∗−→SE

∗←→
E

SE
∗←−w, which interpretation contains pairs all (strictly) smaller than

u v (or w u).
2. v←→

E
u−→SE w, a cliff interpreted by {v u, u v, w u}. By definition of a NARS, we

have v−→SE v
′ ∗−→SE

∗←→
E

w′ SE
∗←−w, which interpretation contains pairs all smaller than

v u.
3. u

p−→RSE v with u 6= u ↓p, a step which interpretation is {u v}. By definition of
normal form below p, u q−→SEw (hence u � w) for some w and q≥P p. By definition
of rewriting modulo, w−→RSE v. The resulting conversion is interpreted by the smaller
multiset {w u,w v}.

4. v
p←→
E

u
Qq−→RSEw, a cliff interpreted by {v u, u v, uw}. We conclude by (*) if p#q,

definition of RSE if p≥P q, (**) if p>P Qq and assumption (ii) if p ∈ Qq \ {q}. In all cases,
the obtained proof is interpreted by pairs which are strictly smaller than v u or uw.

5. v SE

Pp←−u q−→RSE w, a peak interpreted by {v u, uw}. Thanks to the first case, we
can assume that u = u↓q. There are therefore three possible cases:
– p#q. Then v q−→RSE t SE

p←−w by (*), interpreted by {v t, t w} smaller than {v u, uw}.
– q>P Pp. By (**), we get the (smaller) joinability proof v(≥P p)∗−→ RSEv

′
SE

p←−w′RSE
(≥P p)∗←− w.

– q ∈ Pp \ {p}. By definition of rewriting modulo, v S
p←−un

pn←→
E
· · · p1←→

E
u0 = u, with

∀i ∈ [1..n] pi≥P p. Note that all ui are in SE-normal form below q since this is true of u.

We now show the existence of terms wi such that ui
qi≥P p
−−−→RSE wi, hence u � wi (requiring

here an order on E-equivalence classes), and ∀i ∈ [1..n] the pair (wi−1, wi) is joinable with
steps which interpretation is made of pairs smaller than {uw}. Letting w0 = w and q = q0,
we use an induction on i: the case i = 0 is by assumption. Assuming the property up to
i − 1, we proceed as follows: if qi#pi+1, by (*) ; if pi+1≥P qi, by definition of rewriting
modulo ; if qi>P Ppi+1, by (**) ; and if qi ∈ Ppi+1, by assumption (ii). We close the
diagram by definition of rewriting modulo if qn = p, by assumption (iv) applied to the peak
v S

p←−un
qn−→RSE wn if qn ∈ Pp (see the coming picture) and by property (**) if qn>P Pp,

yielding a smaller conversion each time.

un
�

�
�
�	

p

S

wn+1=

v

-�pn≥P p
E

un−1 ... u1
-�p1≥P p

E
u0 = u

@
@
@
@R

q0 = q>P p

RSE
w0(ii)

=

w

@
@
@
@R
w1

RSE

≥P p

??

≥P p

??

≥P p

--�� ≥P p

...

...

@
@
@
@R
wn(iv)

≥P p
RSE

??

≥P p

??

≥P p

--�� ≥P p
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6. v RSE
Pp←−u q−→RSE w. Thanks to the first case, we can assume wlog that u is in

normal form below p and q, which comparison yields three cases up to symmetry:
– p#q. Then v q−→RSE u

′
RSE

p←−w by (*), yielding a smaller conversion.
– q>P Pp. Property (**) yields a smaller conversion.

– q ∈ Pp. Then v R
p←−u′0

(≥P p)∗
←−−−→

SE
u

q−→RSE w by definition of rewriting modulo, and u is in
SE-normal form below p. As shown on the picture below, we proceed in three steps.

First: we move u′0
p−→R from u′0 to some u′n in SE-normal form s.t. u′n

(≥P p)∗←−−→
E

u and

∀i ∈ [1..n], u′i−1
(≥P p)∗
−−−→SE

(≥P p)∗←−−→
E

u′i
p−→R w

′
i and the pair (w′i−1, w

′
i) is joinable. Hence

u−→RSE w
′
i and therefore u � w′i. The proof of the claim is by induction on i. If u′0 = u′0↓SE ,

we are done with n = 0 and w′0 = w. Otherwise u′0
≥P p
−−→S u

′
1. By assumption (iii) (case

shown on the picture) or property (**), u′0
(≥P p)∗
−−→SE

(≥P p)∗←−−→
E

u′1
p−→R w

′
1 and the pair (w′0, w′1)

is joinable. SE being Church-Rosser below p, u′1
(≥P p)∗
−−−→SE

(≥P p)∗←−−→
E

u. Induction hypothesis
applied to u′1 concludes.

Second: let u = u0, ∀i ∈ [1..l], ui−1
≥P p←−−→
E

ui and ul = u′n. We proceed moving u0
≥p−→RSE

from u0 to ul showing the existence of terms wi such that: ∀i ∈ [0..l], ui
qi≥P p−→ RSEwi and

the pair (wi−1, wi) is joinable below p. This is done by induction on i. Case i = 0 is clear.
The step case uses: if p1#q0, assumption (*); if p1≥P q0, the definition of rewriting modulo,
hence w1 = w0 ; if q0>P p1, property (**) or assumption (ii) (the case shown on the picture).
For all i ∈ [0..l], the property u � wi follows from the fact that u =E ui−→SE∪RSE wi.

Third: we close the obtained local peak w′n R
p←−u′n = ul

ql−→RSEwl thanks to property
(**) or assumption (i) (case on the picture), using the fact that u′n = ul is in SE-normal
form below p.
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u′1 ... u′n = ul ... u1
-� p1≥P p

E
u0 = u

@
@
@
@R

q0 = q>P p

RSE
w0=

w

@
@
@
@R
w1 (ii)

RSE

≥P p

??

≥P p

??

≥P p

--�� ≥P p...

@
@
@
@R
wl(i) ...

�
�
�
�	
w′n...

??

≥P p

??--��

�
�

�
�	
w′1(iii)

p

R

??

≥P p

?? --�� ≥P p≥P p ...
All steps in the resulting conversion w′0 . . . w′n . . . wl . . . w0 are interpreted by pairs which

we have shown to be all strictly smaller than uw, hence we are done. J
We are ready for applying our main result to a first-order, and then higher-order, concrete
setting.

3 First-order rewriting systems
There are many versions of first-order rewriting, all covered by normal rewriting except class
and normalized rewriting as discussed in introduction.

3.1 Terms and rules.
We denote by T (F ,X ) the free algebra of terms generated from a signature F of function
symbols and a denumerable set X of variables. We assume the usual definitions of terms,
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positions, and substitutions [7, 23], adopting notations from the former. We use Var(t) for
the set of variables of the term t, Pos(t) for the set of positions in t, and FPos(t) for its set
of non-variable positions, and · for concatenation of positions. The subterm of t at position
p is denoted by t|p, and we write t[u]p for the result of replacing t|p at position p in t by u.
Positions are compared in the prefix ordering. Substitutions are homomorphic extensions
of a map from variables to terms, to a map from terms to terms. t is an instance of s by
the substitution σ if t = sσ, using postfix notation for the substitution operation also called
instantiation. Computing σ is called (plain) pattern matching. Substitution τ subsumes
substitution σ if σ = τγ for some substitution γ. Two terms s, t are unifiable if sσ = tσ,
and σ is called a (unique up to renaming of variables) most general (plain) unifier (mgu for
short) when it is minimal wrt the (well-founded) subsumption partial order.

A rewrite system is a set of pairs called rewrite rules, written as R = {li → ri}i, where
li is a non-variable term called its lefthand side and ri is a term called its righthand side
such that Var(ri) ⊆ Var(li). A term u (plain) rewrites to a term v with the rule li → ri at
position p ∈ Pos(u), if u|p = liσ for some substitution σ and v = [riσ]p. liσ is called a redex

and riσ its reduct. We write u
p·FPos(li)
−−−→ li→ri v or u p−→R v, or simply u p−→ v.

A set of equations E is a symmetric rewrite system, in which case rewriting with E at
position p is written s p←→

E
t. The conversion relation =E is called the equational theory of E.

t is an E-instance of s with the substitution σ if t =E sσ. Computing σ is called E-pattern
matching. A substitution σ is an E-unifier of the terms s, t if sσ =E tσ. We are interested
in theories, like AC, having a finite complete set of unifiers CSU(s, t) for an arbitrary pair
(s, t) of terms: any unifier of s = t is then an E-instance of a unifier in CSU(s, t).

3.2 Plain rewriting [14]
Plain rewriting corresponds to empty sets S and E. Plain rewriting satisfies the properties
(*,**). The termination assumption of the NARS implies termination of the relation −→R.
Then, the Church-Rosser property of R reduces to the joinability of local rewrite peaks
s l→r∈R

p←−u q−→R t with q ∈ FPos(l).

I Definition 3.1. Given two rules g → d and l → r in R s.t. Var(g) ∩ Var(l) = ∅,
and a position p ∈ FDom(g) such that l and g|p unify with most general unifier σ, then
〈dσ, (g[r]p)σ〉 is called a plain critical pair of l → r onto g → d at p, of which lσ is the
overlap.

The proof of theKnuth andBendix theorem now reduces to the sole classical critical pair case:

I Theorem 3.2 (Knuth and Bendix). Assume R is terminating. Then R is Church-Rosser
iff its plain critical pairs are joinable with −→R.

3.3 Rewriting modulo [21, 10]
We consider here the case where the set R is Church-Rosser modulo a theory E such as
associativity and commutativity, S being empty. Rewriting uses then pattern matching
modulo E. Our assumption that =E −→RE =E is terminating is called E-termination of R.
Again, rewriting modulo enjoys the properties (*,**), which is not true of plain rewriting in
E-congruence classes of terms.

We need to define critical pairs modulo:

I Definition 3.3. Given two rules g → d and l → r in R s.t. Var(g) ∩ Var(l) = ∅, and a
position p ∈ FDom(g) s.t. l and g|p unify with a complete set of most general unifiers Σ,
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then {〈dσ, (g[r]p)σ〉 | σ ∈ Σ} is called a complete set of E-critical pairs of l→ r onto g → d

at p, of which lσ is the E-overlap.

We then recall the notion of extension introduced by Peterson and Stickel in the AC-case,
and by Jouannaud and Kirchner in the general case:

I Definition 3.4. Given a rule g → d ∈ E and a rule l → r ∈ R such that Var(g) ∩
Var(l) = ∅, and a position p ∈ FDom(g) \ {Λ} such that l unifies with g|p modulo E, then
the rule g[l]p → g[r]p is called an E-extension of R.

I Theorem 3.5 (Jouannaud and Kirchner). Assume R is E-terminating and closed under E-
extensions. Then R is Church-Rosser modulo E provided all its E-critical pairs are joinable.

Proof. We omit the proof of joinability of critical rewrite peaks under the assumption that
E-critical pairs are joinable, and concentrate on the critical rewrite cliffs. Let s Pp←→

E
u

q−→RSE t

with g = d ∈ E, Pp = FPos(g) and l→ r ∈ R. By monotonicity of rewriting, we can assume
p = Λ and q ∈ FPos(g) \ {Λ}. Then s = dσ and t = gσ while t|q = lσ and u = l[dσ]p. We
get (g|q)σ =E lσ, hence g[l] → g[r] ∈ R by closure assumption. Since s←→

E
(g[l]q)σ, then

s−→RE t = (g[r]p)σ. J

As shown in [21], extensions are finitely many for AC, and more generally when E is a
set of permutative axioms, since extensions of extensions are then useless.

As a simple illustrating example, let E = AC and R = {x + 0 → x}. E-termination
is obvious since AC-equivalence classes are size-preserving while the rule is size decreasing.
There are no E-critical pairs since x + 0 does not E-unify with 0. Finally, R happens to
be closed under extensions by pure luck: since (x + 0) + y =AC (x + y) + 0, the extension
(x+ 0) + y → x+ y is indeed an AC-instance of the original rule.

3.4 Normal rewriting
We now come to the general case, where R,S,E are sets of rules and equations satisfying
our termination assumption. Note that our version of normal rewriting below p satisfies our
assumptions (*,**), which is not the case of Nipkow’s variant for which terms are normalized
above p, destroying both. We actually only need that RSE , SE and E satisfy (*,**) to show
that RSE∪SE is Church-Rosser under our assumptions that they satisfy the local properties,
which indeed implies the desired property for both variants.

We now need to characterize the joinability properties of the critical patterns (i, ii, iii, iv).
For rewrite peaks, we need to check for joinability complete sets of critical pairs of R

modulo S ∪E. This assumes that such complete sets exist. Note that it is possible to filter
out the pairs which overlap is simplifiable by SE .

For rewrite cliffs, we generate a normalized E-extension g[l]p ↓→ g[r]p ↓ for each rule
l→ r with respect to the equation g = d ∈ E at p ∈ FPos(g) \ {Λ} provided l and g|p unify
modulo E ∪ S (and symmetrically with d).

For simplification cliffs, we generate a normalized oriented S-extension g[l]p↓→ g[r]p↓
for each rule l→ r with respect to the rule g → d ∈ S at p ∈ FPos(g) \ {Λ} provided l and
g|p unify modulo E ∪ S.

We are left with simplification peaks, which require a new kind of extension:
I Definition 3.6. Given rules l → r ∈ R and g → d ∈ S, and a position q ∈ FPos(l)
such that l|q and g are E-unifiable with a complete set of unifiers Σ, then the rules in
{(l[d]q)σ↓→ (rσ)↓ | σ ∈ Σ are called simplification pairs of g → d onto l→ r at position q.
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I Lemma 3.7. Assume (R,S,E) is closed under simplification pairs. Then critical simpli-
fication peaks are shallow-joinable.

Proof. Note that s−→RSE
t for any simplification pair s → t, hence R can be closed by

these extensions without compromising soundness nor termination.
By monotonicity of rewriting, we can assume wlog that p = Λ. Let u Λ−→R v with l→ r ∈

R and u
q∈FPos(l)\{Λ}
−−−→ SE w with g → d ∈ S, and w = lτ [d]qτ (assuming Var(l)∩Var(g) = ∅).

Then, u|q = (l|q)τ =E gτ . By closure assumption, some rule l[g]σ↓ → rσ↓ belongs to R for

some σ such that τ =E σθ. Therefore, we get w = (l[d]q)τ
(≥P q)∗
←−−−→

E
(l[d]q)σθ

∗−→SE (l[d]q)σ↓ θ

−→R rσ↓ θ SE
∗←− rτ = v and we are done. J

Note that we need to generate an extension for each substitution in CSU(l|q, g) rather
than the single extension l[d]q → r as for the other cases, since the latter would not yield
shallow-joinability. On the other hand, we could require that simplification pairs satisfy
shallow joinability, and indeed adding them as rules ensures that property.

We are now ready for the main result of this section:
I Theorem 3.8. Let (R,S,E) be a NARS s.t.
(i) SE-critical pairs of R are joinable,
(ii) R is closed under normalized E-extensions,
(iii) R is closed under normalized simplification pairs, and
(iv) R is closed under normalized oriented S-extensions.
Then normal rewriting is Church-Rosser.

Normal rewriting has many advantages: first, it allows rewriting with R modulo SE,
despite the fact that congruence classes modulo SE may be infinite; second, compared to
rewriting modulo SE, it allows to narrow down the sets of critical pairs and extensions;
third, normal rewriting has a stronger rewriting power than normalized rewriting, and less
critical pairs need be computed.

3.5 Example
We consider the example of the introduction: R = {x + x−1 → 0}, S = {x + 0 → x} and
E = AC. First, the termination assumption is satisfied. This is classically shown by a
polynomial interpretation. Define [[x + y]] = [[x]] + [[y]]; [[x−1]] = 1 + [[x]] and [[0]] = 0. We
then verify that equations in S ∪E are invariant under the interpretation, while the rule in
S decreases strictly. A lexicographic argument yields termination of RSE ∪ SE .

We know that S is Church-Rosser modulo AC, which we did as an application of The-
orem 3.5.

Finally, we need to show that normal rewriting with R is Church-Rosser. x+x−1 unifies
with the strict subterm y + z of A, hence we need to add the extension x + x−1 + y → y

(simplifying the righthand side (0 + y) into y) to R. To ensure local confluence with SE , we
need to add 0−1 → 0 to R which has become R = {x+x−1 → 0, (x+x−1)+y → y, 0−1 → 0}.
We can then verify that the resulting system satisfies our result, hence is Church-Rosser.

4 Higher-order rewriting systems
Our interest here is in higher-order rewriting as introduced by Nipkow [19, 17]. Nipkow and
Mayr assume that rules in R are simply typed, of basic type, in η-long β-normal form and
that their lefthand sides are patterns. Higher-order rules are fired via higher-order pattern
matching. Other, related approaches to higher-order rewriting are considered and compared
in [22].
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We now consider a simply typed lambda calculus λ→ generated by sets of function
symbols Fn with arity n ≥ 0 and a set of variables X , the type structure being itself
generated by a set S of type constants. We use a, b for types, and s, t for (raw) terms:

a, b := S | a→ b

s, t := x | f(s1, . . . , sn) | λx : a . s | (s t)
Typing judgements are of the form Γ ` s : a, where Γ is a set of declarations of the form
{x1 : a1, . . . , xn : an} such that xi 6= xj if i 6= j. A term s is typable of type a in the
environment Γ if the judgement Γ ` s : a can be proved from the following rules:

var: Γ ∪ x : a ` x : a

fun: Γ ` s1 : a1, . . . ,Γ ` sn : an
Γ ` f(s1, . . . , sn) : a

if f : a1 → . . .→ an → a ∈ Fn

abs: Γ ∪ x : a ` s : b
Γ ` (λx : a . s) : a→ b

app: Γ ` s : a→ b Γ ` t : a
Γ ` (s t) : b

As usual, substitutions are capture-avoiding “morphism” written {x1 7→ s1, . . . , xn 7→ sn}
when finitely variables are involved, such that xi and si have the same type in the environ-
ment Γ.

λ→ comes equipped with three equations:
alpha: λx : a . s = λy : a . s{x 7→ y} if y 6∈ Var(s)
beta: ((λx : a . s) t) = s{x 7→ t}
eta: λx : a . (s x) = s if x 6∈ Var(s)

beta is oriented as a rule from left to right, while eta can be oriented as a reduction from
left to right or as an expansion from right to left. The set S of simplifiers is made of beta
and a choice of orientation for eta.

Let us now recall that the presence of binders forces to rewrite modulo α-conversion,
even when rewriting with the beta rule alone. The simplest example is due to Barendregt
and Klop:
(λx.(x x) λs.λz.(s z))−→(λs.λz.(s z) λs.λz.(s z))−→ λz.(λs.λz.(s z) z)−→λz.λz.(z z).
which last step has resulted in the variable z being captured by λz.We should instead rename
the inside binder λz., showing once more that rewriting modulo (here, α-conversion) surfaces
everywhere:
λz.(λs.λz.(s z) z) (≥1)∗←−−→

α
λz.(λs′.λz′.(s′ z′) z) 1−→

β
λz.λz′.(z z′).

We now move to our higher-order rewrite rule format, which definition is the following:

I Definition 4.1. A rewrite rule is a tuple (Γ, l, r, σ) s.t.
(i) l and r are in SE-normal form,
(ii) Γ ` l : σ and Γ ` r : σ,
(iii) l = f(l1, . . . , ln) for some f ∈ Fn, and is a pattern [18],
(iv) Var(r) ⊆ Var(l).

We write Γ ` l→ r : σ or simply l→ r if no ambiguity.

It is actually not necessary to assume that lefthand sides of rules are headed by a function
symbol, but, besides being a natural assumption, it simplifies the critical pairs analysis. We
shall however explain what are the additional computations needed when this assumption
is not met.

CSL’12



362 Church-Rosser Properties of Normal Rewriting

On the other hand, the pattern assumption cannot be dispensed with as pointed out to
us by Vincent van Oostrom:
Given type constants o, i, let F = {f : (o→ o)→ o, a : o, h : o→ i, g : i→ o}, X = {o →
o,X : i}, and R = {f(λx : o . F (F (x))→ a, h(g(X))→ X}.
Then a←−f(λx.g(h(g(h(x)))))−→f(λx . g(h(x))) with both terms in normal form despite
the fact that there are no critical pairs in the usual sense since f(λx . F (F (x))) has no
subterm of type i. The role of the pattern restriction is indeed to rule out these non-intuitive
higher-order phenomena.

The assumption that rules are in SE-normal form is important as well to ensure the
absence of simplification peaks in most cases.

We will use variations of a single example, differentiation, writing u(v) instead of (u v):

R : ∗ % type of reals
×2 : R→ R→ R % arity 2
diff1 : (R→ R)→ (R→ R) % arity 1
sin1, cos1 : R→ R % arity 1
×2
→ : (R→ R)→ (R→ R)→ (R→ R)

F : R→ R
diff(λx. sin(F (x)))→ λx. cos(F (x))×→ diff(F )

The idea here is to embed composition into the definition, the usual rule for differentiating
a sinus being recovered thanks to higher-order matching by instantiating F by the identity.
Note that patterns occur naturally in examples.

Our termination assumption can be verified easily here by using the Normal Higher-
Order Recursive path Ordering introduced in [13]. All the coming variants can be dealt
with as well.

Although βη-congruence classes are infinite, termination of higher-order rules like the
above one is usually easy to show because the top function symbols in the rules are different
from those of the λ-calculus. Normal rewriting therefore appears to be a very good fit with
higher-order computations.

4.1 Higher-order rewriting at simple types
4.1.1 η as an expansion [19, 17]
E is α-conversion and S is made of β-reduction and η-expansion saturating arrow types:

v[u]p−→ηv[λx : a . (ux)]p

if


u : a→ b

x 6∈ Var(u)
if p = q · 1, then v|q is not an application

To comply with the so-called Nipkow’s format for which rules must operate at base types,
the example becomes:

diff(λx. sin(F (x)))(y)→ cos(F (y))× diff(λx.F (x))(y)
There are of course no extensions associated with α-conversion.
Since η is used as an expansion, and has therefore a variable as its lefthand side, there are

no oriented extensions associated with the η-rule, and no simplification extensions either,
since rules in R are in normal form for the simplification rules.

There are no oriented extension for the β-rule since the rules in R being of base type,
their lefthand side cannot unify with an abstraction, which is the sole strict non-variable
subterm of the lefthand side of the beta rule. Note that the argument still holds for lefthand
sides which are not headed by a function symbol. There are no simplification extensions
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either: since rules are in η-long β-normal form, no subterm of a rule can unify with the
lefthand side of β except for subterms of the form (X x), where X is a higher-order variable
and x a variable bound above. Instantiating X by λy.u for some term u yields a term which
is a higher-order instance of l, hence rewrites to the corresponding instance of the righthand
side. It appears therefore that rules in R are their own simplification pairs. Therefore,

I Theorem 4.2 ([17]). Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη−1 is α-terminating;
(ii) irreducible higher-order critical pairs are joinable.

where higher-order critical pairs are defined a usual by solving equations of the form l|p =βηα

g for some rules l→ r and g → d. Note the strong analogy with Theorem 3.2. This is due to
the choice of orienting η as an expansion, and to rule out user’s rules at higher-type. Note
also that the presence of α in our termination assumption, which is usually omitted (that
is, left implicit).

This version of Nipkow’s result requires to prove that the relation (−→Rβη ∪ −→βη−1 is
α-terminating, instead of −→Rβη and −→βη−1 being separately α-terminating as in Nipkow’s
original result. On the other hand, we conclude for the stronger Church-Rosser property
instead of confluence as does Nipkow. Note also the little improvement, compared with
Nipkow’s result, obtained by eliminating the reducible higher-order critical pairs from the
joinability test.

4.1.2 η as a reduction:
S is now made of β and η reductions. We will nevertheless recover the advantages of
η-expansions by having arities for the variables as in Klop’s framework: they can be η-
expanded up to the saturation of their arity, as in λxy.X(x, y) for X of arity two and x, y
of arity zero. This η-expanded term is indeed η-reduced, since X(x) and X are not terms
in this setting.

The only difference with the previous case is therefore the orientation of η. Since sim-
plification pairs require the unification (modulo α) of the lefthand side of the η-rule with a
subterm of a lefthand side of R, the only potential case is that of a subterm of a lefthand side
of rule in R being of the form λx.X(x) where X is a free higher-order variable. Rewriting
this subterm with η is not possible, though, since it would violate the arity of X. We are
therefore left with oriented extensions, for which a lefthand side of rule would unify the
only non-variable strict-subterm of the lefthand side of η, which is impossible with our rule
format (which could actually be relaxed).

I Theorem 4.3. Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη is α-terminating;
(ii) irreducible higher-order critical pairs are joinable.

This shows that the choice of orienting eta as a reduction or an expansion has no impact
on confluence when rewriting is only possible at simple types.

4.2 Higher-order rewriting at higher types
To understand the importance of the type assumption in Nipkow’s format, let us consider his
motivating example R = {λx.a → λx.b}, where a and b are constants of a given base type.
a and b are convertible terms in η-long β-normal form since a Λ←→

β
(λx.a u) 1←→

R
(λx.b u) Λ←→

β
b,

but not joinable.
This has motivated Nipkow’s restriction that the lefthand side of a higher-order rule is

of base type, and therefore, is not an abstraction. Of course, it would be easy to change the
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rule into a → b (making it satisfy our definition of rule), therefore avoiding the problem,
but this cannot be done in general. Consider for instance the rewrite rule λx. f(x, Z(x))→
λx. g(x, Z(x)). Removing the abstraction yields f(X,Z(X)) → g(X,Z(X)), a rule which
left-hand side is no pattern.

Nipkow’s example shows a case of critical simplification peak: adding the normalized
β-extension of the original rule λx.a → λx.b, that is a → b solves the problem. In general,
the normalized β-extension of a rule λx.l(x) → r is the rule l(x) → @(r, x)↓. Since one
abstraction is pulled out, a rule can have only finitely many such extensions which are easily
computable.

Our format rules out the need for these extensions, since lefthand sides cannot be ab-
stractions. The previous argument that simplification pairs are not needed remains valid.
Therefore,

I Theorem 4.4. Higher-order rewriting with R is Church-Rosser provided
(i) −→Rβη ∪ −→βη−1 is α-terminating,
(ii) irreducible higher-order critical pairs are joinable.
We can therefore reformulate our example as follows:

diff1 : (R→ R)→ (R→ R)
sin0, cos0 : → (R→ R)
F 0 : → (R→ R)
×1
→ : (R→ R)→ (R→ R)

diff(sin ◦ F )→ diff(sin)×1
→ diff(F )

Orienting eta as a reduction would yield the same result again for our rule format.

4.3 Adding algebraic equations in E
Our main abstract result allows us to also consider equations like AC in E which would
then contain both AC and α, see [6] for examples. Of course the presence of AC requires
checking new pairs for the corresponding local properties. Higher-order unification modulo
AC of higher-order patterns yields finite complete sets of unifiers [6], hence the calculations
which require higher-order unification yield decidable tests when lefthand sides of rules are
patterns.

5 Conclusion
We have given a framework for normal rewriting terms that covers a wide variety of rewriting
applications, whether first or higher-order. These results are very economic thanks to an
abstract framework which incorporates a lightweight axiomatization of positions. Besides,
they solve a long-standing open problem regarding how to check the Church-Rosser property
of higher-order rewriting at any type, whether basic or functional.

We believe that the application of our main abstract result to higher-order rewriting can
be pushed further, by allowing for polymorphic or dependent types.

A referee strongly suggested many potential extensions of the framework, to a fully
hierarchical setting, to non-terminating normal rewriting (using decreasing diagrams), to
graph rewriting, and more. Although we are not interested ourselves in those extensions at
this point, we would of course welcome efforts in these directions. Such extensions would
provide the appropriate theoretical basis for several recent applications, the most surprising
to us being [1].

Acknowledgements: to Delia Kesner, Femke van Raamsdonk and Albert Rubio for
discussing actively this topic in the past.
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