9 research outputs found

    Time-constrained project scheduling with adjacent resources

    Get PDF
    We develop a decomposition method for the Time-Constrained Project Scheduling Problem (TCPSP) with Adjacent Resources. For adjacent resources the resource units are ordered and the units assigned to a job have to be adjacent. On top of that, adjacent resources are not required by single jobs, but by job groups. As soon as a job of such a group starts, the adjacent resource units are occupied, and they are not released before all jobs of that group are completed. The developed decomposition method separates the adjacent resource assignment from the rest of the scheduling problem. Test results demonstrate the applicability of the decomposition method. The presented decomposition forms a first promising approach for the TCPSP with adjacent resources and may form a good basis to develop more elaborated methods

    Evolutionary algorithms and hyper-heuristics for orthogonal packing problems

    Get PDF
    This thesis investigates two major classes of Evolutionary Algorithms, Genetic Algorithms (GAs) and Evolution Strategies (ESs), and their application to the Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard problems, the class of problems widely conceived to be unsolvable on a polynomial deterministic Turing machine, although they underlie many optimisation problems in the real world. With the increasing power of modern computers, GAs and ESs have been developed in the past decades to provide high quality solutions for a wide range of optimisation and learning problems. These algorithms are inspired by Darwinian nature selection mechanism that iteratively select better solutions in populations derived from recombining and mutating existing solutions. The algorithms have gained huge success in many areas, however, being stochastic processes, the algorithms' behaviour on different problems is still far from being fully understood. The work of this thesis provides insights to better understand both the algorithms and the problems. The thesis begins with an investigation of hyper-heuristics as a more general search paradigm based on standard EAs. Hyper-heuristics are shown to be able to overcome the difficulty of many standard approaches which only search in partial solution space. The thesis also looks into the fundamental theory of GAs, the schemata theorem and the building block hypothesis, by developing the Grouping Genetic Algorithms (GGA) for high dimensional problems and providing supportive yet qualified empirical evidences for the hypothesis. Realising the difficulties of genetic encoding over combinatorial search domains, the thesis proposes a phenotype representation together with Evolution Strategies that operates on such representation. ESs were previously applied mainly to continuous numerical optimisation, therefore being less understood when searching in combinatorial domains. The work in this thesis develops highly competent ES algorithms for OPP and opens the door for future research in this area

    Vehicle routing with multi-dimensional loading constraints

    Get PDF
    Zwei der wichtigsten Problemstellungen in der Transportlogistik behandeln einerseits das Verladen von Produkten auf LKWs und andererseits die ressourceneffiziente Belieferung der Kunden auf dem gegebenen Straßennetz. Bis dato wurden diese zwei Probleme mit Hilfe von kombinatorischer Optimierung getrennt von einander behandelt und es existieren zahlreiche Publikationen zu beiden Themen in den einschlägigen Fachzeitschriften. Erst in den letzten drei Jahren wurde einem integrierten Ansatz, der beide Problemstellungen zu einem Optimierungsproblem vereint betrachtet. Somit werden die Bestellungen einzelner Kunden nicht bloß über ihre Gewichte, sondern auch über ihre Abmessungen definiert. Der klare Vorteil dieses Ansatzes liegt darin, dass die einzelnen LKW Routen auch tatsächlich so gefahren werden können, da die tatsächliche Beladung auch berücksichtigt wurde. Andererseits steigt die kombinatorische Komplexität drastisch, weil das kapazitierte Vehicle Routing Problem (CVRP) mit Bin Packing Problemen (BPP) kombiniert wird und beide Probleme für sich alleine NP schwer sind. Diese Dissertation präsentiert drei verschiedene Probleme, die sich neben der Frage welches Fahrzeug beliefert welchen Kunden auch der Frage widmet, wie die bestellten Produkte auf den LKW geladen werden können. - Das Multi-Pile Vehicle Routing Problem (MP-VRP) bindet in das klassische CVRP eine Beladekomponente ein, die zwischen eindimensionalem und zweidimensionalem Bin Packing Problem angesiedelt ist. Die Problemstellungen wurden durch einen österreichischen Holzzulieferer motiviert. - Beim kapazitierten Vehicle Routing Problem mit zweidimensionalen Beladenebenbedingungen (2L-CVRP) bestellt jeder Kunden rechteckige Objekte, welche auf der rechteckigen Beladefläche des LKWs untergebracht werden müssen. - Das allgemeinste Beladeproblem stellt das dreidimensionale Bin Packing Problem dar. Hier bestellt jeder Kunde dreidimensionale Objekte, welche auf dem dreidimensionalen Laderaum des LKWs untergebracht werden müssen. Das klassische dreidimensionale Bin Packing Problem wird durch zusätzliche Beladenebenbedingungen erweitert. Momentan gibt es zu diesen kombinierten Problemen nur wenige Publikationen. Exakte Ansätze gibt es momentan nur zwei, einen für das MP-VRP (hier können Probleme bis zu 50 Kunden gelöst werden) und für das 2L-CVRP (hier können Probleme bis zu 30 Kunden exakt gelöst werden). Für Realweltanwendungen müssen jedoch Heuristiken gefunden werden, welche größere Probleminstanzen lösen können. In dieser Arbeit wird für alle drei Problemstellungen ein Ameisenalgorithmus verwendet und mit bestehenden Lösungsansätzen aus dem Bereich der Tabu-Suche (TS) verglichen. Es wird gezeigt, dass der präsentierte Ameisenansatz für die zur Verfügung stehenden Benchmarkinstanzen die besten Ergebnisse liefert. Darüber hinaus wird der Einfluss verschiedener Beladenebenbedingungen auf die Lösungsgüte untersucht, was eine wichtige Entscheidungsgrundlage für Unternehmen darstellt.Two of the most important problems in distribution logistics concern the loading of the freight into the vehicles, and the successive routing of the vehicles along the road network, with the aim of satisfying the demands of the clients. In the combinatorial optimization field, these two loading and routing problems have been studied intensively but separately yielding a large number of publications either for routing or packing problems. Only in recent years some attention has been brought to their combined optimization. The obvious advantage is that, by considering the information on the freight to be loaded, one can construct more appropriate routes for the vehicles. The counterpart is that the combinatorial difficulty of the problem increases consistently. One must not forget that both the vehicle routing problem and the bin packing problem are NP hard problems! This thesis presents three different problems concerning the combination of routing and loading (packing) problems. - The Multi-Pile Vehicle Routing Problem (MP-VRP) incorporates an interesting loading problem situated between one dimensional and two dimensional bin packing. This problem has been inspired by a real world application of an Austrian wood distributing company. - The Capacitated Vehicle Routing Problem with Two-Dimensional Loading Constraints (2L-CVRP) augments the classical Capacitated Vehicle Routing Problem by requiring the satisfaction of general two dimensional loading constraints. This means that customers order items represented by rectangles that have to be feasibly placed on the rectangular shaped loading surface of the used vehicles. - The most general packing problem to be integrated is the Three Dimensional Bin Packing Problem (3DBPP) resulting in the Capacitated Vehicle Routing Problem with Three-Dimensional Loading Constraints (3L-CVRP). Here the order of each customer consists of cuboid shaped items that have to be feasibly placed on the loading space of the vehicle. A feasible placement is influenced by additional constraints that extend the classical 3DBPP. Concerning the literature solving these problems with exact methods it becomes clear that this is only possible to some very limited extent (e.g.: the MP-VRP can be solved up to 50, the 2L-CVRP can be solved exact up to 30 customers, for the 3L-CVRP no exact approach exists). Nevertheless for real world applications the problem instances are much larger which justifies the use of (meta-)heuristics. The rank-based Ant System was modified and extended to solve the combined problem by integrating different packing routines. The designed methods outperform the existing techniques for the three different problem classes. The influence of different loading constraints on the objective value is investigated/is intensively studied to support the decision makers of companies facing similar problems

    Evolutionary algorithms and hyper-heuristics for orthogonal packing problems

    Get PDF
    This thesis investigates two major classes of Evolutionary Algorithms, Genetic Algorithms (GAs) and Evolution Strategies (ESs), and their application to the Orthogonal Packing Problems (OPP). OPP are canonical models for NP-hard problems, the class of problems widely conceived to be unsolvable on a polynomial deterministic Turing machine, although they underlie many optimisation problems in the real world. With the increasing power of modern computers, GAs and ESs have been developed in the past decades to provide high quality solutions for a wide range of optimisation and learning problems. These algorithms are inspired by Darwinian nature selection mechanism that iteratively select better solutions in populations derived from recombining and mutating existing solutions. The algorithms have gained huge success in many areas, however, being stochastic processes, the algorithms' behaviour on different problems is still far from being fully understood. The work of this thesis provides insights to better understand both the algorithms and the problems. The thesis begins with an investigation of hyper-heuristics as a more general search paradigm based on standard EAs. Hyper-heuristics are shown to be able to overcome the difficulty of many standard approaches which only search in partial solution space. The thesis also looks into the fundamental theory of GAs, the schemata theorem and the building block hypothesis, by developing the Grouping Genetic Algorithms (GGA) for high dimensional problems and providing supportive yet qualified empirical evidences for the hypothesis. Realising the difficulties of genetic encoding over combinatorial search domains, the thesis proposes a phenotype representation together with Evolution Strategies that operates on such representation. ESs were previously applied mainly to continuous numerical optimisation, therefore being less understood when searching in combinatorial domains. The work in this thesis develops highly competent ES algorithms for OPP and opens the door for future research in this area
    corecore